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Abstract

Imitation learning benchmarks often lack sufficient variation between training and
evaluation, limiting meaningful generalisation assessment. We introduce Labyrinth,
a benchmarking environment designed to test generalisation with precise control
over structure, start and goal positions, and task complexity. It enables verifiably
distinct training, evaluation, and test settings. Labyrinth provides a discrete, fully
observable state space and known optimal actions, supporting interpretability and
fine-grained evaluation. Its flexible setup allows targeted testing of generalisation
factors and includes variants like partial observability, key-and-door tasks, and
ice-floor hazards. By enabling controlled, reproducible experiments, Labyrinth
advances the evaluation of generalisation in imitation learning and provides a
valuable tool for developing more robust agents.

1 Introduction

Imitation learning lies at the intersection of reinforcement and supervised learning. It can be seen as a
relaxation of the reinforcement learning problem, where the agent learns a new skill through its own
experiences, into a supervised learning setting, where the agent learns by observing others perform
the same task. Like supervised learning, imitation learning relies on observed data for training.
However, its agentic nature makes evaluation more akin to reinforcement learning, as the agent’s
performance is assessed through interactions with an environment rather than static comparisons
against a dataset. As a result, many common evaluation benchmarks for imitation learning originate
from the field of reinforcement learning. The most common benchmarks [8] for imitation learning
are: (i) CartPole [1]; and (ii) MountainCar [14], which are classic control tasks; (iii) Ant [18]; and
(iv) Humanoid [19], which are continuous control tasks; and (v) Atari Games, which set a benchmark
for various games.

Classic control tasks, although reasonable for testing the initial capabilities of an imitation learning
agent, are too simplistic to capture the complexities of real-world decision-making. They have
low-dimensional state spaces and a limited range of discrete actions. As a result, they provide only a
narrow evaluation of an imitation learning agent’s capabilities. On the other hand, Continuous control
tasks provide a more challenging evaluation setting. These environments feature high-dimensional
state and action spaces, requiring agents to learn complex motor control strategies. However, they
still share key limitations with classic control tasks, such as a lack of precise state abstractions and
the expected behaviour for the agent at any given state. The first limitation refers to the vector
state lacking information about the environment setting, such as the length of limbs for robots and
the goal position, since the assumption is that the learned agent will be evaluated under the exact
same constraints as it was during training. A common solution to incorporate this information is
to use image-based states. However, when using images as states, the state may not accurately
represent the difference between states due to the loss of precision from continuous numbers to
pixel-based representation, and may exhibit partial observability since some parts of the agent may
not be visible for the entire time. For the second limitation, in these environments, finding the optimal
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expected behaviour for an agent in any given state is virtually impossible, which hinders the formal
assessment of generalisation. Finally, Atari Games introduces diverse tasks with visual inputs and
long-term strategic planning. While they provide a more varied and challenging benchmark, they
remain constrained because the training data and test environments do not differ, meaning agents
are evaluated under the same conditions in which they were trained. This prevents a clear separation
between training and testing data, which is crucial for assessing generalisation.

To address these limitations, we introduce Labyrinth1, a novel environment designed to: (i) explicitly
separate training and test data by altering structure, goals, or starting positions, demanding generali-
sation; (ii) provide a discrete and fully observable state space, where all possible states, transitions,
and optimal actions are explicitly defined, enabling precise analysis of an agent’s decision-making;
(iii) allow for the systematic analysis of an agent’s ability to learn and adapt to structural changes,
offering insights into its robustness and generalisation capabilities; and (iv) the environment can be
easily customised to increase the difficulty further, e.g., by increasing the size of the labyrinth or
maintaining the same solution set but changing the structure to analyse the inner parameters of the
agent. Labyrinth offers a more robust and comprehensive benchmark for imitation learning, more
effectively capturing the challenges of real-world learning scenarios that require drastic adaptation
from the agent than existing environments.

