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Abstract

Target sound extraction aims to isolate target sound sources from an input mixture
using a target clue to identify the sounds of interest. To address the challenge posed
by the wide variety of sounds, recent work has introduced privileged knowledge
distillation (PKD), which utilizes privileged information (PI) about the target
sound, available only during training. While PKD has shown promise, existing
approaches often suffer from overfitting of the teacher model for the overly rich
PI and ineffective knowledge transfer to the student model. In this paper, we
propose Disentangled Codec Knowledge Distillation (DCKD) to mitigate these
issues by regulating the amount and the flow of target sound information within
the teacher model. We begin by extracting a compressed representation of the
target sound using a neural audio codec to regulate the amount of PI. Disentangled
representation learning is then applied to remove class information and extract
fine-grained temporal information as PI. Subsequently, an n-hot vector as the
class information and the class-independent PI are used to condition the early and
later layers of the teacher model, respectively, forming a regulated coarse-to-fine
target information flow. The resulting representation is transferred to the student
model through feature-level knowledge distillation. Experimental results show that
DCKD consistently improves existing methods across model architectures under
the multi-target selection condition.

1 Introduction

Humans possess a selective hearing ability to focus on a specific sound of interest among overlapping
sounds. This auditory perception ability has been extensively emulated across various signal pro-
cessing studies [1–5]. One major approach to achieve this objective is target sound extraction (TSE),
which aims to extract one or more desired sound sources from a mixture of multiple sounds, given
target clues that indicate the classes of target sounds [5–10], as illustrated in Figure 1 (a). However, the
diversity of sound types and acoustic conditions remains a challenge to achieving robust performance.
To address this issue, recent studies have explored the use of additional information of target sound,
such as timestamps [11, 12], pitch information [13], and multimodal cues [14, 15], to better guide
TSE models. A notable work in this direction is the utilization of privileged knowledge distillation
(PKD) [12]. This work utilizes a teacher model trained with a timestamp of the target sound as
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(a) TSE system (b) PKD framework for TSE (c) DCKD framework for TSE

Figure 1: A block diagrams of (a) baseline TSE system and the PKD framework of (b) prior network
and (c) proposed network for TSE.

privileged information (PI) available only during training and subsequently transfers knowledge to a
student model, as shown in Figure 1(b).

While the effectiveness of PKD has been demonstrated in various domains [12, 16–20], there remains
substantial room for improvement in how PI is utilized. In particular, highly predictive PI can lead
the teacher to overfit to training data, producing high-variance outputs that impair the generalization
ability of the student [20]. When applied to TSE, this finding indicates that providing overly rich PI
to the teacher may cause performance degradation in the student model.

To mitigate this limitation, we propose Disentangled Codec Knowledge Distillation (DCKD), a novel
PKD framework for improving TSE. This framework constrains both the amount and the flow of
target information by conditioning target class information, provided as a target clue, into the early
layers of the teacher model, while class-independent temporal information, used as PI, is conditioned
into the later layers (Figure 1(c)). The amount of PI is regulated by leveraging a pretrained state-
of-the-art neural audio codec [21] to extract a compressed yet essential representation of the target
sound via its encoder and quantization modules. Then, Disentangled representation learning (DRL) is
employed to remove class information and extract fine-grained temporal information from the codec
representations.

Specifically, the codec representations are passed to a Disentangled Static & Dynamic Encoder
(DSDE), which disentangles the representations into static and dynamic factors using designed
encoders for each factor. The disentangled representation is assumed primarily based on the
static/dynamic factors modeling in [22], but also reflects the global-local information assumption of
voice conversion methods [23]. To reinforce disentanglement further, we adopt a mutual information
(MI)-based strategy. We minimize MI between the static and dynamic factors using the contrastive
log-ratio upper bound estimation method [24], and enhance the representation of the static factor by
maximizing its MI with the target sound via a contrastive lower bound estimation method [22, 25].
Meanwhile, the MI between the dynamic factors and the target sound is implicitly maximized through
the teacher model training process. Thus, no additional objective is applied to the dynamic factor. The
extracted dynamic factors are used to condition the later layers of the teacher model, while the target
clue conditions the early layers, forming a coarse-to-fine yet regulated conditioning pipeline of target
information. This structure allows the teacher model to first absorb coarse-level class information and
then refine its understanding with class-independent temporal information from the PI in later stages,
thereby avoiding the injection of overly rich PI all at once. This design mitigates overfitting problem
of teacher model and enables more effective feature-level knowledge transfer to the student model.
Experimental results on the Kaggle2018-TAU dataset demonstrate that DCKD consistently improves
separation performance across various TSE architectures under multi-target selection conditions.

Our key contributions are summarized as follows:

(1) We propose Disentangled Codec Knowledge Distillation (DCKD), a novel privileged knowledge
distillation (PKD) framework for target sound extraction that integrates a pretrained neural audio
codec with disentangled representation learning (DRL) to facilitate compressed yet essential PI
extraction and a coarse-to-fine target information condition scheme.

