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ABSTRACT

On-device LLMs have gained increasing attention for their ability to enhance pri-
vacy and provide a personalized user experience. To facilitate learning with private
and scarce local data, federated learning has become a standard approach, though
it introduces challenges related to system and data heterogeneity among end users.
As a solution, we propose a novel Collaborative learning approach with a Mixture
of Generalists and Specialists (CoMiGS), being the first to effectively address
both. Our approach distinguishes generalists and specialists by aggregating certain
experts across end users while keeping others localized to specialize in user-specific
datasets. A key innovation of our method is the bi-level optimization formulation
of the Mixture-of-Experts learning objective, where the router is updated using
a separate validation set that represents the target distribution. CoMiGS effec-
tively balances collaboration and personalization, as demonstrated by its superior
performance in scenarios with high data heterogeneity across multiple datasets.
By design, our approach accommodates users’ varying computational resources
through different numbers of specialists. By decoupling resource abundance from
data quantity, CoMiGS remains robust against overfitting—due to the generalists’
regularizing effect—while adapting to local data through specialist expertise.

1 INTRODUCTION

Large Language Models (LLMs) have been showing great success serving as foundation models,
evidenced by their capability to understand a wide range of tasks, such as ChatGPT (OpenAI, 2023),
Claude (Anthropic, 2023), Gemini (DeepMind, 2023) and etc. However, cloud-based inference intro-
duces significant delays for end users, and it often fails to meet their personalized needs (Ding et al.,
2024; Iyengar & Adusumilli, 2024). Recently, there has been growing interest in deploying LLMs on
edge devices, which offer benefits like lower latency, data localization, and more personalized user
experiences (Xu et al., 2024). For instance, Apple (2024) recently launched on-device foundation
models as part of its personal intelligence system.

On-device LLMs present challenges such as limited and variable computational resources, scarce and
heterogeneous local data, and privacy concerns related to data sharing (Peng et al., 2024; Wagner
et al., 2024). Fine-tuning is typically performed on-device to quickly adapt to users’ individual
needs. While data sharing is a common solution to address local data scarcity, on-device data is
often privacy-sensitive and must remain on the device. To overcome this, federated learning has been
proposed as a method for enabling collaborative learning while preserving user privacy, allowing end
users to collaborate by sharing model parameters (Chen et al., 2023; Zhang et al., 2023).

Federated fine-tuning of LLMs is predominately done through Low-Rank Adaptation (LoRA, Hu et al.
(2021)) due to its lightweight nature so that the communication costs can be largely mitigated. Yet
end devices may have different capacities, resulting in different LoRA ranks or different numbers of
LoRA modules allowed on devices. Previous works have proposed various techniques for aggregating
LoRA modules of different ranks (Cho et al., 2023; Bai et al., 2024). However, in both works, the
devices are only equipped with shared knowledge, which makes the methods unsuitable when there
is data heterogeneity across users. In such cases, a more personalized solution is needed.

End users’ local data distributions can exhibit significant statistical heterogeneity. For instance, mobile
device users may have distinct linguistic habits, topic preferences, or language usage patterns, leading
to widely varying word distributions. As a result, personalized solutions are necessary. Wagner et al.
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Figure 1: Diagram of our proposed method CoMiGS illustrated with a 4-client setup, with a dark
blue frame denoting a block. Within each block, generalist experts ({θG1 , θG2 , θG3 , θG4 }) are aggregated
across users, and specialist experts ({θSi

1 , θSi
2 , θSi

3 , θSi
4 }) are kept local. Router and expert parameters

are updated iteratively using local validation and training datasets.

(2024) explored three personalized collaborator selection protocols, allowing each end user to choose
their collaborators. Although these protocols effectively address data heterogeneity, they depend on
model aggregation, which can only occur when users share the same model architecture.

There has not yet been a solution to deal with both system heterogeneity and data heterogeneity.
Towards this goal, we propose a novel Collaborative learning approach via a Mixture of Generalists
and Specialists (CoMiGS). Our approach allows users to share part of the knowledge while keeping
some knowledge user-specific, thus providing personalized solutions. We name the shared part
generalists and the user-specific part specialists. Like all previous works, the generalists and
specialists are simply LoRA modules. At the same time, as long as the shared part can be aggregated,
the user-specific part can be of different sizes, which can be adapted to various device capacities, as
illustrated by different numbers of specialists across users in Figure 1.

We integrate the expertise of generalists and specialists using a learned router that determines
aggregation weights, following the Mixture-of-Experts (MoE) architecture (Fedus et al., 2022b). As
in typical MoE designs for language modeling (Jiang et al., 2024; Fan et al., 2024), we also use
tokens as the routing unit. Although users may have different topic preferences or linguistic styles,
they still share common tokens in their vocabularies. Our goal is to route these shared tokens to the
generalists so they can be jointly learned across users.

The closest work to ours is pFedMoE from Yi et al. (2024) from the vision domain, where each user
has a shared homogeneous small feature extractor, a localized heterogeneous feature extractor, and a
localized routing network, with routing unit being a semantic unit – an image. The three components
are simultaneously updated. Compared to pFedMoE, our method CoMiGS introduces three key
updates: 1) we reformulate the learning objective into a bi-level optimization framework, following
the inherent hierarchical order of router and expert learning; 2) we refine the routing mechanism
by using the smallest unit like a pixel in an image, which is a token; 3) unlike pFedMoE’s fixed
two-expert limit per user, we support varying numbers of expert modules across users.

In summary, our contributions are as follows:

• We propose a novel approach (CoMiGS) for on-device personalized collaborative fine-tuning
of LLMs, introducing an innovative bi-level formulation of the Mixture-of-Experts learning
objective. Our approach can effectively tackle distribution shifts in local data.

• Our collaborative framework effectively addresses both system heterogeneity, with respect
to varying local model architectures, and data heterogeneity, concerning diverse local data
distributions across users, making it the first model to accomplish both.

• Our framework separates resource heterogeneity from data quantity. Users with larger local
datasets benefit from a bigger model, while users with more powerful models but smaller
datasets are less prone to overfitting.

• We release a codebase1 for collaborative LLMs that allows users to easily define their own
collaboration strategies, facilitating and advancing future research efforts in this field.

