
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ERROR FEEDBACK FOR MUON AND FRIENDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent optimizers like Muon, Scion, and Gluon have pushed the frontier of large-
scale deep learning by exploiting layer-wise linear minimization oracles (LMOs)
over non-Euclidean norm balls, capturing neural network structure in ways tradi-
tional algorithms cannot. Yet, no principled distributed framework exists for these
methods, and communication bottlenecks remain unaddressed. The very few dis-
tributed variants are heuristic, with no convergence guarantees in sight. We intro-
duce EF21-Muon, the first communication-efficient, non-Euclidean LMO-based
optimizer with rigorous convergence guarantees. EF21-Muon supports stochas-
tic gradients, momentum, and bidirectional compression with error feedback–
marking the first extension of error feedback beyond the Euclidean setting. It
recovers Muon/Scion/Gluon when compression is off and specific norms are cho-
sen, providing the first efficient distributed implementation of this powerful fam-
ily. Our theory covers non-Euclidean smooth and the more general (L0, L1)–
smooth setting, matching best-known Euclidean rates and enabling faster conver-
gence under suitable norm choices. We further extend the analysis to layer-wise
(generalized) smoothness regimes, capturing the anisotropic structure of deep net-
works. Experiments on NanoGPT benchmarking EF21-Muon against uncom-
pressed Muon/Scion/Gluon demonstrate up to 7× communication savings with no
accuracy degradation.

1 INTRODUCTION

Over the past decade, Adam and its variants (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) have
established themselves as the cornerstone of optimization in deep learning. Yet emerging evidence
suggests that this dominance may be giving way to a new class of optimizers better suited to the
geometry and scale of modern deep networks. Leading this shift are Muon (Jordan et al., 2024)
and methods inspired by it–Scion (Pethick et al., 2025b) and Gluon (Riabinin et al., 2025b)–which
replace Adam’s global moment estimation with layer-wise, geometry-aware updates via linear min-
imization oracles (LMOs) over non-Euclidean norm balls. Though relatively new, these optimizers
are already gaining traction–supported by a growing body of theoretical insights, community adop-
tion, and empirical success–particularly in training large language models (LLMs) (Liu et al., 2025;
Pethick et al., 2025b; Shah et al., 2025; Thérien et al., 2025; Moonshot AI, 2025).

Despite this momentum, the development of these algorithms remains less mature than that of more
established methods. Significant gaps persist–both in theory and practice–that must be addressed to
fully realize their potential and make them truly competitive for the demands of ultra-scale learning.

Scaling Up. Modern machine learning (ML) thrives on scale. Today’s state-of-the-art models rely
on massive datasets and complex architectures, often requiring weeks or even months of training
(Touvron et al., 2023; Comanici et al., 2025). This scale imposes new demands on optimization
methods, which must not only be effective at navigating complex nonconvex landscapes but also
efficient in distributed, resource-constrained environments. Since training on a single machine is no
longer feasible (Dean et al., 2012; You et al., 2017), distributed computing has become the default.
Mathematically, this task is commonly modeled as the (generally non-convex) optimization problem

min
X∈S

{
f(X) := 1

n

∑n
j=1 fj(X)

}
, fj(X) := Eξj∼Dj

[fj(X; ξj)] (1)

where X ∈ S represents the model parameters, n ≥ 1 is the number of workers/clients/machines,
and fj(X) is the loss of the model (X) on the data (Dj) stored on worker j ∈ [n] := {1, . . . , n}. We

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Summary of convergence guarantees. Algorithm: Deterministic = EF21-Muon with deterministic
gradients (Algorithm 2), Stochastic = EF21-Muon with stochastic gradients (Algorithms 1 and 3); Smooth: ✓
= (layer-wise) smooth setting (Assumptions 3 and 6), ✗ = (layer-wise) generalized smooth setting (Assumptions
4 and 8); Rate = rate of convergence to achieve mink=0,...,K E

[∥∥∇f(Xk)
∥∥
⋆

]
≤ ε; Eucl. = recovers the

state-of-the-art guarantees in the Euclidean case; Non-comp. = recovers the state-of-the-art uncompressed
guarantees.

Algorithm Result Layer-wise Smooth Rate Eucl. Non-comp.

Deterministic

Theorem 3 ✗
✓

O
(

1

K1/2

) ✓ ✓
Theorem 14 ✓ ✓ ✓
Theorem 4 ✗

✗
✓ ✓

Theorem 17 ✓ ✓ ✓

Stochastic

Theorem 5 ✗
✓

O
(

1

K1/4

) ✓ ✓
Theorem 19 ✓ ✓ ✓
Theorem 6 ✗

✗
✓ ✓

Theorem 24 ✓ ✓ ✓

consider the general heterogeneous setting, where the local objectives fj may differ arbitrarily across
machines, reflecting real-world scenarios such as multi-datacenter pipelines or federated learning
(McMahan et al., 2017; Konečný et al., 2016). Here, S is a d-dimensional vector space equipped
with an inner product ⟨·, ·⟩ : S × S → R and the standard Euclidean norm ∥·∥2. Furthermore, we
endow S with an arbitrary norm ∥·∥ : S → R≥0. The corresponding dual norm ∥·∥⋆ : S → R≥0

is defined via ∥X∥⋆ := sup∥Z∥≤1 ⟨X,Z⟩. The general framework introduced in this work gives
rise to a variety of interesting algorithms arising from different norm choices. In matrix spaces,
a particularly important class is the family of operator norms, defined for any A ∈ Rm×n by
∥A∥α→β := sup∥Z∥α=1 ∥AZ∥β , where ∥·∥α and ∥·∥β are some norms on Rn and Rm, respectively.

Communication: the Cost of Scale. In client-server architectures, coordination is centralized,
with workers performing local computations and periodically synchronizing with the coordinator
(Seide et al., 2014; Alistarh et al., 2017; Khirirat et al., 2018; Stich et al., 2018; Mishchenko et al.,
2019; Karimireddy et al., 2019; Mishchenko et al., 2024). While this distributed design unlocks
learning at unprecedented scales, it introduces a critical bottleneck: communication. The mas-
sive size of modern models places a heavy burden on the channels used to synchronize updates
across machines, as each step requires transmitting large d-dimensional vectors (e.g., parameters or
gradients) over links that can be far slower than local computation (Kairouz et al., 2021). With-
out communication-efficient strategies, this imbalance makes communication a dominant cost, ulti-
mately limiting the efficiency and scalability of distributed optimization.

Distributed Muon: Bridging the Gap. The case for communication-efficient distributed training
is clear, as is the promise of Muon for deep learning. The natural question is: can we merge the two?
Perhaps surprisingly, this intersection remains largely unexplored. Nonetheless, three recent efforts
are worth noting. Liu et al. (2025) propose a distributed variant of Muon based on ZeRO-1 (Rajbhan-
dari et al., 2020). Thérien et al. (2025) show that Muon can be used instead of AdamW as the inner
optimizer in DiLoCo. The introduced MuLoCo framework is shown to consistently converge faster
than the original DiLoCo (Douillard et al., 2023) when pre-training a 220M parameter transformer
language model. In parallel, Ahn et al. (2025) introduce Dion, a Muon-inspired algorithm compatible
with 3D parallelism that employs low-rank approximations for efficient orthonormalized updates.

While promising empirically, these approaches lack any formal theoretical guarantees. Our goal
is to bridge this gap by developing a distributed optimizer leveraging non-Euclidean geometry that
both works in practice and comes with strong convergence guarantees. Our central question is:

Can we efficiently distribute Muon without compromising its theoretical and practical benefits?

In this work, we provide an affirmative answer through the following contributions:

1. A framework for compressed non-Euclidean distributed optimization. We propose EF21-
Muon, an LMO-based distributed optimizer based on bidirectionally compressed updates with error

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

feedback (Seide et al., 2014; Richtárik et al., 2021). It is communication-efficient (never sending
uncompressed messages) and practical, supporting stochasticity and momentum. Parameterized by
the norm in the LMO step, EF21-Muon recovers a broad class of compressed methods, and for
spectral norms yields the first communication-efficient distributed variants of Muon and Scion.

2. Practical deep learning variant. The main body of this paper presents a simplified version of
EF21-Muon that treats all parameters jointly (Algorithm 1), consistent with standard theoretical ex-
position. Our main algorithms, however, are designed for and analyzed in a layer-wise manner (see
Algorithms 2 and 3 for the deterministic and stochastic gradient variants, respectively), explicitly
modeling the hierarchical structure of neural networks. This allows us to better align with practice
(methods like Muon are applied per layer) and to introduce anisotropic modeling assumptions.

3. Strong convergence guarantees. EF21-Muon comes with strong theoretical guarantees (see
Table 1) under two smoothness regimes: non-Euclidean smoothness (Theorems 3 and 5) and non-
Euclidean (L0, L1)–smoothness (Theorems 4 and 6). In both cases, our bounds match the state-
of-the-art rates for EF21 in the Euclidean setting, while allowing for potentially faster convergence
under well-chosen norms. These results are subsumed by a more general analysis of the full layer-
wise methods. In Theorems 14 and 19, we prove convergence under layer-wise non-Euclidean
smoothness (Assumption 6), and extend this to layer-wise non-Euclidean (L0, L1)–smoothness (As-
sumption 8) in Theorems 17 and 24. This refined treatment allows us to better capture the geometry
of deep networks, leading to tighter guarantees.

4. Non-Euclidean compressors. EF21-Muon supports standard contractive compressors as well as
a new class of non-Euclidean compressors (Section D), which may be of independent interest.

5. Strong empirical performance. Experiments training a NanoGPT model on the FineWeb
dataset systematically compare EF21-Muon with multiple compressors against the uncompressed
baseline (Muon/Scion/Gluon) and show that compression reduces worker-to-server communication
by up to 7× with no loss in accuracy (Sections 5 and G).

Outline. Section 2 introduces the necessary preliminaries and reviews Muon (Jordan et al., 2024),
placing it within the broader class of LMO-based optimizers. This naturally raises the central ques-
tion of our work: how can such methods be distributed efficiently? We highlight the main challenges
and motivate compression and error feedback as practical solutions (with deeper motivation and an
extensive literature review deferred to Section A). Section 3 presents our proposed method, EF21-
Muon. In Section 4, we present convergence results in both deterministic and stochastic settings,
under two smoothness regimes: standard (non-Euclidean) and (L0, L1)–smoothness. Finally, Sec-
tion 5 provides empirical validation, demonstrating the practical benefits of our approach.

2 BACKGROUND

We frame problem (1) in an abstract vector space S. In several of our results, the specific structure
of S does not matter. One may simply flatten the model parameters into a d × 1 vector and view S
as Rd. However, in the context of deep learning, it is often useful to explicitly model the layer-wise
structure (see Section B). Then, X ∈ S represents the collection of matrices Xi ∈ Si := Rmi×ni

of trainable parameters across all layers i ∈ [p] of the network with a total number d :=
∑p

i=1 mini

of parameters. Accordingly, S is the d-dimensional product space S :=
⊗p

i=1 Si ≡ S1 ⊗ · · · ⊗ Sp,
where each Si is associated with the trace inner product ⟨Xi, Yi⟩(i) := tr(X⊤

i Yi) for Xi, Yi ∈ Si,
and a norm ∥·∥(i) (not necessarily induced by this inner product). We write X = [X1, . . . , Xp].

What is Muon? Muon, introduced by Jordan et al. (2024), is an optimizer for the hidden layers of
neural networks.1 For clarity of exposition, let us assume that the parameters X represent a single
layer of the network (a full layer-wise description is provided in Section B.1). In this setting, Muon
updates Xk+1 = Xk − tkUk(V k)⊤, where tk > 0 and the matrices Uk, V k are derived from the
SVD of the momentum matrix Gk = UkΣk(V k)⊤. This update rule is, in fact, a special case of a

1The first and last layers are typically optimized using other optimizers, such as AdamW (Loshchilov &
Hutter, 2019)–see Section B.1 for details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 EF21-Muon (simplified)

1: Parameters: radii tk > 0; momentum parameter β ∈ (0, 1]; initial iterate X0 ∈ S (stored
on the server); initial iterate shift W 0 = X0 (stored on the server and the workers); initial
gradient estimators G0

j (stored on the workers); G0 = 1
n

∑n
j=1 G

0
j (stored on the server); initial

momentum M0
j (stored on the workers); worker compressors Ck

j ; server compressors Ck

2: for k = 0, 1, . . . ,K − 1 do
3: Xk+1 = LMOB(Xk,tk)

(
Gk
)

Take LMO-type step

4: Sk = Ck(Xk+1 −W k) Compress shifted model on the server

5: W k+1 = W k + Sk Update model shift

6: Broadcast Sk to all workers
7: for j = 1, . . . , n in parallel do
8: W k+1 = W k + Sk Update model shift

9: Mk+1
j = (1− β)Mk

j + β∇fj(W
k+1; ξk+1

j) Compute momentum

10: Rk+1
j = Ck

j (M
k+1
j −Gk

j) Compress shifted gradient

11: Gk+1
j = Gk

j +Rk+1
j

12: Broadcast Rk+1
j to the server

13: end for
14: Gk+1 = 1

n

∑n
j=1 G

k+1
j = Gk + 1

n

∑n
j=1 R

k+1
j Compute gradient estimator

15: end for

more general one, based on the norm-constrained linear minimization oracle (LMO)

Xk+1 = Xk + tkLMOB(0,1)

(
Gk
)
, (2)

where B(X, t) := {Z ∈ S : ∥Z −X∥ ≤ t} and LMOB(X,t) (G) := argminZ∈B(X,t) ⟨G,Z⟩.
Muon corresponds to the case where ∥·∥ = ∥·∥2→2 is the spectral (operator) norm, in which case
LMOB(0,1)

(
Gk
)
= −Uk(V k)T . Consequently, its recent analyses (Pethick et al., 2025b; Kovalev,

2025; Riabinin et al., 2025b) have shifted focus to the general form (2). Among them, Pethick et al.
(2025b) introduce Scion, which extends the LMO update across layers, and Riabinin et al. (2025b)
develop Gluon–a general LMO-based framework that subsumes Muon and Scion as special cases
while providing stronger convergence guarantees. We adopt this unifying viewpoint by treating all
three algorithms as instances of Gluon, which we use as the umbrella term for the entire class.

The challenges of distributing the LMO. Distributing (2) is far from trivial, as the limited liter-
ature suggests. Even in the relatively well-structured special case of spectral norms, Muon relies on
the Newton–Schulz iteration (Kovarik, 1970; Björck & Bowie, 1971), a procedure requiring dense
matrix operations that are incompatible with standard parameter-sharding schemes used in LLM
training (Ahn et al., 2025). To illustrate the difficulty, consider a deterministic version of (2), where
Gk is replaced by the exact gradient ∇f(Xk). Applied to problem (1), the iteration becomes

Xk+1 = Xk + LMOB(0,tk)

(
1
n

n∑
j=1

∇fj(X
k)

)
.

The most basic approach to distributing this update consists of the following four main steps:

1. Each worker computes its local gradient ∇fj(X
k) at iteration k.

2. w2s: The workers send their gradients ∇fj(X
k) to the central server.

3. The server averages these gradients and computes the LMO update.
4. s2w: The server sends Xk+1 (or LMOB(0,tk) (·)) back to the workers.

This scheme involves two potentially costly phases: (1) workers-to-server (= w2s) and (2) server-
to-workers (= s2w) communication. As each transmitted object resides in S, every iteration in-
volves exchanging dense, d-dimensional data, imposing substantial communication overhead that
can quickly overwhelm available resources. This is where compression techniques come into play.

Compression. Compression is one of the two main strategies for improving communication effi-
ciency in distributed optimization (the other being local training (Povey et al., 2014; Moritz et al.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2015; McMahan et al., 2017)), extensively studied in the Euclidean regime (Alistarh et al., 2017;
Horváth et al., 2022; Richtárik et al., 2021). It is typically achieved by applying an operator C map-
ping the original dense message X to a more compact representation C(X). We work with general
biased (or contractive) compressors.

Definition 1 (Contractive compressor). A (possibly randomized) mapping C : S → S is a contrac-
tive compression operator with parameter α ∈ (0, 1] if

E
[
∥C(X)−X∥2

]
≤ (1− α) ∥X∥2 ∀X ∈ S. (3)

Remark 2. The classical definition of a contractive compressor is based on the Euclidean norm,
i.e., ∥·∥ = ∥·∥2 in (3). A canonical example in this setting is the TopK compressor, which retains
the K largest-magnitude entries of the input vector. In (3), we generalize this to arbitrary norms for
greater flexibility. Section D provides examples of such compressors (to our knowledge, not studied
in this context before). Depending on the compression objective, we apply (3) with respect to ∥·∥,
∥·∥⋆, or ∥·∥2, denoting the respective families of compressors as B(α), B⋆(α), and B2(α).

Error Feedback. To address the communication bottleneck, a natural approach is to apply biased
compressors to transmitted gradients. However, this “enhancement” can result in exponential di-
vergence, even in the simple case of minimizing the average of three strongly convex quadratics
(Beznosikov et al., 2020, Example 1). A remedy, Error Feedback (EF), was introduced by Seide
et al. (2014) and for years remained a heuristic with limited theory. This changed with Richtárik
et al. (2021), who proposed EF21, the first method to achieve the desirable O(1/

√
K) rate for ex-

pected gradient norms under standard assumptions. Since then, EF21 has inspired many extensions,
including EF21-P (Gruntkowska et al., 2023), a primal variant targeting s2w communication.

For a deeper dive into compression and EF, we refer the reader to Appendices A.1 and A.2.

3 NON-EUCLIDEAN DISTRIBUTED TRAINING

Marrying geometry-aware updates of Gluon with the communication efficiency enabled by compres-
sion promises a potentially high-yield strategy. Yet, from a theoretical standpoint, their compatibility
is far from obvious–nothing a priori ensures that these two paradigms can be meaningfully unified.

Most importantly, it is unclear what kind of descent lemma to use. The analysis of EF21 relies
on a recursion involving squared Euclidean norms ∥·∥22, while LMO-based methods naturally yield
descent bounds in terms of first powers of norms ∥·∥–a structure common to all existing analyses
(Kovalev, 2025; Pethick et al., 2025b; Riabinin et al., 2025b). We initially adopted the latter ap-
proach, but the resulting guarantees failed to recover those of EF21 in the Euclidean case. The pivot
point came from reformulating the update via sharp operators (Nesterov, 2012; Kelner et al., 2014).
For any G ∈ S, the sharp operator is defined as G♯ := argmaxX∈S{⟨G,X⟩ − 1

2 ∥X∥2}, which is
connected to the LMO via the identity ∥G∥⋆ LMOB(0,1) (G) = −G♯. Hence, (2) is equivalent to

Xk+1 = Xk + tkLMOB(0,1)

(
Gk
)
= Xk − tk

∥Gk∥⋆

(
Gk
)♯
, (4)

i.e., a normalized steepest descent step with stepsize γk := tk/∥Gk∥
⋆
. We alternate between the

sharp operator and LMO formulations, depending on the assumptions at play. Theorems 3 and 5 use
the former; Theorems 4 and 6, the latter. We explore this and other reformulations in Section C.

The algorithm. Working with compression in non-Euclidean geometry presents several chal-
lenges. In addition to the lack of a standard descent lemma, further complications arise from in-
teractions between gradient stochasticity and compression and unknown variance behavior under
biased compression. Yet, we develop the first communication-efficient variant of Gluon (and by ex-
tension, its special cases Muon and Scion), called EF21-Muon, that combines biased compression,
gradient stochasticity, and momentum, all while enjoying strong theoretical guarantees. A simpli-
fied version of the algorithm, applied globally to X , is shown in Algorithm 1. A more general, deep
learning-oriented layer-wise variant operating in the product space S :=

⊗p
i=1 Rmi×ni is given in

Algorithm 3. For clarity, we focus on the simplified variant throughout the main text; all theoretical
results presented here are special cases of the general layer-wise guarantees provided in Section E.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

While the pseudocode is largely self-explanatory (for a more detailed description, see Section B.2),
we highlight the most important components:

⋄ Role of Compression. Compression is key for reducing communication overhead in distributed
training. Algorithm 1 adheres to this principle by transmitting the compressed messages Sk and Rk

j

only, never the full dense updates. When compression is disabled (i.e., Ck
j , Ck are identity mappings)

and in the single-node setting (n = 1), EF21-Muon reduces exactly to Gluon, which in turn recovers
Muon and Scion (all of which were originally designed for non-distributed settings).

⋄ Role of Error Feedback. Even in the Euclidean setup, biased compression can break distributed
GD unless some form of error feedback is used (see Section 2). To remedy this, we adopt a modern
strategy inspired by EF21 (Richtárik et al., 2021) for the w2s direction. Its role is to stabilize training
and prevent divergence. To reduce s2w communication overhead, we further incorporate the primal
compression mechanism of EF21-P (Gruntkowska et al., 2023).

⋄ Role of Gradient Stochasticity. In large-scale ML, computing full gradients ∇fj(x) is typically
computationally infeasible. In practice, they are replaced with stochastic estimates, which drastically
reduces per-step computational cost and makes the method scalable to practical workloads.

⋄ Role of Momentum. Stochastic gradients inevitably introduce noise into the optimization pro-
cess. Without further stabilization, this leads to convergence to a neighborhood of the solution only.
Momentum mitigates this issue, reducing the variance in the updates and accelerating convergence.

4 CONVERGENCE RESULTS

To support our convergence analysis, we adopt standard lower-boundedness assumptions on the
global objective f , and in certain cases, also on the local functions fj .
Assumption 1. There exist f⋆ ∈ R such that f(X) ≥ f⋆ for all X ∈ S.
Assumption 2. For all j ∈ [n], there exist f⋆

j ∈ R such that fj(X) ≥ f⋆
j for all X ∈ S.

We study two smoothness regimes. The first, standard L–smoothness generalized to arbitrary norms
(used in Theorems 3 and 5), is the default in virtually all convergence results for Muon and Scion
(Kovalev, 2025; Pethick et al., 2025b; Li & Hong, 2025).
Assumption 3. The function f is L–smooth, i.e., ∥∇f(X)−∇f(Y)∥⋆ ≤ L ∥X − Y ∥ for all
X,Y ∈ S. Moreover, the functions fj are Lj–smooth for all j ∈ [n]. We define2 L̃2 := 1

n

∑n
j=1 L

2
j .

To our knowledge, the only exception departing from this standard setting is the recent work on
Gluon (Riabinin et al., 2025b). The authors argue that layer-wise optimizers are designed specifi-
cally for deep learning, where the classical smoothness assumption is known to fail (Zhang et al.,
2020). Instead, they build upon the (L0, L1)–smoothness model introduced by Zhang et al. (2020)3

(Assumption 4), a strictly weaker alternative motivated by empirical observations from NLP training
dynamics. Riabinin et al. (2025b) introduce a layer-wise variant (Assumption 8), arguing that het-
erogeneity across network layers requires smoothness constants to vary accordingly. Consistent with
this line of work, we provide convergence guarantees under the layer-wise (L0, L1)–smoothness as-
sumption (Theorems 17 and 24). For clarity, the main text treats the case of a generic vector space
S, without delving into the product space formulation (see Section B), in which case the assumption
reduces to a non-Euclidean variant of asymmetric (L0, L1)–smoothness from Chen et al. (2023).
Assumption 4. The function f : S 7→ R is (L0, L1)–smooth, i.e., there exist L0, L1 > 0 such that

∥∇f(X)−∇f(Y)∥⋆ ≤
(
L0 + L1 ∥∇f(X)∥⋆

)
∥X − Y ∥ ∀X,Y ∈ S.

Moreover, the functions fj , j ∈ [n], are (L0
j , L

1
j)–smooth. We define L1

max := maxj∈[n] L
1
j and

L̄0 := 1
n

∑n
j=1 L

0
j .

Assumption 4 is strictly more general than Assumption 3, as it allows the smoothness constant to
grow with the norm of the gradient, a key property observed in deep learning (Zhang et al., 2020).

2In theoretical results, L̃ could potentially be improved to the arithmetic mean–see Richtárik et al. (2024).
3The original (L0, L1)–smoothness assumption of Zhang et al. (2020) was defined for twice-differentiable

functions via Hessian norms. This notion and our Assumption 4 are closely related–see Chen et al. (2023).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Deterministic setting. As a warm-up, we first present the convergence guarantees of Algorithm 2–
a deterministic counterpart of Algorithm 1 using deterministic gradients without momentum (though
stochasticity may still arise from compression). The first theorem addresses the smooth setting.
Theorem 3. Let Assumptions 1 and 3 hold. Let {Xk}K−1

k=0 , K ≥ 1, be the iterates of Algorithm 2
(with p = 1) initialized with X0 = W 0, G0

j = ∇fj(X
0), j ∈ [n], and run with Ck ∈ B(αP),

Ck
j ∈ B⋆(αD) and 0 < γk ≡ γ ≤

(
2L+ 4/αD

√
12 + 66/α2

P L̃
)−1

. Then

1
K

K−1∑
k=0

E
[∥∥∇f(Xk)

∥∥2
⋆

]
≤ 4(f(X0)−f⋆)

Kγ .

Theorem 3 is a special case of the general layer-wise result in Theorem 14. To our knowledge, no
prior work analyzes comparable compressed methods under general non-Euclidean geometry. In the
Euclidean case, our guarantees recover known results (up to constants): without primal compression
(αP = 1), they match the rate of Richtárik et al. (2021, Theorem 1); with primal compression, they
align with the rate of EF21-BC from Fatkhullin et al. (2021, Theorem 21) (though EF21-Muon and
EF21-BC differ algorithmically, and the former does not reduce to the latter in the Euclidean case).

In the generalized smooth setup, we establish convergence without primal compression. However,
as we argue in Section D.1, the s2w communication can still be made efficient through appropriate
norm selection. Indeed, we find that LMOs under certain norms naturally induce compression-like
behavior.
Theorem 4. Let Assumptions 1, 2 and 4 hold and let {Xk}K−1

k=0 , K ≥ 1, be the iterates of Algo-
rithm 2 (with p = 1) initialized with G0

j = ∇fj(X
0), j ∈ [n], and run with Ck ≡ I (the identity

compressor), Ck
j ∈ B⋆(αD), and tk ≡ η√

K+1
for some η > 0. Then,

min
k=0,...,K

E
[∥∥∇f(Xk)

∥∥
⋆

]
≤ exp(4η2CL1

max)
η
√
K+1

δ0 +
η

(
4C 1

n

n∑
j=1

L1
j(f

⋆−f⋆
j)+C 1

n

n∑
j=1

L0
j

L1
j

+D

)
√
K+1

,

where δ0 := f(X0)− f⋆, C := L1

2 +
2
√
1−αDL1

max

1−
√
1−αD

and D := L0

2 + 2
√
1−αDL̄0

1−
√
1−αD

.

Theorem 4, a corollary of the layer-wise result in Theorem 17, achieves the same desirable O(1/
√
K)

rate for expected gradient norms as Theorem 3, but with radii tk that are independent of problem-
specific constants. If smoothness constants are known in advance, they can be incorporated into the
choice of η to improve the dependence on these constants in the final rate. In the Euclidean case, our
guarantee matches that of ∥EF21∥ under (L0, L1)–smoothness established by Khirirat et al. (2024).

Stochastic setting. We now turn to the convergence guarantees of our practical variant of EF21-
Muon (Algorithms 1 and 3), which incorporates noisy gradients and momentum. We assume access
to a standard stochastic gradient oracles ∇fj(·; ξj), ξj ∼ Dj with bounded variance.
Assumption 5. The stochastic gradient estimators ∇fj(·; ξj) : S 7→ S are unbiased and have
bounded variance. That is, Eξj∼Dj [∇fj(X; ξj)] = ∇fj(X) for all X ∈ S and there exists σ ≥ 0

such that Eξj∼Dj

[
∥∇fj(X; ξj)−∇fj(X)∥22

]
≤ σ2 for all X ∈ S.

Note that the variance bound in Assumption 5 is expressed in terms of the Euclidean norm rather
than ∥·∥ to facilitate the bias-variance decomposition. Nevertheless, since S is finite-dimensional,
the magnitudes measured in ∥·∥2 can be related to quantities measured in ∥·∥ via norm equivalence.
That is, there exist ρ, ρ̄ > 0 such that ρ ∥X∥ ≤ ∥X∥2 ≤ ρ̄ ∥X∥ for all X ∈ S.