2 Labyrinth Environment

In this work, we propose the Labyrinth environment to help assess the generalisation capabilities of
imitation learning agents. Navigating through a labyrinth from designated starting and goal positions
by observing the labyrinth’s entire structure is a trivial task. Humans can find a route by analysing
all paths connecting the start and goal positions, and then applying a given criterion to select one
(e.g., the shortest). Classical problem-solving approaches, such as breadth-first search, can generalise
to any labyrinth structure (considering the problem’s solution and not its optimality). Therefore,
navigating through a labyrinth should be considered an easy and well-suited task for measuring how
well an imitation learning algorithm learns, and how general the agent’s resulting capability is, i.e.,
by using structural configurations (e.g., wall locations, obstacles, etc) not present in the training data
or moving from a different initial starting point.

Unlike other environments, a labyrinth offers some inherent characteristics: (i) agents cannot perform
state-matching by forcing a path to be similar to its training data; (ii) changing the configuration of the
labyrinth (walls, start and goal) does not affect the task and is easy to define; and (iii) changes between
states are easier to identify since states can only differ by the agent’s position. These characteristics
allow us to perform a more systematic evaluation of different methods. For example, one can train a
set of agents in one labyrinth structure and only the starting position or a subset of its walls. Alongside
the traditional task of navigating a labyrinth to reach a goal, the Labyrinth environment offers the
possibility of making solutions more complex by adding two additional components: (i) key and door,
where the agent must retrieve a key to open a door before reaching the goal; and (ii) ice floors, where
the agent must avoid stepping onto “frozen” (unsafe) tiles. We discuss the rationale for these two
tasks and their importance to imitation learning in Sec. 2.3.

2.1 Structure and Actions

Labyrinth can create a new structure by specifying the desired number of rows and columns, including
height and width. The coordinates of the starting (s0) and goal tiles (g) can be either (i) user-defined
– the user specifies where the start and goal tiles are located; (ii) biased – the starting tile is at the
lower-left corner of the labyrinth and the goal is at its upper right, or (iii) unbiased – the goal and
starting tiles are set randomly within the labyrinth, according to a minimum specified distance of each
other (cf. the Manhattan distance d(s0, g) =| xs0 − xg | + | ys0 − yg |). We refer to these as biased
and unbiased due to the nature of the action distribution for all possible solutions in these structures
(cf. Sec. 3). Biased structures will maintain the action distribution similar even when switching their
structures, while unbiased ones will keep the distributions uniform for all actions, which will require
the agent to focus more on each state instead of predicting the most likely actions.

1Source code available at: https://github.com/NathanGavenski/Labyrinth
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It is easier to depict the structure of a labyrinth as a grid, but it is formally defined as a graph, where
nodes represent tiles and edges represent connections between them (Figure 1). The graph we utilise
is constructed by removing some edges, which in the visualisation is equivalent to adding a wall
sectioning connections between two tiles. This graph representation allows us to quickly detect
duplicates, find all possible solutions between start and goal nodes, and easily create configurations
with different degrees of similarity to an existing labyrinth. Furthermore, configurations can be stored
and subsequently reused or altered, allowing for the creation of datasets with specific characteristics
and ensuring complete separation between training, validating, and testing sets.
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(c) Key and Door
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(d) Ice Floor
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Figure 1: Different state representations for each task in the Labyrinth.

Even though the evaluation and test sets are distinct, we note two different features of this environment:
(i) smaller labyrinths have higher chances of presenting similar trajectories to their goal (different
structures while sharing a common path from s0 to g; and (ii) the biased setting creates more
straightforward solutions since the distribution of actions consists mainly of ‘up’and ‘right’actions.

The actions ‘up’, ‘down’, ‘right’, and ‘left’ move the agent one tile at a time towards the corresponding
direction. It is important to note that the environment does not prevent an agent from taking an action
towards a wall. However, in such cases, the agent’s position will remain the same, although a unit of
time will have elapsed. Finally, no actions can be executed once the goal tile is reached.