1Our code base is available at https://github.com/2025-CoMiGS/codebase.
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2 RELATED WORK

Collaborative Learning for LLMs. Recently, researchers have been investigating the application
of Federated Learning in language tasks. Due to the substantial number of model parameters in
LLMs, the research has largely targeted the stages following pre-training, often utilizing parameter-
efficient techniques such as adapters. Mohtashami et al. (2023) explored a teacher-student social
learning framework to aggregate private-sensitive instructions. Zhang et al. (2023) directly applied
FedAvg (McMahan et al., 2017) to aggregate LoRA parameters during instruction tuning, and reported
increased performance in downstream tasks. Following that, there are various works focusing on
addressing system heterogeneity where users are equipped with different LoRA ranks. HetLoRA (Cho
et al., 2023) and FlexLoRA (Bai et al., 2024) provide different ways of aggregating and distributing
LoRA modules of heterogenous ranks. However, these approaches are not designed to cope with
heterogeneous data on device. In contrast, Sun et al. (2024) found better performances with respect
to heterogeneous data can be achieved through freezing LoRA A matrices at initialization; Wagner
et al. (2024) proposed personalized solutions that can sufficiently tackle data heterogeneity, through
three different collaborator selection mechanisms. Yet for both works, the users must be equipped
with the same model architecture. Unlike previous works, our framework deals with both model
heterogeneity and data heterogeneity. Moreover, our method offers personalized solutions at a token
level, as opposed to the client-level approach in Wagner et al. (2024).
Mixture of Generalist and Specialist Experts. Gaspar & Seddon (2022) introduced a fusion of
global and local experts for activity prediction based on molecular structures. Each local expert is
tailored to a specific chemical series of interest using loss masking, while a global expert is trained
across all series. Simultaneously, a routing network learns to assign soft merging scores. This
approach yielded superior empirical results compared to single experts. Dai et al. (2024) developed
DeepSeekMoE by deterministically assigning every token to “shared” experts, whereas “routed”
experts are assigned tokens based on a learnable router. DeepSeekMoE is able to approach the upper
bound performance for MoE models. For both works, the notion of shared/global is with respect to
input samples, i.e. a shared/global expert should see all input samples. In a collaborative setup, Yi
et al. (2024) proposed pFedMoE, where each user has a shared homogeneous small feature extractor,
a localized heterogeneous feature extractor, and a localized routing network, with routing unit being
an image. The three components are jointly updated in an end-to-end fashion, demonstrating strong
performance in the vision domain. Our work builds on the foundations of pFedMoE and extends it to
the language domain. Furthermore, we introduce key innovations that enable more effective handling
of distribution shifts and achieve a more refined balance between personalization and collaboration.

3 METHOD

We aim to improve personalized performance for each user on their target distributions, where
distribution shifts can be allowed. Building on the hierarchical insights of MoE learning, we
formulate our learning objective into a bi-level optimization problem, where expert parameters are
learned using the relatively large-sized training sets, while routing parameters are updated using
the small-sized validation sets. We further let experts diversify into generalists and specialists via
parameter aggregation or localization, to leverage both collective power and specialized knowledge.
As the problem solver, we provide a multi-round gradient-based algorithm.

3.1 NOTIONS AND PROBLEM SETUP

Each user has a training set X train
i , a small validation set Xvalid

i and a test set X test
i , and the task is

next token prediction. The validation set Xvalid
i and the test set X test

i are sampled from the same
distribution P target

i (note this is a fuzzy concept in the language domain, by the same distribution
we mean from the same topic/category). The training set, X train

i , can be sampled from a different
distribution than P target

i . This is to address scenarios where distribution shifts may occur over time,
such as changes in topics reflected in the typing data of mobile phone users.

As illustrated in Figure 1, there are two sets of model parameters within each user: expert parameters,
denoted as Θ = θG ∪ {θSi }, where θG is shared across the users and {θSi } are user-specific specialist
parameters; and routing parameters, denoted as Φ = {ϕi}. i ∈ {1, 2, .., N} is the user index. Our
ultimate goal is to optimize the average target performance across all users.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Our experts are simply LoRA modules, which approximate model updates ∆W ∈ Rm×n with a
multiplication of two low-rank matrices A ∈ Rm×r and B ∈ Rr×n with rank r ≪ m,n. θG and θS

are disjoint sets of LoRA A and B matrices.

3.2 A BI-LEVEL FORMULATION

Essentially, we adopt an MoE architecture, apart from aggregating certain expert parameters. Instead
of learning routing and expert parameters simultaneously like the conventional way in LLMs (Zoph
et al., 2022; Fedus et al., 2022a), we update the two sets of parameters in an alternating fashion. We
observe a natural hierarchy between the experts and the router: the assignment of tokens to experts
depends on the router’s outputs, while the experts’ parameters are updated based on the assigned
tokens. In this way, the experts’ development follows the router’s decisions, establishing an inherent
leader-follower structure. Following Von Stackelberg (2010), we formulate the hierarchical problem
as a bi-level optimization objective in (1). Notably, one of the earliest MoE works (Jordan & Jacobs,
1994), also demonstrates a hierarchical structure, though for a probabilistic interpretation. In contrast,
we approach the hierarchical structure from an optimization perspective, formulating the learning
process as two nested optimization problems.

min
Φ

∑
i

L(f(Xvalid
i ;Θ⋆(Φ), ϕi),X

valid
i )

s.t. Θ⋆(Φ) ∈ argmin
Θ

∑
i

L(f(X train
i ; θG, θSi , ϕi),X

train
i )

(1)

where L is the language modeling loss. Note we write Xi as the label here, as this is a self-supervised
task. Labels are simply shifted inputs. The routing parameters Φ = {ϕi} are updated based on the
validation loss, which reflects the target distribution (outer optimization), while the expert parameters
Θ = θG ∪ {θSi } are updated using the training loss (inner optimization). This formulation further
brings in the following benefits: 1) routing parameters are smaller in size, making them easier to
overfit. By separating the two losses, the routing parameters can be updated less frequently using
the smaller validation set (a visual evidence of less frequent router update leading to improved
performance is provided in Figure 7 in the Appendix); 2) this approach handles situations where
target distributions differ from training distributions more effectively, as the router outputs (i.e., how
the experts should be weighted) can be tailored to specific tasks.

3.3 OUR ALGORITHM

To solve (1), we use a multi-round gradient-based algorithm as shown in Alg.1, where only generalist
parameters are shared and aggregated, and specialist and router parameters are updated locally. While
the scheme requires a server, it can alternatively be implemented in a serverless all2all fashion, which
requires N times more communication overhead and we do not further pursue this here.

Alternating Update of Θ and Φ: Alternating update of two sets of parameters is a standard way
to solve bi-level optimization problems (Chen et al., 2021). In between two communication rounds,
we perform alternating updates of expert and routing parameters using local training and validation
sets separately. The updates optimize the objectives given in (2) and (3) respectively. Since the
updates of Θ and Φ are disentangled, they do not need to be updated at the same frequency. The
routing parameters are smaller in size and thus can be updated less frequently. When updating
model parameters, we include an additional load-balancing term as in Fedus et al. (2022a), which is
standard in MoE implementation and encourages even distribution of token assignments to experts.
A discussion over the load balancing term is included in Appendix C.4. It is observed that a load-
balancing term can improve test performance compared to not having one. However, directing more
tokens to the generalists has no noticeable effect.

Update of θG and θSi : The update of generalist parameters θG follows a standard FedAvg scheme,
through aggregating model parameters. Specifically, we simultaneously update both θG and θSi by
optimizing equation (2), which results in θGi and θSi . A parameter aggregation is then performed on
the user-specific θGi via a trusted server to establish a shared θG across all users. In the next round,
each user replaces their θGi with the global θG, while their θSi remains locally updated.