(2) We address the teacher overfitting issue in PKD by integrating global–local feature disentangle-
ment with DRL, enabling more stable and effective knowledge transfer to the student model.



(3) Experimental results validate that DCKD consistently improves separation performance across
various model architectures, achieving notable gains under acoustically challenging conditions, such
as mixtures containing 0 to 3 target sounds with varying background noise.

2 Related Work

Target Sound Extraction. Target sound extraction (TSE) seeks to isolate a target sound source
from an audio mixture using user-specified target information provided as a target clue. Early
approaches utilized n-hot class labels or reference audio as conditioning inputs [5, 6] to the prior
speech separation model, Conv-TasNet architecture [26]. based on these findings, Waveformer [8]
was introduced as a real-time streaming model for TSE, demonstrating low-latency performance.
More recently, diffusion-based [9] and state-space-based [10] architectures have also been explored.
As TSE can be seen as the inherently combined task of sound classification and source separation,
subsequent research has explored various forms of target clues to help the model identify target
sound, including n-hot class label [5], reference audio enrollment [6, 7], textual queries [27], visual
signals [28], and multimodal embeddings [14, 15]. To further enhance TSE performance, several
studies have proposed incorporating additional target information, such as timestamps [11, 12] and
pitch cues [13], which have shown clear benefits. However, these methods often rely on auxiliary
DNNs and may yield suboptimal improvements depending on the quality or type of the additional
information. In contrast, our approach enhances performance by effectively transferring PI from
the teacher to the student model through principled regulation of PI, without increasing inference
complexity.

Privileged Knowledge Distillation. Privileged knowledge distillation (PKD) leverages PI available
exclusively during training to train a teacher model, which then guides a student model without access
to this information [16]. This approach has been widely applied across various domains [17,18,29–32],
including audio-related downstream task [17,18,32], due to its ability to utilize privileged information
unavailable during inference. However, as noted in [20], providing overly rich PI can cause the
teacher model to overfit, leading to ineffective knowledge transfer and degraded student performance.
To mitigate this, we employ neural codec to regulate the amount of PI and DRL to enable gradual
knowledge transfer. This approach prevents the teacher model from over-relying on privileged
information, ensuring effective distillation to the student model.

Disentangled Representation Learning. Disentangled representation learning (DRL) seeks to
separate latent representations into distinct and interpretable factors, thereby improving model in-
terpretability and generalization [33]. Building on its demonstrated effectiveness across a variety
of domains [22, 24, 25], DRL has been applied in speech processing tasks, including voice conver-
sion [23], speech representation learning [34], and target speaker extraction [35]. Recent studies have
extended DRL to neural audio codec representations [36], broadening its applicability to general
sound processing. In this work, we leverage DRL to improve the effectiveness of PKD for TSE.

3 Proposed Approach

3.1 Overview

As illustrated in Figure 2, our proposed system consists of two stages:(1) training a teacher model
with DRL and (2) training a student model via PKD. Given a mixture signal y ∈ RL of length L,
an n-hot label vector l ∈ [0, 1]M representing the target class(es) among M possible classes, and
the target sound x ∈ RL, the teacher model is trained using y as input, l as the target clue, and PI
derived from x, as illustrated in Figure 2(a). To extract PI, target sound x is first passed through
a pretrained neural audio codec encoder followed by a quantization module, resulting in a codec
representations c1:T . This representation is then processed by the proposed DSDE, which separates it
into a static factor s and a dynamic factors z1:T , following notation of [22]. Among disentangled
factors, only the dynamic factors are used to condition the latter part of the teacher model. The static
factor thus functions solely to enforce the disentanglement, guiding the dynamic factors to retain
class-independent temporal details of the target sound. Conditioning the n-hot vector as a target clue
at the front and the dynamic factors at the back of the teacher model enables a regulated, coarse-to-fine
flow of target information condition. Once the teacher model is trained, its intermediate feature



(a) Training teacher model with DRL (b) Training student model with DCKD

Figure 2: Overview of the proposed DCKD framework, consisting of (a) teacher model training with
DRL and (b) student model training with DCKD. During the teacher model training, the model is
conditioned on the n-hot vector as a target clue and the disentangled PI extracted from the target sound
via a neural audio codec and DSDE. The student model learns from the teacher via feature-level KD,
using intermediate latent features. The frozen block is colored in blue.

representations are frozen and used to supervise the student model via a feature-level knowledge
distillation loss, as shown in Figure 2(b). This enables the student to learn target information without
access to PI during inference, thus preserving efficiency while benefiting from additional information.