2.2 State and Reward

Each state consists of a labyrinth image with the agent drawn in its current position or a vector with
the agent, start and goal global positions, and the labyrinth’s structure. The start and goal tiles have
different colours, red and blue, respectively, and the agent is a green diamond. Fig. 1a illustrates the
default state of the labyrinth. Labyrinth can also return a partially observed state. This state consists
of the tiles and walls in the immediate vicinity of the agent’s current position.2. It is important to
note that we do not obfuscate start and goal positions since it would be impossible for the agent to
know where these tiles are in the unbiased setting. In theory, partial observability would make it
more complex for the agent to solve the environment. However, we hypothesise that since imitation
learning tries to match the current state with a sample from the teacher, it could make it easier for the
agent to reach the goal (even more so when considering the biased setting). Fig. 1b shows the partial
state from the agent’s perspective.

Even though imitation learning approaches ignore reward signals from environments in the learning
process, we implement a reward function to differentiate the solution for each algorithm in our
environment. For that, we use Eq. 1.

ri =

{
−0.1

width×height not at goal
1 + |τs| × 0.1

width×height at goal
(1)

In Eq. 1, | τs | is the length of the shortest trajectory. It allows for the same reward independently of
the labyrinth’s structure. In other words, an agent that reaches the goal using the shortest path will
always yield an accumulated reward of 1. Consequently, an average reward of 1 means the agent

2The source code at https://github.com/NathanGavenski/Labyrinth/blob/main/src/
labyrinth/utils/render.py#L157 contains the precise definition of the visibility settings
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reached the goal in all episodes, which provides a fairer evaluation that is independent of the solution
length. It is important to note that this reward function still gives the agent a positive reward when
using a sub-optimal path as long as it does not roam endlessly. Nevertheless, the use of the reward
function is not essential for our experimentation. If the agent learns to navigate the Labyrinth (i.e,
understands how to avoid walls properly and manages to reach the goal in configurations not seen in
the training data), we will consider that it has generalised successfully.

2.3 Settings

For the labyrinth, we consider four different settings: labyrinth navigation, where the agent has a
typical labyrinth and will need to reach g from s0; partially observable labyrinth, where the agent
has to reach the goal but only observes the structure close to it; key and door, where success requires
the achievement of sub-goals in a specific sequence. For example, collect a key from tile gk, before
opening a door at tile gd, to then be able to reach the final goal at tile g; and ice floor, where the agent
must avoid frozen tiles.

Labyrinth navigation: offers a default setting for standard navigation training and evaluation. In
the user-defined setting, researchers specify the position of s0 and g tiles. Alternatively, they can let
the environment choose these positions according to the biased or unbiased settings (cf. Sec. 2.1).
We believe biased settings are more straightforward for imitation learning agents to learn since they
will keep the action distributions similar. Therefore, the agent must only learn to navigate different
transition functions from new labyrinths. On the other hand, a possible evaluation setting for agents is
keeping the structure of walls the same and only changing its initial position (same transition function,
possibly different action distribution). Thus, this task allows for training and evaluation: (i) with
different structures but with s0 and g always at the same tiles; (ii) with different structures and with
s0 and g in different tiles; and (iii) with the same structures but with s0 and g in different tiles.

Partially observable labyrinths: changes the labyrinth navigation task only to display information
close to the agent’s position, s0 and g positions. We believe that using a partially observable
environment might help the agent to focus on the relevant information. By observing the whole
structure, the agent might consider a state out-of-distribution when a training sample may be similar
from a local perspective. Using partially observable states does not remove the possibility of
evaluating and testing an agent in the same conditions as the navigation setting. However, we consider
changing the structure in an unbiased setting a more complex problem when partial observability is
in place since the change in transition function with the out-of-distribution actions leads to a more
diverse set of possible solutions.

Key and door: setting allows researchers to measure how well their imitation learning agent can
learn a sub-task (collecting a key to open a door before reaching a goal). When creating a labyrinth
with the key and door setting, the environment will first define the structure and then find possible
positions for the key and door. To define the environment’s structure, we only allow labyrinths with
paths that share at least a tile from s0 to g. Doing so avoids instances where the agent could reach g
without completing the sub-task. To define the door’s position gd, we find all possible paths from
s0 to g and select the last shared tile among them. To define the key’s position gk, we also use all
possible paths from s0 to g but select a random reachable tile from all tiles not present in the set. We
select the last shared to ensure the maximum number of tiles possible for the key and select a tile not
present in the set of solutions to ensure the agent did not collect the key by chance and that it was an
intended decision from the agent. The key and door setting also allows for the same set of evaluations
from the navigation setting with one additional evaluation where we keep the same structure and s0,
g and gd positions and change only gk’s position.