As in the deterministic setting, we begin by analyzing the smooth case.
Theorem 5. Let Assumptions 1, 3 and 5 hold. Let {Xk}K−1

k=0 , K ≥ 1, be the iterates of Al-
gorithm 1 initialized with X0 = W 0, G0

j = M0
j = ∇fj(X

0; ξ0j), j ∈ [n], and run with

Ck ∈ B(αP), Ck
j ∈ B2(αD), any β ∈ (0, 1], and 0 ≤ γk ≡ γ ≤

(
2
√
ζ + 2L

)−1
, where

ζ := ρ̄2

ρ2

(
12
β2L

2 + 24(β+2)
α2

P
L2 +

36(β2+4)
α2

D
L̃2 + 144β2(2β+5)

α2
Pα2

D
L̃2

)
. Then

1
K

K−1∑
k=0

E
[∥∥∇f(Xk)

∥∥2
⋆

]
≤ 4δ0

Kγ + 24
K

(
1√
nβ

+ 12β
α2

D

)
σρ̄2 + 24

(
1
n + (1−αD)β

αD
+ 12β2

α2
D

)
σ2ρ̄2β,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where δ0 := f(X0)− f⋆.

Theorem 5 is a special case of Theorem 19. Choosing γ =
(
2
√
ζ + 2L

)−1
and β =

min

{
1,
(

δ0Ln
ρ2σ2K

)1/2

,
(

δ0LαD

ρ2σ2K

)1/3

,
(

δ0Lα2
D

ρ2σ2K

)1/4
}

, it guarantees that

1
K

K−1∑
k=0

E
[∥∥∇f(Xk)

∥∥2
⋆

]
= O

(
δ0ρ̄2L̃0

ρ2αPαDK +
(

δ0ρ̄4σ2L
ρ2nK

)1/2

+
(

δ0ρ̄3σL
ρ2

√
αDK

)2/3

+

(
δ0ρ8/3σ2/3L

ρ̄2α
2/3
D K

)3/4
)

(see Corollary 2). In the absence of stochasticity and momentum (σ2 = 0, β = 1), Algorithm 1
reduces to Algorithm 2 (with p = 1), and the guarantee in Theorem 5 recovers that of Theorem 3, up
to constants (Remark 22). In the Euclidean case without primal compression (ρ̄2 = ρ2 = αP = 1),
Theorem 5 matches the rate of EF21-SDGM established by Fatkhullin et al. (2023, Theorem 3),
again up to constants (Remark 21). Finally, one may employ compressors Ck ∈ B2(αP) instead of
Ck ∈ B(αP), though this introduces an additional dependence on ρ̄2 in the constant ζ (Remark 23).

As in Theorem 4, in the (L0, L1)–smooth setup, we set Ck ≡ I.
Theorem 6. Let Assumptions 1, 2, 4 and 5 hold. Let {Xk}K−1

k=0 , K ≥ 1, be the iterates of Algo-
rithm 1 initialized with M0

j = ∇fj(X
0; ξ0j), G

0
j = C0

j (∇fj(X
0; ξ0j)), j ∈ [n], and run with Ck ≡ I

(the identity compressor), Ck
j ∈ B2(αD), β = 1/(K+1)1/2 and 0 ≤ tk ≡ t = η/(K+1)3/4, where

η2 ≤ min

{
(K+1)1/2

6(L1)2 ,
(K+1)1/2(1−

√
1−αD)ρ

24
√
1−αD ρ̄(L1

max)
2 ,

ρ

24ρ̄(L1
max)

2 , 1

}
. Then

min
k=0,...,K

E
[∥∥∇f(Xk)

∥∥
⋆

]
≤ 3(f(X0)−f⋆)

η(K+1)1/4
+ ηL0

(K+1)3/4
+ 16

√
1−αD ρ̄σ

(1−
√
1−αD)(K+1)1/2

+ 8ρ̄σ√
n(K+1)1/4

+ηρ̄
ρ

(
8

(K+1)1/4
+ 8

√
1−αD

(1−
√
1−αD)(K+1)3/4

)(
1
n

∑n
j=1(L

1
j)

2
(
f⋆ − f⋆

j

)
+ L̄0

)
.

Analogously to Theorem 5, Theorem 6 (a corollary of Theorem 24) establishes an O(1/K1/4)
convergence rate, matching state-of-the-art guarantees for SGD-type methods in the non-convex
setting (Cutkosky & Mehta, 2020; Sun et al., 2023). Among the terms with the worst scal-
ing in K, 3(f(X0)−f⋆)/η(K+1)1/4 is standard and reflects the impact of the initial suboptimality.
8ρ̄σ/

√
n(K+1)1/4 captures gradient stochasticity, scaling linearly with the standard deviation σ, but

decaying with the square root of the number of clients n. The term 1
n

∑n
j=1(L

1
j)

2
(
f⋆ − f⋆

j

)
quan-

tifies client heterogeneity and vanishes when local optima f⋆
j coincide with the global minimum f⋆,

and otherwise scales with the local smoothness constants L1
j . All compression-driven error terms

vanish when compression is disabled (αD = 1). Finally, in the Euclidean case (ρ̄2 = ρ2 = 1), the
rate recovers that of ∥EF21-SDGM∥ from Khirirat et al. (2024, Theorem 2), up to constants.

5 EXPERIMENTS

We present key experimental results below, with additional details and extended experiments avail-
able in Section G.4

Experimental setup. All experiments are conducted on 4 NVIDIA Tesla V100-SXM2-32GB
GPUs or 4 NVIDIA A100-SXM4-80GB in a Distributed Data Parallel (DDP) setup. The dataset
is evenly partitioned across workers, with one worker node acting as the master, aggregating com-
pressed updates from the others. Training and evaluation are implemented in PyTorch,5 extending
open-source codebases (Pethick et al., 2025a; Riabinin et al., 2025a; Karpathy, 2023).

We train a NanoGPT model (Karpathy, 2023) with 124M parameters on the FineWeb10B dataset
(Penedo et al., 2024), using input sequences of length 1024 and a batch size of 256. Optimization
is performed with EF21-Muon, using spectral norm LMOs for hidden layers and ℓ∞ norm LMOs
for embedding and output layers (which coincide due to weight sharing), following the approach
of Pethick et al. (2025b). For spectral norm LMOs, inexact updates are computed with 5 New-
ton–Schulz iterations (Kovarik, 1970; Björck & Bowie, 1971), as in Jordan et al. (2024).

4Code for experiments is available here.
5PyTorch Documentation: https://pytorch.org/docs/stable/index.html

8

https://anonymous.4open.science/r/EF21_MUON-BB5B/README.md
https://pytorch.org/docs/stable/index.html

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0B 1.0B 2.0B 3.0B 4.0B 5.0B
Tokens

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Natural
Rank10%
Rank15%
Rank15% + Natural
Top15%
Top15% + Natural

0K 2K 4K 6K 8K 10K 12K 14K
Communication Cost

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Natural
Rank10%
Rank15%
Rank15% + Natural
Top15%
Top15% + Natural
Loss Threshold 3.31

Figure 1: Left: Test
loss vs. # of tokens
processed. Right: Test
loss vs. # of bytes
sent from each worker to
the server normalized by
model size to reach test
loss 3.31. Rank/TopX%
= Rank/TopK compres-
sor with sparsification
level X%; ID = no com-
pression.

2K 4K 6K 8K 10K 12K 14K
Communication Cost

3.6B

3.8B

4.0B

4.2B

4.4B

4.6B

4.8B

5.0B

To
ke

ns

ID
Natural

Rank10%

Rank15%

Rank15% + Natural

Top15%

Top15% + Natural

Top20%

Figure 2: Trade-off between token
efficiency and communication cost
for different compression setups at
a target test loss of 3.31.

Following common practice in communication compression
literature, we assume that broadcasting is free and focus on
w2s communication. Thus, the server-side compressor is
fixed to I, while worker compressors vary among TopK,
RankK (Safaryan et al., 2021), Natural compressor (Horváth
et al., 2022) and combinations thereof: TopK + Natural com-
pressor of selected elements, and RankK + Natural com-
pressor applied to all components of the low rank decom-
position. These are tested under multiple compression levels
and compared against an uncompressed baseline (i.e., stan-
dard Scion/Gluon; see Section 3). Learning rates are tuned
per optimizer and experimental setting, initialized from the
values in the Gluon repository (Riabinin et al., 2025a) (see
Section G.3). We adopt the same learning rate scheduler
as Karpathy (2023) and fix the momentum parameter to 0.9.
Model and optimizer hyperparameters are summarized in Ta-
bles 3 and 5, respectively.

Results. For RankK and TopK compressors, we evaluate multiple compression levels (in plots,
RankX%/TopX% denotes a RankK/TopK compressor with compression level X%). We report
experimental results for a 5B-token training budget (> 40× model size) in Figure 1 (left), and to
reach a strong loss threshold of 3.31 in Figures 1 (right) and 2.

Table 2: Communication cost per round
(in bytes), normalized relative to the
identity compressor.

Compressor Relative Cost
ID 1.0000
Natural 0.5000
Rank20% 0.2687
Rank15% 0.2019
Rank15% + Natural 0.1010
Rank10% 0.1335
Rank10% + Natural 0.0667
Rank5% 0.0667
Top20% 0.3625
Top15% 0.2718
Top15% + Natural 0.1969
Top10% 0.1812
Top10% + Natural 0.1312
Top5% 0.0906

The number of tokens required to reach a target loss de-
pends on the compressor. Figure 2 provides a compari-
son of the numbers of tokens used in the training run to
reach a strong test loss threshold of 3.31 plotted against
the communication cost (reported as the number of bits
transmitted from each worker to the server normalized by
the model size), plotted against the w2s communication
cost. Shorter 2.5B-token runs are reported in Section G.5
to assess performance under limited training budgets.
In Figure 1, we plot test loss vs. tokens processed, as well
as the w2s communication cost required to reach the 3.31
loss threshold. For each compressor, we report its most
competitive configuration (see Section G.4 for a detailed
ablation). As expected, compression slows convergence
in terms of number of training steps, but substantially re-
duces per-step communication cost (Table 2). Overall,
this yields significant communication savings—up to
7× for Rank15% + Natural compressor, and roughly 4×
for Top15% + Natural compressor—relative to the un-
compressed baseline.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025. URL https://arxiv.org/abs/2504.
05295. (Cited on page 2 and 4)

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Advances in neural in-
formation processing systems, 30, 2017. URL https://arxiv.org/abs/1610.02132.
(Cited on page 2, 5, 19, and 27)

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. Advances in Neural Information
Processing Systems, 31, 2018. URL https://arxiv.org/abs/1809.10505. (Cited on
page 19)

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018. URL https://arxiv.org/abs/1802.
04434. (Cited on page 21)

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased com-
pression for distributed learning. arXiv preprint arXiv:2002.12410, 2020. URL https:
//arxiv.org/abs/2002.12410. (Cited on page 5, 19, and 27)

Å. Björck and C. Bowie. An iterative algorithm for computing the best estimate of an orthogonal
matrix. SIAM Journal on Numerical Analysis, 8(2):358–364, 1971. URL https://doi.org/
10.1137/0708036. (Cited on page 4, 8, and 24)

Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimiza-
tion is as efficient as smooth nonconvex optimization. In International Conference on Machine
Learning, pp. 5396–5427. PMLR, 2023. URL https://arxiv.org/abs/2303.02854.
(Cited on page 6 and 21)

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025. URL https://arxiv.org/abs/2507.
06261v4. (Cited on page 1)

Laurent Condat, Artavazd Maranjyan, and Peter Richtárik. LoCoDL: Communication-efficient dis-
tributed learning with local training and compression. arXiv preprint arXiv:2403.04348, 2024.
URL https://arxiv.org/abs/2403.04348. (Cited on page 19)

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signSGD. Advances in neural information processing
systems, 35:9955–9968, 2022. URL https://arxiv.org/abs/2208.11195. (Cited on
page 21 and 22)

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In International confer-
ence on machine learning, pp. 2260–2268. PMLR, 2020. URL https://arxiv.org/abs/
2002.03305. (Cited on page 8 and 38)

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc' au-
relio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large
scale distributed deep networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/6aca97005c68f1206823815f66102863-Paper.pdf. (Cited on page 1)

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023. URL
https://arxiv.org/abs/2311.08105. (Cited on page 2)

10

https://arxiv.org/abs/2504.05295
https://arxiv.org/abs/2504.05295
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1809.10505
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2002.12410
https://arxiv.org/abs/2002.12410
https://doi.org/10.1137/0708036
https://doi.org/10.1137/0708036
https://arxiv.org/abs/2303.02854
https://arxiv.org/abs/2507.06261v4
https://arxiv.org/abs/2507.06261v4
https://arxiv.org/abs/2403.04348
https://arxiv.org/abs/2208.11195
https://arxiv.org/abs/2002.03305
https://arxiv.org/abs/2002.03305
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://arxiv.org/abs/2311.08105

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. EF21 with
bells & whistles: Practical algorithmic extensions of modern error feedback. arXiv preprint
arXiv:2110.03294, 2021. URL https://arxiv.org/abs/2110.03294. (Cited on page 7,
19, 20, and 42)

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error feed-
back! Advances in Neural Information Processing Systems, 36:76444–76495, 2023. URL
https://arxiv.org/abs/2305.15155. (Cited on page 8 and 49)

Athanasios Glentis, Jiaxiang Li, Andi Han, and Mingyi Hong. A minimalist optimizer design for
LLM pretraining. arXiv preprint arXiv:2506.16659, 2025. URL https://www.arxiv.org/
abs/2506.16659. (Cited on page 23)

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated SGD. Advances in Neural Information Processing Systems, 33:20889–20900,
2020. URL https://arxiv.org/abs/2010.12292. (Cited on page 19)

Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In 38th International Conference on Machine
Learning, 2021. URL https://arxiv.org/abs/2102.07845. (Cited on page 19)

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. EF21-P and friends: Improved theo-
retical communication complexity for distributed optimization with bidirectional compression.
In International Conference on Machine Learning, pp. 11761–11807. PMLR, 2023. URL
https://arxiv.org/pdf/2209.15218. (Cited on page 5, 6, 19, 20, and 24)

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. Improving the worst-case bidirec-
tional communication complexity for nonconvex distributed optimization under function sim-
ilarity. Advances in Neural Information Processing Systems, 37:88807–88873, 2024. URL
https://arxiv.org/abs/2402.06412. (Cited on page 19)

Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific
Machine Learning, pp. 129–141. PMLR, 2022. URL https://arxiv.org/abs/1905.
10988. (Cited on page 5, 9, 19, and 27)

Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and Oliver
Spatscheck. A close examination of performance and power characteristics of 4g lte networks. In
Proceedings of the 10th international conference on Mobile systems, applications, and services,
pp. 225–238, 2012. URL https://dl.acm.org/doi/10.1145/2307636.2307658.
(Cited on page 19)

Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods with fast rates
and compressed communication. In International conference on machine learning, pp. 4617–
4628. PMLR, 2021. URL https://arxiv.org/abs/2102.07158. (Cited on page 27)

Rustem Islamov, Xun Qian, Slavomı́r Hanzely, Mher Safaryan, and Peter Richtárik. Distributed
newton-type methods with communication compression and bernoulli aggregation. Transactions
on Machine Learning Research, 2023. URL https://arxiv.org/abs/2206.03588.
(Cited on page 20)

Ruichen Jiang, Devyani Maladkar, and Aryan Mokhtari. Convergence analysis of adaptive gradient
methods under refined smoothness and noise assumptions. arXiv preprint arXiv:2406.04592,
2024. URL https://arxiv.org/abs/2406.04592. (Cited on page 21 and 22)

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/. (Cited on page 1, 3, 8, and 23)

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021. URL https://arxiv.org/abs/1912.04977. (Cited on page 2
and 19)

11

https://arxiv.org/abs/2110.03294
https://arxiv.org/abs/2305.15155
https://www.arxiv.org/abs/2506.16659
https://www.arxiv.org/abs/2506.16659
https://arxiv.org/abs/2010.12292
https://arxiv.org/abs/2102.07845
https://arxiv.org/pdf/2209.15218
https://arxiv.org/abs/2402.06412
https://arxiv.org/abs/1905.10988
https://arxiv.org/abs/1905.10988
https://dl.acm.org/doi/10.1145/2307636.2307658
https://arxiv.org/abs/2102.07158
https://arxiv.org/abs/2206.03588
https://arxiv.org/abs/2406.04592
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/1912.04977

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signSGD and other gradient compression schemes. In International conference on machine
learning, pp. 3252–3261. PMLR, 2019. URL https://arxiv.org/abs/1901.09847.
(Cited on page 2 and 19)

Andrej Karpathy. nanoGPT, 2023. URL https://github.com/karpathy/nanoGPT.
(Cited on page 8, 9, and 67)

Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algo-
rithm for approximate max flow in undirected graphs, and its multicommodity generalizations. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp. 217–
226. SIAM, 2014. URL https://arxiv.org/abs/1304.2338. (Cited on page 5 and 25)

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with com-
pressed gradients. arXiv preprint arXiv:1806.06573, 2018. URL https://arxiv.org/
abs/1806.06573. (Cited on page 2)

Sarit Khirirat, Abdurakhmon Sadiev, Artem Riabinin, Eduard Gorbunov, and Peter Richtárik.
Error feedback under (l 0, l 1)-smoothness: Normalization and momentum. arXiv preprint
arXiv:2410.16871, 2024. URL https://arxiv.org/abs/2410.16871. (Cited on page 7,
8, 20, and 40)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL https://arxiv.org/abs/1412.
6980. (Cited on page 1)

Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized deep learn-
ing with arbitrary communication compression. arXiv preprint arXiv:1907.09356, 2019. URL
https://arxiv.org/abs/1907.09356. (Cited on page 19)

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016. URL https://arxiv.org/abs/1610.05492. (Cited
on page 2)

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-Euclidean
trust-region optimization, 2025. URL https://arxiv.org/abs/2503.12645. (Cited on
page 4, 5, 6, 23, and 24)

Zdislav Kovarik. Some iterative methods for improving orthonormality. SIAM Journal on Numerical
Analysis, 7(3):386–389, 1970. URL https://doi.org/10.1137/0707031. (Cited on
page 4, 8, and 24)

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36:40238–40271, 2023. URL https://arxiv.org/abs/2306.01264. (Cited on page 21)

Jiaxiang Li and Mingyi Hong. A note on the convergence of Muon and further, 2025. URL https:
//arxiv.org/abs/2502.02900. (Cited on page 6 and 23)

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for LLM training. arXiv preprint
arXiv:2502.16982, 2025. URL https://arxiv.org/abs/2502.16982. (Cited on page 1
and 2)

Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A double residual compression algorithm for effi-
cient distributed learning. In International Conference on Artificial Intelligence and Statistics, pp.
133–143. PMLR, 2020. URL https://arxiv.org/abs/1910.07561. (Cited on page 19)

Yuxing Liu, Rui Pan, and Tong Zhang. AdaGrad under anisotropic smoothness, 2024. URL https:
//arxiv.org/abs/2406.15244. (Cited on page 21 and 22)

12

https://arxiv.org/abs/1901.09847
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/1304.2338
https://arxiv.org/abs/1806.06573
https://arxiv.org/abs/1806.06573
https://arxiv.org/abs/2410.16871
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1907.09356
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/2503.12645
https://doi.org/10.1137/0707031
https://arxiv.org/abs/2306.01264
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/1910.07561
https://arxiv.org/abs/2406.15244
https://arxiv.org/abs/2406.15244

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://arxiv.org/abs/1711.05101.
(Cited on page 1 and 3)

Maksim Makarenko, Elnur Gasanov, Rustem Islamov, Abdurakhmon Sadiev, and Peter Richtárik.
Adaptive compression for communication-efficient distributed training. arXiv preprint
arXiv:2211.00188, 2022. URL https://arxiv.org/abs/2211.00188. (Cited on page 20)

L. O. Mangasarian. Parallel gradient distribution in unconstrained optimization. SIAM Journal
on Control and Optimization, 33(6):1916–1925, 1995. URL https://doi.org/10.1137/
S0363012993250220. (Cited on page 19)

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017. URL https://arxiv.org/abs/1602.
05629. (Cited on page 2, 5, and 19)

Konstantin Mishchenko, Filip Hanzely, and Peter Richtárik. 99% of distributed optimization is
a waste of time: The issue and how to fix it. arXiv preprint arXiv:1901.09437, 2019. URL
https://arxiv.org/abs/1901.09437. (Cited on page 2)

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. Optimization Methods and Software, pp. 1–16, 2024. URL
https://arxiv.org/abs/1901.09269. (Cited on page 2)

Moonshot AI. Kimi K2: Open agentic intelligence, 2025. URL https://moonshotai.
github.io/Kimi-K2/. (Cited on page 1)

Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. Sparknet: Training deep net-
works in spark. arXiv preprint arXiv:1511.06051, 2015. URL https://arxiv.org/abs/
1511.06051. (Cited on page 4)

Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan
Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao, et al. A variegated look at
5g in the wild: performance, power, and qoe implications. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, pp. 610–625, 2021. URL https://dl.acm.org/doi/10.
1145/3452296.3472923. (Cited on page 19)

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012. URL https://epubs.siam.org/doi/
10.1137/100802001. (Cited on page 5, 21, 22, and 25)

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2003. URL https://link.springer.com/book/
10.1007/978-1-4419-8853-9. (Cited on page 19)

Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. Efficient and robust feature selection
via joint ℓ2,1-norms minimization. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Cur-
ran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/
paper/2010/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf. (Cited on
page 29)

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make Block Coordinate Descent converge
faster: Faster greedy rules, message-passing, active-set complexity, and superlinear convergence.
arXiv preprint arXiv:1712.08859, 2017. URL https://arxiv.org/abs/1712.08859.
(Cited on page 21)

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The FineWeb datasets: Decanting the web for the finest text
data at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024. URL
https://arxiv.org/abs/2406.17557. (Cited on page 8)

13

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2211.00188
https://doi.org/10.1137/S0363012993250220
https://doi.org/10.1137/S0363012993250220
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1901.09437
https://arxiv.org/abs/1901.09269
https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/
https://arxiv.org/abs/1511.06051
https://arxiv.org/abs/1511.06051
https://dl.acm.org/doi/10.1145/3452296.3472923
https://dl.acm.org/doi/10.1145/3452296.3472923
https://epubs.siam.org/doi/10.1137/100802001
https://epubs.siam.org/doi/10.1137/100802001
https://link.springer.com/book/10.1007/978-1-4419-8853-9
https://link.springer.com/book/10.1007/978-1-4419-8853-9
https://proceedings.neurips.cc/paper_files/paper/2010/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://arxiv.org/abs/1712.08859
https://arxiv.org/abs/2406.17557

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls,
and Volkan Cevher. Scion. https://github.com/LIONS-EPFL/scion.git, 2025a.
GitHub repository. (Cited on page 8)

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv preprint
arXiv:2502.07529, 2025b. URL https://arxiv.org/abs/2502.07529. (Cited on page 1,
4, 5, 6, 8, 23, 24, and 69)

Thomas Pethick, Wanyun Xie, Mete Erdogan, Kimon Antonakopoulos, Tony Silveti-Falls, and
Volkan Cevher. Generalized gradient norm clipping & non-Euclidean (l 0, l 1)-smoothness.
arXiv preprint arXiv:2506.01913, 2025c. URL https://arxiv.org/abs/2506.01913.
(Cited on page 21 and 66)

Constantin Philippenko and Aymeric Dieuleveut. Preserved central model for faster bidirectional
compression in distributed settings. Advances in Neural Information Processing Systems, 34:
2387–2399, 2021. URL https://arxiv.org/abs/2102.12528. (Cited on page 19)

Vitali Pirau, Aleksandr Beznosikov, Martin Takác, Vladislav Matyukhin, and Alexander V. Gas-
nikov. Preconditioning meets biased compression for efficient distributed optimization. Com-
putational Management Science, 21(1):14, 2024. URL https://doi.org/10.1007/
s10287-023-00496-6. (Cited on page 19)

Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of DNNs with natural
gradient and parameter averaging. arXiv preprint arXiv:1410.7455, 2014. URL https://
arxiv.org/abs/1410.7455. (Cited on page 4 and 19)

Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can be accelerated.
Advances in Neural Information Processing Systems, 34:30401–30413, 2021. URL https:
//arxiv.org/abs/2010.00091. (Cited on page 19)

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–16, 2020. URL https:
//ieeexplore.ieee.org/document/9355301. (Cited on page 2)

Ahmad Rammal, Kaja Gruntkowska, Nikita Fedin, Eduard Gorbunov, and Peter Richtárik. Commu-
nication compression for byzantine robust learning: New efficient algorithms and improved rates.
In International Conference on Artificial Intelligence and Statistics, pp. 1207–1215. PMLR, 2024.
URL https://arxiv.org/abs/2310.09804. (Cited on page 20 and 42)

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter
Richtárik. Gluon. https://github.com/artem-riabinin/
Experiments-estimating-smoothness-for-NanoGPT-and-CNN, 2025a. GitHub
repository. (Cited on page 8, 9, and 67)

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making Muon &
Scion great again! (Bridging theory and practice of LMO-based optimizers for LLMs). arXiv
preprint arXiv:2505.13416, 2025b. URL https://arxiv.org/abs/2505.13416. (Cited
on page 1, 4, 5, 6, 21, 22, 23, 24, 65, and 66)

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.
URL https://arxiv.org/abs/1107.2848. (Cited on page 21 and 22)

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and
practically faster error feedback. In Neural Information Processing Systems, 2021., 2021. URL
https://arxiv.org/abs/2106.05203. (Cited on page 3, 5, 6, 7, 20, 24, 27, and 42)

Peter Richtárik, Igor Sokolov, Elnur Gasanov, Ilyas Fatkhullin, Zhize Li, and Eduard Gorbunov.
3PC: Three point compressors for communication-efficient distributed training and a better the-
ory for lazy aggregation. In International Conference on Machine Learning, pp. 18596–18648.
PMLR, 2022. URL https://arxiv.org/abs/2202.00998. (Cited on page 20)

14

https://github.com/LIONS-EPFL/scion.git
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2506.01913
https://arxiv.org/abs/2102.12528
https://doi.org/10.1007/s10287-023-00496-6
https://doi.org/10.1007/s10287-023-00496-6
https://arxiv.org/abs/1410.7455
https://arxiv.org/abs/1410.7455
https://arxiv.org/abs/2010.00091
https://arxiv.org/abs/2010.00091
https://ieeexplore.ieee.org/document/9355301
https://ieeexplore.ieee.org/document/9355301
https://arxiv.org/abs/2310.09804
https://github.com/artem-riabinin/Experiments-estimating-smoothness-for-NanoGPT-and-CNN
https://github.com/artem-riabinin/Experiments-estimating-smoothness-for-NanoGPT-and-CNN
https://arxiv.org/abs/2505.13416
https://arxiv.org/abs/1107.2848
https://arxiv.org/abs/2106.05203
https://arxiv.org/abs/2202.00998

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Peter Richtárik, Elnur Gasanov, and Konstantin Burlachenko. Error feedback reloaded: From
quadratic to arithmetic mean of smoothness constants. arXiv preprint arXiv:2402.10774, 2024.
URL https://arxiv.org/abs/2402.10774. (Cited on page 6)

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtárik. FedNL: Making Newton-type
methods applicable to federated learning. arXiv preprint arXiv:2106.02969, 2021. URL https:
//arxiv.org/abs/2106.02969. (Cited on page 9)

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient de-
scent and its application to data-parallel distributed training of speech DNNs. In Fif-
teenth Annual Conference of the International Speech Communication Association, 2014.
URL https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/02/IS140694.pdf. (Cited on page 2, 3, 5, 19, and 27)

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of Muon
for pretraining. arXiv preprint arXiv:2505.02222, 2025. URL https://arxiv.org/abs/
2505.02222. (Cited on page 1)

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching
for efficient transformers for language modeling. Advances in neural information processing
systems, 34:6010–6022, 2021. URL https://arxiv.org/abs/2109.08668v2. (Cited
on page 66)

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
sgd with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
2019. URL https://arxiv.org/abs/1909.05350. (Cited on page 19)

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory.
Advances in neural information processing systems, 31, 2018. URL https://arxiv.org/
abs/1809.07599. (Cited on page 2 and 19)

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. URL
https://arxiv.org/abs/2104.09864. (Cited on page 66)

Tao Sun, Qingsong Wang, Dongsheng Li, and Bao Wang. Momentum ensures convergence of
SIGNSGD under weaker assumptions. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 33077–33099. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/sun23l.html. (Cited on page 8)

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
distributed nonconvex optimization. In International Conference on Learning Representations,
2021. URL https://arxiv.org/abs/2110.03300. (Cited on page 19 and 27)

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel stochas-
tic gradient descent with double-pass error-compensated compression. In International Confer-
ence on Machine Learning, pp. 6155–6165. PMLR, 2019. URL https://arxiv.org/abs/
1905.05957. (Cited on page 19)

Benjamin Thérien, Xiaolong Huang, Irina Rish, and Eugene Belilovsky. MuLoCo: Muon is a
practical inner optimizer for DiLoCo. arXiv preprint arXiv:2505.23725, 2025. URL https:
//arxiv.org/abs/2505.23725. (Cited on page 1 and 2)

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288. (Cited on page 1)

