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ABSTRACT

Recent optimizers like Muon, Scion, and Gluon have pushed the frontier of large-
scale deep learning by exploiting layer-wise linear minimization oracles (LMOs)
over non-Euclidean norm balls, capturing neural network structure in ways tradi-
tional algorithms cannot. Yet, no principled distributed framework exists for these
methods, and communication bottlenecks remain unaddressed. The very few dis-
tributed variants are heuristic, with no convergence guarantees in sight. We intro-
duce EF21-Muon, the first communication-efficient, non-Euclidean LMO-based
optimizer with rigorous convergence guarantees. EF21-Muon supports stochas-
tic gradients, momentum, and bidirectional compression with error feedback—
marking the first extension of error feedback beyond the Euclidean setting. It
recovers Muon/Scion when compression is off and specific norms are chosen, pro-
viding the first efficient distributed implementation of this powerful family. Our
theory covers non-Euclidean smooth and the more general3 (L°, L')—smooth set-
ting, matching best-known Euclidean rates and enabling faster convergence un-
der suitable norm choices. We further extend the analysis to layer-wise (gen-
eralized) smoothness regimes, capturing the anisotropic structure of deep net-
works. Experiments on NanoGPT benchmarking EF21-Muon against uncom-
pressed Muon/Scion/Gluon demonstrate up to 7x communication savings with no
accuracy degradation.

1 INTRODUCTION

Over the past decade, Adam and its variants (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) have
established themselves as the cornerstone of optimization in deep learning. Yet emerging evidence
suggests that this dominance may be giving way to a new class of optimizers better suited to the
geometry and scale of modern deep networks. Leading this shift are Muon (Jordan et al., 2024)
and methods inspired by it—Scion (Pethick et al., 2025b) and Gluon (Riabinin et al., 2025b)-which
replace Adam’s global moment estimation with layer-wise, geometry-aware updates via linear min-
imization oracles (LMOs) over non-Euclidean norm balls. Though relatively new, these optimizers
are already gaining traction—supported by a growing body of theoretical insights, community adop-
tion, and empirical success—particularly in training large language models (LLMs) (Liu et al., 2025;
Pethick et al., 2025b; Shah et al., 2025; Thérien et al., 2025; Moonshot Al, 2025).

Despite this momentum, the development of these algorithms remains less mature than that of more
established methods. Significant gaps persist—both in theory and practice—that must be addressed to
fully realize their potential and make them truly competitive for the demands of ultra-scale learning.

Scaling Up. Modern machine learning (ML) thrives on scale. Today’s state-of-the-art models rely
on massive datasets and complex architectures, often requiring weeks or even months of training
(Touvron et al., 2023; Comanici et al., 2025). This scale imposes new demands on optimization
methods, which must not only be effective at navigating complex nonconvex landscapes but also
efficient in distributed, resource-constrained environments. Since training on a single machine is no
longer feasible (Dean et al., 2012; You et al., 2017), distributed computing has become the default.
Mathematically, this task is commonly modeled as the (generally non-convex) optimization problem

min {£(X) = 230, (0}, [(X) = Eeap, [f5(X:8)] (1)

where X € S represents the model parameters, n > 1 is the number of workers/clients/machines,
and f;(X) is the loss of the model (X) on the data (D,) stored on worker j € [n] := {1,...,n}. We



Under review as a conference paper at ICLR 2026

Table 1: Summary of convergence guarantees. Algorithm: Deterministic = EF21-Muon with deterministic
gradients (Algorithm 2), Stochastic = EF21-Muon with stochastic gradients (Algorithms 1 and 3); Smooth: v/
= (layer-wise) smooth setting (Assumptions 3 and 6), X = (layer-wise) generalized smooth setting (Assumptions
4 and 8); Rate = rate of convergence to achieve ming—o,... x E [||Vf(X’“)||J < ¢; Eucl. = recovers the
state-of-the-art guarantees in the Euclidean case; Non-comp. = recovers the state-of-the-art uncompressed
guarantees.

Algorithm Result Layer-wise =~ Smooth Rate Eucl.  Non-comp.
Theorem 3 X v v v
Deterministic Theorem 14 4 o ( 1 ) v v
Theorem 4 X X K1/2 v v
Theorem 17 v 4 4
Theorem 5 X v v v
Stochastic Theorem 19 v o ( 1 ) v/ v/
Theorem 6 X X K1/4 v v
Theorem 24 v v v

consider the general heterogeneous setting, where the local objectives f; may differ arbitrarily across
machines, reflecting real-world scenarios such as multi-datacenter pipelines or federated learning
(McMabhan et al., 2017; Konecny et al., 2016). Here, S is a d-dimensional vector space equipped
with an inner product (-,-) : S X § — R and the standard Euclidean norm ||-||,. Furthermore, we
endow S with an arbitrary norm ||-|| : S — Rx>¢. The corresponding dual norm ||-||, : S — Rxq
is defined via || X||, := supjzj<; (X, Z). The general framework introduced in this work gives
rise to a variety of interesting algorithms arising from different norm choices. In matrix spaces,
a particularly important class is the family of operator norms, defined for any A € R™*" by
[Allo—p == supzy_=1 lAZ|| 5, where [|-|| , and ||-| ; are some norms on R™ and R™, respectively.

Communication: the Cost of Scale. In client-server architectures, coordination is centralized,
with workers performing local computations and periodically synchronizing with the coordinator
(Seide et al., 2014; Alistarh et al., 2017; Khirirat et al., 2018; Stich et al., 2018; Mishchenko et al.,
2019; Karimireddy et al., 2019; Mishchenko et al., 2024). While this distributed design unlocks
learning at unprecedented scales, it introduces a critical bottleneck: communication. The mas-
sive size of modern models places a heavy burden on the channels used to synchronize updates
across machines, as each step requires transmitting large d-dimensional vectors (e.g., parameters or
gradients) over links that can be far slower than local computation (Kairouz et al., 2021). With-
out communication-efficient strategies, this imbalance makes communication a dominant cost, ulti-
mately limiting the efficiency and scalability of distributed optimization.

Distributed Muon: Bridging the Gap. The case for communication-efficient distributed training
is clear, as is the promise of Muon for deep learning. The natural question is: can we merge the two?
Perhaps surprisingly, this intersection remains largely unexplored. Nonetheless, three recent efforts
are worth noting. Liu et al. (2025) propose a distributed variant of Muon based on ZeRO-1 (Rajbhan-
dari et al., 2020). Thérien et al. (2025) show that Muon can be used instead of AdamW as the inner
optimizer in DiLoCo. The introduced MuLoCo framework is shown to consistently converge faster
than the original DiLoCo (Douillard et al., 2023) when pre-training a 220M parameter transformer
language model. In parallel, Ahn et al. (2025) introduce Dion, a Muon-inspired algorithm compatible
with 3D parallelism that employs low-rank approximations for efficient orthonormalized updates.

While promising empirically, these approaches lack any formal theoretical guarantees. Our goal
is to bridge this gap by developing a distributed optimizer leveraging non-Euclidean geometry that
both works in practice and comes with strong convergence guarantees. Our central question is:

Can we efficiently distribute Muon without compromising its theoretical and practical benefits?

In this work, we provide an affirmative answer through the following contributions:

1. A framework for compressed non-Euclidean distributed optimization. We propose EF21-
Muon, an LMO-based distributed optimizer based on bidirectionally compressed updates with error
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feedback (Seide et al., 2014; Richtarik et al., 2021). It is communication-efficient (never sending
uncompressed messages) and practical, supporting stochasticity and momentum. Parameterized by
the norm in the LMO step, EF21-Muon recovers a broad class of compressed methods, and for
spectral norms yields the first communication-efficient distributed variants of Muon and Scion.

2. Practical deep learning variant. The main body of this paper presents a simplified version of
EF21-Muon that treats all parameters jointly (Algorithm 1), consistent with standard theoretical ex-
position. Our main algorithms, however, are designed for and analyzed in a layer-wise manner (see
Algorithms 2 and 3 for the deterministic and stochastic gradient variants, respectively), explicitly
modeling the hierarchical structure of neural networks. This allows us to better align with practice
(methods like Muon are applied per layer) and to introduce anisotropic modeling assumptions.

3. Strong convergence guarantees. EF21-Muon comes with strong theoretical guarantees (see
Table 1) under two smoothness regimes: non-Euclidean smoothness (Theorems 3 and 5) and non-
Euclidean (LY, L')-smoothness (Theorems 4 and 6). In both cases, our bounds match the state-
of-the-art rates for EF21 in the Euclidean setting, while allowing for potentially faster convergence
under well-chosen norms. These results are subsumed by a more general analysis of the full layer-
wise methods. In Theorems 14 and 19, we prove convergence under layer-wise non-Euclidean
smoothness (Assumption 6), and extend this to layer-wise non-Euclidean (LO, Ll)—smoothness (As-
sumption 8) in Theorems 17 and 24. This refined treatment allows us to better capture the geometry
of deep networks, leading to tighter guarantees.

4. Non-Euclidean compressors. EF21-Muon supports standard contractive compressors as well as
a new class of non-Euclidean compressors (Section D), which may be of independent interest.

5. Strong empirical performance. Experiments training a NanoGPT model on the FineWeb
dataset systematically compare EF21-Muon with multiple compressors against the uncompressed
baseline (Muon/Scion/Gluon) and show that compression reduces worker-to-server communication
by up to 7x with no loss in accuracy (Sections 5 and G).

Qutline. Section 2 introduces the necessary preliminaries and reviews Muon (Jordan et al., 2024),
placing it within the broader class of LMO-based optimizers. This naturally raises the central ques-
tion of our work: how can such methods be distributed efficiently? We highlight the main challenges
and motivate compression and error feedback as practical solutions (with deeper motivation and an
extensive literature review deferred to Section A). Section 3 presents our proposed method, EF21-
Muon. In Section 4, we present convergence results in both deterministic and stochastic settings,
under two smoothness regimes: standard (non-Euclidean) and (L°, L')-smoothness. Finally, Sec-
tion 5 provides empirical validation, demonstrating the practical benefits of our approach.

2 BACKGROUND

We frame problem (1) in an abstract vector space S. In several of our results, the specific structure
of S does not matter. One may simply flatten the model parameters into a d x 1 vector and view S
as R?. However, in the context of deep learning, it is often useful to explicitly model the layer-wise
structure (see Section B). Then, X € S represents the collection of matrices X; € S; := R™i* "
of trainable parameters across all layers i € [p] of the network with a total number d := >_%_, m;n;

of parameters. Accordingly, S is the d-dimensional product space S := Q}_; S, =S1 ® -+ @ S,
where each S; is associated with the trace inner product (X, Yi>(i) = tr(X;r Y;) for X;,Y; € S,
and a norm |[|-| ;) (not necessarily induced by this inner product). We write X = [Xi,..., X}].

What is Muon? Muon, introduced by Jordan et al. (2024), is an optimizer for the hidden layers of
neural networks.! For clarity of exposition, let us assume that the parameters X represent a single
layer of the network (a full layer-wise description is provided in Section B.1). In this setting, Muon
updates Xkt = X* — tkUk(V*)T where t* > 0 and the matrices U*, V* are derived from the
SVD of the momentum matrix G*¥ = U ka(V’“)T. This update rule is, in fact, a special case of a

I"The first and last layers are typically optimized using other optimizers, such as AdamW (Loshchilov &
Hutter, 2019)—see Section B.1 for details.
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Algorithm 1 EF21-Muon (simplified)

1: Parameters: radii t* > 0; momentum parameter 3 € (0, 1]; initial iterate X° € S (stored
on the server); initial iterate shift W% = X0 (stored on the server and the workers); initial
gradient estimators G(]? (stored on the workers); GO = % 2?21 Gg (stored on the server); initial

momentum M? (stored on the workers); worker compressors C¥; server compressors C*

2: fork=0,1,..., K — 1do

3: Xk+1 = LMOB(Xk ) (Gk) Take LMO-type step
4: S/" = C/" (X/‘ FL_ Uv/“) Compress shifted model on the server
5: ”'Y["Jrl = ka + Sk Update model shift
6: Broadcast S¥ to all workers

7: for j =1,...,nin parallel do

8: WkJrl = Wk + Sk Update model shift
9: Mjk+1 = (]_ — B)Mjk + 5ij(Wk+1, £§+1) Compute momentum
10: R/} tl— C?(J[}‘ +1 (;i) Compress shifted gradient
11: S = Gk 4 R

12: Broadcast H?H to the server

13:  end for *

14: Gk+1 = % Z;‘I:I Géﬁ_l = Gk + % E;‘Ll R;—C—’_l Compute gradient estimator
15: end for

more general one, based on the norm-constrained linear minimization oracle (LMO)
XM = Xk + t*LMOg(o,1) (G*) , 2)

where B(X,t) == {Z € § : [|Z - X|| < t} and LMOp(x +) (G) = argmingcpx 4 (G, Z).
Muon corresponds to the case where ||-|| = ||||5_,, is the spectral (operator) norm, in which case
LMOg(0,1) (G¥) = —U*(V¥)T. Consequently, its recent analyses (Pethick et al., 2025b; Kovalev,
2025; Riabinin et al., 2025b) have shifted focus to the general form (2). Among them, Pethick et al.
(2025b) introduce Scion, which extends the LMO update across layers, and Riabinin et al. (2025b)
develop Gluon—a general LMO-based framework that subsumes Muon and Scion as special cases
while providing stronger convergence guarantees. We adopt this unifying viewpoint by treating all
three algorithms as instances of Gluon, which we use as the umbrella term for the entire class.

The challenges of distributing the LMO. Distributing (2) is far from trivial, as the limited liter-
ature suggests. Even in the relatively well-structured special case of spectral norms, Muon relies on
the Newton—Schulz iteration (Kovarik, 1970; Bjorck & Bowie, 1971), a procedure requiring dense
matrix operations that are incompatible with standard parameter-sharding schemes used in LLM
training (Ahn et al., 2025). To illustrate the difficulty, consider a deterministic version of (2), where
G* is replaced by the exact gradient V f(X*). Applied to problem (1), the iteration becomes

X+ = X* 4+ LMOg(g ) (31 Zlvfj(Xk)> :
i=

The most basic approach to distributing this update consists of the following four main steps:

1. Each worker computes its local gradient V f;(X*) at iteration k.

2. w2s: The workers send their gradients V f; (X*) to the central server.
3. The server averages these gradients and computes the LMO update.

4. s2w: The server sends X" (or LMOg(g 4 (-)) back to the workers.

This scheme involves two potentially costly phases: (1) workers-to-server (= w2s) and (2) server-
to-workers (= s2w) communication. As each transmitted object resides in S, every iteration in-
volves exchanging dense, d-dimensional data, imposing substantial communication overhead that
can quickly overwhelm available resources. This is where compression techniques come into play.

Compression. Compression is one of the two main strategies for improving communication effi-
ciency in distributed optimization (the other being local training (Povey et al., 2014; Moritz et al.,
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2015; McMahan et al., 2017)), extensively studied in the Euclidean regime (Alistarh et al., 2017;
Horvith et al., 2022; Richtarik et al., 2021). It is typically achieved by applying an operator C map-
ping the original dense message X to a more compact representation C(X ). We work with general
biased (or contractive) compressors.

Definition 1 (Contractive compressor). A (possibly randomized) mapping C : S — S is a contrac-
tive compression operator with parameter « € (0, 1] if

Eflex) - XIP] <1 -a)IX*  vxes. 3)

Remark 2. The classical definition of a contractive compressor is based on the Euclidean norm,
e, ||-|l = |||y in 3). A canonical example in this setting is the TopKX compressor, which retains
the K largest-magnitude entries of the input vector. In (3), we generalize this to arbitrary norms for
greater flexibility. Section D provides examples of such compressors (to our knowledge, not studied
in this context before). Depending on the compression objective, we apply (3) with respect to ||-
IIl,, or ||-|l5, denoting the respective families of compressors as B(«), B, (), and Ba (o).

Error Feedback. To address the communication bottleneck, a natural approach is to apply biased
compressors to transmitted gradients. However, this “enhancement” can result in exponential di-
vergence, even in the simple case of minimizing the average of three strongly convex quadratics
(Beznosikov et al., 2020, Example 1). A remedy, Error Feedback (EF), was introduced by Seide
et al. (2014) and for years remained a heuristic with limited theory. This changed with Richtarik
et al. (2021), who proposed EF21, the first method to achieve the desirable O(1/vK) rate for ex-
pected gradient norms under standard assumptions. Since then, EF21 has inspired many extensions,
including EF21-P (Gruntkowska et al., 2023), a primal variant targeting s2w communication.