3.2 Disentangled Codec Representations Learning for Teacher Model

Disentangled Static & Dynamic Encoder using Neural Codec As illustrated in Figure 1(a), the
proposed DSDE disentangles neural codec representations of the target sound into a time-invariant
static factor and a time-variant dynamic factor. This is achieved via a static encoder Es and a dynamic
encoder Ed, each tailored to capture the respective characteristics of the factors. The input to DSDE
is the codec representations c1:T = {c1, . . . , cT }, obtained from a pretrained state-of-the-art neural
codec model DAC [21], where ci ∈ RDc denotes the latent codec representations at frame index i
with codec feature dimension Dc. The codec representations extraction can be expressed as:

c1:T = Q(EncDAC(x)), (1)

where EncDAC denotes the encoder of DAC and Q denotes the quantization module.

We assume that the codec representations c1:T can be disentangled into a static factor s and a dynamic
factors z1:T under a statistical independence assumption, i.e., p(s, z1:T ) = p(s)p(z1:T ), following
prior research [22]. The dynamic factor zi at each time step i is assumed to be dependent on
z<i = {z0, z1, ..., zi−1} with z0 = 0. Inspired by [23], each frame-wise dynamic factor is assumed
to follow a standard Gaussian distribution: p(zi) ∼ N (0, I) to reduce complexity. Based on these
assumptions, the posterior distribution of the disentangled representations to be learned can be
factorized as:

q(s, z1:T |c1:T ) = q(s|c1:T )q(z1:T |c1:T ) = q(s|c1:T )
T∏

i=1

q(zi|z<i, c<i). (2)

The static factor s is designed to capture time-invariant class identity information, which is modeled
using a channel attention module (CAM) [37] to emphasize class-specific information across channels.
Note that this static factor is not used as input to the teacher model, instead it is used to enforce
the disentanglement of class-related information from the dynamic factor. The dynamic factors
z1:T are modeled to capture sequential, local acoustic details using a bi-directional long short-term



memory (Bi-LSTM) network [38]. To remove class information while preserving fine-grained
temporal information, we apply instance normalization (IN). IN has been adopted in style transfer
and voice conversion to filter out global style attributes [23, 39, 40], such as illumination and contrast
in images [39] or pitch and energy in audio [40], while preserving content information. Based on
these findings, we hypothesize that IN in our framework can filter out class-specific global features,
such as characteristic pitch or energy patterns associated with certain sound classes. Our ablation
studies in table 4 confirm that using IN improves performance, supporting our hypothesis that IN
facilitates disentanglement of class-related information from the codec representations, thereby
enabling more effective application of DCKD. After disentanglement, the static and dynamic factors
are concatenated and passed through a linear transformation function f , yielding a reconstructed
codec representation, which is decoded using the frozen decoder of the DAC DecDAC, formulated as:

x̂c = DecDAC(f(s, z1:T )). (3)

The output of decoder is then optimized to reconstruct target sound using the multi-resolution
short-time Fourier transform (STFT) loss [41].

Mutual Information-Based Disentanglement We adopt a MI-based disentanglement approach to
encourage the MI between codec representations and each factor while discourage the MI between
disentangled factors. However, as noted in [42], disentangled representations can be meaningless
without proper inductive biases. To address this, we guide the static factor to retain class-relevant
information by minimizing the cosine distance to the embedding vector of the n-hot class label. To
minimize the MI between the latent factors I(z1:T , s), we adopt the variational contrastive log-ratio
upper bound (vCLUB) [24] estimator, which is proposed as an upper bound estimate of MI. The
vCLUB objective derived based on the modeled factors in (4), is formulated as follows:

I(z1:T , s) ≤ IvCLUB(z1:T , s) (4)
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where N denotes the number of samples and q(z
(j)
t |z(j)<t , s

(i)) is a variational approximation of the
conditional posterior distribution, estimated using a variational approximation network optimized
to maximize log-likelihood function. The log-likelihood loss based on the modeled factors in (4) is
formulated as,

LLL = − 1

N

T∑
t=1

N∑
i=1

log q(z
(i)
t |z(i)<t, s

(i)). (5)

To further improve the representation of disentangled static factor, we maximize its MI with the
target sound via MI-lower bound InfoNCE [25], which is contrastive estimation method based on
Noise Contrastive Estimation (NCE) [43]. The InfoNCE lower bound for static factor based on
augmentation [22] is defined as,

I(z1:T , s) ≥ IInfoNCE(s, saug) =
1

N

N∑
i=1

[
log

(
esim(s(i),s(i)aug )

1
N

∑N
j=1 e

sim(s(i),s
(j)
aug )

)]
, (6)

where sim(·, ·) means cosine similarity function and saug is the static factor with content augmentation,
generated using the same augmentation strategy as in [22]. We do not apply additional MI maximiza-
tion to the dynamic factor, as training the teacher model to estimate the target sound implicitly acts as
an inductive bias that maximizes MI between the dynamic factors and the target sound.