15

https://arxiv.org/abs/2402.10774
https://arxiv.org/abs/2106.02969
https://arxiv.org/abs/2106.02969
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/IS140694.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/IS140694.pdf
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2109.08668v2
https://arxiv.org/abs/1909.05350
https://arxiv.org/abs/1809.07599
https://arxiv.org/abs/1809.07599
https://arxiv.org/abs/2104.09864
https://proceedings.mlr.press/v202/sun23l.html
https://proceedings.mlr.press/v202/sun23l.html
https://arxiv.org/abs/2110.03300
https://arxiv.org/abs/1905.05957
https://arxiv.org/abs/1905.05957
https://arxiv.org/abs/2505.23725
https://arxiv.org/abs/2505.23725
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with communi-
cation compression, optimal oracle complexity, and no client synchronization. 11th International
Conference on Learning Representations (ICLR), 2023a. URL https://arxiv.org/abs/
2202.01268. (Cited on page 19)

Alexander Tyurin and Peter Richtárik. 2Direction: Theoretically faster distributed training with
bidirectional communication compression. Advances in Neural Information Processing Systems
(NeurIPS), 2023b. URL https://arxiv.org/abs/2305.12379. (Cited on page 19)

Cong Xie, Shuai Zheng, Sanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. Cser:
Communication-efficient SGD with error reset. Advances in Neural Information Processing Sys-
tems, 33:12593–12603, 2020. URL https://arxiv.org/abs/2007.13221. (Cited on
page 19)

Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ℓ∞-geometry of loss land-
scape via coordinate-wise adaptivity. arXiv preprint arXiv:2410.08198, 2024. URL https:
//arxiv.org/abs/2410.08198. (Cited on page 21)

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017. URL https://arxiv.org/abs/1708.03888. (Cited
on page 1)

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural informa-
tion processing systems, 32, 2019. URL https://arxiv.org/abs/1910.07467. (Cited
on page 66)

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning Rep-
resentations, 2020. URL https://arxiv.org/abs/1905.11881. (Cited on page 6 and 21)

Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed blockwise mo-
mentum SGD with error-feedback. Advances in Neural Information Processing Systems, 32,
2019. URL https://arxiv.org/abs/1905.10936. (Cited on page 19)

16

https://arxiv.org/abs/2202.01268
https://arxiv.org/abs/2202.01268
https://arxiv.org/abs/2305.12379
https://arxiv.org/abs/2007.13221
https://arxiv.org/abs/2410.08198
https://arxiv.org/abs/2410.08198
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/1905.10936

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

1 Introduction 1

2 Background 3

3 Non-Euclidean distributed training 5

4 Convergence results 6

5 Experiments 8

A Related work 19

A.1 Compression . 19

A.2 Error feedback . 19

A.3 Generalized smoothness . 21

B Layer-wise setup 22

B.1 Muon, Scion and Gluon . 23

B.2 Layer-wise EF21-Muon . 24

C LMO in many guises 25

D Non-Euclidean contractive compressors 27

D.1 Compression via norm selection . 29

E Convergence analysis 31

E.1 Descent Lemmas . 31

E.2 Auxiliary Lemmas . 33

E.2.1 Smooth case . 33

E.2.2 Generalized smooth case . 36

E.3 Deterministic setting . 42

E.3.1 Layer-wise smooth regime . 42

E.3.2 Layer-wise (L0, L1)–smooth regime . 45

E.4 Stochastic setting . 48

E.4.1 Layer-wise smooth regime . 48

E.4.2 Layer-wise (L0, L1)–smooth regime . 55

F Useful Facts and Lemmas 65

G Experiments 66

G.1 Setup details . 66

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G.2 TopK compression details . 66

G.3 Learning rate ablation . 66

G.4 Compression level ablation . 67

G.5 2.5B tokens experiment . 67

G.6 MediumGPT experiment . 67

G.7 Bidirectional compression . 69

G.8 Limitations . 70

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 COMPRESSION

The ML community has developed two dominant strategies to address the communication bottle-
neck. The first is compression, implemented through techniques such as sparsification or quantiza-
tion (Seide et al., 2014; Alistarh et al., 2017; Beznosikov et al., 2020; Szlendak et al., 2021; Horváth
et al., 2022), which reduce communication costs by transmitting lossy representations of dense up-
dates. Compression techniques have been extensively studied in the Euclidean regime. The other
approach is local training (Mangasarian, 1995; Povey et al., 2014; McMahan et al., 2017), which
lowers communication frequency by synchronizing with the server only periodically, after several
local updates on the clients. These two approaches can be combined, yielding additional provable
benefits by leveraging both mechanisms (Condat et al., 2024). In this work, we focus on compres-
sion. Local training introduces a distinct set of challenges and trade-offs, and is orthogonal to our
approach.

There are two primary compression objectives in distributed optimization: workers-to-server (w2s)
(= uplink) and server-to-workers (s2w) (= downlink) communication. A large body of prior work
focuses exclusively on w2s compression, assuming that broadcasting from the server to the workers
is either free or negligible (Gorbunov et al., 2021; Szlendak et al., 2021; Tyurin & Richtárik, 2023a;
Pirau et al., 2024). This assumption is partly due to analytical convenience, but can also be justified
in settings where the server has significantly higher bandwidth, greater computational resources,
or when the network topology favors fast downlink speeds (Kairouz et al., 2021). However, in
many communication environments, this asymmetry does not hold. For instance, in 4G LTE and
5G networks, the upload and download speeds can be comparable, with the ratio between w2s and
s2w bandwidths bounded within an order of magnitude (Huang et al., 2012; Narayanan et al., 2021).
In such cases, s2w communication costs become non-negligible, and optimizing for both directions
is essential for practical efficiency (Zheng et al., 2019; Liu et al., 2020; Philippenko & Dieuleveut,
2021; Fatkhullin et al., 2021; Gruntkowska et al., 2023; Tyurin & Richtárik, 2023b; Gruntkowska
et al., 2024).

A.2 ERROR FEEDBACK

To address the communication bottleneck, a natural approach is to apply biased compressors to the
transmitted gradients. For the standard (Euclidean) GD, which iterates

Xk+1 = Xk − γk∇f(Xk) = Xk − γk

 1

n

n∑
j=1

∇fj(X
k)

 ,

where γk > 0 is the stepsize, this would yield the update rule

Xk+1 = Xk − γk

 1

n

n∑
j=1

Ck
j (∇fj(X

k))

 .

Sadly, this “enhancement” can result in exponential divergence, even in simplest setting of mini-
mizing the average of three strongly convex quadratic functions (Beznosikov et al., 2020, Example
1). Empirical evidence of such instability appeared much earlier, prompting Seide et al. (2014) to
propose a remedy in the form of an error feedback (EF) mechanism, which we refer to as EF14.

Initial theoretical insights into EF14 were established in the simpler single-node setting (Stich et al.,
2018; Alistarh et al., 2018). The method was subsequently analyzed in the convex case by Karim-
ireddy et al. (2019); Beznosikov et al. (2020); Gorbunov et al. (2020). Next, Qian et al. (2021)
showed that error feedback methods can be combined with Nesterov-style acceleration (Nesterov,
2003), though at the cost of incorporating additional unbiased compression, leading to increased
communication overhead per iteration. These analyses were later extended to the nonconvex regime
by Stich & Karimireddy (2019). This motivated a series of extensions combining error feedback
with additional algorithmic components, such as bidirectional compression (Tang et al., 2019), de-
centralized training protocols (Koloskova et al., 2019), and the incorporation of momentum either on
the client (Zheng et al., 2019) or server side (Xie et al., 2020). While these works advanced the state

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

of the art, their guarantees relied on strong regularity assumptions, such as bounded gradients (BG)
or bounded gradient similarity (BGS), which may be difficult to justify in practical deep learning
scenarios.

The limitations of EF14 and its successors were partially overcome by Richtárik et al. (2021), who
proposed a refined variant termed EF21. EF21 eliminates the need for strong assumptions such as
BG and BGS, relying only on standard assumptions (smoothness of the local functions fj and the
existence of a global lower bound on f), while improving the iteration complexity to the desirable
O(1/

√
K) in the deterministic setting. Building on this foundation, a series of extensions and gen-

eralizations followed. These include adaptations to partial participation, variance-reduction, proxi-
mal setting, and bidirectional compression (Fatkhullin et al., 2021), a generalization from contrac-
tive to three-point compressors (Richtárik et al., 2022), support for adaptive compression schemes
(Makarenko et al., 2022), and EF21-P–a modification of EF21 from gradient compression to model
compression (Gruntkowska et al., 2023). Further developments used EF21 in the design of Byzan-
tine robust methods (Rammal et al., 2024), applied it to Hessian communication (Islamov et al.,
2023), and extended the theoretical analysis to the (L0, L1)–smooth regime (Khirirat et al., 2024).

With this historical overview in place, we now narrow our focus to two developments in the error
feedback literature that are particularly relevant to this work: EF21 (Richtárik et al., 2021) and
EF21-P (Gruntkowska et al., 2023).

EF21 is a method for w2s communication compression. It aims to solve problem (1) via the iterative
process

Xk+1 = Xk − γGk,

Gk+1
j = Gk

j + Ck
j (∇fj(X

k+1)−Gk
j),

Gk+1 =
1

n

n∑
j=1

Gk+1
j ,

where γ > 0 is the stepsize and Ck
j ∈ B2(αD) are independent contractive compressors. In the

EF21 algorithm, each client j keeps track of a gradient estimator Gk
j . At each iteration, the clients

compute their local gradient ∇fj(X
k+1), subtract the stored estimator Gk

j , and then compresses
this difference using a biased compression operator. The compressed update is sent to the server,
which aggregates updates from all clients and uses them to update the global model. Concurrently,
each client updates its error feedback vector by using the same compressed residual. Importantly,
EF21 compresses only the uplink communication (i.e., vectors sent from clients to the server), while
downlink communication remains uncompressed. That is, the global model Xk+1 is transmitted in
full precision from the server to all clients, under the assumption that downlink communication is
not a bottleneck.

A complementary approach is proposed in the follow-up work of Gruntkowska et al. (2023), which
introduces a primal variant of EF21, referred to as EF21-P. Unlike EF21, which targets uplink com-
pression (from workers to server), EF21-P is explicitly designed for s2w compression. The method
proceeds via the iterative scheme

Xk+1 = Xk − γ∇f(W k) = Xk − γ
1

n

n∑
j=1

∇fj(W
k),

W k+1 = W k + Ck(Xk+1 −W k),

where γ > 0 is the stepsize and Ck ∈ B2(αP) are independent contractive compressors. Analogous
to EF21, the EF21-P method employs error feedback to compensate for the distortion introduced by
compression. However, rather than correcting gradient estimates, EF21-P maintains and updates an
estimate of the model parameters, W k. The server computes the update Xk+1, but broadcasts only
a compressed difference Ck(Xk+1 −W k) to the clients.

In its basic form, EF21-P assumes dense uplink communication–i.e., the clients transmit full gra-
dients ∇fj(W

k) to the server. Nonetheless, EF21-P can be naturally extended to bidirectional
compression by integrating it with an uplink compression mechanism, enabling full communication
efficiency (Gruntkowska et al., 2023).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.3 GENERALIZED SMOOTHNESS

A standard assumption in the convergence analysis of gradient-based methods is Lipschitz smooth-
ness of the gradient (Assumption 3). However, many modern learning problems–especially in deep
learning–violate this assumption. Empirical evidence has shown non-smoothness in a variety of
architectures and tasks, including LSTM language modeling, image classification with ResNet20
(Zhang et al., 2020), and transformer models (Crawshaw et al., 2022). These observations motivated
the search for alternative smoothness models that better reflect the behavior of practical objectives.

One such model is (L0, L1)–smoothness, introduced by Zhang et al. (2020) for twice continuously
differentiable functions in the Euclidean setting. The authors define a function f : Rd → R to be
(L0, L1)–smooth if ∥∥∇2f(X)

∥∥
2
≤ L0 + L1 ∥∇f(X)∥2 ∀X ∈ Rd.

This condition generalizes standard Lipschitz smoothness and has been shown empirically to capture
deep learning loss landscapes more faithfully than the classical model (Zhang et al., 2020; Craw-
shaw et al., 2022). Subsequent works extended the above condition beyond the twice differentiable
case (Li et al., 2023; Chen et al., 2023). In particular, Chen et al. (2023) introduced asymmet-
ric and symmetric variants of (L0, L1)–smoothness, where the asymmetric form (a special case of
Assumption 4 restricted to Euclidean norms) is given by

∥∇f(X)−∇f(Y)∥2 ≤
(
L0 + L1 ∥∇f(X)∥2

)
∥X − Y ∥2 ∀X,Y ∈ Rd.

This framework has since been used in the non-Euclidean setting (Pethick et al., 2025c) and
adapted to the layer-wise structure of deep networks by Riabinin et al. (2025b), who introduced
non-Euclidean layer-wise (L0, L1)–smoothness assumption (Assumption 8). This layer-aware view
aligns naturally with LMO-based optimizers that operate on individual parameter groups.

The idea of accounting for the heterogeneous structure of parameters is not unique to the work of
Riabinin et al. (2025b). Anisotropic smoothness conditions, where smoothness constants can vary
across coordinates or parameter blocks, have been studied extensively, for example in the context of
coordinate descent methods (Nesterov, 2012; Richtárik & Takáč, 2014; Nutini et al., 2017). Variants
of coordinate-wise or block-wise (generalized) smoothness assumptions have also been used to an-
alyze algorithms such as signSGD (Bernstein et al., 2018; Crawshaw et al., 2022), AdaGrad (Jiang
et al., 2024; Liu et al., 2024), and Adam (Xie et al., 2024). These works collectively reinforce the
need for smoothness models that reflect the anisotropic geometry of modern neural networks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B LAYER-WISE SETUP

So far, we have been operating in an abstract vector space S, without assuming any particular struc-
ture. This is the standard approach in the vast majority of the theoretical optimization literature
in machine learning, where model parameters are typically flattened into vectors in Rd. However,
modern deep networks are inherently structured objects, with a clear layer-wise organization. While
treating parameters as flat vectors can still yield meaningful convergence guarantees, explicitly mod-
eling this layer-wise structure allows us to formulate assumptions that more accurately reflect the
underlying geometry of the model Nesterov (2012); Richtárik & Takáč (2014); Crawshaw et al.
(2022); Jiang et al. (2024). This, in turn, can lead to improved theoretical results (Liu et al., 2024;
Riabinin et al., 2025b).

A further motivation for adopting the layer-wise perspective is that the algorithms that inspired this
work–Muon, Scion, and Gluon–are themselves layer-wise by design. Rather than operating on the
entire parameter vector, they apply separate LMO updates to each layer or building block indepen-
dently. This modular treatment is one of the main reasons for their strong empirical performance.

With this motivation in mind, we now turn to solving the optimization problem (1) in a setting where
the parameter vector X ∈ S represents a collection of matrices Xi ∈ Si := Rmi×ni corresponding
to the trainable parameters of each layer i ∈ {1, . . . , p} in a neural network. For notational con-
venience, we write X = [X1, . . . , Xp] and ∇f(X) = [∇1f(X), . . . ,∇pf(X)], where ∇if(X) is
the gradient component corresponding to the ith layer. Accordingly, S is the d-dimensional product
space

S :=
⊗p

i=1 Si ≡ S1 ⊗ · · · ⊗ Sp,

where d :=
∑p

i=1 mini. Each component space Si is equipped with the trace inner product, defied
as ⟨Xi, Yi⟩(i) := tr(X⊤

i Yi) for Xi, Yi ∈ Si, and an arbitrary norm ∥·∥(i), not necessarily induced by
this inner product. We use ∥·∥(i)⋆ to denote the dual norm associated with ∥·∥(i) (i.e., ∥Xi∥(i)⋆ :=

sup∥Zi∥(i)≤1 ⟨Xi, Zi⟩(i) for any Xi ∈ Si). Furthermore, we use ρ
i
, ρ̄i > 0 to denote the norm

equivalence constants such that

ρ
i
∥Xi∥(i) ≤ ∥Xi∥2 ≤ ρ̄i ∥Xi∥(i) ∀Xi ∈ Si,

(or, equivalently, ρ
i
∥Xi∥2 ≤ ∥Xi∥(i)⋆ ≤ ρ̄i ∥Xi∥2).

Remark 7. In the case of Muon, the norms ∥·∥(i) are taken to be the spectral norms, i.e., ∥·∥(i) =
∥·∥2→2. Since for any matrix Xi of rank at most r, we have

∥Xi∥2→2 ≤ ∥Xi∥F ≤
√
r ∥Xi∥2→2 ,

in this setting, ρ
i
= 1 and ρ̄i =

√
r.

Given the block structure of X across layers, the smoothness assumptions in Assumption 3 can be
made more precise by assigning separate constants to each layer.
Assumption 6 (Layer-wise smoothness). The function f : S 7→ R is layer-wise L0–smooth with
constants L0 := (L0

1, . . . , L
0
p) ∈ Rp

+, i.e.,

∥∇if(X)−∇if(Y)∥(i)⋆ ≤ L0
i ∥Xi − Yi∥(i)

for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈ S, Y = [Y1, . . . , Yp] ∈ S.
Assumption 7 (Local layer-wise smoothness). The functions fj : S 7→ R, j ∈ [n], are layer-wise
L0
j–smooth with constants L0

j := (L0
1,j , . . . , L

0
p,j) ∈ Rp

+, i.e.,

∥∇ifj(X)−∇ifj(Y)∥(i)⋆ ≤ L0
i,j ∥Xi − Yi∥(i)

for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈ S, Y = [Y1, . . . , Yp] ∈ S. We define (L̃0
i)

2 :=
1
n

∑n
j=1(L

0
i,j)

2.

We invoke Assumptions 6 and 7 in Appendices E.3.1 and E.4.1 to extend Theorems 3 and 5 to the
more general setting.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Smoothness is the standard assumption used in virtually all convergence results for Muon and Scion
(Kovalev, 2025; Pethick et al., 2025b; Li & Hong, 2025) (except for the recent work on Gluon
(Riabinin et al., 2025b)). However, as discussed in Section 4 and Section A.3, this assumption
often fails to hold in modern deep learning settings. To address this, we adopt a more flexible and
expressive condition: the layer-wise (L0, L1)–smoothness assumption (Riabinin et al., 2025b).
Assumption 8 (Layer-wise (L0, L1)–smoothness). The function f : S 7→ R is layer-wise (L0, L1)–
smooth with constants L0 := (L0

1, . . . , L
0
p) ∈ Rp

+ and L1 := (L1
1, . . . , L

1
p) ∈ Rp

+, i.e.,

∥∇if(X)−∇if(Y)∥(i)⋆ ≤
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Xi − Yi∥(i)

for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈ S, Y = [Y1, . . . , Yp] ∈ S.

Since, unlike Gluon, we operate in the distributed setting, we will also need an analogous assumption
on the local functions fj .

Assumption 9 (Local layer-wise (L0, L1)–smoothness). The functions fj , j ∈ [n], are layer-wise
(L0

j , L
1
j)–smooth with constants L0

j := (L0
1,j , . . . , L

0
p,j) ∈ Rp

+ and L1
j := (L1

1,j , . . . , L
1
p,j) ∈ Rp

+,
i.e.,

∥∇ifj(X)−∇ifj(Y)∥(i)⋆ ≤
(
L0
i,j + L1

i,j ∥∇ifj(X)∥(i)⋆
)
∥Xi − Yi∥(i)

for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈ S, Y = [Y1, . . . , Yp] ∈ S.

For O ∈ {0, 1}, we define LO
max,j := maxi∈[p] L

O
i,j , LO

i,max := maxj∈[n] L
O
i,j and L̄0

i :=
1
n

∑n
j=1 L

0
i,j .

Riabinin et al. (2025b) present empirical evidence showing that this more flexible, layer-wise ap-
proach is essential for accurately modeling the network’s underlying structure. They demonstrate
that the layer-wise (L0, L1)–smoothness condition approximately holds along the training trajectory
of Gluon in experiments on the NanoGPT language modeling task. Motivated by these findings, in
Appendices E.3.2 and E.4.2, we provide an analysis within this generalized framework, offering a
full generalization of Gluon to bidirectional compression.

In the stochastic setting, we will also require a layer-wise analogue of Assumption 5.
Assumption 10. The stochastic gradient estimators ∇fj(·; ξj) : S 7→ S are unbiased and have
bounded variance. That is, Eξj∼Dj [∇fj(X; ξj)] = ∇fj(X) for all X ∈ S and there exist σi ≥ 0
such that

Eξj∼Dj

[
∥∇ifj(X; ξj)−∇ifj(X)∥22

]
≤ σ2

i , ∀X ∈ S, i = 1, . . . , p.

We permit layer-dependent variance parameters σ2
i , motivated by empirical evidence that variance is

not uniform across layers. For example, Glentis et al. (2025) observe that, during training of LLaMA
130M with SGD and column-wise normalization (i.e., Gluon using the ∥·∥1→2 norm), the final and
embedding layers display significantly higher variance.

B.1 Muon, Scion AND Gluon

Muon, introduced by Jordan et al. (2024), is an optimizer for the hidden layers of neural networks
(the first and last layers are trained with AdamW). Unlike traditional element-wise gradient methods,
it updates each weight matrix as a whole. Given a layer Xi and the corresponding (stochastic)
gradient Gi, Muon selects an update that maximizes the alignment with the gradient to reduce loss,
while constraining the update’s size to avoid excessive model perturbation. This is formulated as a
constrained optimization problem over the spectral norm ball:

argmin
∆Xi

⟨Gi,∆Xi⟩ s.t. ∥∆Xi∥2→2 ≤ ti, (5)

where the radius ti > 0 plays a role similar to a stepsize. The optimal update ∆Xi is obtained by
orthogonalizing Gi via its singular value decomposition Gi = UiΣiV

T
i , leading to

∆Xi = −tiUiV
T
i .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

This yields the basic update

Xk+1
i = Xk

i +∆Xk
i = Xk

i − tki U
k
i (V

k
i)T . (6)

In practice, computing the SVD exactly at every step is expensive and not GPU-friendly. Muon
instead uses Newton–Schulz iterations (Kovarik, 1970; Björck & Bowie, 1971) to approximate the
orthogonalization. Combined with momentum, the practical update is

Mk
i = (1− βi)M

k−1
i + βiG

k
i , Xk+1

i = Xk
i − tki NewtonSchulz(Mk

i),

where βi ∈ (0, 1] is the momentum parameter and Mk
i is the momentum-averaged gradient.

While Newton–Schulz iterations and momentum are crucial for practical efficiency, the essence of
Muon lies in solving (5)–that is, computing the linear minimization oracle (LMO) over the spectral
norm ball. Recall that LMOB(X,t) (G) := argminZ∈B(X,t) ⟨G,Z⟩. Then

∆Xi = argmin
Zi∈B2→2

i (0,ti)

⟨Gi, Zi⟩ = LMOB2→2
i (0,ti) (Gi)

where B2→2
i (0, ti) := {Zi ∈ Si : ∥Zi∥2→2 ≤ ti} is the spectral norm ball of radius ti around 0.

Thus, the update (6) can equivalently be written as

Xk+1
i = Xk

i + LMOB2→2
i (0,tki)

(
Gk

i

)
, (7)

where Gk
i may be replaced with a momentum term.

Crucially, nothing in this formulation ties us to the spectral norm. The same update structure can
be defined over any norm ball, opening the door to an entire family of optimizers whose proper-
ties depend on the underlying geometry. This insight has led to several Muon-inspired methods
with provable convergence guarantees (Pethick et al., 2025b; Kovalev, 2025; Riabinin et al., 2025b).
Scion (Pethick et al., 2025b) removes the restriction to matrix-shaped layers by applying LMO-based
updates to all layers, pairing the spectral norm for hidden layers with the ∥·∥1→∞ norm elsewhere.
Gluon (Riabinin et al., 2025b) expands the view even further: it provides a general convergence anal-
ysis for LMO updates over arbitrary norm balls, supported by a layer-wise (L0, L1)-–smoothness
assumption that captures the heterogeneity of deep learning loss landscapes more accurately than
standard smoothness.

B.2 LAYER-WISE EF21-Muon

The simplified EF21-Muon in Algorithm 1, analyzed in Section 4, omits the layer-wise treatment
introduced above. The full structured variant is given in Algorithm 3. Its deterministic counterpart
is formalized in Algorithm 2, extending the simplified version studied in Section 4.

Both Algorithms 2 and 3 operate on a per-layer basis. We now briefly describe their struc-
ture. For each layer i, the parameters are updated via Xk+1

i = LMOB(Xk
i ,t

k
i)

(
Gk

i

)
(equiva-

lently, Xk+1
i = Xk

i − γk
i

(
Gk

i

)♯
, where γk = tk/∥Gk∥

⋆
–see Section C). Next, the algorithms

perform the server-to-workers (s2w) compression, following a technique inspired by EF21-P (Grun-
tkowska et al., 2023). The resulting compressed messages Sk

i = Ck
i (X

k+1
i − W k

i) are sent to
the workers. Each worker then updates the model shift and uses the resulting model estimate
W k+1

i to compute the local (stochastic) gradient. This gradient is then used (either directly or
within a momentum term) to form the compressed message Rk+1

i,j . This part of the algorithm
follows the workers-to-server (w2s) compression strategy of EF21 (Richtárik et al., 2021). The
messages Rk+1

i,j are sent back to the server, which updates the layer-wise gradient estimators via
Gk+1

i = 1
n

∑n
j=1 G

k+1
i,j = Gk

i + 1
n

∑n
j=1 R

k+1
i,j . This process is repeated until convergence.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 2 Deterministic EF21-Muon

1: Parameters: radii tki > 0 / stepsizes γk
i ; initial iterate X0 = [X0

1 , . . . , X
0
p] ∈ S (stored on the

server); initial iterate shift W 0 = X0 (stored on the server and the workers); initial gradient
estimators G0

j = [G0
1,j , . . . , G

0
p,j] = [∇1fj(X

0), . . . ,∇pfj(X
0)] ∈ S (stored on the workers),

G0 = 1
n

∑n
j=1 G

0
j (stored on the server); worker compressors Ck

i ; server compressors Ck

2: for k = 0, 1, . . . ,K − 1 do
3: for i = 1, 2, . . . , p do
4: Xk+1

i = LMOB(Xk
i ,t

k
i)

(
Gk

i

)
= Xk

i − γk
i

(
Gk

i

)♯
Take LMO-type step

5: Sk
i = Ck

i (X
k+1
i −W k

i) Compress shifted model on the server

6: W k+1
i = W k

i + Sk
i Update model shift

7: Broadcast Sk = [Sk
1 , . . . , S

k
p] to all workers

8: end for
9: for j = 1, . . . , n in parallel do

10: for i = 1, 2, . . . , p do
11: W k+1

i = W k
i + Sk

i Update model shift

12: Rk+1
i,j = Ck

i,j(∇ifj(W
k+1)−Gk

i,j) Compress shifted gradient

13: Gk+1
i,j = Gk

i,j +Rk+1
i,j

14: end for
15: Broadcast Rk+1

j = [Rk+1
1,j , . . . , Rk+1

p,j] to the server
16: end for
17: for i = 1, . . . , p do
18: Gk+1

i = 1
n

∑n
j=1 G

k+1
i,j = Gk

i + 1
n

∑n
j=1 R

k+1
i,j Compute gradient estimator

19: end for
20: end for

C LMO IN MANY GUISES

As outlined in Section 2, the update rule (2)

Xk+1 = Xk + tkLMOB(0,1)

(
Gk
)

admits several equivalent reformulations.

LMO viewpoint. The original update (2) is the solution of a simple linear minimization problem
over a norm ball

Xk+1 = LMOB(Xk,tk)

(
Gk
)
= argmin

X∈B(Xk,tk)

〈
Gk, X

〉
,

where B(X, t) := {Z ∈ S : ∥Z −X∥ ≤ t}. The LMO satisfies〈
G,LMOB(X,t) (G)

〉
= −t ∥G∥⋆ .

