3rd Symposium on Advances in Approximate Bayesian Inference, 2020 1-10

Gradient Regularisation as Approximate Variational

Inference
Ali Unlu’ A.UNLUQSUSSEX.AC.UK
University of Sussex
Laurence Aitchison LAURENCE.AITCHISON@QBRISTOL.AC.UK
University of Bristol
Abstract

Variational inference in Bayesian neural networks is usually performed using stochastic
sampling which gives very high-variance gradients, and hence slow learning. Here, we show
that it is possible to obtain a deterministic approximation of the ELBO for a Bayesian neu-
ral network by doing a Taylor-series expansion around the mean of the current variational
distribution. The resulting approximate ELBO is the training-log-likelihood plus a squared
gradient regulariser. In addition to learning the approximate posterior variance, we also
consider a uniform-variance approximate posterior, inspired by the stationary distribution
of SGD. The corresponding approximate ELBO has a simple form, as the log-likelihood plus
a simple squared-gradient regulariser. We argue that this squared-gradient regularisation
may at the root of the excellent empirical performance of SGD.

1. Introduction

Neural networks are increasingly being used in safety-critical settings such as self-driving
cars (Bojarski et al., 2016) and medical diagnosis (Amato et al., 2013). In these settings, it is
critical to be able to reason about uncertainty in the parameters of the network, for instance
so that the system is able to call for additional human input when necessary (McAllister
et al., 2017). Several approaches to Bayesian inference in neural networks are available,
including from stochastic gradient Langevin dynamics (Welling and Teh, 2011) but here we
focus on variational inference (Blundell et al., 2015).

Despite the theoretical advantages of Bayesian neural networks (e.g. their relationship
with PAC-Bayesian methods that provide bounds on generalisation error Germain et al.,
2016; Rivasplata et al., 2019), they are rare amongst networks claiming to give state-of-the-
art performance on tasks such as image classification. Instead, much simpler techniques such
as stochastic gradient descent (SGD) (Krizhevsky et al., 2012) are found to give excellent
performance in practice. Indeed, SGD is also found to give better performance than adaptive
optimizers such as Adam (Kingma and Ba, 2014; Keskar and Socher, 2017; Loshchilov and
Hutter, 2017; Wilson et al., 2017). This is usually understood as regularisation that is
implicitly embodied in SGD (Keskar et al., 2016; Wu et al., 2017; Lei et al., 2018; Roberts,
2018). While SGD’s implicit regularisation gives excellent practical performance, it becomes
problematic when trying to improve the optimizer used in deep learning. In the ideal
case, we would be able to separate the objective (including regularisation terms) from the
optimizer, such that e.g. improvements in the optimizer’s convergence rate can always be

* Work done while at University of Bristol

© A. Unlu & L. Aitchison.



GRADIENT REGULARISATION AS APPROXIMATE VARIATIONAL INFERENCE

expected to improve performance. In contrast, at the moment, methods that converge faster
(such as Adam; Kingma and Ba, 2014) are generally believed to have worse performance at
convergence, due to the lack of the implicit regularisation embodied in SGD (Wilson et al.,
2017; Keskar and Socher, 2017). Therefore, it is important to understand the implicit
regularisation embodied in SGD, such that we can use that regularisation in combination
with other optimizers.

Here, we start by noting that variational inference for Bayesian neural networks typi-
cally involves stochastic sampling, which can give rise to high-variance gradients. We note
that we can form a deterministic approximation of the ELBO by doing a second-order Tay-
lor expansion around the mode of the approximate posterior. This gives an approximate
ELBO that is composed of the log-likelihood, standard weight-decay regularisation and a
squared-gradient regulariser, which is weighted by the variance of the approximate poste-
rior. Next, we noted that the implicit regularisation effects of SGD can be understood using
the isotropic Gaussian stationary distribution under locally quadratic loss functions (Mandt
et al., 2017). Inspired by this stationary distribution, we considered uniform-variance ap-
proximate posteriors, which correspond to a simpler squared-gradient regulariser. Incorpo-
rating this regulariser improved performance on standard benchmark tasks, and provided
a potential explanation for the excellent performance of stochastic gradient descent.

2. Background

2.1. Variational inference for Bayesian neural networks

Following the usual convention (Blundell et al., 2015), we use independent Gaussian priors
and approximate posteriors for all parameters,

P (wy) = N (wy;0,53) (1)
Q (wp) = N (wa; pa, 0’%\) equivalently Q(w)=N(w;u,X), (2)

where p) and 0/2\ are learned parameters of the approximate posterior, and where X is a
diagonal matrix, with Xy = O'i. Please see Appendix A for more information.