>

*?

For a deeper dive into compression and EF, we refer the reader to Appendices A.1 and A.2.

3 NON-EUCLIDEAN DISTRIBUTED TRAINING

Marrying geometry-aware updates of Gluon with the communication efficiency enabled by compres-
sion promises a potentially high-yield strategy. Yet, from a theoretical standpoint, their compatibility
is far from obvious—nothing a priori ensures that these two paradigms can be meaningfully unified.

Most importantly, it is unclear what kind of descent lemma to use. The analysis of EF21 relies
on a recursion involving squared Euclidean norms ||- Hg, while LMO-based methods naturally yield
descent bounds in terms of first powers of norms ||-||-a structure common to all existing analyses
(Kovalev, 2025; Pethick et al., 2025b; Riabinin et al., 2025b). We initially adopted the latter ap-
proach, but the resulting guarantees failed to recover those of EF21 in the Euclidean case. The pivot
point came from reformulating the update via sharp operators (Nesterov, 2012; Kelner et al., 2014).
For any G € S, the sharp operator is defined as G* := arg max ys{(G, X) — % | X]|*}, which is
connected to the LMO via the identity |G|, LMOgo 1) (G) = —G*. Hence, (2) is equivalent to

X+ = XF 4 FLMOp( 1) (GF) = X* = e (GF)F, )

i.e., a normalized steepest descent step with stepsize v* := t*/ [|G*||,. We alternate between the
sharp operator and LMO formulations, depending on the assumptions at play. Theorems 3 and 5 use
the former; Theorems 4 and 6, the latter. We explore this and other reformulations in Section C.

The algorithm. Working with compression in non-Euclidean geometry presents several chal-
lenges. In addition to the lack of a standard descent lemma, further complications arise from in-
teractions between gradient stochasticity and compression and unknown variance behavior under
biased compression. Yet, we develop the first communication-efficient variant of Gluon (and by ex-
tension, its special cases Muon and Scion), called EF21-Muon, that combines biased compression,
gradient stochasticity, and momentum, all while enjoying strong theoretical guarantees. A simpli-
fied version of the algorithm, applied globally to X, is shown in Algorithm 1. A more general, deep
learning-oriented layer-wise variant operating in the product space S := @?%_; R™:*" is given in
Algorithm 3. For clarity, we focus on the simplified variant throughout the main text; all theoretical
results presented here are special cases of the general layer-wise guarantees provided in Section E.
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While the pseudocode is largely self-explanatory (for a more detailed description, see Section B.2),
we highlight the most important components:

¢ Role of Compression. Compression is key for reducing communication overhead in distributed
training. Algorithm 1 adheres to this principle by transmitting the compressed messages 5" and R’I‘f

only, never the full dense updates. When compression is disabled (i.e., C J’?, C* are identity mappings)
and in the single-node setting (n = 1), EF21-Muon reduces exactly to Gluon, which in turn recovers

Muon and Scion (all of which were originally designed for non-distributed settings).

< Role of Error Feedback. Even in the Euclidean setup, biased compression can break distributed
GD unless some form of error feedback is used (see Section 2). To remedy this, we adopt a modern
strategy inspired by EF21 (Richtarik et al., 2021) for the w2s direction. Its role is to stabilize training
and prevent divergence. To reduce s2w communication overhead, we further incorporate the primal
compression mechanism of EF21-P (Gruntkowska et al., 2023).

¢ Role of Gradient Stochasticity. In large-scale ML, computing full gradients V f;(z) is typically
computationally infeasible. In practice, they are replaced with stochastic estimates, which drastically
reduces per-step computational cost and makes the method scalable to practical workloads.

< Role of Momentum. Stochastic gradients inevitably introduce noise into the optimization pro-
cess. Without further stabilization, this leads to convergence to a neighborhood of the solution only.
Momentum mitigates this issue, reducing the variance in the updates and accelerating convergence.

4 CONVERGENCE RESULTS

To support our convergence analysis, we adopt standard lower-boundedness assumptions on the
global objective f, and in certain cases, also on the local functions f;.

Assumption 1. There exist f* € R such that f(X) > f* forall X € S.
Assumption 2. Forall j € [n], there exist f} € R such that f;(X) > f forall X € S.

We study two smoothness regimes. The first, standard L—smoothness generalized to arbitrary norms
(used in Theorems 3 and 5), is the default in virtually all convergence results for Muon and Scion
(Kovalev, 2025; Pethick et al., 2025b; Li & Hong, 2025).

Assumption 3. The function f is L-smooth, ie., |Vf(X)-Vf(Y)|, < L|X =Y| for all
X,Y € 8. Moreover, the functions f; are L;—smooth for all j € [n]. We define L* := 1 Z?Zl L?.z

To our knowledge, the only exception departing from this standard setting is the recent work on
Gluon (Riabinin et al., 2025b). The authors argue that layer-wise optimizers are designed specifi-
cally for deep learning, where the classical smoothness assumption is known to fail (Zhang et al.,
2020). Instead, they build upon the (L°, L')-smoothness model introduced by Zhang et al. (2020)°
(Assumption 4), a strictly weaker alternative motivated by empirical observations from NLP training
dynamics. Riabinin et al. (2025b) introduce a layer-wise variant (Assumption 8), arguing that het-
erogeneity across network layers requires smoothness constants to vary accordingly. Consistent with
this line of work, we provide convergence guarantees under the layer-wise (L°, L')—smoothness as-
sumption (Theorems 17 and 24). For clarity, the main text treats the case of a generic vector space
S, without delving into the product space formulation (see Section B), in which case the assumption
reduces to a non-Euclidean variant of asymmetric (L°, L')—smoothness from Chen et al. (2023).

Assumption 4. The function f : S — R is (L°, L')—smooth, i.e., there exist L°, L' > 0 such that
IVAX) = VIO, < L+ LHIVFAX)IL) X =Y VXY eS.
Moreover, the functions fj, j € [n], are (Lg,L})—smooth. We define L. .. = Max;e|n] le and

0= L1y 10

Assumption 4 is strictly more general than Assumption 3, as it allows the smoothness constant to
grow with the norm of the gradient, a key property observed in deep learning (Zhang et al., 2020).

?In theoretical results, L could potentially be improved to the arithmetic mean—see Richtdrik et al. (2024).
3The original (L°, L')—smoothness assumption of Zhang et al. (2020) was defined for twice-differentiable
functions via Hessian norms. This notion and our Assumption 4 are closely related—see Chen et al. (2023).
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Deterministic setting. As a warm-up, we first present the convergence guarantees of Algorithm 2—
a deterministic counterpart of Algorithm | using deterministic gradients without momentum (though
stochasticity may still arise from compression). The first theorem addresses the smooth setting.

Theorem 3. Let Assumptions I and 3 hold. Let {X*} "', K > 1, be the iterates of Algorithm 2
(with p = 1) initialized with X° = W°, G = Vf;(X°), j € [n], and run with C* € B(ap),

CJ]»C €B,(ap)and 0 < vk =~ < <2L+4/aD 12 + 66/04?31:4)_1. Then
(f(xO=r
kS E[vsec)] < U5,

Theorem 3 is a special case of the general layer-wise result in Theorem 14. To our knowledge, no
prior work analyzes comparable compressed methods under general non-Euclidean geometry. In the
Euclidean case, our guarantees recover known results (up to constants): without primal compression
(ap = 1), they match the rate of Richtérik et al. (2021, Theorem 1); with primal compression, they
align with the rate of EF21-BC from Fatkhullin et al. (2021, Theorem 21) (though EF21-Muon and
EF21-BC differ algorithmically, and the former does not reduce to the latter in the Euclidean case).

In the generalized smooth setup, we establish convergence without primal compression. However,
as we argue in Section D.1, the s2w communication can still be made efficient through appropriate
norm selection. Indeed, we find that LMOs under certain norms naturally induce compression-like
behavior.

Theorem 4. Let Assumptions 1, 2 and 4 hold and let {X*} ', K > 1, be the iterates of Algo-
rithm 2 (with p = 1) initialized with G?— = Vf;(X°), j € [n], and run with C* = T (the identity
compressor), Cj’-g € B, (ap), and t* = \/%Hfm’ some n > 0. Then,

n Y]
4Cy Z LHf*=f)+CL 3> 44D
k EXP(4TI Cmex) 0 ( Jj=1 7 " j=1 Lj
i E[VAGX]] < Sl ” |
where 8° := [(X°) = f*, O 1= b (T2 ks ana D o= 1 + 30700k,

Theorem 4, a corollary of the layer-wise result in Theorem 17, achieves the same desirable O(1/vK)
rate for expected gradient norms as Theorem 3, but with radii ¢* that are independent of problem-
specific constants. If smoothness constants are known in advance, they can be incorporated into the
choice of 7 to improve the dependence on these constants in the final rate. In the Euclidean case, our
guarantee matches that of |[EF21| under (L°, L!)-smoothness established by Khirirat et al. (2024).

Stochastic setting. We now turn to the convergence guarantees of our practical variant of EF21-
Muon (Algorithms 1 and 3), which incorporates noisy gradients and momentum. We assume access
to a standard stochastic gradient oracles V f;(-; &;), & ~ D; with bounded variance.

Assumption 5. The stochastic gradient estimators V f;(-;&;) : S — S are unbiased and have
bounded variance. That is, B¢, ~p,; [V [;(X;&;)] = Vf;(X) for all X € S and there exists ¢ > 0

such that Be, .p, ||V £;(X; &) — ij(X)H;} <o%forall X € .

Note that the variance bound in Assumption 5 is expressed in terms of the Euclidean norm rather
than ||-|| to facilitate the bias-variance decomposition. Nevertheless, since S is finite-dimensional,
the magnitudes measured in ||-||, can be related to quantities measured in ||-|| via norm equivalence.
That is, there exist p, p > 0 such that p || X|| < [ X]|, < p || X| forall X € S.

As in the deterministic setting, we begin by analyzing the smooth case.

Theorem 5. Let Assumptions 1, 3 and 5 hold. Let {X*}I" ', K > 1, be the iterates of Al-
gorithm 1 initialized with X° = W9, G? = MJQ = V(XY f?), j € [n], and run with
C* € B(ap), CF € By(ap), any B € (0,1], and 0 < A% = v < (2V/C+ 2L)_1, where

C= 2 (L2r2y e 2 G +4) F2 4 1448°2845) F2) Tpen
p2 a?, aZa?, .

£ BV < 443 (G + 13) ot o (4 2 4 128 252
k=0
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where §° := f(X°) — f*.

Theorem 5 is a special case of Theorem 19. Choosing v = (2\@ +2L)_1 and f =

. 0 /2 0 /3 oy 2 \Y4)
min {1, (p‘ZULJ}{) ; (‘;252",’?) , (izig}?) , it guarantees that

K1 9% 4 2 1/2 2 2/3 0 8/3 _2/3 3/a
1 12| 5952 L° 8952 L §%p%c L 6°p* /"L
x 2 E [va(X )H*] =0 (PZQPQDK + ( 7K ) + (ﬁzx/@K) * (W) )

(see Corollary 2). In the absence of stochasticity and momentum (02 = 0, 3 = 1), Algorithm 1
reduces to Algorithm 2 (with p = 1), and the guarantee in Theorem 5 recovers that of Theorem 3, up
to constants (Remark 22). In the Euclidean case without primal compression (p? = p? = ap = 1),
Theorem 5 matches the rate of EF21-SDGM established by Fatkhullin et al. (2023, Theorem 3),
again up to constants (Remark 21). Finally, one may employ compressors C¥ € By(ap) instead of
C* € B(ap), though this introduces an additional dependence on 5 in the constant ¢ (Remark 23).

As in Theorem 4, in the (L%, L')—smooth setup, we set C* = Z.

Theorem 6. Let Assumptions 1, 2, 4 and 5 hold. Let {Xk}kK:_Ol, K > 1, be the iterates of Algo-

rithm 1 initialized with M3 = V f;(X%;€9), GY = C)(V f;(X%;€9)), j € [n], and run withC* = T

(the identity compressor), C']’-C € By(ap), B = YE+1)V2 and 0 < tF =t = 1/(k+1)*/4, where
9 . (K+1)1/? (1-vI-ap)p P

TS mm{ STV BRI Py T—app(Ehe)? W7 L Then

3(f(X0)—1) I AR 16vI=appo " 8pc
kDT T T i) (k4 T AR 7

D 8 8vi—ap 1 n =
2 (et + o) (3 Sia 2 (7 = 1) + 1),

(in E[VAXH] <

Analogously to Theorem 5, Theorem 6 (a corollary of Theorem 24) establishes an O(1/k'/*)
convergence rate, matching state-of-the-art guarantees for SGD-type methods in the non-convex
setting (Cutkosky & Mehta, 2020; Sun et al., 2023). Among the terms with the worst scal-
ing in K, 3(f(XO)*f*)/n(K+1)1/4 is standard and reflects the impact of the initial suboptimality.
8po/ /n(K+1)"/* captures gradient stochasticity, scaling linearly with the standard deviation o, but
decaying with the square root of the number of clients n. The term % Z;.l:l (L})2 ( - fj*) quan-
tifies client heterogeneity and vanishes when local optima /7 coincide with the global minimum f*,
and otherwise scales with the local smoothness constants le-. All compression-driven error terms

vanish when compression is disabled (ap = 1). Finally, in the Euclidean case (p? = 32 = 1), the
rate recovers that of ||[EF21-SDGM]|| from Khirirat et al. (2024, Theorem 2), up to constants.

5 EXPERIMENTS

We present key experimental results below, with additional details and extended experiments avail-
able in Section G.*

Experimental setup. All experiments are conducted on 4 NVIDIA Tesla V100-SXM2-32GB
GPUs or 4 NVIDIA A100-SXM4-80GB in a Distributed Data Parallel (DDP) setup. The dataset
is evenly partitioned across workers, with one worker node acting as the master, aggregating com-
pressed updates from the others. Training and evaluation are implemented in PyTorch,’ extending
open-source codebases (Pethick et al., 2025a; Riabinin et al., 2025a; Karpathy, 2023).

We train a NanoGPT model (Karpathy, 2023) with 124M parameters on the FineWeb1 0B dataset
(Penedo et al., 2024), using input sequences of length 1024 and a batch size of 256. Optimization
is performed with EF21-Muon, using spectral norm LMOs for hidden layers and ¢, norm LMOs
for embedding and output layers (which coincide due to weight sharing), following the approach
of Pethick et al. (2025b). For spectral norm LMOs, inexact updates are computed with 5 New-
ton—Schulz iterations (Kovarik, 1970; Bjorck & Bowie, 1971), as in Jordan et al. (2024).

*Code for experiments is available here.
SPyTorch Documentation: https://pytorch.org/docs/stable/index.html


https://anonymous.4open.science/r/EF21_MUON-BB5B/README.md
https://pytorch.org/docs/stable/index.html

Under review as a conference paper at ICLR 2026

w
©

— B

Natural
—— Rank10%
Rank15%
Rank15% + Natural
—-~ Topl5%
Top15% + Natural

Test Loss
w w w w
I o . ®

w
S

w
W

w
¥

1.08 2.0 3.0

Tokens

4.0

®Rank10%
@®Topl5% + Natural

@®Topl5%

®Rank15% + Natural

@®Top20%
®Rank15%

Natural
eID

2K K 6K 8K 10K
Communication Cost

12K 14K

Figure 2: Trade-off between token
efficiency and communication cost
for different compression setups at
a target test loss of 3.31.

Results.

3.9

3.8

3.7

Test Loss
w
o

w
o

34

Left: Test
loss vs. # of tokens
processed.  Right: #
of bytes sent from each
worker to the server
normalized by model
size to reach test loss
3.31. Rank/TopX% =
Rank/TopK compressor
with sparsification level
X%; ID = no compres-
sion.