Sharp operator viewpoint. An equivalent perspective is obtained via the sharp operators (Nes-
terov, 2012; Kelner et al., 2014). Define the function ϕ(X) := 1

2 ∥X∥2. Its Fenchel conjugate is
given by ϕ⋆(G) := supX∈S {⟨G,X⟩ − ϕ(X)} = 1

2 ∥X∥2⋆, and its subdifferential ∂ϕ⋆ coincides
with the sharp operator:

∂ϕ⋆(G) = {X ∈ S : ⟨G,X⟩ = ∥G∥⋆ ∥X∥ , ∥G∥⋆ = ∥X∥}
= −∥G∥⋆ LMOB(0,1) (G)

= G♯,

where G♯ := argmaxX∈S{⟨G,X⟩ − 1
2 ∥X∥2} is the sharp operator. Therefore,

Xk+1 = Xk + tkLMOB(0,1)

(
Gk
)
= Xk − tk

∥Gk∥⋆

(
Gk
)♯
,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 3 EF21-Muon

1: Parameters: radii tki > 0 / stepsizes γk
i ; momentum parameters βi ∈ (0, 1]; initial iterate X0 =

[X0
1 , . . . , X

0
p] ∈ S (stored on the server); initial iterate shift W 0 = X0 (stored on the server and

the workers); initial gradient estimators G0
j = [G0

1,j , . . . , G
0
p,j] ∈ S (stored on the workers);

G0 = 1
n

∑n
j=1 G

0
j (stored on the server); initial momentum M0

j = [M0
1,j , . . . ,M

0
p,j] ∈ S

(stored on the workers); worker compressors Ck
i,j ; server compressors Ck

i
2: for k = 0, 1, . . . ,K − 1 do
3: for i = 1, 2, . . . , p do
4: Xk+1

i = LMOB(Xk
i ,t

k
i)

(
Gk

i

)
= Xk

i − γk
i

(
Gk

i

)♯
Take LMO-type step

5: Sk
i = Ck

i (X
k+1
i −W k

i) Compress shifted model on the server

6: W k+1
i = W k

i + Sk
i Update model shift

7: Broadcast Sk = [Sk
1 , . . . , S

k
p] to all workers

8: end for
9: for j = 1, . . . , n in parallel do

10: for i = 1, 2, . . . , p do
11: W k+1

i = W k
i + Sk

i Update model shift

12: Mk+1
i,j = (1− βi)M

k
i,j + βi∇ifj(W

k+1; ξk+1
j) Compute momentum

13: Rk+1
i,j = Ck

i,j(M
k+1
i,j −Gk

i,j) Compress shifted gradient

14: Gk+1
i,j = Gk

i,j +Rk+1
i,j

15: end for
16: Broadcast Rk+1

j = [Rk+1
1,j , . . . , Rk+1

p,j] to the server
17: end for
18: for i = 1, 2, . . . , p do
19: Gk+1

i = 1
n

∑n
j=1 G

k+1
i,j = Gk

i,j +
1
n

∑n
j=1 R

k+1
i,j Compute gradient estimator

20: end for
21: end for

i.e., a normalized steepest descent step with effective stepsize γk := tk/∥Gk∥
⋆
.

Two properties of the sharp operator used later are〈
X,X♯

〉
=
∥∥X♯

∥∥2 , ∥X∥⋆ =
∥∥X♯

∥∥ .
Subdifferential viewpoint. The negative LMO direction −LMOB(0,1) (A) =
argmax∥Z∥=1 ⟨A,Z⟩ is a subdifferential of the dual norm ∂ ∥·∥⋆ (A), so (2) can also be
written as

Xk+1 = Xk + tkLMOB(0,1)

(
Gk
)
= Xk − tkHk

for some Hk ∈ ∂ ∥·∥⋆ (Gk), where by the definition of subdifferential, for any Gk ̸= 0,〈
Hk, Gk

〉
=
∥∥Gk

∥∥
⋆
,
∥∥Hk

∥∥ = 1. (8)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D NON-EUCLIDEAN CONTRACTIVE COMPRESSORS

Recall from Definition 1 that a mapping C : S → S is called a contractive compression operator
with parameter α ∈ (0, 1] if, for all X ∈ S,

E
[
∥C(X)−X∥2

]
≤ (1− α) ∥X∥2 . (9)

When ∥·∥ is the Euclidean norm, a wide range of such compressors is available in the literature
(Seide et al., 2014; Alistarh et al., 2017; Beznosikov et al., 2020; Richtárik et al., 2021; Szlendak
et al., 2021; Horváth et al., 2022). However, when ∥·∥ is a non-Euclidean norm, Euclidean con-
tractivity does not in general imply contractivity with respect to ∥·∥. Indeed, suppose that C is
contractive with respect to the Euclidean norm. Then, using norm equivalence, for any X ∈ S,

ρ2E
[
∥C(X)−X∥2

]
≤ E

[
∥C(X)−X∥22

]
≤ (1− α) ∥X∥22 ≤ ρ̄2(1− α) ∥X∥2 .

Rearranging gives

E
[
∥C(X)−X∥2

]
≤ ρ̄2

ρ2
(1− α) ∥X∥2 ,

and hence C is not contractive with respect to the norm ∥·∥ unless α > 1 − ρ2
/ρ̄2. Consequently,

dedicated compressors are needed when working outside the Euclidean setting.

In this section, we first present two simple examples of operators that satisfy condition (9) for any
norm. These are, however, in general not very practical choices. We then turn to more useful
examples of non-Euclidean compressors for several matrix norms of interest.

A simple deterministic example of a contractive compressor is the scaling or damping operator.
Definition 8 (Deterministic Damping). For any X ∈ S, the deterministic damping operator with
parameter γ ∈ (0, 2) is defined as

C(X) = γX.

For this operator,

E
[
∥C(X)−X∥2

]
= (1− γ)2 ∥X∥2 ,

and thus C satisfies Definition 1 with α = 1− (1− γ)2 for any γ ∈ (0, 2).

Despite meeting the definition, the deterministic damping operator is of little use in communication-
constrained optimization: it merely scales the entire input vector by a constant, without reducing
the amount of data to be transmitted. The fact that it formally satisfies the contractive compressor
definition is more of a theoretical curiosity. It highlights that the definition captures a broader math-
ematical property that does not always align with the practical engineering goal of reducing data
transmission.

The random dropout operator (whose scaled, unbiased variant appears in the literature as the
Bernoulli compressor (Islamov et al., 2021)) is a simple yet more practically relevant example of a
contractive compressor that can reduce communication cost.
Definition 9 (Random Dropout). For any X ∈ S, the random dropout operator with a probability
parameter p ∈ (0, 1] is defined as

C(X) =

{
X with probability p,

0 with probability 1− p.

Then

E
[
∥C(X)−X∥2

]
= (1− p) ∥X∥2 ,

and hence C ∈ B(p).

The examples of deterministic damping and random dropout apply to any valid norm defined on the
space S. However, one can also design compressors directly for the norm of interest. A natural
example for both the spectral norm ∥·∥2→2 and the nuclear norm ∥·∥∗ is based on truncated SVD.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Definition 10 (TopK SVD compressor). Let X = UΣV ⊤ ∈ Rm×n be a matrix of rank r, where
Σ = diag(σ1, . . . , σr) contains the singular values σ1 ≥ · · · ≥ σr > 0. For K < r, the TopK SVD
compressor is defined by

C(X) := UΣKV ⊤,

where ΣK = diag(σ1, . . . , σK , 0, . . . , 0) retains the K largest singular values, setting the rest to
zero.

The TopK SVD compressor can be used in conjunction with several commonly used matrix norms:

• Spectral norm. The spectral norm, frequently used in LMO-based optimization methods,
is defined by ∥X∥2→2 = σ1. Under this norm, the compression residual is

∥X − C(X)∥2→2 = σK+1.

This yields a valid contractive compressor (unless σ2
K+1 = σ2

1), and Definition 1 is satisfied
with parameter α = 1− σ2

K+1/σ2
1 .

• Nuclear norm. The nuclear norm, dual to the spectral norm, is given by ∥X∥∗ =
∑r

i=1 σi.
In this case,

∥X − C(X)∥∗ =

r∑
i=K+1

σi,

and Definition 1 holds with α = 1−
(∑r

i=K+1 σi∑r
i=1 σi

)2
.

• Frobenius norm. The Euclidean norm of the matrix can be expressed as ∥X∥F =√∑r
i=1 σ

2
i . Then,

∥X − C(X)∥F =

√√√√ r∑
i=K+1

σ2
i .

and so Definition 1 is satisfied with α = 1−
∑r

i=K+1 σ2
i∑r

i=1 σ2
i

.

In fact, the TopK SVD compressor is naturally well-suited for a larger family of Schatten p-norm,
defined in terms of the singular values σi of a matrix X by

∥X∥Sp
=

(
r∑

i=1

σp
i

)1/p

Important special cases include the nuclear norm (or trace norm) for p = 1 (i.e., ∥X∥∗ = ∥X∥S1
),

the Frobenius norm for p = 2 (i.e., ∥X∥F = ∥X∥S2
), and the spectral norm for p = ∞ (i.e.,

∥X∥2→2 = ∥X∥S∞
). In general, it is easy to show that the TopK SVD compressor satisfies Defini-

tion 1 with respect to the ∥·∥Sp
norm with

α = 1−
(∑r

i=K+1 σ
p
i∑r

i=1 σ
p
i

)2/p

.

Remark 11. For large-scale matrices, computing the exact SVD may be computationally pro-
hibitive. In such cases, one may resort to approximate methods to obtain a stochastic compressor C̃
satisfying Definition 1 in expectation:

E
[∥∥∥C̃(X)−X

∥∥∥2] ≤ (1− α+ δ) ∥X∥2 ,

where δ > 0 quantifies the approximation error and can be made arbitrarily small.
Remark 12. The expressions for α above depend on the singular values of X , and hence α is gen-
erally matrix-dependent rather than a uniform constant. For theoretical guarantees, one may take
the minimum α observed over a training run. Alternatively, our framework admits a straightforward
extension to iteration-dependent compression parameters.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Beyond Schatten norms, similar ideas can be applied to other structured non-Euclidean norms.
Throughout, we let Xi:, X:j , and Xij denote the ith row, jth column, and (i, j)th entry of the
matrix X ∈ Rm×n, respectively.
Definition 13 (Column-wise ToppK compressor). The column-wise ToppK compressor keeps the
K columns with largest ℓp norm, setting the rest to zero:

C(X):j =

{
X:j , j ∈ IK ,

0, otherwise,

where IK indexes the K columns with the largest ℓp norm.

This operator is naturally suited for the mixed ℓp,q norms (p, q ≥ 1), defined as

∥X∥p,q :=

 n∑
j=1

(
m∑
i=1

|Xij |p
)q/p

1/q

=

 n∑
j=1

∥X:j∥qp

1/q

,

where ∥·∥p is the standard (vector) ℓp norm. The compression residual satisfies

∥X − C(X)∥p,q =

∑
j /∈IK

∥X:j∥qp

1/q

,

and hence Definition 1 holds with

α = 1−

(∑
j /∈IK

∥X:j∥qp∑n
j=1 ∥X:j∥qp

)2/q

.

This general formulation recovers, for example, the ℓ2,1 norm (commonly used in robust data anal-
ysis (Nie et al., 2010)) and the ℓ2,2 norm (Frobenius norm).

D.1 COMPRESSION VIA NORM SELECTION

A useful perspective on communication reduction in distributed optimization emerges from the con-
nection between compression operators and mappings such as the sharp operator and the LMO.
Recall that for any norm ∥·∥ with dual norm ∥·∥⋆, the sharp operator of G ∈ Rm×n is defined as

G♯ := argmax
X∈Rm×n

{
⟨G,X⟩ − 1

2
∥X∥2

}
.

Since ∥G∥⋆ LMOB(0,1) (G) = −G♯, one can view G♯ as the LMO over the unit ball of ∥·∥, scaled
by ∥G∥⋆.

For many norms, G♯ naturally acts as a structured compressor. Below, we list several such examples.

• Nuclear norm. For the nuclear norm (with dual norm ∥·∥2→2, the operator/spectral norm),
the sharp operator is

G♯ = σ1 u1v
⊤
1 ,

where σ1, u1, and v1 are the leading singular value and singular vectors of G, yielding a
Rank1 compression via truncated SVD. This operator satisfies Definition 1 with parameter
α = 1/r, where r is the rank of G.

• Element-wise ℓ1 norm. For the norm ∥X∥1 =
∑m

i=1

∑n
j=1 |Xij | (with dual ∥X∥∞ =

maxi,j |Xij |), the sharp operator is

G♯ = Top1(G) = ∥G∥∞ E(i⋆j⋆),

where (i⋆, j⋆) = argmaxi,j |Gij | and E(i⋆j⋆) is the matrix with a 1 in entry (i⋆, j⋆) and
zeros elsewhere. Thus, the sharp operator associated with the ℓ1 norm corresponds to Top1
sparsification, which satisfies Definition 1 with α = 1/mn.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• Max row sum norm. For ∥X∥∞→∞ = max1≤i≤m

∑n
j=1 |Xij |, the dual norm is

∥X∥1,∞ =
∑n

j=1 ∥X:j∥∞, and the sharp operator yields

G♯ =

 n∑
j=1

∥G:j∥∞

 [sign(Top1(G:1), . . . ,Top1(G:n))]

i.e., it keeps a single non-zero entry in each column of G, with all of these entries equal
across columns.

These are only some examples of the compression capabilities of sharp operators. They open the
door to compressed server-to-worker communication even in the absence of primal compression,
as briefly mentioned in Section 4. Indeed, instead of broadcasting the compressed messages Sk in
Algorithms 1 to 3, the server can compute G♯, transmit this naturally compressed object, and let the
workers perform the model update locally. In doing so, we preserve communication efficiency while
avoiding the introduction of additional primal compressors.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E CONVERGENCE ANALYSIS

E.1 DESCENT LEMMAS

We provide two descent lemmas corresponding to the two smoothness regimes. The first applies to
the layer-wise smooth setting.

Lemma 1 (Descent Lemma I). Let Assumption 6 hold and consider the update rule Xk+1
i =

Xk
i − γk

i

(
Gk

i

)♯
, i = 1, . . . , p, where Xk+1 = [Xk+1

1 , . . . , Xk+1
p], Xk = [Xk

1 , . . . , X
k
p], G

k =

[Gk
1 , . . . , G

k
p] ∈ S and γk

i > 0. Then

f(Xk+1) ≤ f(Xk) +

p∑
i=1

3γk
i

2

∥∥∇if(X
k)−Gk

i

∥∥2
(i)⋆

−
p∑

i=1

γk
i

4

∥∥∇if(X
k)
∥∥2
(i)⋆

−
p∑

i=1

(
1

4γk
i

− L0
i

2

)
(γk

i)
2
∥∥Gk

i

∥∥2
(i)⋆

.

Proof. First, for any s > 0, we have∥∥∇if(X
k)
∥∥2
(i)⋆

=
∥∥∇if(X

k)−Gk
i +Gk

i

∥∥2
(i)⋆

(28)
≤ (1 + s)

∥∥∇if(X
k)−Gk

i

∥∥2
(i)⋆

+

(
1 +

1

s

)∥∥Gk
i

∥∥2
(i)⋆

,

meaning that

−
∥∥Gk

i

∥∥2
(i)⋆

≤ 1 + s

1 + 1
s

∥∥∇if(X
k)−Gk

i

∥∥2
(i)⋆

− 1

1 + 1
s

∥∥∇if(X
k)
∥∥2
(i)⋆

= s
∥∥∇if(X

k)−Gk
i

∥∥2
(i)⋆

− s

s+ 1

∥∥∇if(X
k)
∥∥2
(i)⋆

. (10)

Then, using layer-wise smoothness of f and Lemma 14 with L1
i = 0, we get

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i

2

∥∥Xk
i −Xk+1

i

∥∥2
(i)

= f(Xk) +

p∑
i=1

〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+

p∑
i=1

L0
i

2

∥∥Xk
i −Xk+1

i

∥∥2
(i)

= f(Xk)−
p∑

i=1

γk
i

〈
∇if(X

k)−Gk
i ,
(
Gk

i

)♯〉
(i)

−
p∑

i=1

γk
i

〈
Gk

i ,
(
Gk

i

)♯〉
(i)

+

p∑
i=1

L0
i

2
(γk

i)
2
∥∥∥(Gk

i

)♯∥∥∥2
(i)⋆

(33),(34)
= f(Xk)−

p∑
i=1

γk
i

〈
∇if(X

k)−Gk
i ,
(
Gk

i

)♯〉
(i)

−
p∑

i=1

γk
i

2

∥∥Gk
i

∥∥2
(i)⋆

−
p∑

i=1

γk
i

2

∥∥Gk
i

∥∥2
(i)⋆

+

p∑
i=1

L0
i

2
(γk

i)
2
∥∥Gk

i

∥∥2
(i)⋆

(10)
≤ f(Xk)−

p∑
i=1

γk
i

〈
∇if(X

k)−Gk
i ,
(
Gk

i

)♯〉−
p∑

i=1

γk
i

2

∥∥Gk
i

∥∥2
(i)⋆

+

p∑
i=1

γk
i

2
s
∥∥∇if(X

k)−Gk
i

∥∥2
(i)⋆

−
p∑

i=1

γk
i

2

s

s+ 1

∥∥∇if(X
k)
∥∥2
(i)⋆

+

p∑
i=1

L0
i

2
(γk

i)
2
∥∥Gk

i

∥∥2
(i)⋆

.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Therefore, applying Fenchel’s inequality, we get

f(Xk+1)

(29)
≤ f(Xk) +

p∑
i=1

(
γk
i

2r

∥∥∇if(X
k)−Gk

i

∥∥2
(i)⋆

+
γk
i r

2

∥∥∥(Gk
i

)♯∥∥∥2
(i)

− γk
i

2

∥∥Gk
i

∥∥2
(i)⋆

+
γk
i

2
s
∥∥∇if(X

k)−Gk
i

∥∥2
(i)⋆

− γk
i

2

s

s+ 1

∥∥∇if(X
k)
∥∥2
(i)⋆

+
L0
i

2
(γk

i)
2
∥∥Gk

i

∥∥2
(i)⋆

)
(34)
= f(Xk) +

p∑
i=1

(
γk
i

2r
+

γk
i s

2

)∥∥∇if(X
k)−Gk

i

∥∥2
(i)⋆

−
p∑

i=1

γk
i

2

s

s+ 1

∥∥∇if(X
k)
∥∥2
(i)⋆

−
p∑

i=1

(
1− r

2γk
i

− L0
i

2

)
(γk

i)
2
∥∥Gk

i

∥∥2
(i)⋆

for any r > 0. Choosing s = 1 and r = 1/2 finishes the proof.

The next lemma is specific to the layer-wise smooth case.

Lemma 2 (Descent Lemma II). Let Assumption 8 hold and consider the update rule Xk+1
i =

LMOB(Xk
i ,t

k
i)

(
Gk

i

)
, i = 1, . . . , p, where Xk+1 = [Xk+1

1 , . . . , Xk+1
p], Xk = [Xk

1 , . . . , X
k
p], G

k =

[Gk
1 , . . . , G

k
p] ∈ S and tki > 0. Then

f(Xk+1) ≤ f(Xk) +

p∑
i=1

2tki
∥∥∇if(X

k)−Gk
i

∥∥
(i)⋆

−
p∑

i=1

tki
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
(tki)

2.

Proof. Assumption 8 and Lemma 14 give

f(Xk+1)

≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2

∥∥Xk
i −Xk+1

i

∥∥2
(i)

= f(Xk) +

p∑
i=1

〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2

∥∥Xk
i −Xk+1

i

∥∥2
(i)

= f(Xk) +

p∑
i=1

(〈
∇if(X

k)−Gk
i , X

k+1
i −Xk

i

〉
(i)

+
〈
Gk

i , X
k+1
i −Xk

i

〉
(i)

)
+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
(tki)

2

(32)
= f(Xk) +

p∑
i=1

(〈
∇if(X

k)−Gk
i , X

k+1
i −Xk

i

〉
(i)

− tki
∥∥Gk

i

∥∥
(i)⋆

)
+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
(tki)

2

≤ f(Xk) +

p∑
i=1

(
tki
∥∥∇if(X

k)−Gk
i

∥∥
(i)⋆

− tki
∥∥Gk

i

∥∥
(i)⋆

+
L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
(tki)

2

)
,

where the last line follows from the Cauchy-Schwarz inequality and the fact that∥∥Xk+1
i −Xk

i

∥∥
(i)

= tki . Therefore, using triangle inequality, we get

f(Xk+1)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

≤ f(Xk) +

p∑
i=1

(
tki
∥∥∇if(X

k)−Gk
i

∥∥
(i)⋆

+ tki
∥∥∇if(X

k)−Gk
i

∥∥
(i)⋆

− tki
∥∥∇if(X

k)
∥∥
(i)⋆

)
+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
(tki)

2

= f(Xk) +

p∑
i=1

(
2tki
∥∥∇if(X

k)−Gk
i

∥∥
(i)⋆

− tki
∥∥∇if(X

k)
∥∥
(i)⋆

)
+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
(tki)

2.

E.2 AUXILIARY LEMMAS

Lemma 3. The iterates of Algorithm 2 and 3 run with Ck
i ∈ B(αP) satisfy

E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
≤
(
1− αP

2

)
E
[∥∥Xk

i −W k
i

∥∥2
(i)

]
+

2

αP
(γk

i)
2E
[∥∥Gk

i

∥∥2
(i)⋆

]
.

Proof. Let EC [·] denote the expectation over the randomness introduced by the compressors. Then

EC

[∥∥Xk+1
i −W k+1

i

∥∥2
(i)

]
= EC

[∥∥W k
i + Ck

i (X
k+1
i −W k

i)−Xk+1
i

∥∥2
(i)

]
(1)
≤ (1− αP)

∥∥Xk+1
i −W k

i

∥∥2
(i)

(28)
≤ (1− αP)

(
1 +

αP

2

)∥∥Xk
i −W k

i

∥∥2
(i)

+ (1− αP)

(
1 +

2

αP

)∥∥Xk+1
i −Xk

i

∥∥2
(i)

(30),(31)
≤

(
1− αP

2

)∥∥Xk
i −W k

i

∥∥2
2
+

2

αP

∥∥Xk+1
i −Xk

i

∥∥2
(i)

.

It remains to take full expectation and use the fact that∥∥Xk+1
i −Xk

i

∥∥
(i)

= γk
i

∥∥∥(Gk
i

)♯∥∥∥
(i)

(34)
= γk

i

∥∥Gk
i

∥∥
(i)⋆

.

E.2.1 SMOOTH CASE

Lemma 4. Let Assumptions 7 and 10 hold. Then, the iterates of Algorithm 3 run with Ck
i,j ∈ B2(αP)

satisfy

E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥2
2

]
≤

(
1− αD

2

)
E
[∥∥Mk

i,j −Gk
i,j

∥∥2
2

]
+

6β2
i

αD
E
[∥∥Mk

i,j −∇ifj(X
k)
∥∥2
2

]
+

6β2
i

αDρ2
i

(L0
i,j)

2(γk
i)

2E
[∥∥Gk

i

∥∥2
⋆

]
+

6β2
i

αDρ2
i

(L0
i,j)

2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+ (1− αD)β2

i σ
2
i .

Proof. Using the definition of contractive compressors and the algorithm’s momentum update rule,
we get

EC

[∥∥Mk+1
i,j −Gk+1

i,j

∥∥2
2

]
= EC

[∥∥Mk+1
i,j −Gk

i,j − Ck
i,j(M

k+1
i,j −Gk

i,j)
∥∥2
2

]
33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

(1)
≤ (1− αD)

∥∥Mk+1
i,j −Gk

i,j

∥∥2
2
,

where EC [·] denotes the expectation over the randomness introduced by the compressors. Then,
letting Eξ [·] be the expectation over the stochasticity of the gradients, we have

E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥2
2

]
≤ E

[
EC

[∥∥Mk+1
i,j −Gk+1

i,j

∥∥2
2

]]
≤ (1− αD)E

[∥∥Mk+1
i,j −Gk

i,j

∥∥2
2

]
= (1− αD)E

[
Eξ

[∥∥(1− βi)M
k
i,j + βi∇ifj(W

k+1; ξk+1
j)−Gk

i,j

∥∥2
2

]]
(13)
= (1− αD)E

[∥∥(1− βi)M
k
i,j + βi∇ifj(W

k+1)−Gk
i,j

∥∥2
2

]
+(1− αD)β2

i E
[∥∥∇ifj(W

k+1; ξk+1
j)−∇ifj(W

k+1)
∥∥2
2

]
(28)
≤ (1− αD)

(
1 +

αD

2

)
E
[∥∥Mk

i,j −Gk
i,j

∥∥2
2

]
+(1− αD)

(
1 +

2

αD

)
β2
i E
[∥∥Mk

i,j −∇ifj(W
k+1)

∥∥2
2

]
+ (1− αD)β2

i σ
2
i ,

where in the last line we used Assumption 10. Then, Assumption 7 gives

E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥2
2

]
(30),(31)
≤

(
1− αD

2

)
E
[∥∥Mk

i,j −Gk
i,j

∥∥2
2

]
+

2

αD
β2
i E
[∥∥Mk

i,j −∇ifj(W
k+1)

∥∥2
2

]
+ (1− αD)β2

i σ
2
i

(28)
≤

(
1− αD

2

)
E
[∥∥Mk

i,j −Gk
i,j

∥∥2
2

]
+

6β2
i

αD
E
[∥∥Mk

i,j −∇ifj(X
k)
∥∥2
2

]
+
6β2

i

αD
E
[∥∥∇ifj(X

k)−∇ifj(X
k+1)

∥∥2
2

]
+
6β2

i

αD
E
[∥∥∇ifj(X

k+1)−∇ifj(W
k+1)

∥∥2
2

]
+ (1− αD)β2

i σ
2
i

≤
(
1− αD

2

)
E
[∥∥Mk

i,j −Gk
i,j

∥∥2
2

]
+

6β2
i

αD
E
[∥∥Mk

i,j −∇ifj(X
k)
∥∥2
2

]
+

6β2
i

αDρ2
i

(L0
i,j)

2E
[∥∥Xk

i −Xk+1
i

∥∥2
(i)

]
+

6β2
i

αDρ2
i

(L0
i,j)

2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+ (1− αD)β2

i σ
2
i .

Noting that
∥∥Xk+1

i −Xk
i

∥∥
(i)

= γk
i

∥∥∥(Gk
i

)♯∥∥∥
(i)

(34)
= γk

i

∥∥Gk
i

∥∥
(i)⋆

finishes the proof.

Lemma 5. Let Assumptions 6, 7 and 10 hold. Then, the iterates of Algorithm 3 satisfy

E
[∥∥∇ifj(X

k+1)−Mk+1
i,j

∥∥2
2

]
≤

(
1− βi

2

)
E
[∥∥∇ifj(X

k)−Mk
i,j

∥∥2
2

]
+

2

βiρ2i
(L0

i,j)
2(γk

i)
2E
[∥∥Gk

i

∥∥2
(i)⋆

]
+
β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i,j)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+ β2

i σ
2
i

and

E
[∥∥∇if(X

k+1)−Mk+1
i

∥∥2
2

]
34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

≤
(
1− βi

2

)∥∥∇if(X
k)−Mk

i

∥∥2
2
+

2

βiρ2i
(L0

i)
2(γk

i)
2E
[∥∥Gk

i

∥∥2
(i)⋆

]
+
β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+

β2
i σ

2
i

n
,

where Mk
i := 1

n

∑n
j=1 M

k
i,j .

Proof. Using the momentum update rule and letting Eξ [·] be the expectation over the stochasticity
of the gradients, we get

Eξ

[∥∥∇ifj(X
k+1)−Mk+1

i,j

∥∥2
2

]
= Eξ

[∥∥∇ifj(X
k+1)− (1− βi)M

k
i,j − βi∇ifj(W

k+1; ξk+1
j)

∥∥2
2

]
(13)
=

∥∥∇ifj(X
k+1)− (1− βi)M

k
i,j − βi∇ifj(W

k+1)
∥∥2
2

+β2
i Eξ

[∥∥∇ifj(W
k+1; ξk+1

j)−∇ifj(W
k+1)

∥∥2
2

]
(28)
≤ (1− βi)

2

(
1 +

βi

2

)∥∥∇ifj(X
k+1)−Mk

i,j

∥∥2
2

+β2
i

(
1 +

2

βi

)∥∥∇ifj(X
k+1)−∇ifj(W

k+1)
∥∥2
2

+β2
i Eξ

[∥∥∇ifj(W
k+1; ξk+1

j)−∇ifj(W
k+1)

∥∥2
2

]
(30)
≤ (1− βi)

∥∥∇ifj(X
k+1)−Mk

i,j

∥∥2
2

+β2
i

(
1 +

2

βi

)∥∥∇ifj(X
k+1)−∇ifj(W

k+1)
∥∥2
2
+ β2

i σ
2
i ,

where in the last line we used Assumption 5. Then, Assumption 7 gives

E
[∥∥∇ifj(X

k+1)−Mk+1
i,j

∥∥2
2

]
= E

[
Eξ

[∥∥∇ifj(X
k+1)−Mk+1

i,j

∥∥2
2

]]
(28)
≤ (1− βi)

(
1 +

βi

2

)
E
[∥∥∇ifj(X

k)−Mk
i,j

∥∥2
2

]
+(1− βi)

(
1 +

2

βi

)
E
[∥∥∇ifj(X

k+1)−∇ifj(X
k)
∥∥2
2

]
+β2

i

(
1 +

2

βi

)
E
[∥∥∇ifj(X

k+1)−∇ifj(W
k+1)

∥∥2
2

]
+ β2

i σ
2
i

(30),(31)
≤

(
1− βi

2

)
E
[∥∥∇ifj(X

k)−Mk
i,j

∥∥2
2

]
+

2

βiρ2i
(L0

i,j)
2E
[∥∥Xk+1

i −Xk
i

∥∥2
(i)

]
+
β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i,j)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+ β2

i σ
2
i .