Objective Formulation for Teacher Training The total objective function for training the teacher
model is defined as:

LTeacher = LTSE + λCLUB(IvCLUB + LLL)− λNCEIInfoNCE + λcosLcos + LSTFT (7)



where λCLUB, λNCE, λcos are hyperparameters used to balance each objective, and LTSE, Lcos, LSTFT
represent the TSE loss between x and x̂teacher, the cosine distance between the embedding of the n-hot
label zl and s, and the multi-resolution STFT loss between x̂codec and x [41] for the reconstruction.
For the TSE loss, we employ a conditional loss function that applies different objectives based on
signal activity to consider the presence or absence of target sounds. Specifically, we compute the
negative SDR loss [44] for non-zero (active) targets and a log-scale mean squared error for zero
(inactive) targets to penalize hallucinated outputs. The TSE loss for each source is defined as:

LTSE(x, x̂teacher) =

{
10(log10(||x||2)− log10(||x− x̂teacher||2)), if ∥x∥2 > ε

10 log10
(
∥x− x̂teacher∥2 + ε

)
, otherwise

(8)

where ε is a small constant used as a threshold for absence and to prevent numerical instability, which
is set to 1e-8.

3.3 Disentangled Codec representations Knowledge Distillation for Student Model

After training the teacher model, its privileged knowledge is transferred to the student model through
feature-level knowledge distillation. Motivated by [45], we compute the mean squared error (MSE)
between the corresponding feature representations of the teacher and student models to transfer the
disentangled knowledge:

Lfeature
KD (zs, zt) = ||zt − g(zs)||22, (9)

where zs and zt is the feature representation fron student model and teacher model, and g(·) represents
a linear transformation used to align the dimensions for distillation. This feature-based distillation
loss is combined with a result-based knowledge distillation loss which can be expressed as,

Lresult
KD = LTSE(x̂teacher, x̂student), (10)

which computes the TSE loss between the outputs of the teacher and student models. To further
enhance the effectiveness of knowledge transfer, the student model is initialized with the pretrained
weights of the teacher model, followed by fine-tuning. The overall objective function for training
student model is formulated as:

Lstudent = LTSE + λfeL
feature
KD + λreL

result
KD , (11)

where LTSE, λfe and λre is TSE loss between x̂student and x are hyper-parameters for the KD
objectives.

4 Experiments

4.1 Experimental Setup

Evaluation Metric. We evaluate model performance using signal-to-distortion Ratio (SDR) and
Scale-Invariant SDR (SI-SDR) [44] improvements over the mixture signal in decibels (dB) using the
BSSeval toolkit [46].

Table 1: SDR and SI-SDR average of the
test set in dB scale.

# of target SE class
1 2 3 Mean

SDR -6.01 0.57 8.51 0.91
SI-SDR -6.10 0.54 8.50 0.87

Dataset. We constructed a synthetic dataset by com-
bining sound events (SEs) from the Freesound Dataset
Kaggle 2018 (FSD Kaggle) [47] and background
sounds from the TAU Urban Acoustic Scenes 2019
dataset [48]. The FSD Kaggle dataset provides paired
SEs and corresponding class labels across M = 41
diverse classes. For dataset partitioning, the train, vali-
dation, and eval splits of the FSD dataset were used for
training, validation, and testing, respectively. Each mix-
ture was synthesized by randomly selecting {3, 4, 5}
SEs from the FSD dataset, each with a duration of 1.5 to 3 seconds, and adding them at random time
positions onto a 5.9-second (260,000 samples) background sound from the TAU dataset. Within each
mixture, {0, 1, 2, 3} SEs were randomly chosen as targets. The signal-to-noise ratios (SNRs) of the
SEs relative to the background were randomly sampled between 15 and 25 dB, with the background
level fixed at -30 dB. All audio samples are following original sampling rate, 44.1 kHz. During



training, 2,500 mixtures were generated per epoch through on-the-fly random mixing. For validation
and testing, 5,000 fixed mixtures were prepared following the same generation procedure, excluding
the zero target sound selection case. Table 1 shows the SDR and SI-SDR of the test set for each
number of target SEs.

To validate the generalization capability of DCKD, we further conducted experiments on the ESC-50
dataset [49]. ESC-50 consists of 50 sound classes, each containing 40 clips of 5 seconds. The
dataset was split into 20, 10, and 10 clips per class for training, validation, and testing, respectively.
Following the same procedure described above, we generated 2,500 on-the-fly mixtures for training
and 1,000 fixed mixtures each for validation and testing.