Figure 1:

—

Natural
—— Rank10%

Rank15%

Rank15% + Natural
—-— Topl5%

Top15% + Natural
Loss Threshold 3.31

0K 2K 4K 6K 8K
Communication Cost

10K 12K 14K

Following common practice in communication compression
literature, we assume that broadcasting is free and focus on
w2s communication. Thus, the server-side compressor is
fixed to Z, while worker compressors vary among Topi,
Rank K (Safaryan et al., 2021), Natural compressor (Horvath
et al., 2022) and combinations thereof: TopK + Natural com-
pressor of selected elements, and RankK + Natural com-
pressor applied to all components of the low rank decom-
position. These are tested under multiple compression levels
and compared against an uncompressed baseline (i.e., stan-
dard Scion/Gluon; see Section 3). Learning rates are tuned
per optimizer and experimental setting, initialized from the
values in the Gluon repository (Riabinin et al., 2025a) (see
Section G.3). We adopt the same learning rate scheduler
as Karpathy (2023) and fix the momentum parameter to 0.9.
Model and optimizer hyperparameters are summarized in Ta-
bles 3 and 4, respectively.

For RankK and TopK compressors, we evaluate multiple compression levels (in plots,

Rank/TopX % denotes a Rank/TopK compressor with compression level X %). We report experi-
mental results for a 5B-token training budget (> 40x model size) in Figure 1 (left), and to reach a
strong loss threshold of 3.31 in Figures 1 (right) and 2.

Table 2: Communication cost per round
(in bytes), normalized relative to the

identity compressor.

Compressor Relative Cost
ID 1.0000
Natural 0.5000
Rank20% 0.2687
Rank15% 0.2019
Rank15% + Natural 0.1010
Rank10% 0.1335
Rank10% + Natural 0.0667
Rank5% 0.0667
Top20% 0.3625
Top15% 0.2718
Top15% + Natural 0.1969
Top10% 0.1812
Top10% + Natural 0.1312
Top5% 0.0906

The number of tokens required to reach a target loss de-
pends on the compressor. Figure 2 provides a compari-
son of the numbers of tokens used in the training run to
reach a strong test loss threshold of 3.31 plotted against
the communication cost (reported as the number of bits
transmitted from each worker to the server normalized by
the model size), plotted against the w2s communication
cost. Shorter 2.5B-token runs are reported in Section G.5
to assess performance under limited training budgets.

In Figure 1, we plot test loss vs. tokens processed, as well
as the w2s communication cost required to reach the 3.31
loss threshold. For each compressor, we report its most
competitive configuration (see Section G.4 for a detailed
ablation). As expected, compression slows convergence
in terms of number of training steps, but substantially re-
duces per-step communication cost (Table 2). Overall,
this yields significant communication savings—up to
7x for Rank15% + Natural compressor, and roughly 4 x
for Top15% + Natural compressor—relative to the un-
compressed baseline.
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A RELATED WORK

A.1 COMPRESSION

The ML community has developed two dominant strategies to address the communication bottle-
neck. The first is compression, implemented through techniques such as sparsification or quantiza-
tion (Seide et al., 2014; Alistarh et al., 2017; Beznosikov et al., 2020; Szlendak et al., 2021; Horvath
et al., 2022), which reduce communication costs by transmitting lossy representations of dense up-
dates. Compression techniques have been extensively studied in the Euclidean regime. The other
approach is local training (Mangasarian, 1995; Povey et al., 2014; McMabhan et al., 2017), which
lowers communication frequency by synchronizing with the server only periodically, after several
local updates on the clients. These two approaches can be combined, yielding additional provable
benefits by leveraging both mechanisms (Condat et al., 2024). In this work, we focus on compres-
sion. Local training introduces a distinct set of challenges and trade-offs, and is orthogonal to our
approach.

There are two primary compression objectives in distributed optimization: workers-to-server (w2s)
(= uplink) and server-to-workers (s2w) (= downlink) communication. A large body of prior work
focuses exclusively on w2s compression, assuming that broadcasting from the server to the workers
is either free or negligible (Gorbunov et al., 2021; Szlendak et al., 2021; Tyurin & Richtérik, 2023a;
Pirau et al., 2024). This assumption is partly due to analytical convenience, but can also be justified
in settings where the server has significantly higher bandwidth, greater computational resources,
or when the network topology favors fast downlink speeds (Kairouz et al., 2021). However, in
many communication environments, this asymmetry does not hold. For instance, in 4G LTE and
5G networks, the upload and download speeds can be comparable, with the ratio between w2s and
s2w bandwidths bounded within an order of magnitude (Huang et al., 2012; Narayanan et al., 2021).
In such cases, s2w communication costs become non-negligible, and optimizing for both directions
is essential for practical efficiency (Zheng et al., 2019; Liu et al., 2020; Philippenko & Dieuleveut,
2021; Fatkhullin et al., 2021; Gruntkowska et al., 2023; Tyurin & Richtarik, 2023b; Gruntkowska
et al., 2024).

A.2 ERROR FEEDBACK

To address the communication bottleneck, a natural approach is to apply biased compressors to the
transmitted gradients. For the standard (Euclidean) GD, which iterates

1 n
XEH = XP AV = XE =P | =Y VXY |
j=1
where v¥ > 0 is the stepsize, this would yield the update rule
1 n
j=1

Sadly, this “enhancement” can result in exponential divergence, even in simplest setting of mini-
mizing the average of three strongly convex quadratic functions (Beznosikov et al., 2020, Example
1). Empirical evidence of such instability appeared much earlier, prompting Seide et al. (2014) to
propose a remedy in the form of an error feedback (EF) mechanism, which we refer to as EF14.

Initial theoretical insights into EF14 were established in the simpler single-node setting (Stich et al.,
2018; Alistarh et al., 2018). The method was subsequently analyzed in the convex case by Karim-
ireddy et al. (2019); Beznosikov et al. (2020); Gorbunov et al. (2020). Next, Qian et al. (2021)
showed that error feedback methods can be combined with Nesterov-style acceleration (Nesterov,
2003), though at the cost of incorporating additional unbiased compression, leading to increased
communication overhead per iteration. These analyses were later extended to the nonconvex regime
by Stich & Karimireddy (2019). This motivated a series of extensions combining error feedback
with additional algorithmic components, such as bidirectional compression (Tang et al., 2019), de-
centralized training protocols (Koloskova et al., 2019), and the incorporation of momentum either on
the client (Zheng et al., 2019) or server side (Xie et al., 2020). While these works advanced the state
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of the art, their guarantees relied on strong regularity assumptions, such as bounded gradients (BG)
or bounded gradient similarity (BGS), which may be difficult to justify in practical deep learning
scenarios.

The limitations of EF14 and its successors were partially overcome by Richtdrik et al. (2021), who
proposed a refined variant termed EF21. EF21 eliminates the need for strong assumptions such as
BG and BGS, relying only on standard assumptions (smoothness of the local functions f; and the
existence of a global lower bound on f), while improving the iteration complexity to the desirable
O(1/vK) in the deterministic setting. Building on this foundation, a series of extensions and gen-
eralizations followed. These include adaptations to partial participation, variance-reduction, proxi-
mal setting, and bidirectional compression (Fatkhullin et al., 2021), a generalization from contrac-
tive to three-point compressors (Richtarik et al., 2022), support for adaptive compression schemes
(Makarenko et al., 2022), and EF21-P—a modification of EF21 from gradient compression to model
compression (Gruntkowska et al., 2023). Further developments used EF21 in the design of Byzan-
tine robust methods (Rammal et al., 2024), applied it to Hessian communication (Islamov et al.,
2023), and extended the theoretical analysis to the (L°, L')-smooth regime (Khirirat et al., 2024).

With this historical overview in place, we now narrow our focus to two developments in the error
feedback literature that are particularly relevant to this work: EF21 (Richtarik et al., 2021) and
EF21-P (Gruntkowska et al., 2023).

EF21 is a method for w2s communication compression. It aims to solve problem (1) via the iterative
process

Xk-‘rl _ Xk _ ")/Gk,
Gy =G+ CH(V (XM = GE),

1 n
E+1 _ L k+1
G = =y art,
J=1

where v > 0 is the stepsize and C;€ € By(ap) are independent contractive compressors. In the
EF21 algorithm, each client j keeps track of a gradient estimator Gf. At each iteration, the clients

compute their local gradient V f;(X k+1), subtract the stored estimator G;? , and then compresses
this difference using a biased compression operator. The compressed update is sent to the server,
which aggregates updates from all clients and uses them to update the global model. Concurrently,
each client updates its error feedback vector by using the same compressed residual. Importantly,
EF21 compresses only the uplink communication (i.e., vectors sent from clients to the server), while
downlink communication remains uncompressed. That is, the global model X k+1 i transmitted in
full precision from the server to all clients, under the assumption that downlink communication is
not a bottleneck.

A complementary approach is proposed in the follow-up work of Gruntkowska et al. (2023), which
introduces a primal variant of EF21, referred to as EF21-P. Unlike EF21, which targets uplink com-
pression (from workers to server), EF21-P is explicitly designed for s2w compression. The method
proceeds via the iterative scheme

1 n
XA k) = xb - L S,
Jj=1

Wk+l _ Wk) 4 Ck(Xk+1 _ Wk),

where > 0 is the stepsize and C* € By (ap) are independent contractive compressors. Analogous
to EF21, the EF21-P method employs error feedback to compensate for the distortion introduced by
compression. However, rather than correcting gradient estimates, EF21-P maintains and updates an
estimate of the model parameters, W*. The server computes the update X**!, but broadcasts only
a compressed difference C* (X 1 — W*) to the clients.

In its basic form, EF21-P assumes dense uplink communication—i.e., the clients transmit full gra-
dients Vf;(WF) to the server. Nonetheless, EF21-P can be naturally extended to bidirectional
compression by integrating it with an uplink compression mechanism, enabling full communication
efficiency (Gruntkowska et al., 2023).
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A.3 GENERALIZED SMOOTHNESS

A standard assumption in the convergence analysis of gradient-based methods is Lipschitz smooth-
ness of the gradient (Assumption 3). However, many modern learning problems—especially in deep
learning—violate this assumption. Empirical evidence has shown non-smoothness in a variety of
architectures and tasks, including LSTM language modeling, image classification with ResNet20
(Zhang et al., 2020), and transformer models (Crawshaw et al., 2022). These observations motivated
the search for alternative smoothness models that better reflect the behavior of practical objectives.

One such model is (L°, L!)-smoothness, introduced by Zhang et al. (2020) for twice continuously
differentiable functions in the Euclidean setting. The authors define a function f : RY — R to be
(L°, L')-smooth if

[V2F(X)|, < LO+ LY |VF(X), VX eR™

This condition generalizes standard Lipschitz smoothness and has been shown empirically to capture
deep learning loss landscapes more faithfully than the classical model (Zhang et al., 2020; Craw-
shaw et al., 2022). Subsequent works extended the above condition beyond the twice differentiable
case (Li et al., 2023; Chen et al., 2023). In particular, Chen et al. (2023) introduced asymmet-
ric and symmetric variants of (L, L')—smoothness, where the asymmetric form (a special case of
Assumption 4 restricted to Euclidean norms) is given by

IVFX) = VY )lly < (L0 + LHIVAX)II) IX = Y], VX, Y eR™

This framework has since been used in the non-Euclidean setting (Pethick et al., 2025c¢) and
adapted to the layer-wise structure of deep networks by Riabinin et al. (2025b), who introduced
non-Euclidean layer-wise (L°, L')—smoothness assumption (Assumption 8). This layer-aware view
aligns naturally with LMO-based optimizers that operate on individual parameter groups.

The idea of accounting for the heterogeneous structure of parameters is not unique to the work of
Riabinin et al. (2025b). Anisotropic smoothness conditions, where smoothness constants can vary
across coordinates or parameter blocks, have been studied extensively, for example in the context of
coordinate descent methods (Nesterov, 2012; Richtarik & Takac, 2014; Nutini et al., 2017). Variants
of coordinate-wise or block-wise (generalized) smoothness assumptions have also been used to an-
alyze algorithms such as signSGD (Bernstein et al., 2018; Crawshaw et al., 2022), AdaGrad (Jiang
et al., 2024; Liu et al., 2024), and Adam (Xie et al., 2024). These works collectively reinforce the
need for smoothness models that reflect the anisotropic geometry of modern neural networks.
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B LAYER-WISE SETUP

So far, we have been operating in an abstract vector space S, without assuming any particular struc-
ture. This is the standard approach in the vast majority of the theoretical optimization literature
in machine learning, where model parameters are typically flattened into vectors in R?. However,
modern deep networks are inherently structured objects, with a clear layer-wise organization. While
treating parameters as flat vectors can still yield meaningful convergence guarantees, explicitly mod-
eling this layer-wise structure allows us to formulate assumptions that more accurately reflect the
underlying geometry of the model Nesterov (2012); Richtarik & Takac (2014); Crawshaw et al.
(2022); Jiang et al. (2024). This, in turn, can lead to improved theoretical results (Liu et al., 2024;
Riabinin et al., 2025b).

A further motivation for adopting the layer-wise perspective is that the algorithms that inspired this
work—Muon, Scion, and Gluon—are themselves layer-wise by design. Rather than operating on the
entire parameter vector, they apply separate LMO updates to each layer or building block indepen-
dently. This modular treatment is one of the main reasons for their strong empirical performance.

With this motivation in mind, we now turn to solving the optimization problem (1) in a setting where
the parameter vector X € S represents a collection of matrices X; € S; := R™i*™ corresponding
to the trainable parameters of each layer ¢ € {1,...,p} in a neural network. For notational con-
venience, we write X = [X7,...,X,] and Vf(X) = [V1f(X),..., V,f(X)], where V, f(X) is
the gradient component corresponding to the ith layer. Accordingly, S is the d-dimensional product
space

S=QI_,S=85® 88,
where d := >_Y_, m;n;. Each component space S; is equipped with the trace inner product, defied
as (X;,Y;) () := tr(X,;'Y;) for X;,Y; € S;, and an arbitrary norm ||-||(i), not necessarily induced by
this inner product. We use ||-[|;, to denote the dual norm associated with ||-[| ;) Gi.e., || X;[[(5)« :=
SUP| 7|, <1 (Xi, Z¢>(i) for any X; € S;). Furthermore, we use p;»Pi > 0 to denote the norm
equivalence constants such that

o Xl < IXill, < 7l Xl VX € S,
(or, equivalently, p. | X, < [ Xill ). < 71 1X:]1,):

Remark 7. In the case of Muon, the norms ||-|| ;) are taken to be the spectral norms, i.e.,

Il (i) =
II-|5_ - Since for any matrix X; of rank at most r, we have

1Xillao < 1Xillp < VPl Xillposa s
in this setting, p. = 1 and p; = /.
Given the block structure of X across layers, the smoothness assumptions in Assumption 3 can be
made more precise by assigning separate constants to each layer.
Assumption 6 (Layer-wise smoothness). The function f : S + R is layer-wise L°—smooth with
constants L° := (LY, ..., L)) e RY, ie,
IVif (X) = Vif V)l sye < L2 1X5 = Yill )

foralli=1,...,pandall X = [X1,..., X, €S, Y =[1,...,Y,] €S
Assumption 7 (Local layer-wise smoothness). The functions f; : S — R, j € [n], are layer-wise

0 : 0._ (70 0 P o
L;—smooth with constants Lj := (L1,j: ce prj) e R, ie,

IV05(X) = Vs (), < 22, 1 — Vil
florailz' =01,.2..,pandallX = [X1,..,X,] €S Y = [V1,...,Y,] €S. We define (LY)? :=
w21 (L )™

We invoke Assumptions 6 and 7 in Appendices E.3.1 and E.4.1 to extend Theorems 3 and 5 to the
more general setting.
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Smoothness is the standard assumption used in virtually all convergence results for Muon and Scion
(Kovalev, 2025; Pethick et al., 2025b; Li & Hong, 2025) (except for the recent work on Gluon
(Riabinin et al., 2025b)). However, as discussed in Section 4 and Section A.3, this assumption
often fails to hold in modern deep learning settings. To address this, we adopt a more flexible and
expressive condition: the layer-wise (L%, L')-smoothness assumption (Riabinin et al., 2025b).
Assumption 8 (Layer-wise (L°, L)-smoothness). The function f : S — R is layer-wise (L°, L')—
smooth with constants L° := (LY,... L)) € R} and L' := (Li,...,L,) € RY, i.e,

IV (X) = Vif (V) e < (£ + ZHIVaF (Ol ) 1 = Vil
foralli=1,...,pandall X = [X1,...,Xp] €S, Y =[1,...,Y,] €S

Since, unlike Gluon, we operate in the distributed setting, we will also need an analogous assumption
on the local functions f;.