To prove the second part of the statement, define ∇if(X; ξk) := 1
n

∑n
i=1 ∇ifj(X; ξkj). Then

Mk+1
i = (1− βi)M

k
i + βi∇if(W

k+1; ξk+1), so following similar steps as above, we get

E
[∥∥∇if(X

k+1)−Mk+1
i

∥∥2
2

]
= E

[
Eξ

[∥∥∇if(X
k+1)− (1− βi)M

k
i − βi∇if(W

k+1; ξk+1)
∥∥2
2

]]
(13)
= E

[∥∥∇if(X
k+1)− (1− βi)M

k
i − βi∇if(W

k+1)
∥∥2
2

]
35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

+β2
i E
[
Eξ

[∥∥∇if(W
k+1; ξk+1)−∇if(W

k+1)
∥∥2
2

]]
(28)
≤ (1− βi)

2

(
1 +

βi

2

)
E
[∥∥∇if(X

k+1)−Mk
i

∥∥2
2

]
+β2

i

(
1 +

2

βi

)
E
[∥∥∇if(X

k+1)−∇if(W
k+1)

∥∥2
2

]
+β2

i E
[
Eξ

[∥∥∇if(W
k+1; ξk+1)−∇if(W

k+1)
∥∥2
2

]]
(30)
≤ (1− βi)E

[∥∥∇if(X
k+1)−Mk

i

∥∥2
2

]
+β2

i

(
1 +

2

βi

)
E
[∥∥∇if(X

k+1)−∇if(W
k+1)

∥∥2
2

]
+

β2
i σ

2
i

n
(28)
≤ (1− βi)

(
1 +

βi

2

)
E
[∥∥∇if(X

k)−Mk
i

∥∥2
2

]
+(1− βi)

(
1 +

2

βi

)
E
[∥∥∇if(X

k+1)−∇if(X
k)
∥∥2
2

]
+β2

i

(
1 +

2

βi

)
E
[∥∥∇if(X

k+1)−∇if(W
k+1)

∥∥2
2

]
+

β2
i σ

2
i

n
(30),(31)
≤

(
1− βi

2

)
E
[∥∥∇if(X

k)−Mk
i

∥∥2
2

]
+

2

βiρ2i
(L0

i)
2E
[∥∥Xk+1

i −Xk
i

∥∥2
(i)

]
+
β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+

β2
i σ

2
i

n
.

It remains to use the fact that
∥∥Xk+1

i −Xk
i

∥∥
(i)

= γk
i

∥∥∥(Gk
i

)♯∥∥∥
(i)

(34)
= γk

i

∥∥Gk
i

∥∥
(i)⋆

.

E.2.2 GENERALIZED SMOOTH CASE

Lemma 6. Let Assumption 9 hold. Then, the iterates of Algorithm 2 run with Ck
i ≡ I (the identity

compressor) and Ck
i,j ∈ B⋆(αD) satisfy

E
[∥∥∇ifj(X

k+1)−Gk+1
i,j

∥∥
(i)⋆

∣∣∣Xk+1, Gk
]

≤
√
1− αD

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

+
√
1− αD

(
L0
i,j + L1

i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆

)
tki .

Proof. The algorithm’s update rule and Jensen’s inequality give

E
[∥∥∇ifj(X

k+1)−Gk+1
i,j

∥∥
(i)⋆

∣∣∣Xk+1, Gk
]

= E
[√∥∥∇ifj(Xk+1)−Gk

i,j − Ck
i,j(∇ifj(Xk+1)−Gk

i,j)
∥∥2
(i)⋆

∣∣∣∣Xk+1, Gk

]
≤

√
E
[∥∥∇ifj(Xk+1)−Gk

i,j − Ck
i,j(∇ifj(Xk+1)−Gk

i,j)
∥∥2
(i)⋆

∣∣∣Xk+1, Gk
]

≤
√
1− αD

∥∥∇ifj(X
k+1)−Gk

i,j

∥∥
(i)⋆

≤
√
1− αD

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

+
√
1− αD

∥∥∇ifj(X
k+1)−∇ifj(X

k)
∥∥
(i)⋆

≤
√
1− αD

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

+
√
1− αD

(
L0
i,j + L1

i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆

)∥∥Xk+1
i −Xk

i

∥∥
(i)

.

where
∥∥Xk+1

i −Xk
i

∥∥
(i)

= tki .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Lemma 7. Let Assumptions 9 and 10 hold. Then, the iterates of Algorithm 3 run with Ck
i ≡ I (the

identity compressor) and Ck
i,j ∈ B2(αD) satisfy

E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥
2

∣∣∣Xk+1,Mk
i,j , G

k
i,j

]
≤

√
1− αD

∥∥Mk
i,j −Gk

i,j

∥∥
2
+
√
1− αDβi

∥∥Mk
i,j −∇ifj(X

k)
∥∥
2

+

√
1− αDβi

ρ
i

(
L0
i,j + L1

i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆

)
tki +

√
1− αDβiσi.

Proof. Using the definition of contractive compressors and triangle inequality, we get

E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥
2

∣∣∣Mk+1
i,j , Gk

i,j

]
= E

[√∥∥Mk+1
i,j −Gk

i,j − Ck
i,j(M

k+1
i,j −Gk

i,j)
∥∥2
2

∣∣∣∣Mk+1
i,j , Gk

i,j

]
≤

√
E
[∥∥Mk+1

i,j −Gk
i,j − Ck

i,j(M
k+1
i,j −Gk

i,j)
∥∥2
2

∣∣∣Mk+1
i,j , Gk

i,j

]
(1)
≤

√
1− αD

∥∥Mk+1
i,j −Gk

i,j

∥∥
2

=
√
1− αD

∥∥(1− βi)M
k
i,j + βi∇ifj(X

k+1; ξk+1
j)−Gk

i,j

∥∥
2
.

Hence,

E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥
2

∣∣∣Xk+1,Mk
i,j , G

k
i,j

]
= E

[
E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥
2

∣∣∣Mk+1
i,j , Gk

i,j

]∣∣∣Xk+1,Mk
i,j , G

k
i,j

]
≤

√
1− αDE

[∥∥(1− βi)M
k
i,j + βi∇ifj(X

k+1; ξk+1
j)−Gk

i,j

∥∥
2

∣∣∣Xk+1,Mk
i,j , G

k
i,j

]
≤

√
1− αDE

[∥∥(1− βi)M
k
i,j + βi∇ifj(X

k+1)−Gk
i,j

∥∥
2

∣∣∣Xk+1,Mk
i,j , G

k
i,j

]
+
√
1− αDβiE

[∥∥∇ifj(X
k+1; ξk+1

j)−∇ifj(X
k+1)

∥∥
2

∣∣∣Xk+1,Mk
i,j , G

k
i,j

]
(10)
≤

√
1− αD

∥∥Mk
i,j −Gk

i,j

∥∥
2
+

√
1− αDβi

∥∥Mk
i,j −∇ifj(X

k+1)
∥∥
2
+

√
1− αDβiσi

≤
√
1− αD

∥∥Mk
i,j −Gk

i,j

∥∥
2
+

√
1− αDβi

∥∥Mk
i,j −∇ifj(X

k)
∥∥
2

+
√
1− αDβi

∥∥∇ifj(X
k)−∇ifj(X

k+1)
∥∥
2
+
√
1− αDβiσi

(9)
≤

√
1− αD

∥∥Mk
i,j −Gk

i,j

∥∥
2
+

√
1− αDβi

∥∥Mk
i,j −∇ifj(X

k)
∥∥
2

+

√
1− αDβi

ρ
i

(
L0
i,j + L1

i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆

)∥∥Xk
i −Xk+1

i

∥∥
(i)

+
√
1− αDβiσi.

Using the fact that
∥∥Xk

i −Xk+1
i

∥∥ = tki finishes the proof.

Lemma 8. Let Assumptions 8, 9 and 10 hold. Then, the iterates of Algorithm 3 run with Ck
i ≡ I

(the identity compressor) and tki ≡ ti satisfy

E
[∥∥Mk+1

i −∇if(X
k+1)

∥∥
2

]
≤ (1− βi)

k+1E
[∥∥M0

i −∇if(X
0)
∥∥
2

]
+

tiL̄
0
i

βiρi

+
ti
ρ
i

1

n

n∑
j=1

L1
i,j

k∑
l=0

(1− βi)
k+1−lE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]
+ σi

√
βi

n

and

1

n

n∑
j=1

E
[∥∥Mk+1

i,j −∇ifj(X
k+1)

∥∥
2

]
≤ (1− βi)

1

n

n∑
j=1

E
[∥∥Mk

i,j −∇ifj(X
k)
∥∥
2

]
+ ti

(1− βi)L̄
0
i

ρ
i

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

+ ti
1− βi

ρ
i

1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+ βiσi,

where Mk
i := 1

n

∑n
j=1 M

k
i,j .

Proof. The proof uses techniques similar to those in Cutkosky & Mehta (2020, Theorem 1). First,
using the momentum update rule, we can write

Mk+1
i,j = (1− βi)M

k
i,j + βi∇ifj(X

k+1; ξk+1
j)

= (1− βi)
(
Mk

i,j −∇ifj(X
k)
)
+ (1− βi)

(
∇ifj(X

k)−∇ifj(X
k+1)

)
+βi

(
∇ifj(X

k+1; ξk+1
j)−∇ifj(X

k+1)
)
+∇ifj(X

k+1),

and hence

Uk+1
1,i,j = (1− βi)U

k
1,i,j + (1− βi)U

k
2,i,j + βiU

k+1
3,i,j ,

where we define Uk
1,i,j := Mk

i,j − ∇ifj(X
k), Uk

2,i,j := ∇ifj(X
k) − ∇ifj(X

k+1) and Uk
3,i,j :=

∇ifj(X
k; ξkj)−∇ifj(X

k). Unrolling the recursion gives

Uk+1
1,i,j = (1− βi)

k+1U0
1,i,j +

k∑
l=0

(1− βi)
k+1−lU l

2,i,j + βi

k∑
l=0

(1− βi)
k−lU l+1

3,i,j .

Hence, using the triangle inequality,

E

∥∥∥∥∥∥ 1n
n∑

j=1

Uk+1
1,i,j

∥∥∥∥∥∥
2


≤ (1− βi)

k+1E

∥∥∥∥∥∥ 1n
n∑

j=1

U0
1,i,j

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
k∑

l=0

(1− βi)
k+1−l 1

n

n∑
j=1

U l
2,i,j

∥∥∥∥∥∥
2


+βiE

∥∥∥∥∥∥
k∑

l=0

(1− βi)
k−l 1

n

n∑
j=1

U l+1
3,i,j

∥∥∥∥∥∥
2

 . (11)

Let us now bound the last two terms of the inequality above. First, triangle inequality and Assump-
tion 9 give

E

∥∥∥∥∥∥
k∑

l=0

(1− βi)
k+1−l 1

n

n∑
j=1

U l
2,i,j

∥∥∥∥∥∥
2


≤ 1

n

n∑
j=1

k∑
l=0

(1− βi)
k+1−lE

[∥∥U l
2,i,j

∥∥
2

]

=
1

n

n∑
j=1

k∑
l=0

(1− βi)
k+1−lE

[∥∥∇ifj(X
l)−∇ifj(X

l+1)
∥∥
2

]
(9)
≤ 1

ρ
i

1

n

n∑
j=1

k∑
l=0

(1− βi)
k+1−lE

[(
L0
i,j + L1

i,j

∥∥∇ifj(X
l)
∥∥
(i)⋆

)∥∥X l
i −X l+1

i

∥∥
(i)

]

=
ti
ρ
i

1

n

n∑
j=1

k∑
l=0

(1− βi)
k+1−lL0

i,j +
ti
ρ
i

1

n

n∑
j=1

L1
i,j

k∑
l=0

(1− βi)
k+1−lE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]

≤ tiL̄
0
i

βiρi
+

ti
ρ
i

1

n

n∑
j=1

L1
i,j

k∑
l=0

(1− βi)
k+1−lE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]
,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

and using Jensen’s inequality, the last term can be bounded as

E

∥∥∥∥∥∥
k∑

l=0

(1− βi)
k−l 1

n

n∑
j=1

U l+1
3,i,j

∥∥∥∥∥∥
2



≤

√√√√√√E


∥∥∥∥∥∥

k∑
l=0

(1− βi)k−l
1

n

n∑
j=1

U l+1
3,i,j

∥∥∥∥∥∥
2

2

 (10)
=

√√√√ k∑
l=0

(1− βi)2(k−l)
1

n2

n∑
j=1

E
[∥∥U l+1

3,i,j

∥∥2
2

]

(10)
≤

√√√√ k∑
l=0

(1− βi)2(k−l)
1

n2

n∑
j=1

σ2
i =

σi√
n

√√√√ k∑
l=0

(1− βi)2l ≤
σi√

nβi(2− βi)
≤ σi√

nβi

.

Substituting this in (11) yields

E

∥∥∥∥∥∥ 1n
n∑

j=1

Uk+1
1,i,j

∥∥∥∥∥∥
2

 ≤ (1− βi)
k+1E

∥∥∥∥∥∥ 1n
n∑

j=1

U0
1,i,j

∥∥∥∥∥∥
2

+
tiL̄

0
i

βiρi

+
ti
ρ
i

1

n

n∑
j=1

L1
i,j

k∑
l=0

(1− βi)
k+1−lE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]
+ βi

σi√
nβi

.

To prove the second inequality, recall that Uk+1
1,i,j = (1−βi)U

k
1,i,j+(1−βi)U

k
2,i,j+βiU

k+1
3,i,j . Hence,

taking norms, averaging, and using the triangle inequality,

1

n

n∑
j=1

E
[∥∥Uk+1

1,i,j

∥∥
2

]
≤ (1− βi)

1

n

n∑
j=1

E
[∥∥Uk

1,i,j

∥∥
2

]
+ (1− βi)

1

n

n∑
j=1

E
[∥∥Uk

2,i,j

∥∥
2

]
+βi

1

n

n∑
j=1

E
[∥∥Uk+1

3,i,j

∥∥
2

]
, (12)

where the last two terms can be bounded as

1

n

n∑
j=1

E
[∥∥Uk

2,i,j

∥∥
2

]
=

1

n

n∑
j=1

E
[∥∥∇ifj(X

k)−∇ifj(X
k+1)

∥∥
2

]
(9)
≤ 1

ρ
i

1

n

n∑
j=1

E
[(

L0
i,j + L1

i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆

)∥∥Xk
i −Xk+1

i

∥∥
(i)

]
= ti

L̄0
i

ρ
i

+
ti
ρ
i

1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
and

1

n

n∑
j=1

E
[∥∥Uk+1

3,i,j

∥∥
2

]
=

1

n

n∑
j=1

E
[∥∥∇ifj(X

k+1; ξkj)−∇ifj(X
k+1)

∥∥
2

] (10)
≤ σi.

It remains to substitute this in (12) to obtain

1

n

n∑
j=1

E
[∥∥Uk+1

1,i,j

∥∥
2

]
≤ (1− βi)

1

n

n∑
j=1

E
[∥∥Uk

1,i,j

∥∥
2

]
+ ti

(1− βi)L̄
0
i

ρ
i

+ti
1− βi

ρ
i

1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+ βiσi.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Lemma 9. Let Assumptions 1 and 8 hold. Then

p∑
i=1

∥∇if(X)∥2(i)⋆
2
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
) ≤ f(X)− f⋆

for any X = [X1, . . . , Xp] ∈ S.

Proof. Let Y = [Y1, . . . , Yp] ∈ S, where Yi = Xi −
∥∇if(X)∥(i)⋆

L0
i+L1

i ∥∇if(X)∥(i)⋆
Hi for some Hi ∈

∂ ∥·∥(i)⋆ (∇if(X)). Then, Lemma 14 and the definition of subdifferential give

f(Y) ≤ f(X) + ⟨∇f(X), Y −X⟩+
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Xi − Yi∥2(i)

= f(X) +

p∑
i=1

⟨∇if(X), Yi −Xi⟩(i) +
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Xi − Yi∥2(i)

= f(X)−
p∑

i=1

∥∇if(X)∥(i)⋆
L0
i + L1

i ∥∇if(X)∥(i)⋆
⟨∇if(X), Hi⟩(i)

+

p∑
i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥∇if(X)∥2(i)⋆(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)2 ∥Hi∥2(i)


(8)
= f(X) +

p∑
i=1

−
∥∇if(X)∥2(i)⋆

L0
i + L1

i ∥∇if(X)∥(i)⋆
+

∥∇if(X)∥2(i)⋆
2
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)


= f(X)−
p∑

i=1

∥∇if(X)∥2(i)⋆
2
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
) ,

and hence
p∑

i=1

∥∇if(X)∥2(i)⋆
2
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
) ≤ f(X)− f(Y) ≤ f(X)− f⋆

as needed.

Lemma 10. Let Assumptions 1 and 8 hold. Then, for any xi > 0, i ∈ [p], we have
p∑

i=1

xi ∥∇if(X)∥(i)⋆ ≤ 4max
i∈[p]

(xiL
1
i) (f(X)− f⋆) +

∑p
i=1 x

2
iL

0
i

maxi∈[p](xiL1
i)

for all X ∈ S.

Proof. We follow an approach similar to that in Khirirat et al. (2024, Lemma 2). Applying Lemma 9
and Lemma 12 with yi = ∥∇if(X)∥(i)⋆, zi = L0

i +L1
i ∥∇if(X)∥(i)⋆ and any positive xi, we have

2 (f(X)− f⋆) ≥
p∑

i=1

∥∇if(X)∥2(i)⋆
L0
i + L1

i ∥∇if(X)∥(i)⋆

≥

(∑p
i=1 xi ∥∇if(X)∥(i)⋆

)2
∑p

i=1 x
2
iL

0
i +

∑p
i=1 x

2
iL

1
i ∥∇if(X)∥(i)⋆

≥

(∑p
i=1 xi ∥∇if(X)∥(i)⋆

)2
∑p

i=1 x
2
iL

0
i +maxi∈[p](xiL1

i)
∑p

i=1 xi ∥∇if(X)∥(i)⋆

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

≥


(
∑p

i=1 xi∥∇if(X)∥(i)⋆)
2

2
∑p

i=1 x2
iL

0
i

if
∑p

i=1 x2
iL

0
i

maxi∈[p](xiL1
i)

≥
∑p

i=1 xi ∥∇if(X)∥(i)⋆ ,∑p
i=1 xi∥∇if(X)∥(i)⋆

2maxi∈[p](xiL1
i)

otherwise.

Therefore,

p∑
i=1

xi ∥∇if(X)∥(i)⋆ ≤ max

{
4max

i∈[p]
(xiL

1
i) (f(X)− f⋆) ,

∑p
i=1 x

2
iL

0
i

maxi∈[p](xiL1
i)

}
≤ 4max

i∈[p]
(xiL

1
i) (f(X)− f⋆) +

∑p
i=1 x

2
iL

0
i

maxi∈[p](xiL1
i)
.

Lemma 11. Let Assumptions 1, 2 and 9 hold. Then, for any xi > 0, i ∈ [p], we have

p∑
i=1

xi ∥∇ifj(X)∥(i)⋆ ≤ 4max
i∈[p]

(xiL
1
i,j) (fj(X)− f⋆) + 4max

i∈[p]
(xiL

1
i,j)
(
f⋆ − f⋆

j

)
+

∑p
i=1 x

2
iL

0
i,j

maxi∈[p](xiL1
i,j)

for all X ∈ S.

Proof. The proof is similar to that of Lemma 10. Applying Lemma 9 and Lemma 12 with yi =
∥∇ifj(X)∥(i)⋆, zi = L0

i,j + L1
i,j ∥∇ifj(X)∥(i)⋆ and any positive xi, we have

2
(
fj(X)− f⋆

j

)
≥

p∑
i=1

∥∇ifj(X)∥2(i)⋆
L0
i,j + L1

i,j ∥∇ifj(X)∥(i)⋆

≥

(∑p
i=1 xi ∥∇ifj(X)∥(i)⋆

)2
∑p

i=1 x
2
iL

0
i,j +

∑p
i=1 x

2
iL

1
i,j ∥∇ifj(X)∥(i)⋆

≥

(∑p
i=1 xi ∥∇ifj(X)∥(i)⋆

)2
∑p

i=1 x
2
iL

0
i,j +maxi∈[p](xiL1

i,j)
∑p

i=1 xi ∥∇ifj(X)∥(i)⋆

≥


(
∑p

i=1 xi∥∇ifj(X)∥(i)⋆)
2

2
∑p

i=1 x2
iL

0
i,j

if
∑p

i=1 x2
iL

0
i,j

maxi∈[p](xiL1
i,j)

≥
∑p

i=1 xi ∥∇ifj(X)∥(i)⋆ ,∑p
i=1 xi∥∇ifj(X)∥(i)⋆

2maxi∈[p](xiL1
i,j)

otherwise.

Therefore,

p∑
i=1

xi ∥∇ifj(X)∥(i)⋆ ≤ max

{
4max

i∈[p]
(xiL

1
i,j)
(
fj(X)− f⋆

j

)
,

∑p
i=1 x

2
iL

0
i,j

maxi∈[p](xiL1
i,j)

}

≤ 4max
i∈[p]

(xiL
1
i,j)
(
fj(X)− f⋆

j

)
+

∑p
i=1 x

2
iL

0
i,j

maxi∈[p](xiL1
i,j)

= 4max
i∈[p]

(xiL
1
i,j) (fj(X)− f⋆) + 4max

i∈[p]
(xiL

1
i,j)
(
f⋆ − f⋆

j

)
+

∑p
i=1 x

2
iL

0
i,j

maxi∈[p](xiL1
i,j)

.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

E.3 DETERMINISTIC SETTING

E.3.1 LAYER-WISE SMOOTH REGIME

Theorem 14. Let Assumptions 1, 6 and 7 hold. Let {Xk}K−1
k=0 , K ≥ 1, be the iterates of Algorithm 2

run with Ck
i ∈ B(αP), Ck

i,j ∈ B⋆(αD), and

0 ≤ γk
i ≡ γi ≤

1

2L0
i +

4
αD

√
12 + 66

α2
P
L̃0
i

, i = 1, . . . , p.

Then

1

K

K−1∑
k=0

p∑
i=1

γi
1
p

∑p
l=1 γl

E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤ 1

K

4Ψ0

1
p

∑p
l=1 γl

,

where

Ψk := f(Xk)− f⋆ +

p∑
i=1

6γi
αD

1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

+

p∑
i=1

66γi
α2
D

(
2

αP
− 1

)
(L̃0

i)
2
∥∥Xk

i −W k
i

∥∥2
(i)

.

Remark 15. Theorem 3 follows as a corollary of the more general result above by setting p = 1
and initializing with X0 = W 0 and G0

j = ∇fj(X
0) for all j ∈ [n].

Remark 16. In the Euclidean case and when p = 1, our convergence guarantees recover several
existing results. When primal compression is disabled (i.e., αP = 1), they match the rate of Richtárik
et al. (2021, Theorem 1), up to constant factors. With primal compression, the rate coincides with
that of EF21-BC in Fatkhullin et al. (2021, Theorem 21). Additionally, our results match those
of Byz-EF21-BC (a bidirectionally compressed method with error feedback for Byzantine-robust
learning) from Rammal et al. (2024, Theorem 3.1), in the absence of Byzantine workers.

Proof of Theorem 14. Let Ai, Bi > 0 be some constants to be determined later, and define

Ψk := f(Xk)− f⋆ +

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

+

p∑
i=1

Bi

∥∥Xk
i −W k

i

∥∥2
(i)

.

Step I: Bounding E
[∥∥∇ifj(X

k+1)−Gk+1
i,j

∥∥2
(i)⋆

]
. The algorithm’s update rule gives

E
[∥∥∇ifj(X

k+1)−Gk+1
i,j

∥∥2
(i)⋆

∣∣∣Xk+1,W k+1, Gk
i,j

]
= E

[∥∥∇ifj(X
k+1)−Gk

i,j − Ck
i,j(∇ifj(W

k+1)−Gk
i,j)
∥∥2
(i)⋆

∣∣∣Xk+1,W k+1, Gk
i,j

]
(28)
≤

(
1 +

αD

2

)
E
[∥∥∇ifj(W

k+1)−Gk
i,j − Ck

i,j(∇ifj(W
k+1)−Gk

i,j)
∥∥2
(i)⋆

∣∣∣Xk+1,W k+1, Gk
i,j

]
+

(
1 +

2

αD

)
E
[∥∥∇ifj(X

k+1)−∇ifj(W
k+1)

∥∥2
(i)⋆

∣∣∣Xk+1,W k+1, Gk
i,j

]
≤

(
1 +

αD

2

)
(1− αD)E

[∥∥∇ifj(W
k+1)−Gk

i,j

∥∥2
(i)⋆

∣∣∣Xk+1,W k+1, Gk
i,j

]
+

(
1 +

2

αD

)
E
[∥∥∇ifj(X

k+1)−∇ifj(W
k+1)

∥∥2
(i)⋆

∣∣∣Xk+1,W k+1, Gk
i,j

]
(30)
≤

(
1− αD

2

)∥∥∇ifj(W
k+1)−Gk

i,j

∥∥2
(i)⋆

+

(
1 +

2

αD

)∥∥∇ifj(X
k+1)−∇ifj(W

k+1)
∥∥2
(i)⋆

(28)
≤

(
1− αD

2

)(
1 +

αD

4

)∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

+
(
1− αD

2

)(
1 +

4

αD

)∥∥∇ifj(W
k+1)−∇ifj(X

k)
∥∥2
(i)⋆

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

+

(
1 +

2

αD

)∥∥∇ifj(X
k+1)−∇ifj(W

k+1)
∥∥2
(i)⋆

(30),(31)
≤

(
1− αD

4

)∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

+
4

αD

∥∥∇ifj(W
k+1)−∇ifj(X

k)
∥∥2
(i)⋆

+

(
1 +

2

αD

)∥∥∇ifj(X
k+1)−∇ifj(W

k+1)
∥∥2
(i)⋆

.

Therefore, using smoothness,

E
[∥∥∇ifj(X

k+1)−Gk+1
i,j

∥∥2
(i)⋆

∣∣∣Xk+1,W k+1, Gk
i,j

]
(7)
≤

(
1− αD

4

)∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

+
4

αD
(L0

i,j)
2
∥∥W k+1

i −Xk
i

∥∥2
(i)

+

(
1 +

2

αD

)
(L0

i,j)
2
∥∥Xk+1

i −W k+1
i

∥∥2
(i)

(28)
≤

(
1− αD

4

)∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

+
8

αD
(L0

i,j)
2
∥∥Xk+1

i −Xk
i

∥∥2
(i)

+
8

αD
(L0

i,j)
2
∥∥Xk+1

i −W k+1
i

∥∥2
(i)

+

(
1 +

2

αD

)
(L0

i,j)
2
∥∥Xk+1

i −W k+1
i

∥∥2
(i)

≤
(
1− αD

4

)∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

+
8

αD
(L0

i,j)
2γ2

i

∥∥Gk
i

∥∥2
(i)⋆

+
11

αD
(L0

i,j)
2
∥∥Xk+1

i −W k+1
i

∥∥2
(i)

.

Taking expectation, we obtain the recursion

E
[∥∥∇ifj(X

k+1)−Gk+1
i,j

∥∥2
(i)⋆

]
≤

(
1− αD

4

)
E
[∥∥∇ifj(X

k)−Gk
i,j

∥∥2
(i)⋆

]
+

8

αD
(L0

i,j)
2γ2

i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

11

αD
(L0

i,j)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
. (13)

Step II: Bounding E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
. By Lemma 3

E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
≤
(
1− αP

2

)
E
[∥∥Xk

i −W k
i

∥∥2
(i)

]
+

2

αP
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
. (14)

Step III: Bounding Ψk+1. By Lemma 1 and Jensen’s inequality

Ψk+1

= f(Xk+1)− f⋆ +

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k+1)−Gk+1

i,j

∥∥2
(i)⋆

+

p∑
i=1

Bi

∥∥Xk+1
i −W k+1

i

∥∥2
(i)

≤ f(Xk)− f⋆ +

p∑
i=1

3γi
2

∥∥∇if(X
k)−Gk

i

∥∥2
(i)⋆

−
p∑

i=1

γi
4

∥∥∇if(X
k)
∥∥2
(i)⋆

−
p∑

i=1

(
1

4γi
− L0

i

2

)
γ2
i

∥∥Gk
i

∥∥2
(i)⋆

+

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k+1)−Gk+1

i,j

∥∥2
(i)⋆

+

p∑
i=1

Bi

∥∥Xk+1
i −W k+1

i

∥∥2
(i)

≤ f(Xk)− f⋆ +

p∑
i=1

3γi
2

1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥2
(i)⋆

−
p∑

i=1

γi
4

∥∥∇if(X
k)
∥∥2
(i)⋆

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

−
p∑

i=1

(
1

4γi
− L0

i

2

)
γ2
i

∥∥Gk
i

∥∥2
(i)⋆

+

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k+1)−Gk+1

i,j

∥∥2
(i)⋆

+

p∑
i=1

Bi

∥∥Xk+1
i −W k+1

i

∥∥2
(i)

.