4
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Algorithm 1 Pseudo code of our proposed algorithm

Input: Expert parameters {θGi,0, θSi,0}, routing parameters {ϕi,0}. Local training data and validation
data {X train

i ,Xvalid
i }, i ∈ {1, 2, .., N}. Communication round T and routing update period τ . Load

balancing weight λ.
for t = 1, ..., T do

Server aggregates generalist parameters: θGt−1 = 1
N

∑
i θ

G
i,t−1

for i ∈ [0, N) do
Users download aggregated generalist weights and
prepare model parameters for training {θGt−1, θ

S
i,t−1, ϕi,t−1}

Do gradient steps on (θGt−1, θ
S
i,t−1) towards minimizing (2) and get (θGi,t, θ

S
i,t)

min
θG
i ,θS

i

L(f(X train
i ; θGi , θ

S
i , ϕi,t−1),X

train
i ) + λ · LLB

i (X train
i ; θGi , θ

S
i , ϕi,t−1) (2)

if t%τ = 0 then
Do gradient steps on ϕi,t−1 towards minimizing (3) and get ϕi,t

min
ϕi

L(f(Xvalid
i ; θGi,t, θ

S
i,t, ϕi),X

valid
i ) + λ · LLB

i (Xvalid
i ; θGi,t, θ

S
i,t, ϕi) (3)

end if
end for
Each device i ∈ {1, 2, .., N} sends generalist weights θGi,t to the server

end for
Return: Expert parameters {θGi,T , θSi,T } and routing parameters {ϕi,T }

Theorem 3.1 (Convergence Result) If 1) the two loss functions on training and validation sets share
the same global minimum (Θ⋆, ϕ⋆

i ) for all i ∈ [N ], 2) for any Θ′, ϕ′
i, L(f(Xvalid

i ;Θ′, ϕi),X
valid
i )

and L(f(X train
i ;Θ, ϕ′

i),X
train
i ) are strongly convex in ϕi and Θ respectively, following the alternat-

ing update in Algorithm 1, we have (Θt, ϕi,t) converge to (Θ⋆, ϕ⋆
i ) linearly.

The proof is presented in Appendix G.

4 EXPERIMENTS

4.1 SETUP

4.1.1 DATASETS

We selected three diverse distributed datasets to demonstrate the efficacy of our proposed algorithm:

i) Multilingual Wikipedia: This dataset constitutes Wikipedia articles in four languages: Ger-
man, Dutch, French, and Italian. We take German, French and Italian from Wikimedia-
Foundation, and Dutch from Guo et al. (2020);

ii) SlimPajama: We pick the following four categories – StackExchange, Github Codes, ArXiv,
Book from Soboleva et al. (2023);

iii) AG News: This dataset covers News from categories of World, Sports, Business, and
Sci/Tech (Zhang et al., 2016).

Opting for the most challenging scenario, each user is assigned a unique category, as shown in
Figure 8, where users can have varying data quantities. Given our emphasis on next token prediction,
we anticipate shared predictions among users while maintaining category-specific distinctions. For
details of our user data splits, please refer to Appendix B. We further create the following two
scenarios to showcase the wide applicability of our method:

In-Distribution Tasks. For each user, we construct validation and test datasets that follow the
same distribution as the training data. We address two scenarios in this context: (i) variation in
language usage across users (Multilingual Wikipedia), and (ii) variation in topic coverage across
users (SlimPajama).
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Out-of-Distribution Tasks. For each user, we create validation and test datasets from a distribution
different from the training data. During training, each user is assigned a single News category from
AG News, but their validation and test sets consist of a uniform mixture of all categories. This
approach accounts for potential shifts in topics within users.

4.1.2 EXPERIMENTAL DETAILS

Our base models are the GPT2 model with 124M parameters and Llama 3.2 model with 1B parameters,
which are suitable for on-device deployment2. We incorporate LoRA modules into every linear layer,
including MLP and Self-Attention Layers, following the recommendations of Fomenko et al. (2024),
specifically in the [attn.c attn, attn.c proj, mlp.c fc, mlp.c proj] layers. A
routing mechanism is exclusively implemented atop MLP layers. This means that each attention
layer has only one LoRA expert applied to it, which is always aggregated during synchronization.
The number of LoRA experts in MLP blocks depends on the local resource abundance. For more
experimental details, we refer readers to Appendix B.

4.2 DATA-DRIVEN SELECTION: GENERALIST VS. SPECIALIST

We start by equipping users with the same model architecture locally, to illustrate the effectiveness
of our hierarchical learning of routing and expert parameters. We compare our one generalist one
specialist (CoMiGS-1G1S) method to the following baselines. In order to match the trainable
parameter count of our method, we use 2 times LoRA modules within each user.

i) Upper and lower bounds:
• Pretrained: A pretrained GPT-2 model using weights from OpenAI.
• Centralized: A single model trained using data from all users. (Note this method is

an unrealistic baseline as data cannot leave the devices due to privacy concerns.)
ii) Baselines:

• Local: Training individually using only local data without collaboration.
• FedAvg: Aggregating LoRA parameters across users using uniform weights, which is

equivalent to applying FedAvg (McMahan et al., 2017).
• PCL: Aggregating LoRA parameters using a client-level collaboration graph. The graph is

updated using validation performances. (Strategy 2 in Wagner et al. (2024)).
• pFedMoE: We directly apply the method from Yi et al. (2024) in the language domain

where we update routing and expert parameters at the same time and choose tokens as a
routing unit.

iii) Ablations:
• CoMiGS-2S: Both of the LoRA experts are specialists, meaning their weights are neither

shared nor aggregated. The routing parameters are updated using a separate validation set
like in CoMiGS-1G1S.

• CoMiGS-2G: Both of the LoRA experts are generalists, meaning their weights are always
shared and aggregated. The routing parameters are updated using a separate validation set
like in CoMiGS-1G1S.

4.2.1 RESULT ANALYSIS

The comparison between our method and the baseline methods is summarized in Table 1.
Effectiveness of our routing mechanism: Depending on the dataset, either CoMiGS-2G or
CoMiGS-2S achieves the highest performance. The key distinction compared to Local or FedAvg
is the existence of a layer-wise router, which weighs the two generalists or two specialists for
each token according to the validation performances, as opposed to assigning equal weights. This
emphasizes that even with the same expert knowledge, the way it’s combined is crucial. Moreover,
pFedMoE, despite having a learned router as well, underperforms our method, even in the in-
distribution scenario. The reason is that the routing parameters are updated simultaneously with the
expert parameters using the training set, and thus cannot effectively adapt to the target distribution.