Assumption 9 (Local layer-wise (L%, L')—smoothness). The functions f;, j € [n], are layer-wise

071 ; 0._ (70 0 P 1.2 (11 1 P
(Lj,Lj)—smooth with constants L; == (L3 ;,...,L, ;) € R and L; == (Ly ;,...,L, ;) € R,
ie.,

IV85(X) = Vs (g < (L0, + L, 1985 . ) 1 = ¥il
foralli=1,...,pandall X =[Xq,...,X,| €S, Y =[Y1,...,Y,] €S.

For O € {0,1}, we define LY, ; = maxjep LY, LY. = maxjep) LY, and LY :=
1 Eﬁ 7o
n j=1"1,j5"

Riabinin et al. (2025b) present empirical evidence showing that this more flexible, layer-wise ap-
proach is essential for accurately modeling the network’s underlying structure. They demonstrate
that the layer-wise (L, L' )-smoothness condition approximately holds along the training trajectory
of Gluon in experiments on the NanoGPT language modeling task. Motivated by these findings, in
Appendices E.3.2 and E.4.2, we provide an analysis within this generalized framework, offering a
full generalization of Gluon fo bidirectional compression.

In the stochastic setting, we will also require a layer-wise analogue of Assumption 5.

Assumption 10. The stochastic gradient estimators V f;(-;€;) : S — S are unbiased and have
bounded variance. That is, E¢,p, [V f;(X;&;)] = Vf;j(X) forall X € S and there exist o; > 0
such that ‘

Eg,, [[Vifi(X:6) = Vili(03] <0?, VX €S, i=1,....p.

We permit layer-dependent variance parameters o2, motivated by empirical evidence that variance is
not uniform across layers. For example, Glentis et al. (2025) observe that, during training of LLaMA
130M with SGD and column-wise normalization (i.e., Gluon using the ||-||,_,, norm), the final and
embedding layers display significantly higher variance.

B.1 Muon, Scion AND Gluon

Muon, introduced by Jordan et al. (2024), is an optimizer for the hidden layers of neural networks
(the first and last layers are trained with AdamW). Unlike traditional element-wise gradient methods,
it updates each weight matrix as a whole. Given a layer X; and the corresponding (stochastic)
gradient Gi;, Muon selects an update that maximizes the alignment with the gradient to reduce loss,
while constraining the update’s size to avoid excessive model perturbation. This is formulated as a
constrained optimization problem over the spectral norm ball:

arg min <GL,AXL> s.t. ||AX1H2_>2 <t 5)

i

where the radius ¢; > 0 plays a role similar to a stepsize. The optimal update AX; is obtained by
orthogonalizing G via its singular value decomposition G; = U;%; VT, leading to

AX; = —t;U V"
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This yields the basic update
Xt = XF 4+ AXF = XF—thUF(vE)T. (6)

In practice, computing the SVD exactly at every step is expensive and not GPU-friendly. Muon
instead uses Newton—Schulz iterations (Kovarik, 1970; Bjorck & Bowie, 1971) to approximate the
orthogonalization. Combined with momentum, the practical update is

MF =1 - g)MF + B,GE, X = XF — tFNewtonSchulz(M}),
where j3; € (0, 1] is the momentum parameter and MF is the momentum-averaged gradient.

While Newton—Schulz iterations and momentum are crucial for practical efficiency, the essence of
Muon lies in solving (5)-that is, computing the linear minimization oracle (LMO) over the spectral
norm ball. Recall that LMOpx 1) (G) := argmingcp(x 1) (G, Z). Then

AX; = argmin (G, 7Z;) = LMOgz-2(q ;) (Gi)
Z;€B272(0,t;) ¢

where BZ72(0,t;) := {Z; € Si : || Zi||,_., < t;} is the spectral norm ball of radius ¢; around 0.
Thus, the update (6) can equivalently be written as

X = XF + LMOgz-2 (0 1 (GF) - ”

where G¥ may be replaced with a momentum term.

Crucially, nothing in this formulation ties us to the spectral norm. The same update structure can
be defined over any norm ball, opening the door to an entire family of optimizers whose proper-
ties depend on the underlying geometry. This insight has led to several Muon-inspired methods
with provable convergence guarantees (Pethick et al., 2025b; Kovalev, 2025; Riabinin et al., 2025b).
Scion (Pethick et al., 2025b) removes the restriction to matrix-shaped layers by applying LMO-based
updates to all layers, pairing the spectral norm for hidden layers with the ||-||,_, ., norm elsewhere.
Gluon (Riabinin et al., 2025b) expands the view even further: it provides a general convergence anal-
ysis for LMO updates over arbitrary norm balls, supported by a layer-wise (L°, L')-—smoothness
assumption that captures the heterogeneity of deep learning loss landscapes more accurately than
standard smoothness.

B.2 LAYER-WISE EF21-Muon

The simplified EF21-Muon in Algorithm 1, analyzed in Section 4, omits the layer-wise treatment
introduced above. The full structured variant is given in Algorithm 3. Its deterministic counterpart
is formalized in Algorithm 2, extending the simplified version studied in Section 4.

Both Algorithms 2 and 3 operate on a per-layer basis. We now briefly describe their struc-
ture. For each layer i, the parameters are updated via X' = LMOy xt %) (GF) (equiva-
lently, XF ™! = XF — F (Gf)ﬁ, where v = t*/|c* | —see Section C). Next, the algorithms
perform the server-to-workers (s2w) compression, following a technique inspired by EF21-P (Grun-
tkowska et al., 2023). The resulting compressed messages S = CF(X "' — 177f) are sent to
the workers. Each worker then updates the model shift and uses the resulting model estimate
Wf“ to compute the local (stochastic) gradient. This gradient is then used (either directly or
within a momentum term) to form the compressed message H,ATI This part of the algorithm
follows the workers-to-server (w2s) compression strategy of EF21 (Richtarik et al., 2021). The
messages Hfjl are sent back to the server, which updates the layer-wise gradient estimators via

k+1 _ 1 k+1 _ ~k 1N\ k+1 : ; :
G =2 ijl G =G+ ijl R;7 . This process is repeated until convergence.
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Algorithm 2 Deterministic EF21-Muon

1: Parameters: radii t§ > 0/ stepsizes ~/'; initial iterate X% = [X},..., X0] € S (stored on the

server); initial iterate shift W9 = X0 (stored on the server and the workers); initial gradient

estimators G9 = [GY ;,..., G} ;] = [V1f;(X"),...,V,f;(X°)] € S (stored on the workers),

0_ 15" 0 (ctorr cerver)- k. k
G" = ijl G (stored on the server); worker compressors C;'; server compressors C

2: fork=0,1,...,K —1do
3: fori=1,2,...,pdo
4: Xf-i_l = LMOB(Xf,tf) (Gf) = Xf — ’)/f (Gf)ﬁ Take LMO-type step
5: Sg“ = CII (X,A+l — "'1”7") Compress shifted model on the server
6: UY[,A‘+1 = I'I"Y,"A‘ —+ S/l Update model shift
7: Broadcast S* =[S}, ..., S¥] to all workers
8: end for
9: for j = 1,...,nin parallel do
10: fori=1,2,...,pdo
11: Wik+1 = Wik + Sf: Update model shift
12: Rijl = C,AJ (V,[/ (”"Y]“Jrl) — (;f'/) Compress shifted gradient
13: =Gk + R
14: end for
15: Broadcast Rf“ = [Rﬁfl o R;f]l} to the server

16: end for
17: fori=1,...,pdo

18: Gf—i_l = % Z?:l ij_l = Gf + % Z?:l Rf)j_l Compute gradient estimator
19: end for
20: end for

C LMO IN MANY GUISES

As outlined in Section 2, the update rule (2)
XM = X* 4+ t*LMOg(o,1) (G*)

admits several equivalent reformulations.

LMO viewpoint. The original update (2) is the solution of a simple linear minimization problem
over a norm ball

kL — LMOpg(xr i) (G¥) = argmin <Gk,X>,
XeB(Xk th)

where B(X,t) :={Z €S : ||Z — X|| < t}. The LMO satisfies
(G,LMOg(x 1) (G)) = —t |G|, -

Sharp operator viewpoint. An equivalent perspective is obtained via the sharp operators (Nes-

terov, 2012; Kelner et al., 2014). Define the function ¢(X) = 3 | X||?. Its Fenchel conjugate is

given by ¢*(G) = supxes {(G. X) — ¢(X)} = 3 | X||?, and its subdifferential d¢* coincides
with the sharp operator:
9¢*(G) = {X eS:(GX) =G X, G, = [IXI}
= —[IGI,LMOg(,1) (G)
= G¥,
where G := argmax y s {(G, X) — & || X||*} is the sharp operator. Therefore,
ik
IG*1I,

XM= X* 4 " LMOg o 1) (GF) = X* ("),
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Algorithm 3 EF21-Muon

1: Parameters: radii tf > 0/ stepsizes vf; momentum parameters 3; € (0, 1]; initial iterate X 0—
[X?,...,X})] €S (stored on the server); initial iterate shift W° = X° (stored on the server and

the workers); initial gradient estimators Gg = [GY Jreses Gg j] € S (stored on the workers);
0 — 15 (0 (eior 0 _ [pg0 0
G° = 575, Gy (stored on the server); initial momentum M} = [My,,...., M) ;] € S

(stored on the workers); worker compressors C¥ _; server compressors C¥

2 fork=0,1,..., K — 1do o

3 fori=1,2,...,pdo
4 Xik+1 = LMOB(Xk,t’?) (Gf) = Xlk — ’sz (G,’f)ﬁ Take LMO-type step
5: SZ" = C,]l (/Y?)+l — l""i]“) Compress shifted model on the server
6 I’I'Y;“+l = I'I"}Al + S/A Update model shift
7 Broadcast S* = [ST, ..., Sk] to all workers
8: end for
9: for j = 1,...,n in parallel do
10: fori=1,2,...,pdo
11: Wik+1 = Wik —|— Sf Update model shift
12: M,L’fj_l = (1 — Bi)Mi]fj + ,Bivifj(Wk—i_l; ff—i_l) Compute momentum
13: Rf‘jr] = CIA j (J[/AIAI — ;fl) Compress shifted gradient
14: Gt =G+ RIT!
15: end for 7 7 7
16: Broadcast R]/T’H = [R]lfl e ]?fﬁ]l} to the server

17: end for
18: fori=1,2,...,pdo

19: G,IL-€+1 = % Z?:l Gi;—l = Gi] + % Z?:l Rij_l Compute gradient estimator
20: end for
21: end for

i.e., a normalized steepest descent step with effective stepsize v* :=t"/||c*|| .

Two properties of the sharp operator used later are
2
(X X5) = []F||7s X, = [l
Subdifferential ~ viewpoint. The negative LMO direction —LMOg(g 1) (A) =

argmax z = (4,7) is a subdifferential of the dual norm 9 |||, (4), so (2) can also be
written as

XM = X¥ +#*LMOg(o,1) (G*) = X* — tFH*
for some H* € 9|-||, (G*), where by the definition of subdifferential, for any G* # 0,
(HY.G%) = ||&*], . |lE"]| =1 ®
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D NON-EUCLIDEAN CONTRACTIVE COMPRESSORS

Recall from Definition 1 that a mapping C : S — S is called a contractive compression operator
with parameter « € (0, 1] if, forall X € S,

E[lle(x) - XI°] < (1 - ) IX*. ©)

When ||-|| is the Euclidean norm, a wide range of such compressors is available in the literature
(Seide et al., 2014; Alistarh et al., 2017; Beznosikov et al., 2020; Richtarik et al., 2021; Szlendak
et al., 2021; Horvith et al., 2022). However, when ||-|| is a non-Euclidean norm, Euclidean con-
tractivity does not in general imply contractivity with respect to ||-||. Indeed, suppose that C is
contractive with respect to the Euclidean norm. Then, using norm equivalence, for any X € S,

PE[lle(X) - XIP| <E[lleX) - XI3) < (1 - @) IX ] < 2°(1 - ) | X
Rearranging gives
a
7

and hence C is not contractive with respect to the norm ||-|| unless o > 1 — £*/52. Consequently,
dedicated compressors are needed when working outside the Euclidean setting.

E|le(x) - XI°] < &1 - a) X7,

In this section, we first present two simple examples of operators that satisfy condition (9) for any
norm. These are, however, in general not very practical choices. We then turn to more useful
examples of non-Euclidean compressors for several matrix norms of interest.

A simple deterministic example of a contractive compressor is the scaling or damping operator.

Definition 8 (Deterministic Damping). For any X € S, the deterministic damping operator with
parameter v € (0, 2) is defined as

C(X) =~X.
For this operator,
E[lle(x) - xI°] = @ = |1xI7,
and thus C satisfies Definition 1 with o = 1 — (1 — 7)? for any v € (0, 2).

Despite meeting the definition, the deterministic damping operator is of little use in communication-
constrained optimization: it merely scales the entire input vector by a constant, without reducing
the amount of data to be transmitted. The fact that it formally satisfies the contractive compressor
definition is more of a theoretical curiosity. It highlights that the definition captures a broader math-
ematical property that does not always align with the practical engineering goal of reducing data
transmission.

The random dropout operator (whose scaled, unbiased variant appears in the literature as the
Bernoulli compressor (Islamov et al., 2021)) is a simple yet more practically relevant example of a
contractive compressor that can reduce communication cost.

Definition 9 (Random Dropout). For any X € S, the random dropout operator with a probability
parameter p € (0, 1] is defined as

X with probability p,
C(X)=
(X) {0 with probability 1 — p.
Then
E|le(x) - XI°| = (1= p) IX*,
and hence C € B(p).

The examples of deterministic damping and random dropout apply to any valid norm defined on the
space S. However, one can also design compressors directly for the norm of interest. A natural
example for both the spectral norm ||-||,_, ., and the nuclear norm ||-||, is based on truncated SVD.
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Definition 10 (TopK SVD compressor). Let X = UXV T € R™*™ be a matrix of rank r, where
3 = diag(oy, . .., 0,) contains the singular values o; > --- > g, > 0. For K < r, the TopK SVD
compressor is defined by

C(X):=UxgV',
where Y. = diag(oy,...,0k,0,...,0) retains the K largest singular values, setting the rest to
Zero.

The TopK SVD compressor can be used in conjunction with several commonly used matrix norms:

* Spectral norm. The spectral norm, frequently used in LMO-based optimization methods,
is defined by || X||,_,, = o1. Under this norm, the compression residual is

1 = CXllo0 = or+1-
This yields a valid contractive compressor (unless 0% , ; = o7), and Definition 1 is satisfied
with parameter o = 1 — 9%k 1/02.

* Nuclear norm. The nuclear norm, dual to the spectral norm, is given by || X ||, = >_._, 0;.
In this case,

IX —cX)ll.= > o

i=K+1

r N\ 2
and Definition 1 holds with o = 1 — (Zﬂiﬂ”) .

i=17i
* Frobenius norm. The Euclidean norm of the matrix can be expressed as || X| =

V/>i_, 0. Then,

X =C(X)p =

2
and so Definition 1 is satisfied with oo = 1 — E‘eriﬂgb

i=1%

In fact, the Top X' SVD compressor is naturally well-suited for a larger family of Schatten p-norm,
defined in terms of the singular values o; of a matrix X by

r 1/p
X5, = (zaf)
=1

Important special cases include the nuclear norm (or trace norm) for p = 1 (i.e., | X|[, = [ X||g,)
the Frobenius norm for p = 2 (ie., [[X||p = [|X|g,), and the spectral norm for p = oo (i.e.,
[ X1ly_o = | X||g_)- In general, it is easy to show that the Top/X’ SVD compressor satisfies Defini-
tion 1 with respect to the ||-[| g norm with

w=1— <Z;_K+1 Uip>2/p
i1 0f
Remark 11. For large-scale matrices, computing the exact SVD may be computationally pro-

hibitive. In such cases, one may resort to approximate methods to obtain a stochastic compressor C
satisfying Definition I in expectation:

E {HCN(X) - Xﬂ <(1—a+9d) |X|?,

where § > 0 quantifies the approximation error and can be made arbitrarily small.

Remark 12. The expressions for o above depend on the singular values of X, and hence o is gen-
erally matrix-dependent rather than a uniform constant. For theoretical guarantees, one may take
the minimum o observed over a training run. Alternatively, our framework admits a straightforward
extension to iteration-dependent compression parameters.
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Beyond Schatten norms, similar ideas can be applied to other structured non-Euclidean norms.
Throughout, we let X;., X.;, and X;; denote the ith row, jth column, and (i,7)th entry of the
matrix X € R™*", respectively.