2.2. The stationary distribution of SGD

When we solve for steady-state in which ¥ = C[w(t+1)] = C[w(t)], we derive that

~ %I. For the derivation, please see Appendix B.

3. Methods

3.1. Deterministic approximations to variational inference

We begin by noting that the ELBO can be rewritten in terms of the KL divergence between
the prior and approximate posterior,

L=3 QI(EW) log P (yilas, w)] = 225 Dxr. (Q (wa) [ P (w»)) - 3)
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And the KL-divergence can be evaluated analytically,
1 (0% + i3 52
Di (Q () [P (wn) = 5 (2552 —1+1og 3 ). (4)
2 sy oy
As such, the only term we need to approximate is the expected log-likelihood.
To evaluate this expectation, we begin by taking a second-order Taylor series expansion
of the log-likelihood around the current setting of the mean parameters, p,
3 logP ({yi}ies, {zities, W) =
log P ({yi}ies, {wi}ics,, w=m) + ng (Ww—p)+ 3 (w— p H(w—p) (5)

where

9 >_ilog P (yilzi, w)
950 = G [$108P (s, [{ridies, w)] - Hyy = =20 00 )
Now we consider the expectation of each of these terms under the approximate posterior,
Q (w). The first term is constant and independent of w. The second (linear) term is zero,
because the expectation of (w — m) under the approximate posterior is zero
E [gf(w—m)l=¢gl E [(w—m) =0 (7)
Q(vv)[ ’ I=¢ Q(w) I |
the third (quadratic) term is difficult to evaluate because it involves H, the N x N matrix
of second derivatives, where N is the number of parameters in the model. Nonetheless, we
begin by using properties of the trace, and noting that the expectation is the covariance of
the approximate posterior,

E v Hw )] = B [T (Hw ) (v ))| = 5T ES) ()
writing the trace in index notation, and substituting for the (diagonal) posterior covari-
ance, X,

$Tr(HS) = 1) HySa =5 Y Hios (9)
Av A

Evaluating this term requires the diagonal of the Hessian, and as such our methods can
be used with any drop-in estimate of this Hessian. Note that this regulariser, explicitly in
terms of the Hessian, can also be justified by empirical work on generalisation in neural net-
works (Wu et al., 2017), which found that networks with smaller Hessian norm generalised
better. In our case, we use the Fisher Information (Kunstner et al., 2019), for three reasons.
First, it is extremely stable (the Fisher Information matrix is always positive definite, and
hence H,) is always positive). Second the FI will allow us to relate to recently published
work on implicit gradient regularisation. Third, use of the FI is standard practice in a va-
riety of work (Khan and Lin, 2017; Khan et al., 2017, 2018; Aitchison, 2018). Nonetheless,
it is interesting future work to establish whether any other estimates of the diagonal of
the Hessian (e.g. from Dangel et al., 2019) improve performance. The Fisher Information
identity allows us to approximate the Hessian,

e8] H 573 10
J J
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Note that the S? arises because we defined g; as the average gradient for the minibatch
Eq. 6, whereas the Fisher Information requires the raw log probability, which is formed by
the sum. Substituting this approximation of the diagonal of the Hessian we can write the
quadratic term in the Taylor expansion of the expected log-likelihood as,

E B Hw )]~ -5 S0l (11)

Thus, our deterministic approximation to the expected log-likelihood is,

2 2 2
Ql(Ew) log P ({yi}ics,{zi}ties;, w)| = 1og P ({vi}ies; [{zi}ics;, w=m) — 53" 0307, (12)
Critically, this quantity is a sum over datapoints, and we can therefore use minibatches of
data to give unbiased estimates of the objective in stochastic gradient descent.

Our full approximation to the ELBO is thus,

52 2 2 1 o3 + 1% s
L~ Z (logP ({yi}iESj‘{xi}iGSj)W:m) - TZ,\UAQJ‘;A) ) Z s?\ —1+log 073\ .
J A
(13)

We now have to be extremely careful when using minibatch estimates of the gradient. The
easiest approach is to consider xz; and y; as minibatches, where there are M minibatches,
each with S examples in the full dataset. In that case, the objective for one minibatch can
be written

1 S 2 2 1 a3 + 13 53
Lj= glogP (yilzi, w=m) — 53,0395\ — 55 > s I+ logg : (14)
>\

where, remember, S is the minibatch size and P is the total number of datapoints in the
full dataset.