Implementation. We employed the Adam optimizer with an initial learning rate of 5e-4. A learning
rate scheduler reduced the learning rate by a factor of 0.9 whenever the validation loss failed to
improve for three consecutive epochs. The teacher and student models were trained for 500 and
300 epochs, respectively, with early stopping when the models stopped improving for 30 epochs.
The model checkpoint with the lowest validation loss was selected for evaluation. During model
optimization, the weighting parameter of teacher loss function, λCLUB, λNCE and λcos were fixed at
1e-5, 1.0, and 10.0 and for student loss function, λfe and λre were set to 1e-4 and 0.6 to balance
the values of losses. For the experiments comparing different types of PI, we generated timestamp,
pitch, and neural codec representations of the target sound. The timestamp information was derived
from the known time indices during mixture generation, using a window size of 64 and a stride of
32, consistent with the encoder of baseline model configuration. Pitch information was extracted
using the Parselmouth package [50]. We repeated the extracted pitch values to match the frame
dimension of the intermediate features of the teacher model. The same alignment procedure was
applied to the neural codec representations. The codec feature dimension was set to 1024, as defined
by the pretrained model. All types of privileged information were modeled using a bidirectional
LSTM (Bi-LSTM) architecture, identical to that used in the dynamic encoder. All experiments were
conducted on a server equipped with four NVIDIA GeForce RTX 4090 GPUs.

Compared Baseline Configurations. To validate the effect of the proposed DCKD framework
across different DNN architectures, we adopted two distinct models: Sound Selector [5], a widely
used baseline for TSE tasks, and Waveformer [8], which was proposed for real-time TSE applications.
For the Sound selector, we followed the configuration of [5] composed of 4 repeat of 8 conv1d blocks
with learnable encoder-decoder with feature dimension 128, except for the window size, which is
64 adapt to 44.1kHz. The target clue was conditioned after the first repeat and the dynamic factors
was incorporated after the final repeat block. We adapted CAM [37] for the static encoder, adding a
linear projection layer at the front to match the feature dimensionality and an average pooling layer
applied at the output. All pooling operations were implemented as 1D operations along the temporal
dimension. To estimate the conditional posterior distribution of the disentangled factors, we jointly
train a variational approximation model alongside the teacher model, which consists of four linear
layers with ReLU activations for both the mean and log-variance estimators, followed by a final tanh
activation to constrain the variance.

For the Waveformer, we utilized the non-causal version introduced in [8]. The stride size for the first
1D convolutional layer was set to 32, and the numbers of encoder and decoder layers were configured
as 10 and 1, respectively, following the original implementation. To facilitate stable optimization
of PI, we set the encoder and decoder feature dimensions to 256. To match the performance of
Waveformer reported in the original paper, we trained it with 10,000 samples per epoch. The target
clue was applied following the same approach as in [8], and the dynamic factors was incorporated
similarly to the teacher model of the Sound Selector via element-wise multiplication with the output
of the mask generator.

4.2 Comparison to Privileged Information

Table 2 presents the performance comparison of the proposed DCKD framework under various
types of PI using the Sound Selector architecture. The student model trained without any PI
showed the lowest performance, with an SDRi of 8.00 dB and SI-SDRi of 7.30 dB. In contrast,
teacher models equipped with different forms of PI—such as timestamps, pitch, target sound,
and neural codec features—consistently outperformed the student baseline. Notably, using the
raw target sound as PI yielded the highest teacher performance, reaching an SDRi of 16.23 dB.



Table 2: Comparison to privileged information

PI Type Mechanism SDRi SI-SDRi

None Student 8.00 7.30

Timestamp
Teacher 11.70 10.94
w/ PKD 9.30 8.46

Pitch
Teacher 11.05 10.26
w/ PKD 9.61 8.71

Target
Sound

Teacher 16.23 15.79
w/ PKD 9.82 8.89

Neural
Codec

Teacher 15.78 15.19
w/ PKD 10.25 9.29

Disentangled
Codec

Teacher 15.32 14.77
w/ PKD 10.40 9.42

However, when these PIs were transferred to the
student model via knowledge distillation, a differ-
ent tendency was observed. Although all PIs led
to performance gains over the baseline student,
the effectiveness of distillation did not align with
the richness of the PI. In particular, compared to
methods using timestamps or pitch as PI, richer
forms of PI such as the raw target sound yielded
limited improvements for the student model rel-
ative to codec-based representations. This shows
that overly informative PI can limit the perfor-
mance gains over the baseline.

For the method employing a compressed target
representation obtained via a neural audio codec,
although the teacher model performance slightly
decreased, the corresponding student model out-
performed the one trained with the raw target sound, indicating regulated codec information enables
more effective knowledge transfer. Furthermore, although the teacher performance dropped further,
our proposed method achieved the highest student performance with 10.40 dB SDRi and 9.42 dB
SI-SDRi. These results demonstrate PI regulated through codec and DRL enables more effective
distillation to the student model.

4.3 Comparison to Baselines

Table 3: Comparison of the proposed DCKD framework with different baselines.