Definition 13 (Column-wise Top, K compressor). The column-wise Top, K compressor keeps the
K columns with largest £, norm, setting the rest to zero:

X.i, j€lk
X)) — E )
C(X):; {O, otherwise,

where Zx indexes the K columns with the largest £, norm.

This operator is naturally suited for the mixed ¢, ; norms (p, g > 1), defined as

" " a/p\ /4 " 1/q
= (3 () )= (i)
j=1 \i=1 j=1
where ||-||, is the standard (vector) £, norm. The compression residual satisfies
1/a
J¢Tr

and hence Definition | holds with
2/q
(S XN
Zj:l ||X:j||g
This general formulation recovers, for example, the /5 ; norm (commonly used in robust data anal-

ysis (Nie et al., 2010)) and the ¢5 » norm (Frobenius norm).

D.1 COMPRESSION VIA NORM SELECTION

A useful perspective on communication reduction in distributed optimization emerges from the con-
nection between compression operators and mappings such as the sharp operator and the LMO.
Recall that for any norm |-|| with dual norm ||-||,, the sharp operator of G € R™*™ is defined as

1
G = arg max {(G,X> -5 IIXQ} :
XGR"LX" 2

Since [|G||, LMOg(o,1) (G) = —G*, one can view G* as the LMO over the unit ball of |-||, scaled
by |G,

For many norms, G¥ naturally acts as a structured compressor. Below, we list several such examples.

* Nuclear norm. For the nuclear norm (with dual norm ||-||,_, ,, the operator/spectral norm),
the sharp operator is
Gt =0y ulvir ,

where o1, u1, and vy are the leading singular value and singular vectors of G, yielding a
Rankl compression via truncated SVD. This operator satisfies Definition 1 with parameter
a = 1/r, where r is the rank of G.

* Element-wise ¢/, norm. For the norm [ X||, = >7i%, 377, [X;| (with dual | X||, =
), the sharp operator is

G* = Topl(G) = |G, By,

max;, ‘X”

where (7%, j*) = argmax; ; |Gy;| and E(;«;+) is the matrix with a 1 in entry (i*, j*) and
zeros elsewhere. Thus, the sharp operator associated with the ¢; norm corresponds to 7Topl
sparsification, which satisfies Definition 1 with o« = 1/mn.
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* Max row sum norm. For || X||

n .
cosoo = MaXi<i<m )i | Xij|, the dual norm is

X1} o = E;‘zl | X5l - and the sharp operator yields

GF = | 2 1G]l | [sign(Top1(Ga), ..., Topl(Gin))]

i.e., it keeps a single non-zero entry in each column of G, with all of these entries equal
across columns.

These are only some examples of the compression capabilities of sharp operators. They open the
door to compressed server-to-worker communication even in the absence of primal compression,
as briefly mentioned in Section 4. Indeed, instead of broadcasting the compressed messages 5" in
Algorithms 1 to 3, the server can compute G*, transmit this naturally compressed object, and let the
workers perform the model update locally. In doing so, we preserve communication efficiency while
avoiding the introduction of additional primal compressors.
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E CONVERGENCE ANALYSIS

E.1 DESCENT LEMMAS

We provide two descent lemmas corresponding to the two smoothness regimes. The first applies to

the layer-wise smooth setting.

Lemma 1 (Descent Lemma I). Let Assumption 6 hold and consider the update rule Xf“ =
XE— 3k (GR)F i = 1,...,p, where X*H1 = [XFHL Xk xR = [XE . XK GF =

[GF,...,G}] € Sand~} > 0. Then

k+1 k g 3’sz k k|2 g ’sz ky |2
f(X ) < f(X )""Z 9 Hvzf(X )_GiH(i)*_ZZHVz’f(X )H(i)*
i=1 i=1
P 1 L(-’) 2
=2\ =5 ) D2 HIGH G
; (475 2 ®
Proof. First, for any s > 0, we have
IVir (X9, = IVaf(X%) =G+ G|,
(28)

1
< () |Var(xXh) - G + (1 + ) (e

meaning that
1+s
[

= |V -

k k(|2
[Vif(X*) - G} H(i)* Tig1 |

2
IVir (X5

< VI (X[

H(z S+1

Then, using layer-wise smoothness of f and Lemma 14 with L} = 0, we get

f(Xk+1) < f( ) <vf(Xk) ch+1 Xk +Z HXIc Xk+1H()

=1

>m

- f(Xk)—;VHVif(X'“)— >m ;Mz

Ly "
B Sk Xetd [N
i=1

()%

P Pk
PR3 = oA (V) = 6E (6)) = DD NI
=1

38 RS i T ST

LS —iﬁ (Var0e) - Gt (@) - S B et
#3900 =G - 9O,
> Bat? et
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Therefore, applying Fenchel’s inequality, we get

f(Xk-H)
@ k ¢ VF 4 k k2 VT NI VE ke 2
SOV SRS €L >—Gi|\(m+ @ - et
k 0
Vi 2 L; 2
s |V (08 = GHG, - B 2 IV, + S0l et
Pk
’yZ 2 Vi S 2
- Xk +Z< > |Vf Xk Gf”(i)*_ - 2 s+1 Hvif(Xk)H(i)*
> (S5 - %) eer e
2% Yi il (@)%
for any r > 0. Choosing s = 1 and r = 1/2 finishes the proof. O

The next lemma is specific to the layer-wise smooth case.

Lemma 2 (Descent Lemma II). Let Assumption 8 hold and consider the update rule XikJrl
LMOg yr o) (GF), i = 1,...,p, where X*H1 = [ X[+ XM XK — [XF,.. X}, GF =
[GY,...,GE] € Sand tf > 0. Then

- L(i) + Lzl Hvif(Xk)H(')*

+ 5 ()7

i=1

Proof. Assumption 8 and Lemma 14 give
f(Xk:+1)
P LY+ LY||Vif(XP)],.
<X (VOO XM - xR 4 3 H ; o

=1
P LY+ LY ||Vif (X)),
) k E+1 vk L ¢ (@
(Vif(X"), X] XE) o+ 5

1 =1

k k+11)2
| =X

= fXH+

h

X - xE G

(2

S|

= f(xM+ ; ((Vef (X*) = GE XEF = XE) |+ (GE XEF = xE) )

b L0 L V(X))

i=1

p
DR + 0 (Vi) - Gt X - x) - ik a )
i=1

v L0+ L[V (XM,

Y (H)?

=1

p
. f(sz(tvaif(mGfll(i G + ;

i=1

LY+ L[|V f (XM, .
0+ L[|V >||(l)*(t§)2>7

where the last line follows from the Cauchy-Schwarz inequality and the fact that
| X — XE| @ = t¥. Therefore, using triangle inequality, we get

f(Xk+1)
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IA

p
FXR) D7 (Ve f (X5 = G|y, + 2 [ Vaf(X5) = GE |y, = V£ (X))
=1
POLY + L} Hvif(Xk)H(i)*

+y - 5 (t5)?

=1

P
= f(X)+ Z (2’5? ||Vif(Xk) o Gf”(i)* —t; HVJ(X]“)H(Z.)*)
i=1
P LY+ LV f(XF) ||

+3 5 @ (12,

i=1

E.2 AUXILIARY LEMMAS

Lemma 3. The iterates of Algorithm 2 and 3 run with Cf € B(ap) satisfy

E {foﬂ _ Wik-'rlH?i)} . (1 - 0‘7’3) E [fo - Wik”?i } 4+ = % [HGkH }

Proof. Let E¢ [-] denote the expectation over the randomness introduced by the compressors. Then
k+1 k+11)2
Ec [HXZ - W, H(i):|

= Ec [HWZ~C + Cf(XikH -Wh) - Xf““?z‘)}

< (-ap) X W
(28) 2
< ) (1 ) - WG+ () (14 2 )

Iz

B (R N e DS 1 1
P

It remains to take full expectation and use the fact that

ﬁ
X = xE o =2# (@8], 2 A N6 -

E.2.1 SMOOTH CASE

Lemma 4. Let Assumptions 7 and 10 hold. Then, the iterates of Algorithm 3 run with Cf ; € B2 (ap)
satisfy

E|af —etl) < (0-F)E [H =G

a2t ot ]

632 , 2
ot E M - Vi (X))

6Bi 0 2 k+1 k+1 2 2
+aDB?(L [Hx —WEE ]+ (= ap)sie

Proof. Using the definition of contractive compressors and the algorithm’s momentum update rule,
we get

Ec [HMZZH Gil ] = Ec [HMzkgH = Gy = Cy (M - Gf,ﬂ”ﬂ
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< (1-ap) |k -

—
=

i,ng’

where E¢ [-] denotes the expectation over the randomness introduced by the compressors. Then,
letting [E¢ [-] be the expectation over the stochasticity of the gradients, we have

B[l - a1
< B[R [|lMf - Gs]
< (-apE [t -Gl
= (1—ap)E [Ee [||(1— B)ME, + BVif; (W€l — 6t |12
D (1= ap)k [[[(1 = MY + BT (W) — G |
H1 = ap)BE [V (W) - T (W ]
2 (1 an) (1+ %) & [y — G4 ]
+-ap) (14 =) 028 [|athy = VsV ] + (1 o)t
where in the last line we used Assumption 10. Then, Assumption 7 gives

E [t - ai )
(30),(3D) 2
< ()Rl - Gl + R [IME — V(W] + (- an)Be?

< (- 22)E (I - ak)i] +

65

652
O g st - Teps 0]
- E [HV £i(X*) - Vifj(Xk’Ll)H;]

652 ]E [Hv £ XY f (W )2 } +(1—ap)B2e?

(1—*) (I = ety +

IN

e [, — vy 0]

65 0 y2g { E_ yk+1 }
aDP 7 (L X5 - X H(z‘)

#0500 P [ - WEH 2 ] + (1 - ap)Bie?.
O‘DB? 1,j i i (i) i Y

Noting that HXZCJrl — XikH(i) = = W HGk

#
&'
@),
Lemma 5. Let Assumptions 6, 7 and 10 hold. Then, the iterates of Algorithm 3 satisfy
E [Hvzf](XkJrl Mk+1” :|

< (15 ElImnx s i] + ZwratiE [IGHE,

ﬁQ <1+ > (LO [HXk+1 Wk+1|| } + B202
Bi Bi ' @ o

||( Dx finishes the proof. O

and

E [V (X - ]
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< (1 - ) Vi f(X*) = ME||S + @(LO) [HGkH }

B; k k 51'@'
(0 5 wprm e e |

L)

k._ 1yn k
where M;* := = > | M

Proof. Using the momentum update rule and letting E [-] be the expectation over the stochasticity
of the gradients, we get

Ee [[|7:£,(X*+) = M5
= Ee [Hvifj (XEFY) = (1= B)ME; = BV f; (WL Y| }
SV X - (1 Bi)Mij — BV WE
+B2Ee [Hvifj(Wk“; &) - Vifj(WkH)Hz]

(28) Bi 2
< mr (14 ) Imaeee -

2
+57 (1 " > [Vif; (XEHY) = Vi f;(WE],
OB [TV €) - Vg7 )

(30) k1 k
< (1= 8) |Vl (XFHY) = M
2 2
+5; (1 " ﬂ) [V f3(XPE) = Vi fyWHY[ + 87 o,
where in the last line we used Assumption 5. Then, Assumption 7 gives

E “|vifj(Xk+1 Mk+1” ]

= E[E[|vifs(x*) - M| H
< a-e (14 ) B[t st ]
#1=5) (14 5 ) B [I9 00 = 9, (04 ]
452 (14 2 B[00 = Vi ] + a2
T (1-2) e [Ivisne - ME ]+ 5 B (I - X

2
+$(Lg;wwﬂwﬂwﬁhww“mJ+ﬁﬁ.

To prove the second part of the statement, define V;f(X;&%) := £ 371" | V,f;(X;&F). Then
MF = (1 — B)MF + B; Vi f(WFHL; ¢k+1) 50 following similar steps as above, we get

E (|| (k) — i ]
= E [EE |:Hvif<Xk+1) —(1- ﬂi)M.’“ — ﬁiv.f(Wk-H;gk-&-l)HzH

©E[IVaA(X) = (1= B)ME - BV V|
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+62E [Be [[[Vif W 644 - wapwi|3]]

B O R R
o (14 2 ) Imseets ~wuar o]

+B2E [Be [| VW e84 — v v 3]
(1 - BIE [|[Vaf (e — M |3]
+p2 (1 + 2) E[[[Vaf(xX*) = v ] + fio
i 6 [ i 2 n
< (1-5) (1 ﬁ’) [[[7:r(x*) = af 3]
+(1 - 8s) (1 + ;) E {Hvz‘f(XkH) Vif(X )HZ}
2 2
+82 (1 + 52) E [Hvif(x’c“) - vif<Wk+1)H§} + 570

(3o>é<31> (1 B 52) [HVif(Xk) _ Mik”ﬂ + L(L?PE [HXikﬂ _ Xf“i)}

Bip?
B 2 2 Bia?
o0 (1 7 ) e e w2
It remains to use the fact that || X — XfH(Z,) =~k (Gf)ﬁH(i) Dk HGfH(i)*. O

E.2.2 GENERALIZED SMOOTH CASE

Lemma 6. Let Assumption 9 hold. Then, the iterates of Algorithm 2 run with Cf = T (the identity
compressor) and Cf,j € By (ap) satisfy

E[|IVafy (X = GE| | X441 6]
< VT=ap [Vifs(X5) = Gh | .+ VI=ap (L8 + L1 [ Vafi (X8| ) £

Proof. The algorithm’s update rule and Jensen’s inequality give

)

H¢Wmaw>cxcmwwﬂm%m@

E Mvifj(XkH Gk+1H

Xk:+1 Gk:|

< \/E[Hvifj XkH) = Gl = CF (Vify (XFH) =GR ]
< Vi-ap|[Vifi(X*) = Gl .
< VI—ap[[Vifi(X%) = GEj ), + VI—ap | Vil (X5 = Vaf; (X5,
< muviwk) =Gl
VT ap (L0, + L [IVafs (X9)| ) I1XEF = XE] -
where [| X1 — XF|| = tF. -
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Lemma 7. Let Assumptions 9 and 10 hold. Then, the iterates of Algorithm 3 run with Cf =T (the
identity compressor) and Cf . € Bo(ap) satisfy

E[HMZC;A Gk+1H ‘Xk-&-l ME. Gk}

7,5

< VI—ap||ME; - G5\, + VI—apB: | ME; - Vifi (X9,
1- i
N?Dﬁ (20, + L, V£ (K9 ) # + VI anBion.