2We adopt the codes from https://github.com/karpathy/nanoGPTand https://
github.com/danielgrittner/nanoGPT-LoRA, https://github.com/pjlab-sys4nlp/
llama-moe
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In Distribution Out of Distribution
Multilingual SlimPajama AG News

Pretrained 156.12 37.19 90.65
Centralized 55.41 (0.12) 19.53 (0.14) 28.19 (0.52)

Local 54.38 (0.32) 26.95 (0.14) 41.46 (0.06)
FedAvg 58.80 (0.34) 23.27 (0.05) 31.84 (0.02)
PCL 54.53 (0.19) 26.99 (0.19) 32.25 (0.12)
pFedMoE 52.27 (0.17) 25.40 (0.09) 38.72 (0.21)

CoMiGS - 2S (ours) 46.36 (0.16) 22.51 (0.08) 35.81 (0.13)
CoMiGS - 2G (ours) 58.31 (0.17) 21.36 (0.01) 31.18 (0.05)
CoMiGS - 1G1S (ours) 47.19 (0.10) 21.79 (0.04) 33.53 (0.03)

Table 1: Mean test perplexity over the users with homogeneous models, averaged across 3 seeds.
Mean (std) with a rank locator for the mean (the lower the better). Green denotes the best performing
methods and red denotes our method. An extended version of the table can be found in Table 4. A
replicated experiment using Llama3.2 (1B) base model can be found in Table 6.

Token-level collaborative decisions outperform Client-level: Compared to the state-of-the-art
baseline PCL, as proposed by Wagner et al. (2024), our method demonstrates a clear performance
improvement. PCL assigns a pairwise collaboration weight between users by evaluating how well
user i’s model performs on user j’s validation set. On the two in-distribution tasks, PCL exhibits
performance similar to Local, where the learned collaboration matrices are nearly identity matri-
ces, thereby limiting effective collaboration between users. Our method, in contrast, decides the
collaboration pattern based on each input token, and thus can harness the collective power more
effectively.
The necessity of the co-existence of generalists and specialists: The performances of
CoMiGS-2G and CoMiGS-2S are not consistent across the different scenarios, while our
CoMiGS-1G1S can always closely track the best-performing model, which is clearly shown in
Table 1 and visualized in Figure 9. Depending on the task type, generalists and specialists alone may
not be sufficient. A balanced combination of personalization and collaboration is required, and our
approach achieves this balance effectively.

Computational and communication overhead: Please refer to Appendix B.1.

4.2.2 ROUTING ANALYSIS

Token-wise analysis: We further present a token-level routing result visualization on models
fine-tuned with SlimPajama dataset in Figure 2: The first two users are fine-tuned with very specific
math and programming texts, and they tend to utilize the generalist more in the last layer. Function
words (”and”, ”a”, ”on” ”the” etc) are more routed to generalists, as expected. This can be seen in the
top right panel of Figure 2. It is important to note that only the top choice is highlighted here. The
abundance of blue does not imply that generalist experts play no role in predicting the next token.
To see this, compared to when only specialists are present (CoMiGS-2S), our CoMiGS-1G1S
gives more consistent results. More detailed token-wise routing result visualization including out-of-
distribution tasks can be seen in Appendix F. When dealing with out-of-distribution texts, there is an
increasing tendency to seek for generalists, as shown in the off-diagonal entries in Figure 14-19.
Layer-wise analysis: Figure 3 depicts the evolution of averaged layer-wise router outputs for
the generalist and specialist experts on the out-of-distribution task, comparing CoMiGS-1G1S and
pFedMoE. As training progresses, CoMiGS-1G1S undergoes a phase transition: the layer-wise
routers initially favor generalists but gradually shift towards specialists. This shift is not observed in
pFedMoE, highlighting the critical role of our routing mechanism in handling out-of-distribution
tasks. Additionally, we notice different layers converge to a different expert score distribution.
When applying our CoMiGS-1G1S, for each user, there are always certain layers where the routers
consistently prefer generalists, which aligns with the fact that our target distribution is a union of all
local training distributions. This phenomenon no longer occurs with in-distribution tasks, as shown
in Figure 10.
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StackEx User Codes User ArXiv User Book User

StackEx User Codes User ArXiv User Book User

Figure 2: Visualization of in-distribution token-level routing results for CoMiGS-1G1S trained on
SlimPajama. Tokens are colored with the Top1 expert choice at the first layer (top) and last layer
(bottom). Orange denotes the generalist and blue denotes the specialist. Texts are generated by
ChatGPT. Further colored text plots are provided in Appendix F.
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Figure 3: Expert Scores for the generalist expert and the specialist expert, averaged across all tokens
and multiple batches for the out-of-distribution task (AG News), with x-axis being the number of
iterations. Upper row: our CoMiGS-1G1S, bottom row: pFedMoE. Darker colors represent deeper
layers. Expert score plots for in-distribution tasks can be seen in Figure 10 .

4.3 ADAPTATION TO RESOURCE HETEROGENEITY

4.3.1 BASELINE COMPARISON

In this section, our focus is to deal with system heterogeneity, where users can have different numbers
of experts. We still keep one generalist expert, but the number of specialists can vary across the users
(our method is denoted as One-Generalist-X-Specialists, named CoMiGS-1GXS). It’s important to
note that the richness of computational resources doesn’t always correlate with the complexity of
local data. For instance, some users may have ample computational resources but local data in small
quantities. In such cases, a crucial objective is to prevent overfitting due to redundant model-fitting
abilities.

We compare our approach to two state-of-the-art baselines: HetLoRA from Cho et al. (2023) and
FlexLoRA from Bai et al. (2024), both of which adapt LoRA ranks based on the resource capacity
of each user. HetLoRA aggregates LoRA matrices A and B by zero-padding to the maximum
rank and then distributes them back using rank truncation. In contrast, FlexLoRA first reconstructs
model updates ∆W and redistributes the aggregated updates using SVD. We compare our method
to these baselines by matching the number of fine-tunable parameters, measured as both active and
full parameters. For example, to match the full parameter count of CoMiGS-1GXS with (4, 2, 2, 2)
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LoRA experts (rank 8), LoRA modules of ranks (32, 16, 16, 16) would be required. With Top2
routing, to match the active parameter count, each user would need LoRA modules of rank 16.

Our results, presented in Table 2, are based on allocating different computational resources to users,
with resource availability decoupled from local task complexity. We find that our method outperforms
the baseline methods most of the time, regardless of whether we match the full parameter count or
the active parameter count. This advantage stems from the fact that both HetLoRA and FlexLoRA
average model parameters across users without allocating parameters for local adaptations, focusing
on building a strong generalist model. In contrast, our approach adaptively integrates both generalist
and specialist knowledge, excelling in scenarios where specialized knowledge is crucial.