Model Params (M) Mechanism SDRi SI-SDRi SI-SDRi

1-target (∆) 2-target (∆) 3-target (∆)

Sound
Selector

84.44 Teacher 15.32 14.77 19.96 (7.56) 14.49 (7.23) 9.61 (5.78)

6.55 Student [5] 8.80 7.90 12.40 (0.00) 7.25 (0.00) 3.83 (0.00)
w/ DCKD 10.40 9.42 14.61 (2.21) 8.55 (1.30) 4.84 (1.01)

Wave
former

81.15 Teacher 10.75 10.21 16.38 (8.46) 11.16 (6.82) 8.60 (4.12)

1.67 Student [8] 5.50 4.67 7.91 (0.00) 4.34 (0.00) 1.59 (0.00)
w/ DCKD 6.48 5.80 9.41 (1.50) 5.31 (0.97) 2.49 (0.90)

Table 3 presents a comprehensive comparison between the proposed DCKD framework with teacher-
student baselines on two architectures: SoundSelector and Waveformer. Results are reported in terms
of SDRi, SI-SDRi, and separation performance under varying target selection scenarios (1-target,
2-target, 3-target). The values in parentheses represent the SI-SDR gain over the student baseline.
These results indicate that DCKD consistently improves both architectures architectures regardless of
model capacity.

For the Sound selector model, applying DCKD improves the student SDRi from 8.80 dB to 10.40 dB
and SI-SDRi from 7.90 dB to 9.42 dB, validating the effectiveness of the proposed framework. In
the 1-target condition, DCKD achieves 14.61 dB SI-SDRi, corresponding to a +2.21 dB gain over
the student model. Similarly, for 2-target and 3-target cases, DCKD provides gains of +1.30 dB and
+1.01 dB, respectively. These consistent improvements indicate that DCKD enhances robustness even
as separation difficulty increases.

A similar trend is observed with the lightweight Waveformer model. Although the student baseline
performance is lower due to its smaller capacity (1.67M parameters), DCKD improves SDRi from
5.50 dB to 6.48 dB and SI-SDRi from 4.67 dB to 5.80 dB. The improvements were observed
across all conditions—1-target (+1.50 dB), 2-target (+0.97 dB), and 3-target (+0.90 dB) selection
settings—exhibiting a similar trend to the teacher model. These results demonstrate the robustness
of the proposed method, showing that the performance improvements of the student model with
DCKD follow the trends observed in the teacher model. In particular, the improvement observed in
the compact Waveformer model highlights the potential of DCKD for lightweight models, aligning
with one of the primary objectives of knowledge distillation.



Figure 3: Left: t-SNE visualization of static factor. Right: t-SNE visualization of dynamic factor.
The factors are extracted from sound event samples of 10 different sound events from test dataset.

4.4 Ablation Study

Table 4: Ablation study of DCKD using the
SoundSelector model.

Configuration SDRi SI-SDRi

w/ DCKD (full) 10.40 9.42
w/o Codec Info 8.58 7.72
w/o LvCLUB 9.88 8.94
w/o LInfoNCE 10.34 9.37
w/o LCos 10.11 9.15
w/o InstanceNorm 9.61 8.67
w/o MI-based objectives 9.71 8.76
w/o DRL 10.25 9.29
w/o Lfeature

KD 10.38 9.43

Table 4 presents an ablation study evaluating the con-
tribution of each component in our proposed DCKD
framework, including the neural codec, components
for DRL and the feature-level knowledge distillation
method.

Among all components, removing the neural codec
led to the most significant performance drop (-1.82
dB SDRi), highlighting its critical role in providing a
compact yet informative representation of the target
sound to teacher model. This result confirms the
importance of compressing PI via a pretrained codec
before distillation.

Disabling the MI based objectives, which include
the vCLUB, InfoNCE lower bound, and additional
inductive biases such as cosine distance loss and
instance normalization, consistently degraded per-
formance, demonstrating that each objective contributes to effective factor disentanglement and
inductive guidance. Notably, removing the entire MI-based objectives led to a substantial perfor-
mance loss (-0.69 dB SDRi), higlighting the benefit of MI-aware DRL. Interestingly, excluding the
entire DRL methods, which is the same as the result of the student model with PKD using codec
representations as PI, resulted in only a moderate degradation (-0.15 dB SDRi), suggesting that DRL
provides more robust benefits when with proper inductive bias.

Lastly, we removed the featur-level KD loss at the feature level to assess its effect. Although the
improvement may appear marginal in the results, we observed that featur-level KD loss enables faster
convergence when training student model with DCKD by performing meaningful regularisation
during the training process.

4.5 The Analysis of Disentanglement Learning

To evaluate the effectiveness of our inductive biases for disentanglement, we intuitively visualize the
learned static and dynamic factors using t-SNE in Figure 3. This visualization helps assess whether
each factor captures the intended properties—static factor capturing target class identity and dynamic
factors capturing class-agnostic temporal details. The left panel of Figure 3 illustrates the t-SNE
projection of the static factor, exhibiting clear class-wise grouping. This result indicates that the static
factor retains sufficient information to discriminate among class identities, validating the effect of the
cosine distance loss in guiding class-related representation learning and InfoNCE loss to preserve
information of the target sound.