£
Proof. Using the definition of contractive compressors and triangle inequality, we get

E [HM;cﬂ _ G@Jrl | ‘Mk+1 sz }

1,7
- MMW £ = el = Gt I vt
< \/ [[|pk = Gty — ek (i = b | i 6t
>~ 4,5
Q)
< W—aDHMZTF—GﬁjHQ

VI=ap [[(1= B)ME; + B:Vif; (XM - 6,

Hence,
B[ [l32E" - G | X+ Ml 6
— E {]E {HMZJCJH Gk+1H ‘Miij)Gk ”Xk+1 MlkﬁGéc,j}
< VI=apE [ (1= B)ME; + BVifi (X ) - GE ||| X ME G
< VI=apE ||| (1= B)ME + BiVif; (XY = G|, | X4, 0k, Gl
+v1—apBE [HVz‘fg’(Xk’Lléffﬂ) — Vi f; (XM HQ‘XHI M}, G }
(10)
< T My - G, + VT8 My~ Vil (X, + VT e,
< mHMZZ _GinQ“‘mﬁiHMi%j _vifj(Xk)HQ
+\/1 — OéDBi ||v1fj(Xk) - Vz‘fj(Xk+1)||2 + v 1-— OéDﬂiO’i
©)
< VI—ap |Mf; = GEjll, + VT =anB; | Mf; - Vif; (x5
V1—app; Ve
+TD (L?,j + Lzl’j |‘Vifj(Xk)’|(i)*) HXZk - XikHH(i) + V1 —appioi.
Using the fact that Hsz — XikHH = t¥ finishes the proof. O

Lemma 8. Let Assumptions 8, 9 and 10 hold. Then, the iterates of Algorithm 3 run with Cf =7
(the identity compressor) and tf = t; satisfy

IO
E (|| = Vi (X)) < (1= 8)E (|| - Vi (X)) + ;];
S S R 9] o
j=1 =0
and
L& n 1—3)L?
ﬁZE [HMzkyH Vi f; (XE) )| } (1- )~ Z]E {HML’“J —vz‘fj(Xk)||2:| +t¢(pﬂ)l
j=1 "= B
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— ZL B[V (XD ] + o

Z

where MF := 1 > MF

Proof. The proof uses techniques similar to those in Cutkosky & Mehta (2020, Theorem 1). First,
using the momentum update rule, we can write

MY = (1= B) M} + BiVifi (XML ¢t
= (1= 8) (M = Vif;(X5)) + (1= 8) (Vi f5(XF) = Vif; (X*)
+0; (Vifi (XML 570 = Vify (XM) 4 Vif; (XHH),
and hence

Ut = (1_52)(]1” (1 _5i)U2k,i,j+51Uk+1

1,i,5 3,4,57

where we define U, ; := M}, — Vi f;(X*), U, . := V,f;(X*) = Vif;(X*") and U}, ; :=
Vifi (X €F) — Vi f;(X*). Unrolling the recursion gives

k k
UN ;= (=800 5+ D (=) 055 + 8y (1= ) U5
1=0 1=0
Hence, using the triangle inequality,
E lek+l
n 4 1,4,5
=1 2
1 a 1
k+1 0 ALAE
< a-arne||LSon)| |+ ([-ared S,
j=1 9 =0 2
- 1
a3 s 3ot | a
=0 ] 1 9

Let us now bound the last two terms of the inequality above. First, triangle inequality and Assump-
tion 9 give

k n
B> a-s-is ol
=0 n j=1 9
1 n k
< Y-8 [||Ud )]
j=11=0
k

- B)FIE [Hvifj(Xl) - Vz‘fj(XlH)HQ]

I
S

<
Il
_
o~
I

1= B IE [ (L0 + L [ Vafy (X ) 11X = X ]

INS
e
| —
S
[+
~ o
e
- =
.

B’i J=1
1 n ktl—170 , k+1—1
= (1— By)k+1-tL? +—52L (1= B E [ Vi (X
i j=11=0 71 j=1 =0
HLY  til :
< x ZL%Z B)FHI-IE [||V fi(X ||(Z }
ZBZ- P4 1=0
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and using Jensen’s inequality, the last term can be bounded as

k
[zl RS
1=0 =

2
k n 2 k
< B s)t ST | [ Do B2k MZE [IT5515]
1=0 j=1 ) 1=0
(2) i(l _ 5.)2(k71)ii02 _ i i(l . 5‘)2l < % < g;
- 1=0 z n? j=1 BT =0 T B2 =) T VnBi

Substituting this in (11) yields

n 70
n sz~
7=1 2 2 -
ti 1 - 1 5 k+1-1
+—— g L; . E E |||V +
L3 v l:O( e [H il l)*] BZ\/ npi

To prove the second inequality, recall that U’H'1 (1=B)UT, ;+ (1= B:)U3; ; +ﬁLU§+1 Hence,
taking norms, averaging, and using the trlangle inequality,

*ZE[HU{“E ] < a-s)t ZE[HUWH} m;ilza[uvsi,juz}
ZE“U;#; .| (12)

where the last two terms can be bounded as

1< 1<
S E([Ukll,) = 5 YRV - Ve (X))
j=1 j=1
© 11«
< o L E[(Lh+ I IV, ) IXE - X
2 j=1

B 0 til~ k
— tiE—FEZ_E;Li’j]E {Hvsz(X )H(i)*:|

and

(10)

1 n
=S R[] = ZE [I19:55(x4 % 68) = Vg (x| ] < o
j=1
It remains to substitute this in (12) to obtain

Ly )2 (1- 8L

J: —1

ZL E [[V:fi(X")]| ] + Bici

l
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Lemma 9. Let Assumptions 1 and 8 hold. Then

: IV: £,
E:: (L°+L1 IVif(X )IIm*)

forany X =[Xq,...,X,] €S.

<fX)-f

Vi (X iy
Proof. Let Y = [Y1,...,Y,] € S, where V; = X, — Lg""L}HV'if()((;H(i)*

9 ||l (i)« (Vi f(X)). Then, Lemma 14 and the definition of subdifferential give

H; for some H; €

’ L°+L1\|Vf( )l
) < SO+ VIOY =X 43 O 1X, - Vil
é . L°+L1||Vf( s
- +Z Vif(X),Y; Z © HXi_YiH?i)
=1 i=1
B Vi ()l e |
= IO o, T M
5 L0+L1||Vf( e VIS,
2 1572 (2)
= (294 LLIVef (Ol )
9 )+ 1V Oy, IV Dl

7

P\ ALV X on 2 (004 LIV (X))

-3 Vi ()1l
=2 (L0 + LLIVif (X))

and hence

P Vi (ON%,
S I ) - gy < o - g
T2 (204 LIV (Ol )

as needed. O
Lemma 10. Let Assumptions 1 and 8 hold. Then, for any x; > 0, i € [p] we have

p 2LO
D i1 Vef (). < dmax(ae}) ((X) = ) 4 t=t e

max;e[p] (x;L})
forall X € S.

Proof. We follow an approach similar to that in Khirirat et al. (2024, Lemma 2). Applying Lemma 9
and Lemma 12 with y; = [|[Vi f(X)|| ;.. 20 = L + L} [ Vi f(X)]l;), and any positive a;, we have

) P IV XOIR.
2001 2 X I IV T,

2
N (S i 196 (X))
- ;zol 72L0 Zz 1 ZQLl HVZf(X)H(z)*
2
> (S0 w1965 (X))
- P 2L + max;ep (z L)) D0 a Vi f X iy

i=1 T3
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(S, will Vif (O y,)”  .p P, 22L0
> E) S Lo e Gt 2 et i lIVif (Xl
= P ail[Vif ().
otherwise.

2 max;epy(ziL})

Therefore,

P P 2710
S V(X < maX{4maX(sz1)(f(X)—f*) il }
=1

i€p] ,maXzE[p]( lL;l)
p 2LO
< 4max lel X)—f* +1—x.
ma ]( ) (f(X) = f7) e,y (2, L))
Lemma 11. Let Assumptions 1, 2 and 9 hold. Then, for any x; > 0, i € [p], we have
D
D willVili(lly, < 4max(@Liy) (f(X) = 1) + dmax(aiLiy) (£ = f)
i=1
P 2LO
maxle[p]( ZLzl)])
forall X € S.
Proof. The proof is similar to that of Lemma 10. Applying Lemma 9 and Lemma 12 with y; =
IVifi (X syer 2 = L2 j + Li ; [IVif;(X)]| ), and any positive 2;, we have
Vit (X155,
2(£(X) - f;) >
( J J) Z LO +L1 Hvlfj(X)H(z)*
2
R ( Ly wi Vi (X))
B p 2L0 + Z€:1 'Tzszl,j Vif; (X)H(i)*
2
R (S0 2 19:85 (). )
B p 2L + max;ep] (m1L17j) P:1 Li Hvzfj (X) H(i)*
1 il Vifi (), . v 1z7L7 ;
§ = A e L IS A | A 091
B iz il Ve f7(X)”“>* otherwise
2 max;ep) (@i L] ) :
Therefore,
P 270
sz Ve ()l € maxd dmas(eLL,) (F,(X) - f7) ==
i€lp] max;e(p] (%Li,j)
P 2L0
< 4dmax(x; L ) 4
i€lp }( ) (f]( )= f]) max,e[p} (zsz)
= 4 i ) +4 L) (f* = fr
rzré?pf(w D GX) =17+ dmax(ai L) (£~ f5)
N YLy
maX;ep) (xiL}’j)
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E.3 DETERMINISTIC SETTING

E.3.1 LAYER-WISE SMOOTH REGIME

Theorem 14. Let Assumptions 1, 6 and 7 hold. Let { X* }kK:_Ol, K > 1, be the iterates of Algorithm 2
run with C¥ € B(ap), Cﬁj € B.(ap), and

1

OS’YfE%S —, i=1,...,p.
209 + 2 12+ S8 L0
D (,EP
Then
K—-1 p 0
1 [ & 1 4¥
= Vi f(XF) ] =
Kk:o;% H H K%Zz 171
where
\I,k R Xk * - 6711 ~ \VA Xk Gk 2
= - +;0@5;H J5(XR) =G

’ 66y [ 2 .
+3 a% (—1) (L[| xE - WH?, -

‘ ap

i=1
Remark 15. Theorem 3 follows as a corollary of the more general result above by setting p = 1
and initializing with X° = W° and G = V f;(X°) for all j € [n].

Remark 16. In the Euclidean case and when p = 1, our convergence guarantees recover several
existing results. When primal compression is disabled (i.e., ap = 1), they match the rate of Richtdrik
et al. (2021, Theorem 1), up to constant factors. With primal compression, the rate coincides with
that of EF21-BC in Fatkhullin et al. (2021, Theorem 21). Additionally, our results match those
of Byz-EF21-BC (a bidirectionally compressed method with error feedback for Byzantine-robust
learning) from Rammal et al. (2024, Theorem 3.1), in the absence of Byzantine workers.

Proof of Theorem 14. Let A;, B; > 0 be some constants to be determined later, and define

P
vt f*+ZA LS 1925 (x4) = GE e+ DB | XE - WEG
=1

Jj=1
Step I: Bounding E [Hvl‘f]‘ (XFHD GkJrl H } The algorithm’s update rule gives

E{Hvifj(XkH) Gk+1H -

k+1 k+1 k
xR WL Gl

= E[|IVafs (X5 = Gl - V(W)

£ X e g

k+1 k+1 k
X+,W+,Gm}

(

8) :

< (1 + QTD) E [Hvifj(W'““) =G = CH(Vaf;(WHHY) = G H?i)*
2

+ (1 + aD) E[|[V:f; (X5 = Vi ;|7

k+1 k+1 k
XFHL WL Gl

a -
< (HTD) (1—ap)E [Hv fi(WhkHL) JH( - Xk+1,Wk+1,Gﬁj}
2
+ (1 + aD) E [Hvz'fj(Xk+1) - Vifj(Wk“)H(i)* Xk it Ggfj]
(g) (1 - —) Vi f;(WhH) Gf]HZ <1+ > [V £ (XFFY) = W, £ (W ||(z

(ZSS) (1 _ 7) (1+ 7) ||v fi(XF) ij”?i)*

£ 0) (0 S)msor st

42



Under review as a conference paper at ICLR 2026

2 2
+ (1 + aD) [Vify (XM = Vil (W),

30),3D)
< (1

o 2 4
<Y (1= 2R) IV - G+ o BV - T,

+ (1 + Oi)) 9215 (XH1) = 3 £ (W) |7

(i)*
Therefore, using smoothness,

E |:||v7,f](Xk+1) GkJrlH() ‘XkJrl WkJrl Gk: :|

O R L R P L
+G+2W%fMWWﬂm

< (1- 7) Vi (XY = Gl + = i (L35 = Xl
+i(L?,j)2 ||XikJr1 - Wz'kHH?i) + (1 i Oz2D> (L?’j)z HXZCH B WikHHZ)

. (1 = 00 9y (08) - G+ (02,77 [GE L,

0 E+1 k+1
+* (L2 X =W
Taking expectation, we obtain the recursion
E {Hvifj(xk_‘—l) Gkﬂ”( )J
o 2 8 2
<(wf%WMEW—®mJ+@uwwﬂwm@

o (TR [XE - W], 3

Step II: Bounding E {HXZ-’€+1 — Wkt H?Z)} . ByLemma3

B[l —wi ] < (1= L) eIk - whE ]+ S [leHE,] a9

Step III: Bounding ¥*+!. By Lemma 1 and Jensen’s inequality
\I/k+l

y4 n
. 1
= f(xRy - f +2Ai52||vifj(xk+l Ry +ZB||Xk+1 W

IN

p . )
FOXR) — o+ Z 32% Vi £(X*) - GE|l7,, — Z T ol

> (- 5l 7

+2Ai%2’|vifj(Xk+1) Gk+1 +ZB ||Xk+1 Wk+1”

P n
* 37i 1 2 Vi 2
FOXR) =+ Z 92 n Z Hvifj(Xk) - Gﬁj”(i)* - Z 4 Hvif(Xk)H(i)*
i=1 j=1

=1

IN
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_Z( ) 2|| k” (3)*
#3 AL T = G, + 3B X W

Taking expectation and using (13) gives
E [UFH]

SB[ - 1]+ 3 SB[V - 6L, - Z% 95X
i=1 Jj=1

1L P 1
(-5 )t letl. + 403 (1= 2P B lIwsee - el
8 0 \2.2 k(|2 z 1~ 11 0 k+1 k+112
> =P [[GH ] + D A Yo — @R [ - W ]

o
D i=1 7j=1 D

(3

S|

i j=1

P
-2
=1
P
+Y A
=1
p
+ > BE[||xE W]
=1
p . n
B[ - ]+ Y (i (1-22) ) £ SR IV - Gl
i=1 =1

)
- mlimaenl,] -3 (- 5 - Ay @) el

ap

r 3 (ap )R it i)

i=1
Next, applying (14), we get

E [0 < E [f(X*) — f*] ﬂi <32% (1= f>) Jz:E 197564 = 6% .
L

P P /1 8 -
- geliwaeei] - 3 (o - 5 A @) e I

Ll F0y2 il k
AZO(D (Lz) +B> ’YZ]E {HG ||(z)*:|

ii@WHﬂﬁ?ﬂMﬁWmﬁ

=1
Taking A; = 2% and B; = A; 2+ (E 1) (L9)? = %6—%1' (% - 1) (L9)? yields
3 i o
Al

(A @2+ 8) (1= F) = 5

and consequently,

P n
E[wF] < E[f(X%) - ]+ ZA% SE[IVifi(x*) - G115,
i=1 Jj=1

Py o1 LY 84
-y gl -3 (- 5 - ) e et

1=
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~ B 2 , k|2 % k k||?
+ X g o B 16k, + 2o BE [t -

i=1

Now, note that

1 Y A~ 4B; 1 Y 48 - 264 -
B Mg B LB (B 2% (107) iz 0
4; 2 ap ap(2—ap) 4y 2 af asha
:Cl

forv; < 5 T0ave For such a choice of the stepsizes, we have

P
Vi 2
E[0"+!] <E[v ZZ’E Vs X917,
and hence
K—-1 p ) K-1
S AE[IViFENG,] <43 (B[94 - [wF]) < av
k=0 i=1 k=0
Lastly, dividing by % > 1—1 V1> We obtain
LS | ) 1 400
— I Vi f(X%) } - -
K;;%Zl 1N H H K%lew

E.3.2 LAYER-WISE (L°, L')-SMOOTH REGIME

We now consider a deterministic variant of EF21-Muon (Algorithm 2) without primal compression,
which iterates

X = LMOg xr o) (GF)
Gl = GF 4+ CF(Vifi (XM = GF ),
1 n
k1 _ k+1 k+1 k
Gitt=-) Gifl = Zc (Vifi(XFHY) = GF ).
j=1
This corresponds to using identity compressors on the server side.
Theorem 17. Let Assumptions 1, 2, 8 and 9 hold and let {X*}; ', K > 1, be the iterates of
Algorithm 2 run with C¥ = T (the identity compressor), Cffj € B.(ap), and
th=t, = i=1,..p,

for some 1n; > 0. Then,
mln Z 1 [HV f( Xk H }
1=1 7
exp (4 max;e (] jen) (17Ci L7 ;)
K+1 (11; f=1 Th')

\I’O
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) Lo 1 p 20 LO p
+ —Z4mame’L )+ = 277 ZU?D
K+1 (l 511 771) n j=1 i€lrl n j=11i=1 i=1
Ll | 2VT-aDLi ax — ? QWL
where C; == =+ + T iVican D=3+ \/% and

f*—’_z WnZHVfJXk ]H

Remark 18. Theorem 4 follows as a corollary of the result in Theorem 17 by setting p = 1 and
initializing with G9 =V f;(X°) for all j € [n).