Ice floor: offers a setting for researchers to experiment with safety and generalisation problems. In
this setting, if the agent steps on the ice, the tile will break, and the episode will terminate (fail). For
this setting, the environment creates its structure and ensures that at least two possible solutions exist
to reach g. We set this premise to guarantee that if we set one possible path with ice floors, there will
be at least another path that will be safe for the agent to reach g. With all possible paths, we select
one of the possible paths from the set of solutions and set the tiles to be ice. It is important to note
that we only set the tiles unique to that path to avoid accidentally making all paths unsafe. During the
evaluation, researchers can maintain so and g positions and the same structure but swap ice tiles from
unsafe to safe paths.
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2.4 Ease of Use, Reproducibility and Customisation

We understand that an environment must be easy to use, allow for customisation, and be reproducible
for the community to adopt it. Therefore, we developed Labyrinth with all of these in mind. Labyrinth
runs on ‘gymnasium’ [], allowing researchers who already use the highly adopted Python library to
use the environment with minimal adaptation. A typical utilisation of Labyrinth is illustrated below:

1 import gymnasium as gym
2 import labyrinth
3 environment = gym.make(
4 "Labyrinth-v0", shape=(5, 5), occlusion=False,
5 key_and_door=False, icy_floor=False, render_mode="rgb_array"
6 )
7 obs, info = environment.reset(options={"agent": True})
8 solutions = environment.solve(mode="all")
9 obs, reward, done, truncated, info = environment.step(action)

Line 2 registers the environment on gymnasium, Lines 3–6 define the environment, Line 7 creates a
new environment and yields the first state, Line 8 provides all possible solutions for that Labyrinth,
and Line 9 performs a random action in the environment, which returns the next state, reward, whether
the agent arrived at g, whether the agent has fallen through an ice floor, and the environment’s info. To
define an instance of the environment the user has the following parameters: shape, which requires a
tuple that defines the width and height; occlusion sets the partially observable setting; key_and_door
enables the key and door setting; icy_floor enables the ice floors setting; and render_mode defines
what type of state should the environment return (vector or image). It is important to note that
occlusion, key_and_door and icy_floor are mutually exclusive. The solver for the environment
uses Johnson’s algorithm [11] to find all possible paths from s0 to g. Beyond all possible solutions,
the solver also allows for the shortest solution, which will return a single solution, one of all possible
shortest paths (when the structure has more than one path with the same length).

To ensure reproducibility, we allow users to save and load past instances as follows:

1 from labyrinth.file_utils import convert_from_file, create_file_from_environment
2 create_file_from_environment(environment, "example.labyrinth")
3 environment.load(*convert_from_file("example.labyrinth"))

Line 2 saves the current setting of the environment to the file example.labyrinth, and Line 3 loads
the file structure and setting in the current Labyrinth object. Therefore, a user can create a set of
structures and settings for training and another for evaluation, keeping consistency between different
training and evaluation cycles. In fact, Labyrinth provides a feature for the easy creation of these sets:

1python -m labyrinth.generate --width 5 --height 5 --train 100 --eval 100 --test 100

where train, eval and test define the size of each set (100 in this example) and the width and
height of the structure. We reiterate that Labyrinth ensures that each structure is unique by hashing
its structure and controlling that each new structure is not present during the creation of all sets, i.e.,
each structure is unique in its set and among all sets.

1 key_and_lock: False
2 icy_floor: False
3 occlusion: False
4 labyrinth:
5 -------------
6 | | E |
7 | + + - |
8 | |
9 | + - + |

10 | S | |
11 -------------
12 end

To allow easy customisation of the environment structure, we create a
custom setting language that enables users to visualise the structure
of each file easily, but also allows for editing existing structures
quickly. An example of this can be seen here: where Lines 1–3
define the settings for the environment and Lines 4–12 defines the
structure. For defining the tile types, users can use S for the first
state s0, E for the goal g, K and D for key and door positions,
respectively, and I for setting ice tile positions.