Ours HetLoRA FlexLoRA
CoMiGS-1GXS Active Full Active Full

In Distribution Multilingual
(2,2,4,4) 46.48 (0.16) 57.76 (0.10) 58.60 (0.20) 77.65 (0.20) 77.85 (0.26)
(4,4,2,2) 47.24 (0.09) 57.76 (0.10) 59.14 (0.04) 77.65 (0.20) 76.29 (0.17)
SlimPajama
(2,4,4,2) 22.10 (0.17) 23.33 (0.10) 23.15 (0.09) 22.97 (0.11) 22.99 (0.08)
(4,2,2,4) 22.28 (0.09) 23.33 (0.10) 23.17 (0.09) 22.97 (0.11) 22.99 (0.09)

Out of Distribution AG News
(4,2,2,2) 33.66 (0.07) 31.58 (0.14) 31.95 (0.13) 36.45 (0.06) 36.49 (0.17)
(2,4,4,4) 34.22 (0.09) 31.58 (0.14) 32.52 (0.19) 36.45 (0.06) 36.40 (0.08)

Table 2: Mean test perplexity (std) over users with heterogeneous models, averaged across 3 seeds,
with red being the top1 method. For example, (4, 2, 2, 2) means in our CoMiGS-1GXS setup users
have 4, 2, 2, and 2 experts, respectively, and in the two baselines, all users have rank 16 to match
active parameter count, or ranks 32, 16, 16, and 16 to match full parameter count.

4.3.2 ANALYSIS RELATED TO LOCAL DATA QUANTITIES

In this section, we further separate resource abundance from data quantity. It is observed that our
approach is more robust to overfitting due to the regularizing effect of the generalist, while at the
same time better fitting local data through the incorporation of specialist knowledge.

We conduct experiments using Multilingual Wikipedia dataset, where we allocate low data quantities
to German and Dutch users, and high data quantities to French and Italian users, as shown in
Figure 8. In practice, users may not know their local data complexity, leading to a potential mismatch
in resource allocation relative to data quantity. To simulate such scenarios, we allocate model
capabilities—measured by the number of LoRA modules per user—either positively or negatively
correlated with their local data size. It is important to note that one generalist is always assigned, and
resource abundance is only reflected in the number of specialists.

More Specialists Help with Higher Data Quantity. French and Italian users consistently benefit
from having more specialists locally, as their test perplexities decrease when the number of specialists
increases from 1 to 3 to 7. This suggests that when sufficient local training data is available, adding
more specialists leads to improved performance.
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Figure 4: Test Perplexity vs. the number of iterations. Low and high denote the relative data quantity
among users. The numbers in the legend indicate the number of experts ni within each user. Top-2
routing is performed.

Generalists Help to Prevent Redundant Specialists from Over-Fitting. For users with low data
quantities, local model training with just two LoRA modules already results in overfitting (a trend
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observed in Figure 9). Our goal here is to prevent overfitting. Figure 5 demonstrates that our method
succeeds to surpress overfitting, even when fine-tuning twice or four times as many expert parameters.
We attribute this to the existence of the generalists.
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Figure 5: Test Perplexity vs. the number of iterations. Low and high denote the relative data quantity
among users. The numbers in the legend indicate the number of experts ni within each user. Top-2
routing is performed. German and Dutch Users despite having high resources locally, do not overfit
on their small-sized local data.

Specialists Can Benefit Generalists. What happens if users can only support a maximum of one
expert? In our setup, such users must rely on the generalist expert when participating in collaboration.
Interestingly, even when their collaborators are allocated more specialists, low-resourced users with
only one generalist still benefit from the refined role diversification between generalists and specialists.
As a result, the generalists become more powerful, as demonstrated in Figure 6.
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Figure 6: Test Perplexity vs. the number of iterations. German and Dutch Users, despite having only
one expert locally, still benefit from their collaborators having more experts, thereby enhancing the
generalist’s performance. The numbers in the legend indicate the number of experts, ni, within each
user. Top-2 routing is applied when ni ≥ 2.

We provide an additional example of the impact of local data quantities in Appendix E using
SlimPajama dataset. Similar conclusions can be drawn from our empirical results. However, there is
a limit to how much generalists can help prevent overfitting when the local tasks are easy.

5 CONCLUSIONS AND FUTURE DIRECTIONS

We propose a novel framework for on-device personalized collaborative fine-tuning of LLMs,
grounded in an innovative bi-level formulation of the Mixture-of-Experts learning objective. Our
fine-grained integration of generalist and specialist expert knowledge achieves superior performance
in balancing personalization and collaboration within Federated LLMs.

Furthermore, our framework is the first to address both system and data heterogeneity in collaborative
LLM training. It also decouples local data quantity from resource availability, allowing high-resourced
users to leverage larger datasets for improved performance while remaining resilient against overfitting
in low-data scenarios.

An interesting future direction to explore is adopting our framework for collaborative instruction
tuning of larger LLMs and evaluating its performance on downstream tasks. While our paper focused
on a single generalist, it is possible to include multiple generalists, and their impact on performance
remains to be seen. We hope our work paves the way for a new direction in on-device collaborative
LLMs.
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Héléna A Gaspar and Matthew P Seddon. Glolloc: Mixture of global and local experts for molecular
activity prediction. In ICLR2022 Machine Learning for Drug Discovery, 2022.

Mandy Guo, Zihang Dai, Denny Vrandecic, and Rami Al-Rfou. Wiki-40b: Multilingual language
model dataset. In LREC 2020, 2020. URL http://www.lrec-conf.org/proceedings/
lrec2020/pdf/2020.lrec-1.296.pdf.

11

https://www.anthropic.com/index/claude
https://arxiv.org/abs/2407.21075
https://arxiv.org/abs/2407.21075
https://arxiv.org/abs/2307.08925
https://openreview.net/forum?id=EmV9sGpZ7q
https://www.deepmind.com/research/gemini
https://www.deepmind.com/research/gemini
https://doi.org/10.1145/3637528.3671679
https://openreview.net/forum?id=ebPKyb6r9F
https://openreview.net/forum?id=ebPKyb6r9F
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.296.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.296.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Ashok Iyengar and Praneet Adusumilli. Bigger isn’t always better: How hybrid ai
pattern enables smaller language models, 2024. URL https://www.ibm.com/
blog/bigger-isnt-always-better-how-hybrid-ai-pattern-enables\
-smaller-language-models/.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
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A LIMITATIONS AND SOCIETAL IMPACT

Limitations. Compared to FedAvg type of methods, our method requires extra gradient steps on
routing parameters and memory storage for the routing parameters. Since a routing network is usually
a one-layer MLP, the extra cost in computation and storage is relatively small.

The robust performance of our method relies on the fact that we update routing parameters and expert
parameters on two independent losses. This means we need some validation samples independent
from training samples. When local data size is minimal, this can be an issue.

Our method, while generally robust, still has a tendency towards overfitting when there is a significant
mismatch between local resource abundance and data complexity, similar to other methods.

Societal Impact. We offer a collaboration framework for edge devices, aiming to enable smaller
devices to leverage large language models (LLMs) despite limited resources and data availability.
Our approach enhances fairness and mitigates privacy concerns by ensuring data remains on end
devices. The privacy aspects can further be enhanced by differential private aggregation of generalist
weights, which we do not pursue here.