Taking expectation and using (13) gives

E
[
Ψk+1

]
≤ E

[
f(Xk)− f⋆

]
+

p∑
i=1

3γi
2

1

n

n∑
j=1

E
[∥∥∇ifj(X

k)−Gk
i,j

∥∥2
(i)⋆

]
−

p∑
i=1

γi
4
E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

Ai
1

n

n∑
j=1

(
1− αD

4

)
E
[∥∥∇ifj(X

k)−Gk
i,j

∥∥2
(i)⋆

]
+

p∑
i=1

Ai
1

n

n∑
j=1

8

αD
(L0

i,j)
2γ2

i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

Ai
1

n

n∑
j=1

11

αD
(L0

i,j)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+

p∑
i=1

BiE
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
= E

[
f(Xk)− f⋆

]
+

p∑
i=1

(
3γi
2

+Ai

(
1− αD

4

)) 1

n

n∑
j=1

E
[∥∥∇ifj(X

k)−Gk
i,j

∥∥2
(i)⋆

]
−

p∑
i=1

γi
4
E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2
−Ai

8

αD
(L̃0

i)
2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

11

αD
(L̃0

i)
2 +Bi

)
E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
.

Next, applying (14), we get

E
[
Ψk+1

]
≤ E

[
f(Xk)− f⋆

]
+

p∑
i=1

(
3γi
2

+Ai

(
1− αD

4

)) 1

n

n∑
j=1

E
[∥∥∇ifj(X

k)−Gk
i,j

∥∥2
(i)⋆

]
−

p∑
i=1

γi
4
E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2
−Ai

8

αD
(L̃0

i)
2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

11

αD
(L̃0

i)
2 +Bi

)
2

αP
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

11

αD
(L̃0

i)
2 +Bi

)(
1− αP

2

)
E
[∥∥Xk

i −W k
i

∥∥2
(i)

]
.

Taking Ai =
6γi

αD
and Bi = Ai

11
αD

(
2
αP

− 1
)
(L̃0

i)
2 = 66γi

α2
D

(
2
αP

− 1
)
(L̃0

i)
2 yields

3γi
2

+Ai

(
1− αD

4

)
= Ai,(

Ai
11

αD
(L̃0

i)
2 +Bi

)(
1− αP

2

)
= Bi,

and consequently,

E
[
Ψk+1

]
≤ E

[
f(Xk)− f⋆

]
+

p∑
i=1

Ai
1

n

n∑
j=1

E
[∥∥∇ifj(X

k)−Gk
i,j

∥∥2
(i)⋆

]
−

p∑
i=1

γi
4
E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2
− 8Ai

αD
(L̃0

i)
2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

+

p∑
i=1

Bi

1− αP

2

2

αP
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

BiE
[∥∥Xk

i −W k
i

∥∥2
(i)

]
= E

[
Ψk
]
−

p∑
i=1

γi
4
E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2
− 8Ai

αD
(L̃0

i)
2 − 4Bi

αP (2− αP)

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
.

Now, note that

1

4γi
− L0

i

2
− 8Ai

αD
(L̃0

i)
2 − 4Bi

αP (2− αP)
=

1

4γi
− L0

i

2
−
(

48

α2
D

(L̃0
i)

2 +
264

α2
Pα

2
D

(L̃0
i)

2

)
︸ ︷︷ ︸

:=ζi

γi ≥ 0

for γi ≤ 1
2L0

i+2
√
ζi

. For such a choice of the stepsizes, we have

E
[
Ψk+1

]
≤ E

[
Ψk
]
−

p∑
i=1

γi
4
E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
,

and hence
K−1∑
k=0

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤ 4

K−1∑
k=0

(
E
[
Ψk
]
− E

[
Ψk+1

])
≤ 4Ψ0.

Lastly, dividing by K
p

∑p
l=1 γl, we obtain

1

K

K−1∑
k=0

p∑
i=1

γi
1
p

∑p
l=1 γl

E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤ 1

K

4Ψ0

1
p

∑p
l=1 γl

.

E.3.2 LAYER-WISE (L0, L1)–SMOOTH REGIME

We now consider a deterministic variant of EF21-Muon (Algorithm 2) without primal compression,
which iterates

Xk+1
i = LMOB(Xk

i ,t
k
i)

(
Gk

i

)
,

Gk+1
i,j = Gk

i,j + Ck
i,j(∇ifj(X

k+1)−Gk
i,j),

Gk+1
i =

1

n

n∑
j=1

Gk+1
i,j = Gk

i +
1

n

n∑
j=1

Ck
i,j(∇ifj(X

k+1)−Gk
i,j).

This corresponds to using identity compressors on the server side.

Theorem 17. Let Assumptions 1, 2, 8 and 9 hold and let {Xk}K−1
k=0 , K ≥ 1, be the iterates of

Algorithm 2 run with Ck
i ≡ I (the identity compressor), Ck

i,j ∈ B⋆(αD), and

tki ≡ ti =
ηi√
K + 1

, i = 1, . . . , p,

for some ηi > 0. Then,

min
k=0,...,K

p∑
i=1

ηi
1
p

∑p
l=1 ηi

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤

exp
(
4maxi∈[p],j∈[n](η

2
iCiL

1
i,j)
)

√
K + 1

(
1
p

∑p
l=1 ηi

) Ψ0

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

+
1

√
K + 1

(
1
p

∑p
l=1 ηi

)
 1

n

n∑
j=1

4max
i∈[p]

(η2iCiL
1
i,j)
(
f⋆ − f⋆

j

)
+

1

n

n∑
j=1

p∑
i=1

η2iCiL
0
i,j

L1
i,j

+

p∑
i=1

η2iDi

 .

where Ci :=
L1

i

2 +
2
√
1−αDL1

i,max

1−
√
1−αD

, Di :=
L0

i

2 +
2
√
1−αDL̄0

i

1−
√
1−αD

and

Ψk := f(Xk)− f⋆ +

p∑
i=1

2ti
1−

√
1− αD

1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

.

Remark 18. Theorem 4 follows as a corollary of the result in Theorem 17 by setting p = 1 and
initializing with G0

j = ∇fj(X
0) for all j ∈ [n].

Proof. Let Ai > 0 be some constants to be determined later, and define

Ψk := f(Xk)− f⋆ +

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

.

By Lemma 2 and Jensen’s inequality

Ψk+1 = f(Xk+1)− f⋆ +

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k+1)−Gk+1

i,j

∥∥
(i)⋆

≤ f(Xk)− f⋆ +

p∑
i=1

2ti
∥∥∇if(X

k)−Gk
i

∥∥
(i)⋆

−
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
t2i +

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k+1)−Gk+1

i,j

∥∥
(i)⋆

≤ f(Xk)− f⋆ +

p∑
i=1

2ti
1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

−
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
t2i +

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k+1)−Gk+1

i,j

∥∥
(i)⋆

.

Taking expectation conditioned on [Xk+1, Xk, Gk] and using Lemma 6 gives

E
[
Ψk+1

∣∣Xk+1, Xk, Gk
]

≤ f(Xk)− f⋆ +

p∑
i=1

2ti
1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

−
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
t2i

+

p∑
i=1

Ai
1

n

n∑
j=1

E
[∥∥∇ifj(X

k+1)−Gk+1
i,j

∥∥
(i)⋆

∣∣∣Xk+1, Xk, Gk
]

(6)
≤ f(Xk)− f⋆ +

p∑
i=1

2ti
1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

−
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
t2i

+

p∑
i=1

Ai

√
1− αD

1

n

n∑
j=1

(∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

+
(
L0
i,j + L1

i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆

)
ti

)
= f(Xk)− f⋆ +

p∑
i=1

(
2ti +Ai

√
1− αD

) 1
n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

−
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

+

p∑
i=1

L1
i t

2
i

2

∥∥∇if(X
k)
∥∥
(i)⋆

+
√
1− αD

p∑
i=1

Aiti

 1

n

n∑
j=1

L1
i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆


+

p∑
i=1

t2iL
0
i

2
+
√
1− αD

p∑
i=1

AitiL̄
0
i .

Now, letting Ai =
2ti

1−
√
1−αD

, we have

2ti +Ai

√
1− αD = 2ti +

2ti
1−

√
1− αD

√
1− αD = Ai,

and consequently,

E
[
Ψk+1

∣∣Xk+1, Xk, Gk
]

≤ f(Xk)− f⋆ +

p∑
i=1

Ai
1

n

n∑
j=1

∥∥∇ifj(X
k)−Gk

i,j

∥∥
(i)⋆

−
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L1
i t

2
i

2

∥∥∇if(X
k)
∥∥
(i)⋆

+
√
1− αD

p∑
i=1

Aiti

 1

n

n∑
j=1

L1
i,j

∥∥∇ifj(X
k)
∥∥
(i)⋆


+

p∑
i=1

t2iL
0
i

2
+
√
1− αD

p∑
i=1

AitiL̄
0
i

≤ Ψk −
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L1
i t

2
i

2

 1

n

n∑
j=1

∥∥∇ifj(X
k)
∥∥
(i)⋆


+

p∑
i=1

2
√
1− αDL1

i,max

1−
√
1− αD

t2i

 1

n

n∑
j=1

∥∥∇ifj(X
k)
∥∥
(i)⋆

+

p∑
i=1

(
t2iL

0
i

2
+

2
√
1− αD

1−
√
1− αD

t2i L̄
0
i

)

= Ψk −
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1


(
L1
i

2
+

2
√
1− αDL1

i,max

1−
√
1− αD

)
︸ ︷︷ ︸

:=Ci

1

n

n∑
j=1

∥∥∇ifj(X
k)
∥∥
(i)⋆

+
L0
i

2
+

2
√
1− αDL̄0

i

1−
√
1− αD︸ ︷︷ ︸

:=Di

 t2i .

Taking ti =
ηi√
K+1

for some ηi > 0 and using Lemma 11 with xi = η2iCi, we get

E
[
Ψk+1

∣∣Xk+1, Xk, Gk
]

≤ Ψk −
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+
1

K + 1

1

n

n∑
j=1

p∑
i=1

η2iCi

∥∥∇ifj(X
k)
∥∥
(i)⋆

+

p∑
i=1

Dit
2
i

(11)
≤ Ψk −

p∑
i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

Dit
2
i +

1

K + 1

1

n

n∑
j=1

4max
i∈[p]

(η2iCiL
1
i,j)
(
fj(X

k)− f⋆
)

+
1

K + 1

1

n

n∑
j=1

4max
i∈[p]

(η2iCiL
1
i,j)
(
f⋆ − f⋆

j

)
+

1

K + 1

1

n

n∑
j=1

∑p
i=1 η

4
iC

2
i L

0
i,j

maxi∈[p](η
2
iCiL1

i,j)

≤ Ψk − 1√
K + 1

p∑
i=1

ηi
∥∥∇if(X

k)
∥∥
(i)⋆

+
4

K + 1
max

i∈[p],j∈[n]
(η2iCiL

1
i,j)

1

n

n∑
j=1

(
fj(X

k)− f⋆
)

+
1

K + 1

 1

n

n∑
j=1

4max
i∈[p]

(η2iCiL
1
i,j)
(
f⋆ − f⋆

j

)
+

1

n

n∑
j=1

p∑
i=1

η2iCiL
0
i,j

L1
i,j

+

p∑
i=1

η2iDi

 .

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Now, since 1
n

∑n
j=1

(
fj(X

k)− f⋆
)
= f(Xk)− f⋆ ≤ Ψk, we obtain

E
[
Ψk+1

∣∣Xk+1, Xk, Gk
]

≤
(
1 +

4

K + 1
max

i∈[p],j∈[n]
(η2iCiL

1
i,j)

)
Ψk − 1√

K + 1

p∑
i=1

ηi
∥∥∇if(X

k)
∥∥
(i)⋆

+
1

K + 1

 1

n

n∑
j=1

4max
i∈[p]

(η2iCiL
1
i,j)
(
f⋆ − f⋆

j

)
+

1

n

n∑
j=1

p∑
i=1

η2iCiL
0
i,j

L1
i,j

+

p∑
i=1

η2iDi

 .

Taking expectation,

E
[
Ψk+1

]
≤

1 +
4

K + 1
max

i∈[p],j∈[n]
(η2iCiL

1
i,j)︸ ︷︷ ︸

:=a1

E
[
Ψk
]
− 1√

K + 1

p∑
i=1

ηiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]

+
1

K + 1

 1

n

n∑
j=1

4max
i∈[p]

(η2iCiL
1
i,j)
(
f⋆ − f⋆

j

)
+

1

n

n∑
j=1

p∑
i=1

η2iCiL
0
i,j

L1
i,j

+

p∑
i=1

η2iDi


︸ ︷︷ ︸

:=a2

,

and hence, applying Lemma 15 with Ak = E
[
Ψk
]

and Bk
i = ηi√

K+1
E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
,

min
k=0,...,K

p∑
i=1

ηi√
K + 1

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]

≤
exp

(
4

K+1 maxi∈[p],j∈[n](η
2
iCiL

1
i,j)(K + 1)

)
(K + 1)

Ψ0

+
1

K + 1

 1

n

n∑
j=1

4max
i∈[p]

(η2iCiL
1
i,j)
(
f⋆ − f⋆

j

)
+

1

n

n∑
j=1

p∑
i=1

η2iCiL
0
i,j

L1
i,j

+

p∑
i=1

η2iDi

 .

Dividing by
1
p

∑p
l=1 ηi√
K+1

finishes the proof.

E.4 STOCHASTIC SETTING

E.4.1 LAYER-WISE SMOOTH REGIME

Theorem 19. Let Assumptions 1, 6, 7 and 10 hold. Let {Xk}K−1
k=0 , K ≥ 1, be the iterates of

Algorithm 3 run with Ck
i ∈ B(αP), Ck

i,j ∈ B2(αD), any βi ∈ (0, 1], and

0 ≤ γk
i ≡ γi ≤

1

2L0
i + 2

√
ζi
, i = 1, . . . , p,

where ζi :=
ρ̄2
i

ρ2
i

(
12
β2
i
(L0

i)
2 + 24(βi+2)

α2
P

(L0
i)

2 +
36(β2

i +4)
α2

D
(L̃0

i)
2 +

144β2
i (2βi+5)

α2
Pα2

D
(L̃0

i)
2

)
. Then

1

K

K−1∑
k=0

p∑
i=1

γi
1
p

∑p
l=1 γl

E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤ 1

K

4Ψ0

1
p

∑p
l=1 γl

+ 24

p∑
i=1

(
1

n
+

(1− αD)βi

αD
+

12β2
i

α2
D

)
σ2
i ρ̄

2
iβiγi

1
p

∑p
l=1 γl

, (15)

where

Ψ0 := f(X0)− f⋆ +

p∑
i=1

6ρ̄2i
βi

γiE
[∥∥∇if(X

0)−M0
i

∥∥2
2

]

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

+

p∑
i=1

72ρ̄2iβi

α2
D

γi
1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−M0
i,j

∥∥2
2

]
+

p∑
i=1

6ρ̄2i
αD

γi
1

n

n∑
j=1

E
[∥∥M0

i,j −G0
i,j

∥∥2
2

]
and Mk

i := 1
n

∑n
j=1 M

k
i,j .

Corollary 1. Let the assumptions of Theorem 19 hold and let {Xk}K−1
k=0 , K ≥ 1, be the iterates of

Algorithm 3 initialized with M0
i,j = G0

i,j = ∇ifj(X
0; ξ0j), j ∈ [n]. Then, the result in Theorem 19

guarantees that

1

K

K−1∑
k=0

p∑
i=1

γi
1
p

∑p
l=1 γl

E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤

4
(
f(X0)− f⋆

)
K 1

p

∑p
l=1 γl

+
24

K

p∑
i=1

(
1√
nβi

+
12βi

α2
D

)
σiρ̄

2
i γi

1
p

∑p
l=1 γl

+24

p∑
i=1

(
1

n
+

(1− αD)βi

αD
+

12β2
i

α2
D

)
σ2
i ρ̄

2
iβiγi

1
p

∑p
l=1 γl

.

Remark 20. Theorem 5 follows as a corollary of the result above by setting p = 1.
Corollary 2. Let the assumptions of Theorem 19 hold and let {Xk}K−1

k=0 , K ≥ 1, be the iterates of
Algorithm 1 (Algorithm 3 with p = 1) run with Ck

i ∈ B(αP), Ck
i,j ∈ B2(αD). Choosing the stepsize

γ1 =
1√

2ζ1 + 2L0
1

= O

(ρ̄21L
0
1

ρ2
1
β1

+
ρ̄21L̃

0
1

ρ2
1
αPαD

)−1
 (16)

and momentum

β1 = min

1,

(
Ψ0L0

1n

ρ2
1
σ2
1K

)1/2

,

(
Ψ0L0

1αD

ρ2
1
σ2
1K

)1/3

,

(
Ψ0L0

1α
2
D

ρ2
1
σ2
1K

)1/4
 , (17)

the result in Theorem 19 guarantees that

1

K

K−1∑
k=0

E
[∥∥∇f(Xk)

∥∥2
⋆

]

= O

 Ψ0ρ̄21L̃
0
1

ρ2
1
αPαDK

+

(
Ψ0ρ̄41σ

2
1L

0
1

ρ2
1
nK

)1/2

+

(
Ψ0ρ̄31σ1L

0
1

ρ2
1

√
αDK

)2/3

+

(
Ψ0ρ8/3

1
σ
2/3
1 L0

1

ρ̄21α
2/3
D K

)3/4
 .

Remark 21. In the Euclidean case (ρ̄2i = ρ2
i
= 1), without primal compression (αP = 1), and for

p = 1, the result in Theorem 19 simplifies to

1

K

K−1∑
k=0

E
[∥∥∇f(Xk)

∥∥2] = O
(
Ψ0

Kγ
+

(
1

n
+

β

αD
+

β2

α2
D

)
βσ2

)
,

for γ = O
(

β
L0

1
+ αD

L̃0
1

)
, which recovers the rate of EF21-SDGM in Fatkhullin et al. (2023, Theorem

3) (up to a constant).
Remark 22. In the absence of stochasticity and momentum, i.e., when σ2

i = 0 and βi = 1, and
under the initialization W 0 = X0, M0

j = G0
j = ∇fj(X

0), Algorithm 3 reduces to Algorithm 2. In
this setting, Theorem 19 guarantees that

1

K

K−1∑
k=0

p∑
i=1

γi
1
p

∑p
l=1 γl

E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤ 1

K

4
(
f(X0)− f⋆

)
1
p

∑p
l=1 γl

,

for

0 ≤ γk
i ≡ γi ≤

1

2L0
i + 2

√
ζi
, i = 1, . . . , p,

where ζi :=
ρ̄2
i

ρ2
i

(
12(L0

i)
2 + 72

α2
P
(L0

i)
2 + 180

α2
D
(L̃0

i)
2 + 1008

α2
Pα2

D
(L̃0

i)
2
)

. This recovers the guarantee in
Theorem 14, up to a constant factor.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Remark 23. Alternatively, one may use compressors Ck
i ∈ B2(αP) in Theorem 19. The proof is

essentially the same, with the only modification being the replacement of Lemma 3 by the recursion

EC

[∥∥Xk+1
i −W k+1

i

∥∥2
2

]
= EC

[∥∥W k
i + Ck

i (X
k+1
i −W k

i)−Xk+1
i

∥∥2
2

]
≤ (1− αP)

∥∥Xk+1
i −W k

i

∥∥2
2

(28)
≤ (1− αP)

(
1 +

αP

2

)∥∥Xk
i −W k

i

∥∥2
2
+ (1− αP)

(
1 +

2

αP

)∥∥Xk+1
i −Xk

i

∥∥2
2

(30),(31)
≤

(
1− αP

2

)∥∥Xk
i −W k

i

∥∥2
2
+

2ρ̄2i
αP

∥∥Xk+1
i −Xk

i

∥∥2
(i)

=
(
1− αP

2

)∥∥Xk
i −W k

i

∥∥2
2
+

2ρ̄2i
αP

(γk
i)

2
∥∥Gk

i

∥∥2
(i)⋆

.

The resulting convergence guarantee matches that of Theorem 19 up to a modification of the constant
ζi, which now becomes

ζi =
ρ̄2i
ρ2
i

(
12

β2
i

(L0
i)

2 +
24ρ̄2i (βi + 2)

α2
P

(L0
i)

2 +
36
(
β2
i + 4

)
α2
D

(L̃0
i)

2 +
144ρ̄2iβ

2
i (2βi + 5)

α2
Pα

2
D

(L̃0
i)

2

)
,

where the additional norm equivalence factors highlighted in red arise due to the use of Euclidean
compressors.

Proof of Theorem 19. Lemma 1 and Young’s and Jensen’s inequalities give

f(Xk+1)
(1)
≤ f(Xk) +

3

2

p∑
i=1

γi
∥∥∇if(X

k)−Gk
i

∥∥2
(i)⋆

− 1

4

p∑
i=1

γi
∥∥∇if(X

k)
∥∥2
(i)⋆

−
p∑

i=1

(
1

4γi
− L0

i

2

)
γ2
i

∥∥Gk
i

∥∥2
(i)⋆

(28)
≤ f(Xk) + 3

p∑
i=1

ρ̄2i γi

∥∥∇if(X
k)−Mk

i

∥∥2
2
+

1

n

n∑
j=1

∥∥Mk
i,j −Gk

i,j

∥∥2
2


−1

4

p∑
i=1

γi
∥∥∇if(X

k)
∥∥2
(i)⋆

−
p∑

i=1

(
1

4γi
− L0

i

2

)
γ2
i

∥∥Gk
i

∥∥2
(i)⋆

.

Recall that by Lemmas 3, 4 and 5, we have

E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

] (3)
≤
(
1− αP

2

)
E
[∥∥Xk

i −W k
i

∥∥2
(i)

]
+

2

αP
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
,

E
[∥∥Mk+1

i,j −Gk+1
i,j

∥∥2
2

] (4)
≤
(
1− αD

2

)
E
[∥∥Mk

i,j −Gk
i,j

∥∥2
2

]
+

6β2
i

αD
E
[∥∥Mk

i,j −∇ifj(X
k)
∥∥2
2

]
+

6β2
i (L

0
i,j)

2

αDρ2
i

γ2
i E
[∥∥Gk

i

∥∥2
⋆

]
+

6β2
i (L

0
i,j)

2

αDρ2
i

E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+ (1− αD)β2

i σ
2
i ,

E
[∥∥∇ifj(X

k+1)−Mk+1
i,j

∥∥2
2

] (5)
≤
(
1− βi

2

)
E
[∥∥∇ifj(X

k)−Mk
i,j

∥∥2
2

]
+

2(L0
i,j)

2

βiρ2i
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i,j)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+ β2

i σ
2
i ,

E
[∥∥∇if(X

k+1)−Mk+1
i

∥∥2
2

] (5)
≤
(
1− βi

2

)
E
[∥∥∇if(X

k)−Mk
i

∥∥2
2

]
+

2(L0
i)

2

βiρ2i
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

+
β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2E
[∥∥Xk+1

i −W k+1
i

∥∥2
(i)

]
+

β2
i σ

2
i

n
,

where Mk
i := 1

n

∑n
j=1 M

k
i,j . To simplify the notation, let us define δk := E

[
f(Xk)− f⋆

]
,

P k
i := γiE

[∥∥∇if(X
k)−Mk

i

∥∥2
2

]
, P̃ k

i := γi
1
n

∑n
j=1 E

[∥∥∇ifj(X
k)−Mk

i,j

∥∥2
2

]
, S̃k

i :=

γi
1
n

∑n
j=1 E

[∥∥Mk
i,j −Gk

i,j

∥∥2
2

]
and Rk

i := γiE
[∥∥Xk

i −W k
i

∥∥2
(i)

]
. Then, the above inequalities

yield

δk+1 ≤ δk + 3

p∑
i=1

ρ̄2iP
k
i + 3

p∑
i=1

ρ̄2i S̃
k
i − 1

4

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
, (18)

Rk+1
i ≤

(
1− αP

2

)
Rk

i +
2

αP
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
, (19)

S̃k+1
i ≤

(
1− αD

2

)
S̃k
i +

6β2
i

αD
P̃ k
i +

6β2
i (L̃

0
i)

2

αDρ2
i

γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+
6β2

i (L̃
0
i)

2

αDρ2
i

Rk+1
i + (1− αD)σ2

i β
2
i γi, (20)

P̃ k+1
i ≤

(
1− βi

2

)
P̃ k
i +

2(L̃0
i)

2

βiρ2i
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+
β2
i

ρ2
i

(
1 +

2

βi

)
(L̃0

i)
2Rk+1

i + σ2
i β

2
i γi, (21)

P k+1
i ≤

(
1− βi

2

)
P k
i +

2(L0
i)

2

βiρ2i
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+
β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2Rk+1

i +
σ2
i β

2
i γi
n

. (22)

Now, let Ai, Bi, Ci, Di > 0 be some constants to be determined later, and define

Ψk := δk +

p∑
i=1

AiP
k
i +

p∑
i=1

BiP̃
k
i +

p∑
i=1

CiS̃
k
i +

p∑
i=1

DiR
k
i .

Then, applying (18), (20), (21), and (22), we have

Ψk+1

= δk+1 +

p∑
i=1

AiP
k+1
i +

p∑
i=1

BiP̃
k+1
i +

p∑
i=1

CiS̃
k+1
i +

p∑
i=1

DiR
k+1
i

≤ δk + 3

p∑
i=1

ρ̄2iP
k
i + 3

p∑
i=1

ρ̄2i S̃
k
i − 1

4

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

Ai

((
1− βi

2

)
P k
i +

2(L0
i)

2

βiρ2i
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2Rk+1

i +
σ2
i β

2
i γi
n

)

+

p∑
i=1

Bi

((
1− βi

2

)
P̃ k
i +

2(L̃0
i)

2

βiρ2i
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

β2
i

ρ2
i

(
1 +

2

βi

)
(L̃0

i)
2Rk+1

i + σ2
i β

2
i γi

)

+

p∑
i=1

Ci

((
1− αD

2

)
S̃k
i +

6β2
i

αD
P̃ k
i +

6β2
i (L̃

0
i)

2

αDρ2
i

γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

])

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

+

p∑
i=1

Ci

(
6β2

i (L̃
0
i)

2

αDρ2
i

Rk+1
i + (1− αD)σ2

i β
2
i γi

)
+

p∑
i=1

DiR
k+1
i

= δk +

p∑
i=1

(
3ρ̄2i +Ai

(
1− βi

2

))
P k
i +

p∑
i=1

(
Bi

(
1− βi

2

)
+ Ci

6β2
i

αD

)
P̃ k
i

+

p∑
i=1

(
3ρ̄2i + Ci

(
1− αD

2

))
S̃k
i − 1

4

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2 +Bi

β2
i

ρ2
i

(
1 +

2

βi

)
(L̃0

i)
2 + Ci

6β2
i (L̃

0
i)

2

αDρ2
i

+Di

)
Rk+1

i

+

p∑
i=1

(
Ai

2(L0
i)

2

βiρ2i
+Bi

2(L̃0
i)

2

βiρ2i
+ Ci

6β2
i (L̃

0
i)

2

αDρ2
i

)
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

n
+Bi + Ci(1− αD)

)
σ2
i β

2
i γi.

Then, using (19) gives
Ψk+1

≤ δk +

p∑
i=1

(
3ρ̄2i +Ai

(
1− βi

2

))
P k
i +

p∑
i=1

(
Bi

(
1− βi

2

)
+ Ci

6β2
i

αD

)
P̃ k
i

+

p∑
i=1

(
3ρ̄2i + Ci

(
1− αD

2

))
S̃k
i − 1

4

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2 +Bi

β2
i

ρ2
i

(
1 +

2

βi

)
(L̃0

i)
2 + Ci

6β2
i (L̃

0
i)

2

αDρ2
i

+Di

)(
1− αP

2

)
Rk

i

+

p∑
i=1

(
Ai

β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2 +Bi

β2
i

ρ2
i

(
1 +

2

βi

)
(L̃0

i)
2 + Ci

6β2
i (L̃

0
i)

2

αDρ2
i

+Di

)
2

αP
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

2(L0
i)

2

βiρ2i
+Bi

2(L̃0
i)

2

βiρ2i
+ Ci

6β2
i (L̃

0
i)

2

αDρ2
i

)
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
Ai

n
+Bi + Ci(1− αD)

)
σ2
i β

2
i γi.