3.2. Connections to SGD
If we set the approximate posterior to that suggested by the stationary distribution of SGD,

Q(w) = N (w: a, 1) (15)

and we use fixed prior variance, s?\, then the ELBO simplifies further, simply including a
log-likelihood, a squared-gradient regulariser and weight-decay,

2
L;~ %logP ({yi}iesj|{$i}iesj,wzm) - gZAQ?;A - #Z)\% + const. (16)

3.3. Network architecture

Importantly, here the regulariser is the squared gradient of the loss with respect to the
parameters. As such, computing the loss implicitly involves a second-derivative of the loss,
and we therefore should not use piecewise linear activation functions such as ReLLU, which
have pathological second derivatives. Instead, we used a softplus activation function, but
any activation with well-behaved second derivatives is admissible.
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4. Results

We trained a PreactResNets-18 (He et al., 2016b) on CIFAR-10 with fixed approximate
posteriors inspired by SGD. We used the Adam optimizer (Kingma and Ba, 2014), with an
initial learning rate of 1E-4, which decreased by a factor of 10 after 100 epochs and a batch
size of 128 with all the other optimizer parameters set to their default values. We have
also run experiments whereby Beta-annealing is used with g = 0.1 (Huang et al., 2018).
We compared the performance of adding noise to the parameters using “MCVI” (i.e. using
samples to evaluate the expectation in Eq. 18) against using our approximate ELBO, and
against MAP inference. We found that our approximate ELBO gave superior performance
both to MCVI and MAP. We also tried MCVT for four times as many epochs (“rescaled”), to
compensate for the additional compute required to backpropagate gradients. Remarkably,
this actually performed worse, than the standard settings of MCVI and we hypothesise
that the additional training time allows it to overfit more strongly. Our approximate ELBO
displayed optimal performance with a variance of around o2 = 10~% or 1075 (Fig. 1). To
understand whether this is sensible, in comparison with SGD learning rates, we solved for
the implied learning rate,

o’ =k n = 2S0? (17)

if we were to use, a batch size of § = 50. These settings correspond to an SGD learning
rate of 1072 or 1073, which is a common final learning rate (e.g. if we start at a learning
rate of 107! and decay the learning rate by a factor of 10 once or twice; He et al., 2016a,b).

In addition, our approximate ELLBO can be used to learn the approximate posterior
variance. We used a single scalar posterior variance for each convolutional weight matrix,
which would correspond to a using a different SGD learning rate for each convolutional
weight matrix. Sampling-based MCVI performed poorly, even with small initial variances
(initialized to e~ 6 times their prior value). In past work on MCVI it was found that
achieving even 80% performance on CIFAR-10 required choosing an unusually small network
(Ober and Aitchison, 2020) with 32 channels in all layers. Here by contrast, we used
a standard-size PreActResNet-18 with 64 channels in the first layers, increasing to 512
channels in the final layers. Remarkably, our approximate ELBO in these larger standard
networks was gave superior performance even to MCVI in networks specifically tuned for
variational inference (Table 1).

5. Related work

Recent work also showed that gradient-descent implies an implicit squared-gradient reg-
ularisation (Barrett and Dherin, 2020) with a very similar dependence of the strength of
regularisation on the SGD step-size. Remarkably, this arose despite their taking a radi-
cally different approach. In particular, they showed that squared-gradient regularisation
can arise through errors when using finite step size Euler integration, as compared to fol-
lowing the true underlying gradient flow. However, this approach was derived for gradient
descent, and does not take into account the fundamental stochasticity of stochastic gradient
descent. The emergence of such similar results from fundamentally very different analytical
approaches would suggest that gradient regularisation is a fundamental component of the
implicit regularisation inherent in SGD.
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Figure 1: Training a PreactResNet-18 on CIFAR-10 with an fixed-variance approximate
posterior, to mirror SGD. The posterior variance is shown on the lower x-axis and
the corresponding value for the SGD learning rate is shown on the upper x-axis.
“Sampled ELBO” corresponds to 200 training epochs and “Rescaled sampled
ELBO” corresponds to 800 training epochs.

Table 1: Performance of a PreactResNet-18 with a single scalar learned variance (02) and a
learned diagonal covariance (X) respectively for each convolutional weight matrix.