Proof. Let A; > 0 be some constants to be determined later, and define
P n
1
k k k
X1 A V) - G -
i= j=

By Lemma 2 and Jensen’s inequality

lIlk-‘,—l _ f Xk+l f*+ZA Z ”vlf](Xk+1 Gk+1H

IN

P
f(X f<+§:2tHVJVXk Gill gy = Dt Vi (X)),
i=1 =1
P s =, 1o k41 k+1
Do 3 AL IO -G,
= i=1 j=1

+ L} HVf X9,
1 3
< F(XM) -4 Z%‘; Z Vi £ (X*) = Gl . — Zt" Vs X5l
i=1 j '

Pl€+MH%ﬂkaH2

+Z 5 ZA ZHV f Xk+1 ng-‘rl”(z

i=1
Taking expectation conditioned on [X**!, X* G*] and using Lemma 6 gives
E [\Ijk:+1| Xk+1 Xk Gk}

< FXM - Zztz% Z IVifi(X*) = GEjll oy = Dt Vel (X9,
3 i=1

I'H+LWVkam

+> 5 2

i=1

1 & , , ,
£ LSBT0 - el |

P 1 p
< FXRY - 22@-5 Z [Vifi (X*) = GE5ll oy, = D talIVaf (X9,
i =1
9 2 [T
Jrz 9 ti

i=1

P n
# L AVT=a0 3 (196000 = Gyl + (2 + Ly 90,0, ) )

P n P
= f(Xk) - f* + Z (Qti +Ai\/ 1- O‘D %Z ||vzfj(Xk) - Gf,]”(l)* - Zti ||vzf(Xk)||(Z)*
Jj=1 =1

i=1
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L2 P 1 <
+Z =S IVif (X, +VI=ap Y Aits (nZL IVifi (X sy )
i=1 j=1

P 270
t=L; _
+Z i +\/1-C¥DZAJZ'L?.
-1
Now, letting A; = 1_\/2%7, we have
2t; + A1 —ap = 2t; +

and consequently,

E [\I/k+1| Xk—&-l’Xk’Gk]
p 1 n P

< FEM) =AY A D V(X = Gl = Dot V(X
i=1 j=1 i=1

p 1t2

p 1 n
+Z Lty V2 £ (X*) H +mzi4iti (nZLJHV‘f7 H()*)
i=1 J=1

" 2L _
+Z 2= +V1*OZDZAitiL?
=1

2t;

M ey =a
l—vVi-ap b = A

k Lt (1§ k
_ZtiHvif(X )||(1:)*+Z D) ﬁZHV [ (X7) H(z)*

<
i=1 i=1
P 2yT—apL} 1< a t2L0 2y/T— .
+Zﬂ 72va] X" )| +Z< ap th?)
~ 1-vl-ap ni ()% 1—\/@
P
k k
= v _Zti Vi (X )H(i)*
i=1
P 1 1 n 0 70
LY 2y1—apl; ..\ 1 L)  2y1—aplL;
+Z JJFL ,ZHvlfJ(Xk)H Loy \/TD i t?.
P 2 1-+v1—-ap n (OLID 1—-+v1—-ap
=C; =D;
Taking ¢; = \/;?7“ for some 7; > 0 and using Lemma 11 with z; = n2C;, we get

E [\I/k+1| Xk+1,Xk,Gk]

P
1
—ZtiHVz‘ﬂX’“)H(i)* KH”ZZ???C IV (x*) H( +2Dt2
i=1

j=11i=1

an & 1
< WD || Vaf(xt H()*—l—ZDtQ—i—mﬁzzl?éag]{nZCL”)(f](X’“) )
1=1
n 402LO

1 1 11 PR
1 4 C Ll _ i=1 "1t i Mg
*%1in 2 rlréf[nf(m D)+ Kiin Z < max;e) (PCiLL)

1 & 4 1
- \/K+1;m”v1f( )H(l)*_'_K-l—lie[g]l?}é[n](mcz ”)n;(f]( )= f)
1 1< . R R CLO L
7T (nj_l4rlr€1?}7>]<(mCL ) (= 17) +g]22 Z?? .
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Now, since £ Y7 (f;(X*) = f*) = f(X*) — f* < U, we obtain
E [WhL] xR XE G|

4 1 p
< (1 200 ) )k — IV, F(XR)]|
0 /4

Zn?D

mn p

1 & 1
K—|—1 EE:: maanC’Ll)( +nz

771,01
ze[p j=11i=1

Taking expectation,

E [¥+]
< 1 gy e ) | B - LS e R,
- K +1icpljet VE+TZ 7 0 O
=ai
+L Ly dmax(n;CiL} ;) (f* ZZmCLO Zp: 2p.
K+1\ne icp g n i Z_:lm i |

=asz

and hence, applying Lemma 15 with A* = E [U*] and Bf = +=E {HVZ'f(X’“)H(i)J,

UV 7]

exp <K+1 max;ep e (M 2C; L1 (K + 1))

< \IIO
- (K +1)
1 1< 1 Gl &
-~ (=N "4 2O LY ) (f = )+ = Y 2D,
TR >3 max(m?CiL, ;) (f fj)+n;; i +;m

Dividing by % finishes the proof.

E.4 STOCHASTIC SETTING

E.4.1 LAYER-WISE SMOOTH REGIME

Theorem 19. Let Assumptions 1, 6, 7 and 10 hold. Let {X*}°\}, K > 1, be the iterates of
Algorithm 3 run with CF € B(ap), Cfﬂ € Ba(ap), any B; € (0,1], and

0< =x i=1,...,p,

1
P <
C 2L 4+ 2V

,2 2 ) o ~
where G 1= 5 (J(L0P + 252 12+ ML) 19 4 M09 102 ). e
1 " ,
K 5B [V
K= ; %Zle gl (@)*
1 4\1/0 p 1 11—« . 12 2 252 i
< 1p+24z<+( p)b + f%) fz/’zpﬁv 7 as)
K P D=1 = \n ap ol ) Iy P o,
where
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72p ﬁz g 0 o 2] =677 1 0 0 12
+Z o2, ZE {HV £3(X5) Mi,ng} +> ap i D E {HMZJ _GmHg]
i1 i=1 j=1

and M} := lzj M

Corollary 1. Let the assumptzons of Theorem 19 hold and let { X k} e o , K > 1, be the iterates of
Algorithm 3 initialized with ng = G?,j = V. f; (X% f?), J € [n]. Then, the result in Theorem 19
guarantees that

1 P ;
rOIPIEe s ol AN 1N

XD 1) (2§~ (1 126 oty
v VB af ) 3Py
P 2 22
1 11—« i 123 =05 i
+24Z<+( p)Bi 2&) lazpzpﬁfy '
—\n ap ap /) 52
Remark 20. Theorem 5 follows as a corollary of the result above by setting p = 1.

Corollary 2. Let the assumptions of Theorem 19 hold and let {X k} o 01, K > 1, be the iterates of
Algorithm 1 (Algorithm 3 with p = 1) run with C¥ € B(ap), CZ}f] € Bao(ap). Choosing the stepsize

1 piLy  piLy
=—=0 + = (16)
TG 2L (pf& piapap
and momentum
1/2 1/3 1/4
3 . 1 \I'OL(l)n \I/OL(faD \I/OL?()(% 17
= min —_— —_— —_—
! "\ pPotK "\ ploiK "\ PPoiK ’

the result in Theorem 19 guarantees that

1 = 2
K LE [vrx*)2]
=0

. : 3/4
vy (wateng) (wseng\ (el
=0 + 2 "\ 2K + 2/3
plapapK pinK piVapK /_)%O‘D/ K

Remark 21. In the Euclidean case (p? = p = 1), without primal compression (ap = 1), and for
p =1, the result in Theorem 19 simplifies to

kS eliwei]=o (e (e v ) ).

fory=0 (% L" ) which recovers the rate of EF21-SDGM in Fatkhullin et al. (2023, Theorem
1
3) (up to a constant)

Remark 22. In the absence of stochastzczty and momentum, i.e., when o? = 0 and 3; = 1, and
under the initialization W° = X0, M; 0 — = Vf;(XY), Algorithm 3 reduces to Algorithm 2. In
this setting, Theorem 19 guarantees that

1K71 P Yi 2 1 4(f( O) f*)
7 2 Ty BNl < o

1
< =1,
=900 oG
where (; = % ( 2L+ (LO) + %(i?)Q + ;}?08 (L9)? ) This recovers the guarantee in
Theorem 14, up to a constant factor

0<f= D,
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Remark 23. Alternatively, one may use compressors Cf € Ba(ap) in Theorem 19. The proof is
essentially the same, with the only modification being the replacement of Lemma 3 by the recursion

Ee [[lx+ Wi ]
= B[ WO - wh) - X

< (-ap)|xE -

L man) (L4 ) - - ap) (14 2 ) 0 - X

(3()%(31) (1 B O‘i) ||sz B Wf”i iﬂ HX{“H - X! H(i)
2 2pz
_ (177) ||Xk ikH2+ OéP HGkH()*'

The resulting convergence guarantee matches that of Theorem 19 up to a modification of the constant
(s, which now becomes

, 12 24/7? (Bi+2) 000, 3687 +4) =, 1449282 (28i+5) =0.9
G = (BQ(L) T(Li) +T(Li) + aZad (L),

where the additional norm equivalence factors highlighted in red arise due to the use of Euclidean
COmpressors.

Proof of Theorem 19. Lemma 1 and Young’s and Jensen’s inequalities give

1

p
P L0+ 33 900 =G~ 19,
=1

-3 (35— 5) e,

—
=

(28) 2
< JX +3me(|\VfX’“ ME||, + ZH iinz)
=1
1 o 2 "1 LY 2
-qz%wmvww—z(w—Q%mwm,
i=1 i=1 ¢

Recall that by Lemmas 3, 4 and 5, we have

E ||| xk - Wk+1||(z} < (1— VB (llxE - wEG,) + - ’ o iE IG5, -

E[|ar -] < (9%EWQ—%£]%%M Vi (N2
+ L e ] + e [t - e

+(1—ap)Bio;,
L0 )2
e floaseet -t 1] 2 (1 3 ) et - ]+ 552

Bi 32

)

2
%E [HGM(@J
s (1 + ) (L0 )?E MX.’“H st } + 822,
Bi /6 7,7 ) k3 (1) (22

B [Iwaroese -3 2] € (1- ) e Jwsoen - aak] + Xz k) )
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2,2
w2 (14 3 ) et - | + 2L

B n
where MF = 1 Zj 1 Mk To simplify the notation, let us define 6* := E [f(X*) — f*],
Pl = yE [HVif (X*) —MikHﬂ’ Ff = mn X [”V fi(X5) = MﬂHﬂ SF =
L E “‘Mlkj _ ij”ﬂ and RF := ~E {HXZ“ — Wik”(i):|' Then, the above inequalities
yield
SRR WL o L S AN
p
(L)l
R < (1-57) RE+ wa 164115, - (19)
-_ DY\ gk 651 ph 65( 9)? 3 k
St < (1 - 7) SE 4+ P anp? i [HG H(i)*}
20702
+6ﬂi (L;) R 4+ (1 - ap)o?By;, (20)
app;
Pkl < 1_@ pk+2(i?) +3E [HGkH }
f < B) i Bip 2 (@)
2
B (1+ ) @02+ o en
61 (L?)2 2
2 2324,
ﬁ (1+ )(L?)QR;““—FW. (22)
Bi n
Now, let A;, B;,C;, D; > 0 be some constants to be determined later, and define
P p P p
i=1 i=1 i=1 i=1
Then, applying (18), (20), (21), and (22), we have
\I/k+1
P P . P . P
shHL 4 ZAiPikH 4 Z B;PM! 4 Z C;SH 1 ¢ Z D; R
i=1 i=1 i=1 i=1

IN

5" +3252Pk +32p:,6?5”f - izp:%*]E [HVif(Xk)HZ)J

—Z(—) e[t

+ZA (( ) i’“+2(ﬁLi) VE (IG5 + ij <1+§i> (L?)QR?“+U”2%2%>
i((l—i)pi « 20l + 2 (14 ) <i?>23§+1+0353%)
(- 52) st Zat s EI oy, ]
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_ 652(LY)% i 202 - k1
+3 0 | R+ (1—ap)o?fiyi |+ DiR!

app?
i=1 Dp; i=1

— 5’“+zp;<3/3§+Ai< ))P"#Z( (1> GBDQ) ;
i(l_*))sk_fz% 1v:£ 1.

C
5 <1+ )(LO) + B2 B < ﬂz) (£9)2 CiGﬁZZ(LZFJFDi) Ri+
LY)?

(302 +
+ Ai—% i
i=1 Py aDp;

Bi
2 2(L9)? 637 (LS 3
A; (5 B (L7) Lo 51( ;) ) E[HGkH(z }

" Bipr T app

hS]

+

N
Il
—

M=

M=

+

Il
-

3

(1 - I;) 2E([IGHG.] + Z( + B +C(1—aD)> o2B2n;.

7\
Then, usmg (19) gives
\Ijk:+1

<5k+i<3p?+Ai<l ))PMZ( (1—> 65}32)2
+Z(3ﬁ?+@ (17—»5{“772% [{Vf (X" ||Z-)J

p 2 2 2(70)2
B 2 0 B 7042 .651' (L7) ) AP\ ok
+§: A0 ? <1+B>(Li) + B, (1+ﬁ2>(Li) +Ci oog? +Dz> (1 : )Ri

(a2 (12 62 . 652 (L9)* .
t2 (Alp? (Hﬂz) (L + Bis (Hﬂ) (L?)2+Ci%pz+Di> E[I6H .

Ms

—

-1

2(LY)? 652(L?)> 2
+3 (a2 + 2 o O ) s [l

[\9

~
|

| ~o
-

1 ) E[HG’“HW]JFZ( +B; +C(1—04D)>03ﬁ3%‘-

. 652 7202 B; 652
Taking A; = B’J:,Bl-: pgDﬂ,Ci:O%and

«

o A 2\ o 52( ) Foy2 o 6B2(LY)° (2_>
D, = (A 22 (1+ﬁ2>(Li) +B£1 1+ﬁz (L)) +C; app? o 1

6;7 ((/31+2> (nhye + LECRED) oy ) (2‘1> 7

Py aD ap
we obtain
_ Bi L, 6p? Bi
- 2 52 632
Bi(lﬁ’>+0¢6ﬂ 72pﬁ’(151>+6p165l31,
2 ap a% 2 ap Qp
2 (1D 2, 600 () op) _ o
Spi—FC'Z(l 2)_3 n D(1 2)_0,,
and

=1

52 B; 7042 653@?)2 ap
(A (1+62>(L0) B <1+61)(Li) OIS +D,-,> (1-%)
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0CP

D ap
- D (1 - —) - D,.
Consequently,

\I/k+1

< 5k+ZAPk+ZBPk+ZCSk+ZDRk——Z% [!Vf ||?i)*}

([ D; 2 2 /1 LY
+Z (2 1 + Di) @W’?E {HGQCH@*} - Z (47 N 2) iE [HGkH( )*]
i=1 ap i=1
» ~ ~ - - -
6p7 2(L7)* | 72p7B8; 2(L7)* | 6p7 687(LY)*\ s k|2
+; ( B B2 "ol B Tap app ) [Tk,

p =2 =2 =2
16p; 72p;38; 6p;
30 (R R 1)) o2,

=1\ Bi ap ap
1 L1 LY
= 1Y (I, - 3 (5 - ) 2 [l
i=1 i=1 ¢
(1207 o0 14497 =o0s 3652% 0 4D; 3 k|2
+Z< (7 4 g U+ T O+ oy e It
"1 1282 (1—ap)Bs
+6;<n+ azD +( aDD) )O'pu@z%

Now, note that

1LY 1252 14492 - 36ﬂ p 4D;
— i (1,9)2 i ([0)2 4 2K Lo 71
1L
4y 2
) 2 2
52 (12 24 (B; + 2 36 (82 +4) - 14482 (2B; +5) , -
o 2 (2o 2O oy %@3)2  HABLROES) o) >
P\ Bi ap @D apaDp

fory; < 5 TR For such a choice of the stepsizes, we have

P p 2 _ .
v < a2 E ()] + 2%( + g+ G2 g,
=1

ap
=&
Summing over the first K iterations gives
K—-1 p 9 K—-1 K-1 p p
Z%‘E [Hvif(Xk)H(i)*} <4y (VF w44 Zfi% §4‘1’0+4KZ§¢%‘,
k=0 i=1 k=0 k=0 i=1 i=1
and lastly, dividing by £ 37, 4, we obtain
K-1 p 0 P
1 [ k 49°p 42 1 &ivi
= Vif(X"9) } b
w22 tyr L E Moo < o5+ T35

k=0 i=1 71

Substituting X? = W} proves the theorem statement.
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Proof of Corollary 1. Substituting the initialization, we have

E[[V7(X) - M2,] = B ||| 3 (Tufy(X0) - Tify(X%€0)

J=1 2]

2

E ij (X0) = Vif;(X0;€0)|| | < ﬁ

IN

LS RV - vl € o
j=1

%ZE Mvz‘fj(Xo) - ngnz]
j=1

and hence

v f+zﬁm

72026; 1 607 1 «—
+Z*”f ZE[HW (X°) - M+Z P LS B [, - 682
4 af, nj:1

[1V:£(x°) = 2|}

1 Kl i
_ K ]E |: sz Xk; *jl
K= ; S | “( )

(F(XO) =) 24 ( 1 12@-) .
< WL Z ) 2 . :
K% > * ; Vb % PRy

p 2 22
1 (1—ap)s; 1282\ 0292Bivi
+24§:<+( ap)fi | f) ol
; ap 52121%

Proof of Corollary 2. Substituting the choice of v from (16) in (15), we have

K-1
% > E “’Vf(X'“)Hﬂ < % +24 (n L d=ep)B 1251) 25,
k=0

ap aD

o ( WRL) | WRLY | pipiot | ABtet | p%ﬁ%o%> |

2 2 2
BlOéPO[DK BlﬁlK n ap o,

=2 2 =292 2 293 2 0270
Then, choosing 3; as in (17) guarantees that plilal ) pliljl ) 015%01 < \Pﬁgﬁg. Substituting this
into the upper bound gives

K-1

E[vrexh|]

=0
3/4
o p3LY UOpio? L9 /+ 0530, LY 2/3+ VOps307/0 LY /
oo * (" ok Pk AK

as needed.