Taking Ai =
6ρ̄2

i

βi
, Bi =

72ρ̄2
iβi

α2
D

, Ci =
6ρ̄2

i

αD
and

Di =

(
Ai

β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2 +Bi

β2
i

ρ2
i

(
1 +

2

βi

)
(L̃0

i)
2 + Ci

6β2
i (L̃

0
i)

2

αDρ2
i

)(
2

αP
− 1

)
=

6ρ̄2i
ρ2
i

(
(βi + 2) (L0

i)
2 +

6β2
i (2βi + 5)

α2
D

(L̃0
i)

2

)(
2

αP
− 1

)
,

we obtain

3ρ̄2i +Ai

(
1− βi

2

)
= 3ρ̄2i +

6ρ̄2i
βi

(
1− βi

2

)
= Ai,

Bi

(
1− βi

2

)
+ Ci

6β2
i

αD
=

72ρ̄2iβi

α2
D

(
1− βi

2

)
+

6ρ̄2i
αD

6β2
i

αD
= Bi,

3ρ̄2i + Ci

(
1− αD

2

)
= 3ρ̄2i +

6ρ̄2i
αD

(
1− αD

2

)
= Ci,

and (
Ai

β2
i

ρ2
i

(
1 +

2

βi

)
(L0

i)
2 +Bi

β2
i

ρ2
i

(
1 +

2

βi

)
(L̃0

i)
2 + Ci

6β2
i (L̃

0
i)

2

αDρ2
i

+Di

)(
1− αP

2

)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

=

(
Di

2
αP

− 1
+Di

)(
1− αP

2

)
= Di.

Consequently,

Ψk+1

≤ δk +

p∑
i=1

AiP
k
i +

p∑
i=1

BiP̃
k
i +

p∑
i=1

CiS̃
k
i +

p∑
i=1

DiR
k
i − 1

4

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
+

p∑
i=1

(
Di

2
αP

− 1
+Di

)
2

αP
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
6ρ̄2i
βi

2(L0
i)

2

βiρ2i
+

72ρ̄2iβi

α2
D

2(L̃0
i)

2

βiρ2i
+

6ρ̄2i
αD

6β2
i (L̃

0
i)

2

αDρ2
i

)
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
1

n

6ρ̄2i
βi

+
72ρ̄2iβi

α2
D

+
6ρ̄2i
αD

(1− αD)

)
σ2
i β

2
i γi

= Ψk − 1

4

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
−

p∑
i=1

(
1

4γi
− L0

i

2

)
γ2
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+

p∑
i=1

(
12ρ̄2i
β2
i ρ

2
i

(L0
i)

2 +
144ρ̄2i
α2
Dρ2

i

(L̃0
i)

2 +
36β2

i ρ̄
2
i

α2
Dρ2

i

(L̃0
i)

2 +
4Di

αP (2− αP)

)
γ3
i E
[∥∥Gk

i

∥∥2
(i)⋆

]
+6

p∑
i=1

(
1

n
+

12β2
i

α2
D

+
(1− αD)βi

αD

)
σ2
i ρ̄

2
iβiγi.

Now, note that

1

4γi
− L0

i

2
− γi

(
12ρ̄2i
β2
i ρ

2
i

(L0
i)

2 +
144ρ̄2i
α2
Dρ2

i

(L̃0
i)

2 +
36β2

i ρ̄
2
i

α2
Dρ2

i

(L̃0
i)

2 +
4Di

αP (2− αP)

)

=
1

4γi
− L0

i

2

− γi
ρ̄2i
ρ2
i

(
12

β2
i

(L0
i)

2 +
24 (βi + 2)

α2
P

(L0
i)

2 +
36
(
β2
i + 4

)
α2
D

(L̃0
i)

2 +
144β2

i (2βi + 5)

α2
Pα

2
D

(L̃0
i)

2

)
︸ ︷︷ ︸

:=ζi

≥ 0

for γi ≤ 1
2
√
ζi+2L0

i

. For such a choice of the stepsizes, we have

Ψk+1 ≤ Ψk − 1

4

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
+

p∑
i=1

6

(
1

n
+

12β2
i

α2
D

+
(1− αD)βi

αD

)
σ2
i ρ̄

2
iβi︸ ︷︷ ︸

:=ξi

γi.

Summing over the first K iterations gives

K−1∑
k=0

p∑
i=1

γiE
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤ 4

K−1∑
k=0

(
Ψk −Ψk+1

)
+ 4

K−1∑
k=0

p∑
i=1

ξiγi ≤ 4Ψ0 + 4K

p∑
i=1

ξiγi,

and lastly, dividing by K
p

∑p
l=1 γl, we obtain

1

K

K−1∑
k=0

p∑
i=1

γi
1
p

∑p
l=1 γl

E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤ 4Ψ0p

K
∑p

l=1 γl
+

4
∑p

i=1 ξiγi
1
p

∑p
i=1 γi

.

Substituting X0
i = W 0

i proves the theorem statement.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Proof of Corollary 1. Substituting the initialization, we have

E
[∥∥∇if(X

0)−M0
i

∥∥
2

]
= E

∥∥∥∥∥∥ 1n
n∑

j=1

(
∇ifj(X

0)−∇ifj(X
0; ξ0j)

)∥∥∥∥∥∥
2



≤

√√√√√√E


∥∥∥∥∥∥ 1n

n∑
j=1

(
∇ifj(X0)−∇ifj(X0; ξ0j)

)∥∥∥∥∥∥
2

2

 (10)
≤ σi√

n
,

1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−M0
i,j

∥∥
2

]
=

1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−∇ifj(X
0; ξ0j)

∥∥
2

] (10)
≤ σi,

and hence

Ψ0 := f(X0)− f⋆ +

p∑
i=1

6ρ̄2i
βi

γiE
[∥∥∇if(X

0)−M0
i

∥∥2
2

]
+

p∑
i=1

72ρ̄2iβi

α2
D

γi
1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−M0
i,j

∥∥2
2

]
+

p∑
i=1

6ρ̄2i
αD

γi
1

n

n∑
j=1

E
[∥∥M0

i,j −G0
i,j

∥∥2
2

]
≤ f(X0)− f⋆ +

p∑
i=1

6ρ̄2i√
nβi

γiσi +

p∑
i=1

72ρ̄2iβi

α2
D

γiσi.

Substituting this in the rate, we get

1

K

K−1∑
k=0

p∑
i=1

γi
1
p

∑p
l=1 γl

E
[∥∥∇if(X

k)
∥∥2
(i)⋆

]
≤

4
(
f(X0)− f⋆

)
K 1

p

∑p
l=1 γl

+
24

K

p∑
i=1

(
1√
nβi

+
12βi

α2
D

)
σiρ̄

2
i γi

1
p

∑p
l=1 γl

+24

p∑
i=1

(
1

n
+

(1− αD)βi

αD
+

12β2
i

α2
D

)
σ2
i ρ̄

2
iβiγi

1
p

∑p
l=1 γl

.

Proof of Corollary 2. Substituting the choice of γ from (16) in (15), we have

1

K

K−1∑
k=0

E
[∥∥∇f(Xk)

∥∥2
⋆

]
≤ 4Ψ0

Kγ1
+ 24

(
1

n
+

(1− αD)β1

αD
+

12β2
1

α2
D

)
σ2
1 ρ̄

2
1β1

= O

(
Ψ0ρ̄21L̃

0
1

ρ2
1
αPαDK

+
Ψ0ρ̄21L

0
1

ρ2
1
β1K

+
ρ̄21β1σ

2
1

n
+

ρ̄21β
2
1σ

2
1

αD
+

ρ̄21β
3
1σ

2
1

α2
D

)
.

Then, choosing β1 as in (17) guarantees that ρ̄2
1β1σ

2
1

n ,
ρ̄2
1β

2
1σ

2
1

αD
,
ρ̄2
1β

3
1σ

2
1

α2
D

≤ Ψ0ρ̄2
1L

0
1

ρ2
1
β1K

. Substituting this
into the upper bound gives

1

K

K−1∑
k=0

E
[∥∥∇f(Xk)

∥∥2
⋆

]

≤ O

 Ψ0ρ̄21L̃
0
1

ρ2
1
αPαDK

+

(
Ψ0ρ̄41σ

2
1L

0
1

ρ2
1
nK

)1/2

+

(
Ψ0ρ̄31σ1L

0
1

ρ2
1

√
αDK

)2/3

+

(
Ψ0ρ8/3

1
σ
2/3
1 L0

1

ρ̄21α
2/3
D K

)3/4


as needed.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

E.4.2 LAYER-WISE (L0, L1)–SMOOTH REGIME

As in Section E.3.2, in the generalized smooth setting we consider EF21-Muon without primal com-
pression.

Theorem 24. Let Assumptions 1, 2, 8, 9 and 10 hold. Let {Xk}K−1
k=0 , K ≥ 1, be the iterates of

Algorithm 3 run with Ck
i ≡ I (the identity compressor), Ck

i,j ∈ B2(αD), βi ≡ β = 1
(K+1)1/2

and

0 ≤ tki ≡ ti =
ηi

(K + 1)3/4
, i = 1, . . . , p,

where η2i ≤ min

{
(K+1)1/2

6(L1
i)

2 ,
(1−

√
1−αD)ρ

i
(K+1)1/2

24
√
1−αD ρ̄i(L1

i,max)
2 ,

βminρ
i
(K+1)1/2

24ρ̄i(L1
i,max)

2 , 1

}
. Then

min
k=0,...,K

p∑
i=1

ηi
1
p

∑p
l=1 ηl

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ 3Ψ0

(K + 1)1/4 1
p

∑p
l=1 ηl

+
6

(K + 1)1/2

p∑
i=1

ηiρ̄i
1
p

∑p
l=1 ηl

E
[∥∥∇if(X

0)−M0
i

∥∥
2

]
+

(
8

(K + 1)1/4
+

8
√
1− αD

(1−
√
1− αD)(K + 1)3/4

)
1

n

n∑
j=1

maxi∈[p] η
2
i
ρ̄i

ρ
i

(L1
i,j)

2

1
p

∑p
l=1 ηl

(
f⋆ − f⋆

j

)
+

p∑
i=1

η2i
1
p

∑p
l=1 ηl

(
L0
i

(K + 1)3/4
+

4ρ̄iL̄
0
i

ρ
i
(K + 1)1/4

+
4ρ̄i

√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)(K + 1)3/4

)

+

p∑
i=1

ηiρ̄iσi
1
p

∑p
l=1 ηl

(
4
√
1− αD

(1−
√
1− αD)(K + 1)1/2

+
2√

n(K + 1)1/4

)
,

where M0
i := 1

n

∑n
j=1 M

0
i,j and

Ψ0 := f(X0)− f⋆ +

p∑
i=1

2tiρ̄i
1−

√
1− αD

1

n

n∑
j=1

E
[∥∥M0

i,j −G0
i,j

∥∥
2

]
+

p∑
i=1

2tiρ̄i
√
1− αD

1−
√
1− αD

1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−M0
i,j

∥∥
2

]
.

Corollary 3. Let the assumptions of Theorem 24 hold and let {Xk}K−1
k=0 , K ≥ 1, be the iterates of

Algorithm 3 initialized with M0
i,j = ∇ifj(X

0; ξ0j), G
0
i,j = C0

i,j(∇ifj(X
0; ξ0j)), j ∈ [n], and run

with Ck
i ≡ I (the identity compressor), Ck

i,j ∈ B2(αD), βi ≡ β = 1
(K+1)1/2

and

0 ≤ tki ≡ ti =
ηi

(K + 1)3/4
, i = 1, . . . , p,

where η2i ≤ min

{
(K+1)1/2

6(L1
i)

2 ,
(1−

√
1−αD)ρ

i
(K+1)1/2

24
√
1−αD ρ̄i(L1

i,max)
2 ,

βminρ
i
(K+1)1/2

24ρ̄i(L1
i,max)

2 , 1

}
. Then, the result in Theo-

rem 19 guarantees that

min
k=0,...,K

p∑
i=1

ηi
1
p

∑p
l=1 ηl

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ 3

(K + 1)1/4 1
p

∑p
l=1 ηl

(
f(X0)− f⋆ +

p∑
i=1

4
√
1− αDηiρ̄iσi

(K + 1)3/4(1−
√
1− αD)

)

+
6

(K + 1)1/2

p∑
i=1

ρ̄iηiσi√
n 1

p

∑p
l=1 ηl

+

(
8

(K + 1)1/4
+

8
√
1− αD

(K + 1)3/4(1−
√
1− αD)

)
1

n

n∑
j=1

maxi∈[p] η
2
i
ρ̄i

ρ
i

(L1
i,j)

2

1
p

∑p
l=1 ηl

(
f⋆ − f⋆

j

)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

+

p∑
i=1

η2i
1
p

∑p
l=1 ηl

(
L0
i

(K + 1)3/4
+

4ρ̄iL̄
0
i

ρ
i
(K + 1)1/4

+
4ρ̄i

√
1− αDL̄0

i

ρ
i
(K + 1)3/4(1−

√
1− αD)

)

+

p∑
i=1

ηiρ̄iσi
1
p

∑p
l=1 ηl

(
4
√
1− αD

(K + 1)1/2(1−
√
1− αD)

+
2√

n(K + 1)1/4

)
.

Remark 25. Theorem 6 follows from Corollary 3 by setting p = 1:

min
k=0,...,K

E
[∥∥∇f(Xk)

∥∥
⋆

]
≤

3
(
f(X0)− f⋆

)
η(K + 1)1/4

+
12
√
1− αDρ̄σ

(1−
√
1− αD)(K + 1)

+
6ρ̄σ√

n(K + 1)1/2

+
ηρ̄

ρ

(
8

(K + 1)1/4
+

8
√
1− αD

(1−
√
1− αD)(K + 1)3/4

)
1

n

n∑
j=1

(L1
j)

2
(
f⋆ − f⋆

j

)
+

ηL0

(K + 1)3/4
+

ηρ̄

ρ

(
4

(K + 1)1/4
+

4
√
1− αD

(1−
√
1− αD)(K + 1)3/4

)
L̄0

+
4ρ̄σ

√
1− αD

(1−
√
1− αD)(K + 1)1/2

+
2ρ̄σ√

n(K + 1)1/4

≤
3
(
f(X0)− f⋆

)
η(K + 1)1/4

+
16
√
1− αDρ̄σ

(1−
√
1− αD)(K + 1)1/2

+
ηL0

(K + 1)3/4
+

8ρ̄σ√
n(K + 1)1/4

+
ηρ̄

ρ

(
8

(K + 1)1/4
+

8
√
1− αD

(1−
√
1− αD)(K + 1)3/4

) 1

n

n∑
j=1

(L1
j)

2
(
f⋆ − f⋆

j

)
+ L̄0

 .

Proof of Theorem 24. By Lemma 2 and Jensen’s inequality

f(Xk+1) ≤ f(Xk) +

p∑
i=1

2ti
∥∥∇if(X

k)−Gk
i

∥∥
(i)⋆

−
p∑

i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

2
t2i

≤ f(Xk) +

p∑
i=1

(
2ti
∥∥∇if(X

k)−Mk
i

∥∥
(i)⋆

+ 2ti
∥∥Mk

i −Gk
i

∥∥
(i)⋆

)
−

p∑
i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

(
L0
i

2
t2i +

L1
i

2

∥∥∇if(X
k)
∥∥
(i)⋆

t2i

)

≤ f(Xk) +

p∑
i=1

2ρ̄iti
∥∥∇if(X

k)−Mk
i

∥∥
2
+ 2ρ̄iti

1

n

n∑
j=1

E
[∥∥Mk

i,j −Gk
i,j

∥∥
2

]
−

p∑
i=1

ti
∥∥∇if(X

k)
∥∥
(i)⋆

+

p∑
i=1

(
L0
i

2
t2i +

L1
i

2

∥∥∇if(X
k)
∥∥
(i)⋆

t2i

)
.

To simplify the notation, let δk := E
[
f(Xk)− f⋆

]
, P k

i := E
[∥∥∇if(X

k)−Mk
i

∥∥
2

]
, P̃ k

i :=

1
n

∑n
j=1 E

[∥∥∇ifj(X
k)−Mk

i,j

∥∥
2

]
and S̃k

i := 1
n

∑n
j=1 E

[∥∥Mk
i,j −Gk

i,j

∥∥
2

]
. Then, Lemmas 7, 8,

and the descent inequality above yield

S̃k+1
i

(7)
≤

√
1− αDS̃k

i +
√
1− αDβiP̃

k
i +

ti
√
1− αDβi

ρ
i

 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+
ti
√
1− αDβiL̄

0
i

ρ
i

+
√
1− αDβiσi, (23)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

P k
i

(8)
≤ (1− βi)

kP 0
i +

ti
ρ
i

1

n

n∑
j=1

L1
i,j

k−1∑
l=0

(1− βi)
k−lE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]
+
tiL̄

0
i

ρ
i
βi

+ σi

√
βi

n
, (24)

P̃ k+1
i

(8)
≤ (1− βi)P̃

k
i +

ti(1− βi)

ρ
i

1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+
ti(1− βi)L̄

0
i

ρ
i

+ βiσi, (25)

δk+1 ≤ δk −
p∑

i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
(26)

+

p∑
i=1

(
2tiρ̄iP

k
i + 2tiρ̄iS̃

k
i +

t2iL
0
i

2
+

t2iL
1
i

2
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
.

Let Ai, Bi > 0 be some constants to be determined later, and define

Ψk := δk +

p∑
i=1

AiS̃
k
i +

p∑
i=1

BiP̃
k
i .

Then, using (23), (25) and (26)

Ψk+1

= δk+1 +

p∑
i=1

AiS̃
k+1
i +

p∑
i=1

BiP̃
k+1
i

≤ δk −
p∑

i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

(
2tiρ̄iP

k
i + 2tiρ̄iS̃

k
i +

t2iL
0
i

2
+

t2iL
1
i

2
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])

+

p∑
i=1

Ai

√
1− αDS̃k

i +
√
1− αDβiP̃

k
i +

ti
√
1− αDβi

ρ
i

 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+

p∑
i=1

Ai

(
ti
√
1− αDβiL̄

0
i

ρ
i

+
√
1− αDβiσi

)

+

p∑
i=1

Bi

(1− βi)P̃
k
i +

ti(1− βi)

ρ
i

 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]+
ti(1− βi)L̄

0
i

ρ
i

+ βiσi


= δk −

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

(
2tiρ̄i +Ai

√
1− αD

)
S̃k
i

+

p∑
i=1

(
Ai

√
1− αDβi +Bi(1− βi)

)
P̃ k
i +

p∑
i=1

2tiρ̄iP
k
i +

p∑
i=1

t2iL
1
i

2
E
[∥∥∇if(X

k)
∥∥
(i)⋆

]

+

p∑
i=1

ti
ρ
i

(
Ai

√
1− αDβi +Bi(1− βi)

) 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+

p∑
i=1

t2iL
0
i

2
+

p∑
i=1

Ai
ti
√
1− αDβiL̄

0
i

ρ
i

+

p∑
i=1

Bi
ti(1− βi)L̄

0
i

ρ
i

+

p∑
i=1

Ai

√
1− αDβiσi +

p∑
i=1

Biβiσi.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Taking Ai =
2tiρ̄i

1−
√
1−αD

and Bi = Ai

√
1− αD = 2tiρ̄

√
1−αD

1−
√
1−αD

, we obtain

2tiρ̄+Ai

√
1− αD = 2tiρ̄+

2tiρ̄

1−
√
1− αD

√
1− αD = Ai,

Ai

√
1− αDβi +Bi(1− βi) = Ai

√
1− αDβi +Ai

√
1− αD(1− βi) = Bi.

Consequently,

Ψk+1

≤ δk −
p∑

i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

AiS̃
k
i +

p∑
i=1

BiP̃
k
i +

p∑
i=1

2tiρ̄iP
k
i

+

p∑
i=1

t2iL
1
i

2
E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

2t2i ρ̄i
√
1− αD

ρ
i
(1−

√
1− αD)

 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+

p∑
i=1

t2iL
0
i

2
+

p∑
i=1

2t2i ρ̄i
√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

+

p∑
i=1

4tiρ̄i
√
1− αDβiσi

1−
√
1− αD

(24)
≤ δk −

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

AiS̃
k
i +

p∑
i=1

BiP̃
k
i

+

p∑
i=1

2tiρ̄i

(1− βi)
kP 0

i +
ti
ρ
i

1

n

n∑
j=1

L1
i,j

k−1∑
l=0

(1− βi)
k−lE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]
+

tiL̄
0
i

ρ
i
βi

+ σi

√
βi

n


+

p∑
i=1

t2iL
1
i

2
E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

2t2i ρ̄i
√
1− αD

ρ
i
(1−

√
1− αD)

 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
+

p∑
i=1

t2iL
0
i

2
+

p∑
i=1

2t2i ρ̄i
√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

+

p∑
i=1

4tiρ̄i
√
1− αDβiσi

1−
√
1− αD

= Ψk −
p∑

i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i +
1

2

p∑
i=1

t2iL
1
iE
[∥∥∇if(X

k)
∥∥
(i)⋆

]

+2

p∑
i=1

t2i ρ̄i
ρ
i

k−1∑
l=0

(1− βi)
k−l

 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]
+

2
√
1− αD

1−
√
1− αD

p∑
i=1

t2i ρ̄i
ρ
i

 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]+

p∑
i=1

t2iL
0
i

2

+

p∑
i=1

2t2i ρ̄iL̄
0
i

ρ
i
βi

+

p∑
i=1

2t2i ρ̄i
√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

+

p∑
i=1

4tiρ̄i
√
1− αDβiσi

1−
√
1− αD

+

p∑
i=1

2tiρ̄iσi

√
βi

n
. (27)

Let us bound the terms involving the norms of the gradients. Using Lemma 10, we get

p∑
i=1

t2iL
1
iE
[∥∥∇if(X

k)
∥∥
(i)⋆

] (10)
≤ 4max

i∈[p]
(t2i (L

1
i)

2)E
[
f(Xk)− f⋆

]
+

∑p
i=1(t

2
iL

1
i)

2L0
i

maxi∈[p](t
2
i (L

1
i)

2)

≤ 4max
i∈[p]

(t2i (L
1
i)

2)δk +

p∑
i=1

t2iL
0
i .

Similarly, Lemma 11 gives

p∑
i=1

t2i ρ̄i
ρ
i

k−1∑
l=0

(1− βi)
k−l 1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
l)
∥∥
(i)⋆

]

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

=
1

n

n∑
j=1

k−1∑
l=0

p∑
i=1

t2i ρ̄i
ρ
i

(1− βi)
k−lL1

i,jE
[∥∥∇ifj(X

l)
∥∥
(i)⋆

]
(11)
≤ 1

n

n∑
j=1

k−1∑
l=0

(
4max

i∈[p]

(
t2i ρ̄i
ρ
i

(1− βi)
k−l(L1

i,j)
2

)
E
[
fj(X

l)− f⋆
])

+
1

n

n∑
j=1

k−1∑
l=0

(
4max

i∈[p]

(
t2i ρ̄i
ρ
i

(1− βi)
k−l(L1

i,j)
2

)(
f⋆ − f⋆

j

))

+
1

n

n∑
j=1

k−1∑
l=0


∑p

i=1

(
t2i ρ̄i

ρ
i

(1− βi)
k−lL1

i,j

)2
L0
i,j

maxi∈[p]

(
t2i ρ̄i

ρ
i

(1− βi)k−l(L1
i,j)

2
)


≤
k−1∑
l=0

4 max
i∈[p],j∈[n]

(
t2i ρ̄i
ρ
i

(1− βi)
k−l(L1

i,j)
2

)
δl

+
1

n

n∑
j=1

k−1∑
l=0

(
4max

i∈[p]

(
t2i ρ̄i
ρ
i

(1− βi)
k−l(L1

i,j)
2

)(
f⋆ − f⋆

j

)
+

p∑
i=1

t2i ρ̄i
ρ
i

(1− βi)
k−lL0

i,j

)
and

p∑
i=1

t2i ρ̄i
ρ
i

1

n

n∑
j=1

L1
i,jE

[∥∥∇ifj(X
k)
∥∥
(i)⋆

]
=

1

n

n∑
j=1

p∑
i=1

t2i ρ̄iL
1
i,j

ρ
i

E
[∥∥∇ifj(X

k)
∥∥
(i)⋆

]
(11)
≤ 1

n

n∑
j=1

(
4max

i∈[p]

t2i ρ̄i(L
1
i,j)

2

ρ
i

E
[
fj(X

k)− f⋆
]
+ 4max

i∈[p]

t2i ρ̄i(L
1
i,j)

2

ρ
i

(
f⋆ − f⋆

j

))

+
1

n

n∑
j=1


∑p

i=1

(
t2i ρ̄i

ρ
i

L1
i,j

)2
L0
i,j

maxi∈[p]

(
t2i ρ̄i

ρ
i

(L1
i,j)

2
)


≤ 4 max
i∈[p],j∈[n]

(
t2i ρ̄i
ρ
i

(L1
i,j)

2

)
δk +

1

n

n∑
j=1

(
4max

i∈[p]

t2i ρ̄i(L
1
i,j)

2

ρ
i

(
f⋆ − f⋆

j

)
+

p∑
i=1

t2i ρ̄iL
0
i,j

ρ
i

)
.

Substituting these bounds in (27), we obtain
Ψk+1

≤ Ψk −
p∑

i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i + 2max
i∈[p]

(t2i (L
1
i)

2)δk +
1

2

p∑
i=1

t2iL
0
i

+8

k−1∑
l=0

max
i∈[p],j∈[n]

(
t2i ρ̄i
ρ
i

(1− βi)
k−l(L1

i,j)
2

)
δl

+2
1

n

n∑
j=1

k−1∑
l=0

(
4max

i∈[p]

(
t2i ρ̄i
ρ
i

(1− βi)
k−l(L1

i,j)
2

)(
f⋆ − f⋆

j

)
+

p∑
i=1

t2i ρ̄i
ρ
i

(1− βi)
k−lL0

i,j

)

+
8
√
1− αD

1−
√
1− αD

max
i∈[p],j∈[n]

(
t2i ρ̄i
ρ
i

(L1
i,j)

2

)
δk

+
2
√
1− αD

1−
√
1− αD

1

n

n∑
j=1

(
4max

i∈[p]

t2i ρ̄i(L
1
i,j)

2

ρ
i

(
f⋆ − f⋆

j

)
+

p∑
i=1

t2i ρ̄iL
0
i,j

ρ
i

)
+

p∑
i=1

t2iL
0
i

2

+

p∑
i=1

2t2i ρ̄iL̄
0
i

ρ
i
βi

+

p∑
i=1

2t2i ρ̄i
√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

+

p∑
i=1

4tiρ̄i
√
1− αDβiσi

1−
√
1− αD

+

p∑
i=1

2tiρ̄iσi

√
βi

n
.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Since δk ≤ Ψk, it follows that
Ψk+1

≤

(
1 + 2max

i∈[p]
(t2i (L

1
i)

2) +
8
√
1− αD

1−
√
1− αD

max
i∈[p],j∈[n]

(
t2i ρ̄i
ρ
i

(L1
i,j)

2

))
Ψk

−
p∑

i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i

+8 max
i∈[p],j∈[n]

(
t2i ρ̄i(L

1
i,j)

2

ρ
i

)
k−1∑
l=0

max
i∈[p]

((1− βi)
k−lΨl)

+8
1

n

n∑
j=1

(
max
i∈[p]

t2i ρ̄i(L
1
i,j)

2

ρ
i

k−1∑
l=0

max
i∈[p]

(
(1− βi)

k−l
) (

f⋆ − f⋆
j

))

+2

p∑
i=1

t2i ρ̄iL̄
0
i

ρ
i

k−1∑
l=0

(1− βi)
k−l +

8
√
1− αD

1−
√
1− αD

1

n

n∑
j=1

(
max
i∈[p]

t2i ρ̄i(L
1
i,j)

2

ρ
i

(
f⋆ − f⋆

j

))

+
2
√
1− αD

1−
√
1− αD

p∑
i=1

t2i ρ̄iL̄
0
i

ρ
i

+

p∑
i=1

t2iL
0
i

+

p∑
i=1

2t2i ρ̄iL̄
0
i

ρ
i
βi

+

p∑
i=1

2t2i ρ̄i
√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

+

p∑
i=1

4tiρ̄i
√
1− αDβiσi

1−
√
1− αD

+

p∑
i=1

2tiρ̄iσi

√
βi

n

≤

1 + 2max
i∈[p]

(t2i (L
1
i)

2) +
8
√
1− αD

1−
√
1− αD

max
i∈[p],j∈[n]

(
t2i ρ̄i(L

1
i,j)

2

ρ
i

)
︸ ︷︷ ︸

:=C1

Ψk

−
p∑

i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i

+8 max
i∈[p],j∈[n]

(
t2i ρ̄i(L

1
i,j)

2

ρ
i

)
︸ ︷︷ ︸

:=C2

k−1∑
l=0

((1− βmin)
k−lΨl)

+ 8

(
1

βmin
+

√
1− αD

1−
√
1− αD

)
1

n

n∑
j=1

(
max
i∈[p]

t2i ρ̄i(L
1
i,j)

2

ρ
i

(
f⋆ − f⋆

j

))
︸ ︷︷ ︸

:=C3

+

p∑
i=1

t2i

(
L0
i +

4ρ̄iL̄
0
i

ρ
i
βi

+
4ρ̄i

√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

)
︸ ︷︷ ︸

:=C4,i

+

p∑
i=1

ti ρ̄iσi

(
4
√
1− αDβi

1−
√
1− αD

+ 2

√
βi

n

)
︸ ︷︷ ︸

:=C5,i

= (1 + C1)Ψ
k −

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i

+C2

k−1∑
l=0

((1− βmin)
k−lΨl) + C3 +

p∑
i=1

t2iC4,i +

p∑
i=1

tiC5,i.