B Covariance neg. test log-like. accuracy (%)
— MAP 0.36 91.13
) Approx. ELBO 0.44 87.21
1.0 ol Sampled ELBO 1.67 46.32
Approx. ELBO 0.45 87.25
z Sampled ELBO 1.00 72.22
Ober and Aitchison (2020) 0.66 77.65
— MAP 0.47 90.05
) Approx. ELBO 0.21 92.74
01 ol Sampled ELBO 0.65 79.45
Approx. ELBO 0.21 92.93
% Sampled ELBO 0.38 91.07

6. Conclusions

We showed that it is possible to use a second-order Taylor expansion to compute a determin-
istic approximation of the ELBO in Bayesian neural networks. While any drop-in estimate
of the diagonal of the Hessian could be used, here we consider the squared gradient (via
the Fisher Information), as this allows efficient optimization and allows us to connect to
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gradient regularisation (Barrett and Dherin, 2020). Further, we connect to SGD by noting
that the stationary distribution for SGD is isotropic Gaussian (Mandt et al., 2017). This
approximate ELBO gives superior performance to unbiased sampling-based estimation of
the ELBO, and to MAP inference. Finally, our framework makes a prediction: that the op-
timal posterior variance for the ELBO corresponds to standard settings of the SGD learning
rate. Remarkably, we found that this prediction held, with the optimal posterior variance
in ResNets on CIFAR-10 being 10~ or 107> corresponds to standard values for the final
learning rate in SGD used in these models.
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Appendix A. Variational Inference for Bayesian Neural Networks

We optimize the evidence lower bound objective with respect to parameters of the varia-
tional posterior,

log P ()
log Q (wy)

where x; is the training inputs and y; is the training outputs. Unfortunately, we need
to optimize this expectation with respect to parameters of Q (w), the distribution over
which the expectation is taken. We therefore use the reparameterisation trick (Kingma and
Welling, 2013; Rezende et al., 2014) — we write w in terms of €,

L= QI(E ) > 1og P (yi|zs, w) + >, log (18)

w)\(e)\> = Ux + OrEN (19)
where €y ~ N (0,1). Thus, the ELBO can be written as an expectation over e,

log P (wx(ex))
log Q (wx(ex)) |

However, exactly evaluating this objective remains intractable, as it still involves a high-
dimensional expectation. Instead, we typically form an unbiased estimator, by drawing a
few (often one) sample of w or €. While this approach can be effective, it gives high-variance
estimates of the gradient, which can cause slow-learning (Wu et al., 2018; Rainforth et al.,
2018).

L=E|>logP (yilzi, w(e)) + >, log (20)
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Appendix B. The Stationary Distribution of SGD

We then sought to relate these gradient regularisers back to the excellent empirical per-
formance of SGD. In particular, we looked to work on the stationary distribution of SGD,
which noted that under quadratic losses functions, SGD samples an isotropic Gaussian (i.e.
with covariance proportional to the identity matrix). In particular, consider a loss function
which is locally closely approximated by a quadratic. Without loss of generality, we consider
a mode at w = 0,

log P ({yi}fzﬂ{xi}il,w) = —ngHW + const . (21)

where P is the total number of datapoints. Typically, the objective used in SGD is the loss
for a minibatch of size S with indices S. Following Mandt et al. (2017), we use the Fisher
Information to identify the noise in the minibatch gradient,

0
v [51ogP ({yi}ies, |{wi}ies,, w)] = —Hw + ﬁHl/QS(t)a (22)

where £(t) is sampled from a standard IID Gaussian. For SGD, this gradient is multiplied
by a learning rate, n,

w(t+1) = w(t) - nHw(t) + JLH?¢(t), (23)

This is an multivariate Gaussian autoregressive process, so we can solve for the stationary
distribution of the weights. In particular, we note that the covariance at time ¢ + 1 is

Clw(t+1)]=E [(wu) —Hw(t) ~ HV%E() (w(t) — yHw(t) - jgﬂl/zat)ﬂ
Clw (t+1)] = I —H)" C[w(t)] (I - nH) + LH (24)

Following Mandt et al. (2017), when the learning rate is small, the quadratic term can be
neglected.

Clw (t+1)] ~ C[w(t)] - fHC[w(t)] - nC[w(t) H + LH (25)
We then solve for steady-state in which 3 = C[w(t + 1)] = C[w(t)],
0~ —n(H'S + £H) + LH (26)
SO,
¥~ gL (27)

We therefore considered a family of approximate posteriors matching these stationary
distributions, by setting all variances, ai, to a single, fixed value, %
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