In contrast, the right panel shows the t-SNE distribution of the dynamic factor, which exhibits no
evident clustering according to sound class labels. This result is consistent with our objective of
removing class identity information from the dynamic factor, preserving only fine grained temporal
characteristics.



These results confirm that the proposed DSDE, combined with the MI-based objectives and additional
inductive bias, successfully disentangles the codec representations of the target sound representation
into static and dynamic factor.

4.6 Generalization of DCKD

Table 5: Comparison of student models with and
without DCKD on ESC-50 dataset.

Model Mechanism SDRi SI-SDRi

SoundSelector
Teacher 10.73 10.32
Student 4.59 3.42

w/ DCKD 4.92 3.62

To evaluate the generalization capability of the
proposed DCKD framework, we conducted ad-
ditional experiments on a ESC-50 dataset, as
shown in Table 5. The results demonstrate that
applying DCKD consistently improves perfor-
mance over the baseline student model, validat-
ing the robustness and generalizability of the pro-
posed method. The relatively low overall perfor-
mance and improvement observed in this dataset
are likely due to its limited dataset size and the
increased number of sound classes (50), which leads to greater inter-class variability that the model
must learn.

5 Conclusion

In this work, we introduced DCKD, a novel framework that enhances TSE by leveraging disentangled
PI. This framework uses target class information and disentangled class-independent temporal
information as a condition for early and later layers of the teacher model, forming a coarse-to-fine
manner yet regulated information transfer. As the target class information is given as a target clue,
our approach mainly focuses on extracting class-independent temporal information from the target
sound as a PI for the teacher. PI is extracted by disentangling the neural codec representations of the
target sound, guided by an MI-based objective with additional inductive bias. This pre-trained teacher
model effectively transfers target-related knowledge to the student model via feature-level knowledge
distillation. Experimental results on the Kaggle 2018-TAU dataset demonstrate the effectiveness of
our method across diverse scenarios. Furthermore, DCKD mitigates the teacher overfitting problem,
which is a key limitation of PKD approaches, suggesting its potential applicability beyond TSE to
other domains.

Limitations and Future work The proposed method has several limitations. First, the use of a DAC
neural codec introduces a considerable computational increase. Although consistent performance
improvements were observed, future research exploring lightweight feature compression models and
optimized training procedures for the teacher network to enhance efficiency is needed. Second, the
current framework assumes access to individual source signals within the mixture during training. This
assumption aligns with supervised learning settings but limits applicability to real-world recordings,
where isolated target signals may not be available. Therefore, investigating unsupervised or weakly
supervised learning strategies to extend DCKD to more practical scenarios can be a key direction for
future work.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

paperswithcode.com/datasets


Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

https://neurips.cc/Conferences/2025/LLM


A Implementation Details

Integration of Course & Fine Information The n-hot label is injected into the right after the
learnable encoder of the model via element-wise multiplication, where the label vector is first linearly
projected to match the channel dimension of the latent feature. The dynamic factors are injected into
the latter part through element-wise multiplication, specifically right before the output layer, which
consists of a 1D convolution layer.

Computational Efficiency Training time is measured in wall-clock time. The increase in DCKD
primarily results from additional forward passes through the teacher model and computation of
mutual information-based loss terms.

Table 6: Model size and training time comparison of teacher and student models.

Configuration Params (M) Training Time GPU Setup

Teacher model 84.44 3 days 4 × RTX 4090
Student (baseline) 6.55 9 hours 4 × RTX 4090
Student w/ DCKD 6.55 1 day (≈2.7× baseline) 4 × RTX 4090

Implementation Details of Ablation Experiments For the ablation study, we used the same
teacher and student model architectures when evaluating the effects of feature-level KD loss (Lfeature

KD )
and the cosine distance loss (Lcos).

To validate the effectiveness of the vCLUB method, we excluded LvCLUB, LLL and variational
approximation model used for modeling the conditional posterior distribution.

For the MI-based approach ablation, we excluded all MI-based losses: LvCLUB, LLL and LInfoNCE to
isolate the impact of the MI-based disentanglement strategy.

To assess the contribution of the codec representations, we replaced the codec model with a simple
encoder–decoder architecture consisting of a 1D convolutional layer and a transposed 1D convolu-
tional layer. Both the encoder and decoder employed a kernel size of 512, a stride of 256, and a
feature dimension of 128.

B Ablation Study on Waveformer

Table 7: Ablation study of DCKD using the
Waveformer model.