N\H

IN
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E.4.2 LAYER-WISE (L°, L')~SMOOTH REGIME

As in Section E.3.2, in the generalized smooth setting we consider EF21-Muon without primal com-
pression.

Theorem 24. Let Assumptions 1, 2, 8, 9 and 10 hold. Let {Xk}kK:_Ol, K > 1, be the iterates of

Algorithm 3 run with C¥ = T (the identity compressor), Cﬁj €By(ap), Bi =0 = W and
ko, _ i L
Oéti_tz_([(—i—l)f’/‘“ t1=1,...,p,
2 oo J Y2 (=VI=an)p (KADY2 Buinp, (K41)12
where 1} < mm{ LI BRIV T—anp (Elo)?" 25 (L7 1 (- Then
k
mln Z 1 {HV F(X™) H(i)*}
3\110 mpz 0 0
< [[[Vif(X°) = M;
(K+ 1)1/4%21;7:1 K+ 1 1/2 ; 11) H HQ]
< 8 8v1I—ap > 1 (- MaXiclp ]TI?%(L%)Q 1)
+ + — * X
K07 T Vi an(K 07 ) n2s IS, J
i zp: n; L} i 4p; LY + 4pi/T—apLy
2 sy oy \ K7 T g K+ DV (1= T ap)(K + 1)

NiPioi 41T —ap 9
+Zl (( —M)(I?+1)1/2+\/E(K+1)1/4>

2t1ﬁz

v o f(XO)*f*+Z ngEU -Gl

p L. — i
#3 oL ap Lsmg g g x0) - ady ),
i =1

t 1—V1—apn
Corollary 3. Let the assumptzons of Theorem 24 hold and let {X k} e 0 , K > 1, be the iterates of
Algorithm 3 initialized with M ; = V,f;(X°;€0), G?,; = C),(V; fj (X%¢€9)), j € [n], and run
with Ck T (the identity compressor) C ; € Ba(ap), Bl =B= W and
Ui .
0<th=t,=—1 =1,...,p,
=h (K +134 " b

(K+1)/2  (1—VT=ap)p,(K+1)'?  Buinp (K+1)'/?
6(L1)2 7 24(K+1)y/1— aDp,(Lmax)27 24p1(L7 max)?
Theorem 19 guarantees that

i zl E (1. (X .

=1p lln

3 f* + Ep: 4y/1 — apniPiT;
(K+1)1/4l S m (K +1)3/4(1 — /T —ap)

p277102
(K—|—1 1/2Z\f l:lm

where 771-2 < min 1}. Then, the result in

<

+< 8 8\/1*OZD >1 - maXiE[p]nZE > (f*_ *)
&+ D)7 K+ 1091 - V1 ap) ni s Xlam !
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~ 7 ( Ly Api LY 4piy/T - apL} )

+ + +
25 o \ W 09 ¥ g+ 7 T (K O - iap)

+Z i P;i0; ( 4m N 2 >
2 I o \(K+ DV2(1— VI —ap) | V(K + )E)

Remark 25. Theorem 6 follows from Corollary 3 by setting p = 1:
. k
pnin E[[[VXH]]

3(f(XO)—f*)+ 12/1T —appo N 6p0
S E+ DA T (- VI—ap) K+ 1) Va(K + 1)1

P 8 81— ap 1 R
2 (o T ) n B (= 1)

nL° P np 4 n 4v/1 —ap 70
(K+1)3/4 p \(K+D)Y%  (1—T—ap)(K +1)3/4
n 4po/1 — ap n 2po
(1- M)(K—F nyv2z o n(K +1)/4
- 3(f(X°) = f) N 16y/T — appo nL° 8,60
oK )1/4 (- VI-ap)(K + 117 ' (K 1578 + 1)1/
p 8 8v/1— 1 .
+12 + 2 —Z ) +L0).
p \(K+DV4 " (1—y1T—=ap)( K+13/4 n

Proof of Theorem 24. By Lemma 2 and Jensen’s inequality

p p
FOCH) < FO0) + 302 V(X9 = G - Do),
=1

+zp: LY +:1L1 HV;f(X’“)H(Z.)* :
=
< fXM)+ Zi; (2t [V f(X*) = ME||, + 2 |[MF = GEl )
DIILIELIIES I CERE LNESTING
< fXM+ i 2pit; | Vif (X*) = MF|, + 2@“% iE U\ij - GﬁjM

i=1 i=1
p p L1
= Vi X + 2 ( SR ||V¢f(X’“)||(i)*t§> .
=1 =1

LS E || Vify(XF) — ME||,| and SFi= 1520 B [||ME ~ GE ||, ] Then, Lemmas 7, 8,
and the descent inequality above yield

To simplify the notation, let 6* := E [f(X*) — f*], P} := E[||Vif(X*) - MZ»’“HQ], Pk =
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Taking A; ?}L and B; = A;v/1—ap = 2t ”V 19D "we obtain
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Let us bound the terms involving the norms of the gradients. Using Lemma 10, we get
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Proof of Corollary 3. Substituting the initialization, we have

n

Pi= B[V - ML =B |37 (Vass(X0) — Vifs (X €0)
Jj=1 2
2
1 n 10 g,
< |E HZ Vi f5(X0) =V, f5(X0:€0)) g%,
- 2
. 1< 1 &
PP = SN E[|Vif(X0) - MU, = = S [[Vifi(X°) = Vi (x5 €] <o
i=1 i=1
_ 1< 1 &
S0 = S E|MY =G| = 2 Y E[[[Vifi (X)) - el (Vi (X))
j=1 j=1
) 1 —
S Vitans SB[V e,
j=1
< Viman SB[V - Vi (X)) '€ VI apes
j=1
and hence

P Qtz_z
Vo= S-S ¢1p_7aDnZEU| -]

+Z 2tipi/1T—ap 1 Z]E {||v fi(X M&HQ}

1-v/1—apmn

=1
. Z 2tlpz A om0 + Z 2%:5:v/T — ap

_ _ +Z4v — apt;p;o;
B \/17QD '

IN

\/1—OAD Ji

Substituting this in the rate, we get

min Z S SB[V,

< 3 f* + i 44/1 — apn;pio;
- (K+1)1/4l2p_1n (K +1)3/4(1 — /T —ap)

szUz
(K+1 1/2Z\f l:lm

63



Under review as a conference paper at ICLR 2026

i ( 8 L 8v1—ap > 1 J maXie[p) n?%(Lz{j)z (f* f*)
(K+ D7 " (K+ 1)1 —VT—ap)) n & N ;
+ n A S 4piV/T—apLy
5 2o \ (K A+ 13 p (K+ 1)V p (K +1)34(1 - VT-ap)

4= 114

iPi0; 44/1 — 2
+ NiPi0 ( ap >

1 %Zle m \(K+1)1/2(1—-+1—ap) * V(K + 1)1/4

?

64



Under review as a conference paper at ICLR 2026

F USEFUL FACTS AND LEMMAS

Forall X,Y € S,t > 0 and « € (0, 1], we have:

IX + Y2 < 4+ |IX17+ @+ V]2, (28)

vy < 0 P 9)
(1—a)(1—|—% Sl—%, (30)
(1-a) (HZ) < 2 31)
(G,LMOg(x 1 (G)) = ~t |G|, (32)
(X, X%) = || x*|°, (33)

X1, = || x5 (34)

Lemma 12 (Riabinin et al. (2025b), Lemma 3). Suppose that zi,...,Zp,Y1,---,Yp € R,
max;epp |2i| > 0and z1,...,2, > 0. Then

Lemma 13 (Variance decomposition). For any random vector X € S and any non-random c € S,
we have

2 2 2
E[IX - clf] =& [I1X — E[X]J3] + |E[X] -l
Lemma 14 (Riabinin et al. (2025b), Lemma 1). Let Assumption 8 hold. Then, for any X,Y € S,

POLY+ LV D
[F(Y) = f(X) = {VF(X),Y — X|<Z H f( N 1 = YillG, -

Lemma 15. Let {A*} >0, {BF}iso, @ € [p] be non-negative sequences such that

P
Ak+1 S (1 + al)Ak — Zsz + as,
i=1
where ay, a2 > 0. Then

ko OXPla(K+1) o
mln ZB =~ T]_)A +a2.

k.= where w~" = 1. Then

Proof. Let us define a weighting sequence w T Tar

P P
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1 K
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_ R (quo _,wKAKJrl) T ay.
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> o WF

Using the fact that w™! = 1 and Z;If—o wh = Zkl,(zo (1+a11)k+1 > (1+§$}<+1 , we get

and hence

p
min E BZ’?c <
k=0,...,K “

=1

(14 a)x+? exp(ai (K + 1))
Bk AO _ KAK+1 < A()
pin Z S T kep W )

which ﬁmshes the proof. O
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G EXPERIMENTS

This section provides additional experimental results and setup details complementing Section 5.

G.1 SETUP DETAILS

Tables 3 and 4 summarize the model and optimizer hyperparameters. The scale parameters (Hid-
den/Head Scale) in Table 4 specify the LMO trust-region radius as

radius = scale x learning rate,

following Pethick et al. (2025¢); Riabinin et al. (2025b).

Table 3: NanoGP T-124M model configuration.

Hyperparameter Value

Total Parameters 124M

Vocabulary Size 50,304

Number of Transformer Layers 12

Attention Heads 6

Hidden Size 768

FFN Hidden Size 3,072

Positional Embedding ROPE (Su et al., 2024)
Activation Function Squared ReLU (So et al., 2021)
Normalization RMSNorm (Zhang & Sennrich, 2019)
Bias Parameters None

Table 4: Optimizer configuration.

Hyperparameter Value

Sequence Length 1024

Batch Size 256

Optimizer EF21-Muon

Weight Decay 0

Hidden Layer Norm Spectral norm

Hidden Layer Scale 50

Newton—Schulz Iterations 5

Embedding and Head Layers Norm {+, norm

Embedding and Head Layers Scale 3000

Initial Learning Rate For non-compressed: 3.6 x 1074
Learning Rate Schedule Constant followed by linear decreasing
Learning Rate Constant Phase Length 40% of tokens

Momentum 0.9

G.2 ToPK COMPRESSION DETAILS

TopK compressor requires transmitting both the selected values and their corresponding indices
to reconstruct the original tensors. At high compression levels, this introduces significant commu-
nication overhead, especially in compositional schemes such as TopK combined with the Natural
compressor, where the cost of transmitting indices can even exceed that of the quantized values. To
illustrate this effect, we analyze the largest parameter matrices in the NanoGPT model: the token
embedding layer and the classification head, each of size 50, 304 x 768. Representing an index for
any element in these matrices requires log, (50,304 - 768) < 26 bits. We use this calculation when
visualizing communication costs.
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G.3 LEARNING RATE ABLATION

To ensure a fair and robust comparison, we perform a learning rate hyperparameter sweep for each
compression configuration, as detailed in Figure 3. For every method, the search space is initialized
at the optimal learning rate of the uncompressed baseline (taken from the Gluon repository (Riabinin
et al., 2025a)) and spans downward by up to an order of magnitude. We consistently observe that
more aggressive compression schemes require a smaller learning rate for stable convergence.

This tuning protocol is applied uniformly across all experiments for models trained with 2.5B (Sec-
tion G.5) and 5B token budgets.
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Figure 3: Learning rate ablation. The grid spans from the optimal learning rate of the non-
compressed baseline, 3.6 x 10~* (denoted as 1.0x), down to 0.1x. Red curves correspond to
experiments processing 5B tokens (Section 5), while blue curves correspond to 2.5B tokens (Sec-
tion G.5).

G.4 COMPRESSION LEVEL ABLATION

This section presents an ablation study on the compression ratio, governed by the parameter K.
Figure 4 illustrates the convergence curves for various compression configurations, each trained
with its optimal learning rate (see Section G.3). Figure 5 summarizes the final loss as a function
of K.

Our results show that for TopK and RandK compressors, an aggressive compression ratio of
K = 5% quite severely impairs convergence (see Figure 5), while configurations with K > 10%
achieve satisfactory loss reduction. Notably, when these compressors are composed with the Natural
compressor, convergence degradation is more pronounced for K = 10% than for the less aggressive
K = 15% setup.
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Figure 4: Test loss vs. # of tokens processed. Top/RankX % = Top/RankK compressor with
sparsification level X %; ID = no compression. “+ Natural” corresponds to applying Natural com-
pression after Top/Rank K compressor. Experiments use a tokens budget of 5B.
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Figure 5: Final test loss vs. compression parameter K. Results are shown after processing 5B
tokens (red) and 2.5B tokens (blue) for Rank K (left) and TopK (right) compressors. K = 100%
corresponds to the non-compressed baseline. In the Top K plot, the 2.5B setup outperforms 5B due
to differences in scheduler behavior, as the runs execute a different number of steps.

We also examine a more challenging loss threshold of 3.28 (Figure 6). The communication cost
improvement at this threshold is even more pronounced than for 3.31 (Figure 1), but this comes at a
cost: only a subset of compressors can reach the threshold within the 5B token budget.

G.5 2.5B TOKENS EXPERIMENT

In Section 5, we report runs with a 5B token budget (> 40x model size). Testing convergence
over a large number of tokens is important, as the limitations of compressors relative to the baseline
become more pronounced after many steps. At the same time, evaluating compressed runs with a
smaller token budget is useful for cases with limited resources. Accordingly, we provide a learning
rate ablation in Figure 3, a summarized comparison in Figure 5, and convergence trajectories for the
2.5B-token setup in Figure 7.
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Figure 6: Left: Test loss vs. # of tokens processed. Right: # of bytes sent from each worker to the
server normalized by model size to reach test loss 3.28. Rank/TopX % = Rank/TopK compressor
with sparsification level X %; ID = no compression.
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Figure 7: Test loss vs. # of tokens processed. Top/Rank X % = Top/Rank K’ compressor with sparsi-
fication level X %; ID = no compression. “+ Natural” corresponds to applying Natural compression
after Top/Rank ' compressor. Experiments use a tokens budget of 2.5B.

G.6 LIMITATIONS

Reporting results for all compressors on the same token budget (for instance, 5B) and then measuring
the prefix needed to reach a given loss threshold may not be fully consistent, as results can be affected
by the scheduler. To mitigate this, we use a relatively strong loss threshold that ensures a significant
number of tokens are processed beyond the constant learning rate phase. Additionally, tuning the
initial learning rate can help stabilize the results.

Note on LLM Usage. Large Language Models were used to assist in polishing the writing of the
manuscript. LLM assistance did not contribute to the scientific content of the paper.
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