The robustness towards attackers is beyond the scope of our work. Our collaboration framework has
no guarantee of resilience towards Byzantine attackers, which could potentially lead to misuse by
certain parties.

B EXTRA EXPERIMENTAL DETAILS

B.1 COMPUTATIONAL AND COMMUNICATION OVERHEAD

Computational overhead: During a forward pass, on top of the base pre-trained GPT2 model ( 32
GFlops), fine-tuning using FedAvg with two sets of LoRA modules adds extra 490 MFLOPs (+
1.53%), while the typical FedAvg with one set of LoRA models adds extra 166 MFlops (+ 0.52%).
Our CoMiGS-1G1S adds 495 extra MFLOPs (+ 1.55%, 490MFLOPS from the experts and 5MFLOPs
from the router). The FLOPs are approximated following Appendix B of Chowdhery et al. (2023).
The extra computational complexity is almost neglectable in comparison to the base model.

Extra memory requirement: Compared to storing the LoRA matrices, the extra memory storage
from the router is 0.035 MB, assuming bfloat16 training.

Communication costs: Since specialists and routers stay locally within each device, the only weight
to communicate is from the generalist experts. As we conduct fine-tuning with bfloat16, in each
communication round, each device only needs to communicate 1.41 MB of generalist weights, which
we do not consider a big value.

B.2 TRAINING DETAILS

Following Kalajdzievski (2023), we choose γ to be a rank-stabilized value, a technique which helps
stabilize gradient norms. α and the rank r are hyper-parameters to choose from. The LoRA modules
function as follows:

W = W 0 + γ ·AB, γ =
α√
r

(4)

All our experiments except the centralized ones were conducted on a single A100-SXM4-40GB GPU.
The centralized learning baseline experiments were conducted on a single A100-SXM4-80GB GPU,
as a batch size of 64*4 requires a larger storage capacity.

We use a constant learning rate of 2× 10−3 for updating routing parameters and a 2× 10−3 learning
rate with a one-cycle cosine schedule for expert parameters during fine-tuning. The LoRA rank r is
set to 8 unless otherwise specified, with LoRA alpha α set to 16, following the common practice of
setting alpha to twice the rank (Raschka, 2023). A load balancing weight 0.01 is always applied.

For AG News and Multilingual Wikipedia data splits, we conduct 20 communication rounds. For
SlimPajama data splits, due to greater category diversity, we conduct 50 communication rounds.
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Between each pair of communication rounds, there are 10 local iterations. In each iteration, a batch
size of 64 is processed with a context length of 128. We set the routing update period to 30 iterations,
and every time we update routing parameters, we do 10 gradient steps on the validation loss. The
choice of the hyperparamters is from a sweep run and we provide the evidence in Figure 7.
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Figure 7: Sweep results on SlimPajama data splits. We ablate the impact of the update period (τ ) and
the number of update steps (s) on model performance.

B.3 DATA DISTRIBUTION

The dataset distribution and number of tokens within each user are shown in Figure 8 and Table 3
respectively.
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Figure 8: The data splits across users, with bubble size denoting the relative size of the local dataset.

User 1 User 2 User 3 User 4

Multilingual
Training 557’662 407’498 556’796 451’584
Validation 300’764 216’318 220’071 165’984
Test 229’720 219’741 210’570 172’547

SlimPajama
Training 1’000’000 1’000’000 1’000’000 1’000’000
Validation 200’000 200’000 200’000 200’000
Test 200’000 200’000 200’000 200’000

AG News
Training 761’924 756’719 814’131 771’460
Validation 48’809 48’730 50’398 48’249
Test 48’167 47’721 48’344 49’377

Table 3: Number of tokens in each dataset splits

C MORE TABLES AND FIGURES

C.1 LEARNING CURVES OF DIFFERENT METHODS

C.2 EXTENDED BASELINE COMPARISON

An extended version of Table 1 is presented in Table 4. In this extension, we incorporate two
additional ablations: 1) Integration of a routing mechanism, updated simultaneously with the expert
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Figure 9: Test Perplexity during training for all the three datasets: our method closely follows the
best performing method
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Figure 10: Expert Scores for the generalist expert and the specialist expert from our CoMiGS-1G1S
method, averaged across all tokens and multiple batches for the in-distribution task, with x-axis being
the number of iterations. Darker colors represent deeper layers.

networks; 2) Iterative updates alternating between routing and expert parameters, with the routing
parameters updated using newly-sampled training batches instead of a dedicated validation set.
Moreover, we include another baseline method FFA-LoRA from Sun et al. (2024), where the LoRA
A matrices are fixed at initialization.

Notably, the comparison between scenarios ii) and iii) reveals minimal disparity, underscoring the
significance of having an independent validation set exclusively for routing parameter updates.

C.3 HETLORA

Analogously to the baseline experiment comparison in FlexLoRA (Bai et al., 2024), we use γ = 0.99
as pruning strength and sweep the regularization parameter in {5× 10−2, 5× 10−3, 5× 10−4}.
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In Distribution Out of Distribution
Multilingual SlimPajama AG News

i) Without routing

Pretrained 156.12 37.19 90.65
Centralized 55.41 (0.12) 19.53 (0.14) 28.19 (0.52)
Local 54.38 (0.32) 26.95 (0.14) 41.46 (0.06)
FedAvg 58.80 (0.34) 23.27 (0.05) 31.84 (0.02)
FFA-LoRA 57.83 (0.13) 23.42 (0.069) 31.60 (0.14)
PCL 54.53 (0.19) 26.99 (0.19) 32.25 (0.12)

ii) Update routing and expert params simultaneously on training loss

Local-MoE 55.27 (0.40) 27.16 (0.16) 41.49 (0.01)
FedAvg-MoE 56.77 (0.37) 23.32 (0.07) 32.24 (0.08)
pFedMoE 52.27 (0.17) 22.91 (0.18) 38.72 (0.21)

iii) Alternating update routing params on newly sampled batches from training set

Local-MoE - tr 53.78 (0.33) 27.78 (0.06) 41.46 (0.03)
FedAvg-MoE - tr 59.39 (0.13) 23.00 (0.01) 31.70 (0.16)
CoMiGS - tr 50.86 (0.14) 25.45 (0.01) 38.93 (0.08)

iv) Alternating update routing params on a validation set

CoMiGS - 2S 46.36 (0.16) 22.51 (0.08) 35.81 (0.13)
CoMiGS - 2G 58.31 (0.17) 21.36 (0.01) 31.18 (0.05)
CoMiGS - 1G1S 47.19 (0.10) 21.79 (0.04) 33.53 (0.03)

Table 4: Mean test perplexity over users with homogenous models, averaged across 3 seeds. Mean
(std) with a rank locator for the mean (the lower the better). Green denotes the best performing
methods and red denotes our method.

C.4 IS THE STANDARD LOAD BALANCING LOSS SUFFICIENT?