Now, define a weighting sequence wk := wk−1

1+C1+
C2

βmin

, where w−1 = 1. Then, multiplying the above

inequality by wk and summing over the first K + 1 iterations, we obtain
K∑

k=0

wkΨk+1

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

≤
K∑

k=0

wk (1 + C1)Ψ
k +

K∑
k=0

wkC2

k−1∑
l=0

((1− βmin)
k−lΨl)−

K∑
k=0

wk

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

K∑
k=0

wk

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i +

K∑
k=0

wkC3 +

K∑
k=0

wk

p∑
i=1

t2iC4,i +

K∑
k=0

wk

p∑
i=1

tiC5,i

= (1 + C1)

K∑
k=0

wkΨk + C2

K∑
k=0

wk
k−1∑
l=0

((1− βmin)
k−lΨl)−

K∑
k=0

wk

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

K∑
k=0

wk

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i +WKC3 +WK

p∑
i=1

t2iC4,i +WK

p∑
i=1

tiC5,i.

where WK :=
∑K

k=0 w
k. Since, by definition, wk ≤ wk−1 ≤ w−1 = 1, we have

K∑
k=0

wkΨk+1

≤ (1 + C1)

K∑
k=0

wkΨk + C2

K∑
k=0

k−1∑
l=0

(wl(1− βmin)
k−lΨl)−

K∑
k=0

wk

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+

K∑
k=0

p∑
i=1

2tiρ̄i(1− βi)
kP 0

i +WKC3 +WK

p∑
i=1

t2iC4,i +WK

p∑
i=1

tiC5,i

≤ (1 + C1)

K∑
k=0

wkΨk + C2

∞∑
l=0

(1− βmin)
l

K∑
k=0

wkΨk −
K∑

k=0

wk

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+2

p∑
i=1

tiρ̄i
βi

P 0
i +WKC3 +WK

p∑
i=1

t2iC4,i +WK

p∑
i=1

tiC5,i

=

(
1 + C1 +

C2

βmin

) K∑
k=0

wkΨk −
K∑

k=0

wk

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+2

p∑
i=1

tiρ̄i
βi

P 0
i +WKC3 +WK

p∑
i=1

t2iC4,i +WK

p∑
i=1

tiC5,i

=

K∑
k=0

wk−1Ψk −
K∑

k=0

wk

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
+ 2

p∑
i=1

tiρ̄i
βi

P 0
i

+WKC3 +WK

p∑
i=1

t2iC4,i +WK

p∑
i=1

tiC5,i.

Rearranging the terms and dividing by WK gives

min
k=0,...,K

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤

K∑
k=0

p∑
i=1

wk

WK
tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ 1

WK

K∑
k=0

(
wk−1Ψk − wkΨk+1

)
+

2

WK

p∑
i=1

tiρ̄i
βi

P 0
i + C3 +

p∑
i=1

t2iC4,i +

p∑
i=1

tiC5,i

≤ Ψ0

WK
+

2

WK

p∑
i=1

tiρ̄i
βi

P 0
i + C3 +

p∑
i=1

t2iC4,i +

p∑
i=1

tiC5,i.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Now, note that

WK =

K∑
k=0

wk ≥ (K + 1)wK =
(K + 1)w−1

(1 + C1 +
C2

βmin
)K+1

≥ K + 1

exp
(
(K + 1)(C1 +

C2

βmin
)
) .

Taking ti = ηi

(K+1)3/4
, where η2i ≤ min

{
(K+1)1/2

6(L1
i)

2 ,
(1−

√
1−αD)ρ

i
(K+1)1/2

24
√
1−αD ρ̄i(L1

i,max)
2 ,

βminρ
i
(K+1)1/2

24ρ̄i(L1
i,max)

2 , 1

}
to

ensure that

2(K + 1)max
i∈[p]

(t2i (L
1
i)

2) ≤ 1

3
,

(K + 1)
8
√
1− αD

1−
√
1− αD

max
i∈[p],j∈[n]

(
t2i ρ̄i(L

1
i,j)

2

ρ
i

)
≤ 1

3
,

(K + 1)
8

βmin
max

i∈[p],j∈[n]

(
t2i ρ̄i(L

1
i,j)

2

ρ
i

)
≤ 1

3
,

we have (K + 1)(C1 +
C2

βmin
) ≤ 1, and so WK ≥ K+1

exp(1) ≥
K+1
3 . Therefore,

min
k=0,...,K

p∑
i=1

tiE
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ 3Ψ0

K + 1
+

6

K + 1

p∑
i=1

tiρ̄i
βi

P 0
i + C3 +

p∑
i=1

t2iC4,i +

p∑
i=1

tiC5,i

=
3Ψ0

K + 1
+

6

K + 1

p∑
i=1

ηiρ̄i
βi(K + 1)3/4

P 0
i

+
8

(K + 1)3/2

(
1

βmin
+

√
1− αD

1−
√
1− αD

)
1

n

n∑
j=1

(
max
i∈[p]

η2i ρ̄i(L
1
i,j)

2

ρ
i

(
f⋆ − f⋆

j

))

+

p∑
i=1

η2i
(K + 1)3/2

(
L0
i +

4ρ̄iL̄
0
i

ρ
i
βi

+
4ρ̄i

√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

)

+

p∑
i=1

ηi
(K + 1)3/4

ρ̄iσi

(
4
√
1− αDβi

1−
√
1− αD

+ 2

√
βi

n

)
.

Lastly, dividing by 1
p

∑p
l=1 tl =

1
(K+1)3/4

1
p

∑p
l=1 ηl gives

min
k=0,...,K

p∑
i=1

ηi
1
p

∑p
l=1 ηl

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ 3Ψ0

(K + 1)1/4 1
p

∑p
l=1 ηl

+
6

K + 1

p∑
i=1

ηi
1
p

∑p
l=1 ηl

ρ̄i
βi

P 0
i

+
8

(K + 1)3/4

(
1

βmin
+

√
1− αD

1−
√
1− αD

)
1

n

n∑
j=1

maxi∈[p]
η2
i ρ̄i(L

1
i,j)

2

ρ
i

1
p

∑p
l=1 ηl

(
f⋆ − f⋆

j

)
+

p∑
i=1

η2i
(K + 1)3/4 1

p

∑p
l=1 ηl

(
L0
i +

4ρ̄iL̄
0
i

ρ
i
βi

+
4ρ̄i

√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)

)

+

p∑
i=1

ηiρ̄iσi
1
p

∑p
l=1 ηl

(
4
√
1− αDβi

1−
√
1− αD

+ 2

√
βi

n

)

=
3Ψ0

(K + 1)1/4 1
p

∑p
l=1 ηl

+
6

(K + 1)1/2

p∑
i=1

ηiρ̄i
1
p

∑p
l=1 ηl

P 0
i

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

+

(
8

(K + 1)1/4
+

8
√
1− αD

(1−
√
1− αD)(K + 1)3/4

)
1

n

n∑
j=1

maxi∈[p]
η2
i ρ̄i(L

1
i,j)

2

ρ
i

1
p

∑p
l=1 ηl

(
f⋆ − f⋆

j

)
+

p∑
i=1

η2i
1
p

∑p
l=1 ηl

(
L0
i

(K + 1)3/4
+

4ρ̄iL̄
0
i

ρ
i
(K + 1)1/4

+
4ρ̄i

√
1− αDL̄0

i

ρ
i
(1−

√
1− αD)(K + 1)3/4

)

+

p∑
i=1

ηiρ̄iσi
1
p

∑p
l=1 ηl

(
4
√
1− αD

(1−
√
1− αD)(K + 1)1/2

+
2√

n(K + 1)1/4

)
,

where in the last equality we set βi =
1

(K+1)1/2
.

Proof of Corollary 3. Substituting the initialization, we have

P 0
i := E

[∥∥∇if(X
0)−M0

i

∥∥
2

]
= E

∥∥∥∥∥∥ 1n
n∑

j=1

(
∇ifj(X

0)−∇ifj(X
0; ξ0j)

)∥∥∥∥∥∥
2



≤

√√√√√√E


∥∥∥∥∥∥ 1n

n∑
j=1

(
∇ifj(X0)−∇ifj(X0; ξ0j)

)∥∥∥∥∥∥
2

2

 (10)
≤ σi√

n
,

P̃ 0
i :=

1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−M0
i,j

∥∥
2

]
=

1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−∇ifj(X
0; ξ0j)

∥∥
2

]
≤ σi,

S̃0
i :=

1

n

n∑
j=1

E
[∥∥M0

i,j −G0
i,j

∥∥
2

]
=

1

n

n∑
j=1

E
[∥∥∇ifj(X

0; ξ0j)− C0
i,j(∇ifj(X

0; ξ0j))
∥∥
2

]
(1)
≤

√
1− αD

1

n

n∑
j=1

E
[∥∥∇ifj(X

0; ξ0j)
∥∥
2

]
≤

√
1− αD

1

n

n∑
j=1

E
[∥∥∇ifj(X

0; ξ0j)−∇ifj(X
0)
∥∥
2

] (10)
≤

√
1− αDσi,

and hence

Ψ0 := f(X0)− f⋆ +

p∑
i=1

2tiρ̄i
1−

√
1− αD

1

n

n∑
j=1

E
[∥∥M0

i,j −G0
i,j

∥∥
2

]
+

p∑
i=1

2tiρ̄i
√
1− αD

1−
√
1− αD

1

n

n∑
j=1

E
[∥∥∇ifj(X

0)−M0
i,j

∥∥
2

]
≤ f(X0)− f⋆ +

p∑
i=1

2tiρ̄i
1−

√
1− αD

√
1− αDσi +

p∑
i=1

2tiρ̄i
√
1− αD

1−
√
1− αD

σi

= f(X0)− f⋆ +

p∑
i=1

4
√
1− αDtiρ̄iσi

1−
√
1− αD

.

Substituting this in the rate, we get

min
k=0,...,K

p∑
i=1

ηi
1
p

∑p
l=1 ηl

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ 3

(K + 1)1/4 1
p

∑p
l=1 ηl

(
f(X0)− f⋆ +

p∑
i=1

4
√
1− αDηiρ̄iσi

(K + 1)3/4(1−
√
1− αD)

)

+
6

(K + 1)1/2

p∑
i=1

ρ̄iηiσi√
n 1

p

∑p
l=1 ηl

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

+

(
8

(K + 1)1/4
+

8
√
1− αD

(K + 1)3/4(1−
√
1− αD)

)
1

n

n∑
j=1

maxi∈[p] η
2
i
ρ̄i

ρ
i

(L1
i,j)

2

1
p

∑p
l=1 ηl

(
f⋆ − f⋆

j

)
+

p∑
i=1

η2i
1
p

∑p
l=1 ηl

(
L0
i

(K + 1)3/4
+

4ρ̄iL̄
0
i

ρ
i
(K + 1)1/4

+
4ρ̄i

√
1− αDL̄0

i

ρ
i
(K + 1)3/4(1−

√
1− αD)

)

+

p∑
i=1

ηiρ̄iσi
1
p

∑p
l=1 ηl

(
4
√
1− αD

(K + 1)1/2(1−
√
1− αD)

+
2√

n(K + 1)1/4

)
.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

F USEFUL FACTS AND LEMMAS

For all X,Y ∈ S, Z ∈ S⋆ (where S⋆ is the dual space of S), t > 0 and α ∈ (0, 1], we have:

∥X + Y ∥2 ≤ (1 + t) ∥X∥2 + (1 + t−1) ∥Y ∥2 , (28)

⟨X,Z⟩ ≤ ∥X∥2

2t
+

t ∥Z∥2⋆
2

, (29)

(1− α)
(
1 +

α

2

)
≤ 1− α

2
, (30)

(1− α)

(
1 +

2

α

)
≤ 2

α
, (31)〈

G,LMOB(X,t) (G)
〉
= −t ∥G∥⋆ (32)〈

X,X♯
〉
=
∥∥X♯

∥∥2 , (33)

∥X∥⋆ =
∥∥X♯

∥∥ . (34)
Lemma 12 (Riabinin et al. (2025b), Lemma 3). Suppose that x1, . . . , xp, y1, . . . , yp ∈ R,
maxi∈[p] |xi| > 0 and z1, . . . , zp > 0. Then

p∑
i=1

y2i
zi

≥
(
∑p

i=1 xiyi)
2∑p

i=1 zix
2
i

.

Lemma 13 (Variance decomposition). For any random vector X ∈ S and any non-random c ∈ S,
we have

E
[
∥X − c∥22

]
= E

[
∥X − E [X]∥22

]
+ ∥E [X]− c∥22 .

Lemma 14 (Riabinin et al. (2025b), Lemma 1). Let Assumption 8 hold. Then, for any X,Y ∈ S,

|f(Y)− f(X)− ⟨∇f(X), Y −X⟩| ≤
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Xi − Yi∥2(i) .

Lemma 15. Let {Ak}k≥0, {Bk
i }k≥0, i ∈ [p] be non-negative sequences such that

Ak+1 ≤ (1 + a1)A
k −

p∑
i=1

Bk
i + a2,

where a1, a2 ≥ 0. Then

min
k=0,...,K

p∑
i=1

Bk
i ≤ exp(a1(K + 1))

(K + 1)
A0 + a2.

Proof. Let us define a weighting sequence wk := wk−1

1+a1
, where w−1 = 1. Then

wkAk+1 ≤ wk (1 + a1)A
k − wk

p∑
i=1

Bk
i + wka2 = wk−1Ak − wk

p∑
i=1

Bk
i + wka2,

and hence

min
k=0,...,K

p∑
i=1

Bk
i ≤ 1∑K

k=0 w
k

K∑
k=0

wk

p∑
i=1

Bk
i

≤ 1∑K
k=0 w

k

K∑
k=0

(
wk−1Ak − wkAk+1

)
+

1∑K
k=0 w

k

K∑
k=0

wka2

=
1∑K

k=0 w
k

(
w−1A0 − wKAK+1

)
+ a2.

Using the fact that w−1 = 1 and
∑K

k=0 w
k =

∑K
k=0

1
(1+a1)k+1 ≥ K+1

(1+a1)K+1 , we get

min
k=0,...,K

p∑
i=1

Bk
i ≤ (1 + a1)

K+1

(K + 1)

(
A0 − wKAK+1

)
+ a2 ≤ exp(a1(K + 1))

(K + 1)
A0 + a2,

which finishes the proof.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

G EXPERIMENTS

This section provides additional experimental results and setup details complementing Section 5.

G.1 SETUP DETAILS

Tables 3 to 5 summarize the model and optimizer hyperparameters. The scale parameters (Hidden/-
Head Scale) in Table 5 specify the LMO trust-region radius as

radius = scale × learning rate,

following Pethick et al. (2025c); Riabinin et al. (2025b).

Table 3: NanoGPT-124M model configuration.

Hyperparameter Value
Total Parameters 124M
Vocabulary Size 50,304
Number of Transformer Layers 12
Attention Heads 6
Hidden Size 768
FFN Hidden Size 3,072
Positional Embedding RoPE (Su et al., 2024)
Activation Function Squared ReLU (So et al., 2021)
Normalization RMSNorm (Zhang & Sennrich, 2019)
Bias Parameters None

Table 4: MediumGPT-335M model configuration.

Hyperparameter Value
Total Parameters 335M
Vocabulary Size 50,304
Number of Transformer Layers 24
Attention Heads 16
Hidden Size 1024
FFN Hidden Size 4096
Positional Embedding RoPE (Su et al., 2024)
Activation Function Squared ReLU (So et al., 2021)
Normalization RMSNorm (Zhang & Sennrich, 2019)
Bias Parameters None

G.2 TOPK COMPRESSION DETAILS

TopK compressor requires transmitting both the selected values and their corresponding indices
to reconstruct the original tensors. At high compression levels, this introduces significant commu-
nication overhead, especially in compositional schemes such as TopK combined with the Natural
compressor, where the cost of transmitting indices can even exceed that of the quantized values. To
illustrate this effect, we analyze the largest parameter matrices in the NanoGPT model: the token
embedding layer and the classification head, each of size 50, 304× 768. Representing an index for
any element in these matrices requires log2(50,304 · 768) < 26 bits. We use this calculation when
visualizing communication costs.

G.3 LEARNING RATE ABLATION

To ensure a fair and robust comparison, we perform a learning rate hyperparameter sweep for each
compression configuration, as detailed in Figure 3. For every method, the search space is initialized

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Table 5: Optimizer configuration.

Hyperparameter Value
Sequence Length 1024
Batch Size 256
Optimizer EF21-Muon
Weight Decay 0
Hidden Layer Norm Spectral norm
Hidden Layer Scale 50
Newton–Schulz Iterations 5
Embedding and Head Layers Norm ℓ∞ norm
Embedding and Head Layers Scale 3000
Initial Learning Rate For non-compressed: 3.6× 10−4

Learning Rate Schedule Constant followed by linear decreasing
Learning Rate Constant Phase Length 40% of tokens
Momentum 0.9

at the optimal learning rate of the uncompressed baseline (taken from the Gluon repository (Riabinin
et al., 2025a)) and spans downward by up to an order of magnitude. We consistently observe that
more aggressive compression schemes require a smaller learning rate for stable convergence.

This tuning protocol is applied uniformly across all experiments for models trained with 2.5B (Sec-
tion G.5) and 5B token budgets.

G.4 COMPRESSION LEVEL ABLATION

This section presents an ablation study on the compression ratio, governed by the parameter K. Fig-
ures 4 and 5 illustrate the convergence curves for various compression configurations, each trained
with its optimal learning rate (see Section G.3). Figure 6 summarizes the final loss as a function
of K.

Our results show that for TopK and RandK compressors, an aggressive compression ratio of K =
5% quite severely impairs convergence (see Figure 6), while configurations with K ≥ 10% achieve
satisfactory loss reduction. When these compressors are composed with the Natural compressor,
convergence degradation is more pronounced for K = 10% than for the less aggressive K = 15%
setup.

We also examine a more challenging loss threshold of 3.28 (Figure 7). The communication cost
improvement at this threshold is even more pronounced than for 3.31 (Figure 1), but this comes at a
cost: only a subset of compressors can reach the threshold within the 5B token budget.

G.5 2.5B TOKENS EXPERIMENT

In Section 5, we report runs with a 5B token budget (> 40× model size). Testing convergence
over a large number of tokens is important, as the limitations of compressors relative to the baseline
become more pronounced after many steps. At the same time, evaluating compressed runs with a
smaller token budget is useful for cases with limited resources. We provide a learning rate ablation
in Figure 3, a summarized comparison in Figure 6, and convergence trajectories for the 2.5B-token
setup in Figures 8 and 9.

G.6 MEDIUMGPT EXPERIMENT

To assess whether the patterns observed on NanoGPT scale to larger models, we conduct experi-
ments on MediumGPT (335M parameters) (Karpathy, 2023) with 2.5B token budget. The model
configuration is provided in Table 4. We compare the uncompressed baseline to EF21-Muon with
the Natural compressor and evaluate convergence in terms of both tokens and bytes communicated.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40

Fin
al

 Te
st

 L
os

s

Natural
5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.26

3.28

3.30

3.32

3.34

3.36

3.38

3.40

Rank15%
5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.30

3.32

3.34

3.36

3.38

3.40

3.42

3.44
Rank10%

5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.46

3.48

3.50

3.52

3.54

3.56

3.58
Rank5%

5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
3.42

Fin
al

 Te
st

 L
os

s

Top20%
5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.30

3.32

3.34

3.36

3.38

3.40

3.42

3.44

3.46
Top15%

5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.36

3.38

3.40

3.42

3.44

3.46

3.48

3.50

Top10%
5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.65

3.70

3.75

3.80

3.85

3.90

3.95
Top5%

5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.28
3.30
3.32
3.34
3.36
3.38
3.40
3.42
3.44

Fin
al

 Te
st

 L
os

s

Rank15% + Natural
5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.34

3.36

3.38

3.40

3.42

3.44

3.46

3.48
Rank10% + Natural

5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.300

3.325

3.350

3.375

3.400

3.425

3.450

3.475
Top15% + Natural

5B
2.5B

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.40

3.42

3.44

3.46

3.48

3.50

3.52

3.54
Top10% + Natural

5B
2.5B

Figure 3: Learning rate ablation. The grid spans from the optimal learning rate of the non-
compressed baseline, 3.6 × 10−4 (denoted as 1.0×), down to 0.1×. Red curves correspond to
experiments processing 5B tokens (Section 5), while blue curves correspond to 2.5B tokens (Sec-
tion G.5).

0.0B 1.0B 2.0B 3.0B 4.0B 5.0B
Tokens

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Top10%
Top10% + Natural
Top15%
Top15% + Natural
Top20%

0K 2K 4K 6K 8K 10K 12K 14K 16K
Communication Cost

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Top10%
Top10% + Natural
Top15%
Top15% + Natural
Top20%
Loss Threshold 3.33

Figure 4: Left: Test loss vs. # of tokens processed. Right: Test loss vs. # of bytes sent to
the server from each worker normalized by model size to reach test loss 3.33. TopX% = TopK
compressor with sparsification level X%; ID = no compression.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

0.0B 1.0B 2.0B 3.0B 4.0B 5.0B
Tokens

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Rank5%
Rank10%
Rank10% + Natural
Rank15%
Rank15% + Natural

0K 2K 4K 6K 8K 10K 12K 14K 16K
Communication Cost

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Rank5%
Rank10%
Rank10% + Natural
Rank15%
Rank15% + Natural
Loss Threshold 3.33

Figure 5: Left: Test loss vs. # of tokens processed. Right: Test loss vs. # of bytes sent to the
server from each worker normalized by model size to reach test loss 3.33. RankX% = RankK
compressor with sparsification level X%; ID = no compression.

Ra
nk

5%

Ra
nk

10
%

Ra
nk

15
%

Ra
nk

10
0%

3.2

3.2

3.3

3.4

3.4

3.5

3.5

3.6

Fin
al

 Te
st

 L
os

s

5B
2.5B

Top
5%

Top
10

%
Top

15
%

Top
20

%

Top
10

0%
3.2

3.3

3.4

3.5

3.6

3.7

Fin
al

 Te
st

 L
os

s
5B
2.5B

Figure 6: Final test loss vs. compression parameter K. Results are shown after processing 5B
tokens (red) and 2.5B tokens (blue) for RankK (left) and TopK (right) compressors. K = 100%
corresponds to the non-compressed baseline. In the TopK plot, the 2.5B setup outperforms 5B due
to differences in scheduler behavior, as the runs execute a different number of steps.

We adopt the learning rate obtained from the sweep described in Section G.3 and use the same
optimization and training setup as in the NanoGPT experiments. The LMO step scaling mechanism
(Pethick et al., 2025b) is applied to ensure adaptivity across weight matrices of varying sizes.

The resulting convergence curves are shown in Figure 10. We observe qualitatively similar behavior
to the NanoGPT setting: Natural compression achieves close-to-baseline loss while substantially
reducing communication cost.

G.7 BIDIRECTIONAL COMPRESSION

To complement the unidirectional compression experiments, we evaluate EF21-Muon in a fully bidi-
rectional setup in which both server-to-worker and worker-to-server communication are compressed.
We apply the Natural compressor in both directions. The training task matches the setup in Sec-
tion G.5 (NanoGPT with a 2.5B token budget).

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

0.0B 1.0B 2.0B 3.0B 4.0B 5.0B
Tokens

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Natural
Rank15%
Rank15% + Natural
Top20%

0K 2K 4K 6K 8K 10K 12K 14K 16K
Communication Cost

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Natural
Rank15%
Rank15% + Natural
Top20%
Loss Threshold 3.28

Figure 7: Left: Test loss vs. # of tokens processed. Right: Test loss vs. # of bytes sent to the
server from each worker normalized by model size to reach test loss 3.28. RankX%/TopX% =
RankK/TopK compressor with sparsification level X%; ID = no compression.

0.0B 0.5B 1.0B 1.5B 2.0B 2.5B
Tokens

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Top10%
Top10% + Natural
Top15%
Top15% + Natural
Top20%

0K 1K 2K 3K 4K 5K 6K 7K 8K
Communication Cost

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Top10%
Top10% + Natural
Top15%
Top15% + Natural
Top20%
Loss Threshold 3.38

Figure 8: Left: Test loss vs. # of tokens processed. Right: Test loss vs. # of bytes sent to
the server from each worker normalized by model size to reach test loss 3.38. TopX% = TopK
compressor with sparsification level X%; ID = no compression. “+ Natural” corresponds to applying
Natural compression after TopK compressor.

We follow the same hyperparameter selection protocol described in Section G.3. The corresponding
learning rate sweep is shown in Figure 11. After tuning, we find that EF21-Muon remains effec-
tive in this more challenging bidirectional configuration, improving communication efficiency by
approximately 2× relative to the uncompressed baseline while achieving comparable convergence,
as shown in Figure 12.

G.8 LIMITATIONS

Reporting results for all compressors on the same token budget (for instance, 5B) and then measuring
the prefix needed to reach a given loss threshold may not be fully consistent, as results can be affected
by the scheduler. To mitigate this, we use a relatively strong loss threshold that ensures a significant
number of tokens are processed beyond the constant learning rate phase. Additionally, tuning the
initial learning rate can help stabilize the results.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

0.0B 0.5B 1.0B 1.5B 2.0B 2.5B
Tokens

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Rank5%
Rank10%
Rank10% + Natural
Rank15%
Rank15% + Natural

0K 1K 2K 3K 4K 5K 6K 7K 8K
Communication Cost

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Rank5%
Rank10%
Rank10% + Natural
Rank15%
Rank15% + Natural
Loss Threshold 3.38

Figure 9: Left: Test loss vs. # of tokens processed. Right: Test loss vs. # of bytes sent to the
server from each worker normalized by model size to reach test loss 3.38. RankX% = RankK
compressor with sparsification level X%; ID = no compression. “+ Natural” corresponds to applying
Natural compression after RankK compressor.

0.0B 0.5B 1.0B 1.5B 2.0B 2.5B
Tokens

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID MediumGPT
Natural MediumGPT

0K 2K 4K 6K 8K 10K
Communication Cost

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID MediumGPT
Natural MediumGPT
Loss Threshold 3.15

Figure 10: Left: Test loss vs. # of tokens processed. Right: Test loss vs. # of bytes sent to the
server from each worker normalized by model size to reach test loss 3.15. ID = no compression.

Note on LLM Usage. Large Language Models were used to assist in polishing the writing of the
manuscript. LLM assistance did not contribute to the scientific content of the paper.

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

0.1
x

0.2
5x 0.5

x
1.0

x

Initial Learing Rate

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

Fin
al

 Te
st

 L
os

s

Baseline
Bidirectional Natural Compression

Figure 11: Learning rate ablation for the bidirectional setup. The grid spans from the optimal
learning rate of the non-compressed baseline, 3.6× 10−4 (denoted as 1.0×), down to 0.1×.

0.0B 0.5B 1.0B 1.5B 2.0B 2.5B
Tokens

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Natural_Bidirectional

0K 2K 4K 6K 8K 10K
Communication Cost

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Te
st

 L
os

s

ID
Natural_Bidirectional
Loss Threshold 3.31

Figure 12: Left: Test loss vs. # of tokens processed. Right: Test loss vs. # of bytes sent to the
server from each worker normalized by model size to reach test loss 3.31. ID = no compression.
Both s2w and w2s directions are compressed using the Natural compressor.

72

	Introduction
	Background
	Non-Euclidean distributed training
	Convergence results
	Experiments
	Related work
	Compression
	Error feedback
	Generalized smoothness

	Layer-wise setup
	Muon, Scion and Gluon
	Layer-wise EF21-Muon

	LMO in many guises
	Non-Euclidean contractive compressors
	Compression via norm selection

	Convergence analysis
	Descent Lemmas
	Auxiliary Lemmas
	Smooth case
	Generalized smooth case

	Deterministic setting
	Layer-wise smooth regime
	Layer-wise (L0,L1)–smooth regime

	Stochastic setting
	Layer-wise smooth regime
	Layer-wise (L0,L1)–smooth regime

	Useful Facts and Lemmas
	Experiments
	Setup details
	TopK compression details
	Learning rate ablation
	Compression level ablation
	2.5B tokens experiment
	MediumGPT experiment
	Bidirectional compression
	Limitations