Configuration SDRi SI-SDRi

w/ DCKD (full) 6.48 5.80
w/o Codec Info 4.04 3.11
w/o LvCLUB 4.13 3.37
w/o LInfoNCE 5.39 4.73
w/o LCos 3.85 3.00
w/o InstanceNorm 3.92 3.21
w/o MI-based objectives 6.52 5.82
w/o DRL 4.98 4.09
w/o Lfeature

KD 6.41 5.68

Table 7 presents the ablation study results of the
Waveformer model, evaluating the effect of each
component in the proposed DCKD framework. In
most cases, the Waveformer model shows a clear
performance degradation below the baseline stu-
dent model, unlike the SoundSelector-based abla-
tion study, where most configurations still outper-
formed the baseline. Given that Waveformer has
lower model capacity than SoundSelector, this degra-
dation suggests that excessive PI interferes with the
convergence of lightweight models. Interestingly,
the model without MI-based objectives achieves bet-
ter performance than the model with DCKD. These
results can be explained by the fact that MI estima-
tion increases optimization difficulty and may intro-
duce instability, particularly in compact models such
as Waveformer. As a result, using only the Cosine
similarity loss (Cos) and Instance Normalization (IN) for DRL can lead to more stable training and
improved performance in such lightweight architectures. Meanwhile, removing the Lfeature

KD term



results in only a slight performance drop (6.41 dB / 5.68 dB), following a similar trend to that
observed in SoundSelector.

C Results on language-query based TSE model

Table 8: Performance comparison of AudioSep
models

Model Mechanism SDRi SI-SDRi

AudioSep
student 6.97 5.55

w/ DCKD 6.96 5.60

Table 8 shows the results of applying DCKD to the
language query–based TSE model, AudioSep [51].

Implementation We used the AudioCap dataset
[52] for training, and the test set sourced from [51].
All configurations were kept identical to the original
AudioSep setup, except for the sampling rate. While
AudioSep originally operated on 32 kHz audio, the
sampling rate was set to 44.1 kHz to match the oper-
ational range of the DAC, and the model was trained accordingly. For evaluation, the test set was
upsampled to 44.1 kHz.

Results The performance showed a slight improvement in SI-SDRi but remained lower in SDRi.
This marginal gain can be attributed to two main factors. First, the caption text often includes not
only coarse-level semantic information but also additional temporal cues (e.g., “then,” “continuous”),
which may have interfered with the intended functioning of DCKD. Second, unlike the baseline
models that condition label information only once at the early stage, AudioSep conditions the query
information throughout the network using FiLM layers. During teacher model training, fine-grained
information is conditioned at the final stage by modulating the feature representations, which cannot
be considered as a coarse-to-fine conditioning scheme. Therefore, the limited performance gain is
likely due to the structural difference between the conditioning mechanism of the AudioSep and the
intended design of DCKD.

D Class-Wise Visualization Result

Figure 4 presents the SI-SDR results for all 41 target sound event (SE) classes, comparing the input
mixture, the baseline Sound Selector, and the Sound Selector with DCKD applied. Our method
consistently outperforms the baseline across most classes, except for "Knock" and "Scissors". In
particular, substantial improvements are observed for the classes such as "Tambourine," "Bass
drum," and "Saxophone." These results demonstrate the robustness and effectiveness of the proposed
framework in enhancing extraction performance across a diverse range of target sound classes.

E Sample Spectrograms for Multi-Target Class Selection Scenarios

Figures 5, 6, 7 and 8 present sample spectrogram visualizations. Each figure includes the input
mixture, the output of the baseline Sound Selector, the output of the baseline with DCKD applied,
the output of the teacher model, and the oracle target signal. These visualizations are provided under
varying numbers of target class selections, demonstrating robust improvement over the baseline in
both interference sound suppression and target sound detection performance. Example audio files
corresponding to the figures are included in the supplementary zip file.



Figure 4: SI-SDR (dB) for each sound event (SE) class, comparing the input mixture, the baseline
Sound Selector, and the Sound Selector with proposed method applied. Error bars indicate 95%
confidence intervals computed across evaluation samples.

(a) (b)

Figure 5: Spectrogram comparisons under a 1-target selection scenario. (a) shows a case where the
proposed method achieves improved suppression of interfering sources, while (b) highlights enhanced
detection of the target sound



(a) (b)

Figure 6: Spectrogram comparisons under a 2-target selection scenario. (a) shows a case where the
proposed method achieves improved suppression of interfering sources, while (b) highlights enhanced
detection of the target sound.

(a) (b)

Figure 7: Spectrogram comparisons under a 3-target selection scenario. (a) shows a case where the
proposed method achieves improved suppression of interfering sources, while (b) highlights enhanced
detection of the target sound



(a) (b)

Figure 8: Spectrogram comparisons under target sound overlapping with interfering sources. (a)
shows a 2-target selection case, and (b) shows a 3-target selection case. In both scenarios, the
proposed method demonstrates improved suppression of overlapping interference compared to the
baseline.
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