The standard load balancing loss encourages equal assignment of tokens to each expert. When the
number of experts gets larger, there might not be enough tokens routed to the generalists, which
might lead to a under-developed general knowledge. We will verify if this is indeed true.

To encourage enough tokens to be routed to the generalist expert such that more general knowledge
can be developed, we modify our load-balancing loss by introducing importance weighting. As we
separate the 0-th expert to be the generalist expert and conduct Top-2 routing, the modified load
balancing loss is as follows:

LLB
i =

1

(ni − 1)2 + 1
· f0 · P0 +

ni−1∑
j=1

ni − 1

(ni − 1)2 + 1
· fj · Pj (5)

where
fj =

1

T

∑
x∈B

1{j ∈ Top2 indices of p(x)} Pj =
1

T

∑
x∈B

pj(x) (6)

j is the expert index and p(x) = [pj(x)]
ni
j=1 is the logit output from the routing network for a specific

token x. The idea is that one of the top 2 tokens should always be routed to the generalist expert, i.e.
the 0-th expert. Thus, p0

1/2 should be equal to pi

1/2(ni−1) for i ̸= 0. As the original load balancing loss
encourages uniform distribution, this modification encourages the generalist expert to have a routing
probability of 0.5 on expectation. Note that when ni = 2, this LLB

i is the same as the original load
balancing loss as proposed in Fedus et al. (2022a).

We present the results in Table 5: in both scenarios, whether users have the same or different numbers
of experts, including a load-balancing term leads to a slight improvement compared to omitting
it. However, encouraging more tokens to be routed to the generalists does not make a significant
difference.
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No LB LB (uniform) LB (generalist-favored)

AG News (homo) 33.69 (0.21) 33.53 (0.03) 33.53 (0.03)
AG News (hetero) 34.31 (0.05) 34.28 (0.11) 34.22 (0.09)
Multi-Wiki (homo) 47.31 (0.15) 47.19 (0.10) 47.19 (0.10)
Multi-Wiki (hetero) 46.36 (0.16) 46.15 (0.04) 46.48 (0.16)
SlimPajama (homo) 21.77 (0.02) 21.79 (0.04) 21.79 (0.04)
SlimPajama (hetero) 22.15 (0.07) 22.10 (0.11) 22.10 (0.17)

Table 5: Test perplexity with different load balancing terms with (hetero) or without (homo) system
heterogeneity.

D LLAMA3.2 (1B) EXPERIMENTS

We replicate our experiments of Table 1 with a Llama 3.2 (1 B) model in Table 6. Given the extensive
pre-training of LLAMA 3 models on over 15 trillion tokens from public sources (Meta, 2024a),
and the multilingual capabilities of LLAMA 3.2 (1B) (Meta, 2024b), fine-tuning on multilingual
Wikipedia or SlimPajama resulted in negligible improvements likely due to significant overlap with
the pre-training data corpus.

Therefore, in the Llama3.2 (1B) experiments we introduce a new fine-tuning dataset, which is
derived from Common Corpus (pleias, 2024) - specifically, the YouTube-Commons, Latin-PD, and
TEDEUTenders collections - and the Harvard USPTO dataset (Suzgun et al., 2022). Following our
previous methodology, each client is assigned one of the datasets to maximize heterogeneity. We use
this dataset to model the in-distribution scenario. Additionally, we reduced the number of training
iterations for the AG News experiment.

Our results on the Common Corpus-based dataset, which emphasizes domain-specific language and
structure, demonstrate that our CoMiGS-1G1S method can outperform local training and FedAvg.
In the out-of-distribution scenario (AG News), CoMiGS-1G1S performance tracks the performance
of CoMiGS-2G and FedAvg, similar to our observations with the GPT experiments. The complete
results are presented in Table 6.

Table 6: Mean test perplexity over the users with homogeneous models, averaged across 3 seeds.
Mean (std) for Llama3.2 (1B) model.

In Distribution Out of Distribution
Common-Corpus AG News SlimPajama Multilingual

Pretrained 30.40 29.37 12.45 14.25
Centralized 17.36 (0.08) 16.12 (0.05) 9.58 (0.19) 11.27 (0.07)

Local 20.19 (0.11) 19.96 (0.01) 11.84 (0.06) 10.93 (0.04)
FedAvg 21.95 (0.11) 15.86 (0.05) 11.30 (0.03) 10.57 (0.05)

CoMiGS-2S (ours) 18.46 (0.13) 18.03 (0.11) 11.95 (0.05) 10.88 (0.03)
CoMiGS-2G (ours) 20.18 (0.09) 15.41 (0.05) 11.33 (0.02) 10.57 (0.03)
CoMiGS-1G1S (ours) 18.37 (0.03) 16.31 (0.05) 11.44 (0.02) 10.60 (0.02)

E ADDITIONAL EXPERIMENTS

We replicate the experiments in Section 4.3 with the SlimPajama dataset, where we assign four times
as many tokens to ArXiv User and Book User as to Stack Exchange User and Codes User.

More Specialists Help with Higher Data Quantity. From Figure 11, it is evident that ArXiv User
and Book User, with abundant local data, benefit from having more local experts.

Generalists Help to Prevent Redundant Specialists from Over-Fitting? From Figure 12, we
observe more prominent overfitting than in Figure 5, likely because the tasks are objectively easier, as
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Figure 11: Test Perplexity during training for the SlimPajama setup. ArXiv User and Book User have
more local data and thus benefit from having more experts. The numbers in the legend indicate the
number of experts ni within each user. Top-2 routing is performed.

indicated by lower test perplexity from the beginning of fine-tuning. Generalists have limited power
to prevent overfitting with easy tasks.
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Figure 12: In this SlimPajama setup, Stack Ex User and Codes User despite having low resources
locally, overfit slightly on their small-sized local data. Numbers in the legend denote the number of
experts ni within each user. Top2 routing is performed.

Specialists Can Benefit Generalists. Low-resourced users that can only support a single expert
setup still benefit from collaboration, as the generalist knowledge is refined through a more detailed
distinction between specialist and generalist roles via other high-resourced users. This is indicated by
the enhanced performances for Stack Exchange and Codes Users.
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Figure 13: In this SlimPajama setup, Stack Ex User and Codes User, despite having only one
expert locally, still benefit from other users having more experts, thereby enhancing the generalist’s
performance. The numbers in the legend indicate the number of experts, ni, within each user. Top-2
routing is applied when ni ≥ 2

F VISUALIZATION OF EXPERT SPECIALIZATION

To visualize which tokens are routed to the generalist and specialist experts for our CoMiGS-1G1S
model trained on SlimPajama, we ask ChatGPT to generate texts in the style of StackExchange,
Python Codes, ArXiv Paper and Books. We then feed those texts to the user-specific models and color
the token with the Top1 routed index. The routing results after the very first layer (0th), a middle
layer (5th), and the very last layer (11th) are presented in Figure 14, 15 and 16.
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Figure 14: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama.
Tokens are colored with the first expert choice at the 0th (first) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.

We perform the same experiments on AG News, asking ChatGPT to generate News text on the topics
World, Sports, Business, and Sci/Tech. The routing results after the very first layer (0th), a middle
layer (5th), and the very last layer (11th) are presented in Figure 17, 18 and 19.

For all the plots, diagonal entries are in-distribution texts and off-diagonal entries are out-of-
distribution texts.
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Figure 15: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama.
Tokens are colored with the first expert choice at the 5th layer. Orange denotes the generalist and
blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 16: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama.
Tokens are colored with the first expert choice at the 11th (last) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 17: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News.
Tokens are colored with the first expert choice at the 0th (first) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 18: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News.
Tokens are colored with the first expert choice at the 5th (middle) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 19: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News.
Tokens are colored with the first expert choice at the 11th (last) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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G ALTERNATING MINIMIZATION CONVERGENCE

G.1 NOTATION

Let us consider two differentiable functions f1(x, y) and f2(x, y), where x ∈ Rd and
y ∈ Rn are some variables. Note that f1 and f2 are simply L(f(Xvalid

i ;Θ, ϕi),X
valid
i ) and

L(f(X train
i ;Θ, ϕi),X

train
i ) in our algorithm, and (x, y) are (Θ, ϕi).

We are interested to analyze the following alternating minimization algorithm, starting from some
initial x0 ∈ Rd, we denote for every k ≥ 0:

yk+1 = argmin
y

f1(xk, y),

xk+1 = argmin
x

f2(x, yk+1).
(7)

If f1 ≡ f2 that would be a standard alternation minimization as for minimizing one function f1.
However, in our setting f1 and f2 can be different.

For a fixed x and y, let us denote the corresponding argmin operators by

u1(x) := argmin
y

f1(x, y)

and
u2(y) := argmin

x
f2(x, y).

Using this notation, we can rewrite algorithm equation 7 as follows:

yk+1 = u1(xk), xk+1 = u2(yk+1), k ≥ 0. (8)

Let us further define the following operators, each transforming its own space, for any x ∈ Rd and
y ∈ Rd:

T (x) := u2(u1(x)) ∈ Rd,

P (y) := u1(u2(y)) ∈ Rn.

With this notation, we can rewrite the sequence {xk}k≥0 simply as

xk+1 = T (xk), k ≥ 0. (9)

Our main assumption on functions f1 and f2 is the following one.

Assumption 1 There exist x⋆ ∈ Rd and y⋆ ∈ Rn such that

x⋆ = T (x⋆) and y⋆ = P (y⋆) (10)

Remark 1 Note that if f1 ≡ f2 ≡ f , condition equation 10 holds for the global minimizer of our
function (x⋆, y⋆) = argminx,y f(x, y).

Remark 2 It remains an interesting open question: which joint conditions on f1 and f2 imply equa-
tion 10.

G.2 CONTRACTION AND CONVERGENCE

Depending on a structure of f1 and f2, we might obtain different convergence properties. Let us
consider one simple case when the corresponding mappings u1 and u2 are contractions, which will
imply global linear convergence rates.

We assume the following.
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Assumption 2 For any fixed x and y, let f1(x, ·) and f2(·, y) be strongly convex with constants
µ1, µ2 > 0. Therefore, it holds

f1(x, y) ≥ f1(x, u1(x)) +
µ1

2 ∥y − u1(x)∥2, ∀x, y, (11)
and

f2(x, y) ≥ f2(u2(y), y) +
µ2

2 ∥x− u2(y)∥2, ∀x, y. (12)

Without loss of generality, let us consider the first function f1. We take two arbitrary points x, x̄ ∈ Rd.
Applying inequality equation 11 two times, we get

f1(x, u1(x̄)) ≥ f1(x, u1(x)) +
µ1

2 ∥u1(x̄)− u1(x)∥2,

f1(x̄, u1(x)) ≥ f1(x̄, u1(x̄)) +
µ1

2 ∥u1(x)− u1(x̄)∥2.
Summing up these inequalities, we obtain

µ1∥u1(x)− u1(x̄)∥2 ≤ f1(x, u1(x̄))− f1(x, u1(x)) + f1(x̄, u1(x))− f1(x̄, u1(x̄)). (13)
To proceed with the right hand side, let us assume the following particular structure, that is common
to some applications (Nesterov, 2020).

Assumption 3 Function f1 has the following representation,
f1(x, y) ≡ h(x) + g(y) + ⟨A(x), B(y)⟩,

where h and g are convex functions and A and B are Lipschitz operators with constants LA and LB .

Using this representation, we can bound the right hand side of equation 13 as follows,
µ1∥u1(x)− u1(x̄)∥2 ≤ ⟨A(x)−A(x̄), B(u1(x))−B(u1(x̄))⟩

≤ ∥A(x)−A(x̄)∥ · ∥B(u1(x))−B(u1(x̄))∥

≤ LALB∥x− x̄∥ · ∥u1(x)− u1(x̄)∥.
Hence, we obtain the following statement.

Proposition 1 Let µ > LALB . Then operator x 7→ u1(x) is a contraction:

∥u1(x)− u1(x̄)∥ ≤ LALB

µ ∥x− x̄∥, ∀x, x̄. (14)

Using this machinery, we see that the following assumption on u1 and u2 can be feasible to achieve.

Assumption 4 Let u1 and u2 be contractions with some constants 0 < λ1, λ2 < 1:
∥u1(x)− u1(x̄)∥ ≤ λ1∥x− x̄∥, ∀x, x̄ ∈ Rd,

∥u2(y)− u2(ȳ)∥ ≤ λ2∥y − ȳ∥, ∀y, ȳ ∈ Rn.
(15)

Under these assumptions we can show the convergence of the sequence {xk}k≥0 generated by equa-
tion 9. Indeed, for every k ≥ 0, we have

∥xk+1 − x⋆∥ = ∥T (xk)− x⋆∥ equation 10
= ∥T (xk)− T (x⋆)∥

= ∥u2(u1(xk))− u2(u1(x
⋆))∥

equation 15

≤ λ2∥u1(xk)− u1(x
⋆)∥

equation 15

≤ λ1λ2∥xk − x⋆∥.
Therefore, for k ≥ 0:

∥xk − x⋆∥ ≤ (λ1λ2)
k∥x0 − x⋆∥,

and we see that xk → x⋆ with the linear rate. The same reasoning can be applied to the sequence
{yk}k≥1. Thus, we can formally establish the following general convergence result.

Proposition 2 Let functions f1 and f2 satisfy Assumption 1 and Assumption 4. Thus the corre-
sponding argmin operators u1(·) and u2(·) are contractions and their compositions u2 ◦ u1 and
u2 ◦ u1 admit fixed points x⋆ and y⋆ correspondingly. Then, the sequence (xk, yk)k≥1 generated
by equation 7 converges to (x⋆, y⋆) with the linear rate.
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