Finally, we provide a set of labyrinths and data for training imita-
tion learning agents on IL-Datasets [5], which hosts its datasets on
HuggingFace [4]. IL-Datasets provides a convenient and uniform
way to evaluate imitation learning methods and ensures that imple-
mentations are compared under the same conditions: seeds, training
data and evaluation. Labyrinth can be used without IL-Datasets, it is
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used for its convenience and the benefits it provides to researchers. We create datasets for squared
labyrinths with sizes of 3, 4, and 5. Each dataset consists of three splits (train, evaluation, and test),
each split consisting of the shortest paths from s0 to g on the biased setting. Each dataset entry
consists of the image observation, action, immediate reward, whether that entry is the first for an
episode and the labyrinth information for recreating the same experiment. If users desire to use the
unbiased setting, they can load the information from each entry and change s0 and g positions by
using functions change_start_and_goal and change_start.

3 On the Generalisation Requirements for Benchmarks

For testing generalisation, we believe an environment needs some key requirements: (i) poses a
challenging task; (ii) a significant change from training to evaluation; (iii) controls over these changes;
and (iv) allows for debugging of the agent.

We argue that the task must be non-trivial for the first requirement and demand reasoning beyond
memorisation. Labyrinth addresses this by requiring agents to plan long-horizon, reason over
topological structures, and adapt to altered starting and goal states. Moreover, its variants, such
as key-and-door and icy floor settings, add complexity through temporal dependencies and safety
constraints, respectively. These extensions prevent shortcut solutions and promote learning robust
decision-making strategies. Unlike classical benchmarks, where solutions can often be reduced to
reactive policies, solving Labyrinth consistently demands trajectory-level reasoning and adaptation.

For the second requirement, we analyse the Labyrinth environment and the most common environ-
ments used in imitation learning benchmarks [8]: MountainCar, CartPole, Hopper, Walker-2D and
HalfCheetah. Table 1 shows 100, 000 different initial states for the most common environments.
For it, we initialise the environment with a seed not used for generating the training dataset, and
use the closest average distance, based on the Manhattan distance, to it. We observe that most
initial states are quite similar to the training data. This is not ideal since, by having states that are
closer to the training data, imitation learning agents can adopt a behaviour-seeking mode, where the
agent tries to use the expert’s action instead of predicting the most adequate action for a given state.
Ideally, the reward functions in environments would account for these less-than-optimal actions and
show divergence in the behaviour. However, when doing this analysis, we encounter a significant
downside of these environments. For CartPole and MountainCar, we could reach results comparable
to those of the expert by recording a single sequence of expert actions and repeating it in a new
initialisation. For example, for the MountainCar environment, a classical environment with a more
challenging dynamic (agents have to build up momentum to reach the goal), we record an episode of
accumulated reward of −106.45. By simply using the same sequence of actions over 100 different
episodes, we reach an average accumulated reward of −104.87 ± 0.8562. It is important to note
that MountainCar consider the task solved when the agents achieve an average accumulated reward
of −110. Yet, classical environments are considered simplistic in nature, as pointed out in Sec. 1.
Therefore, we also analyse how these continuous tasks perform under different initialisations. In it,
we discover that these environments are quite lenient over the actions taking place. For example,
on the Hopper environment, by retrieving the closest state from the current environment one on a
different seed and performing the exact expert action from the training data, we achieve a reward
of 3530.2367± 15.5748, while the expert achieves 3536.3626± 9.5699, a marginally better result.
These results are worrisome since most imitation learning works use these benchmarks to show that
their model learned the underlying task and can generalise well to other initialisations.

Table 1: Manhattan distance for 1e5 initialisations for the Gym and DeepMind control suites.

Environment Gym DeepMind

Summation Average Summation Average

MountainCar 0.0021 ± 0.0016 0.0010 ± 0.0070 - -
CartPole 0.0380 ± 0.0204 0.0095 ± 0.0051 0.0932 ± 0.0189 0.0093 ± 0.0047
Hopper 2.3931 ± 0.0091 0.2175 ± 0.0008 3.5610 ± 0.4974 0.3237 ± 0.0452
Walker-2D 5.4045 ± 0.0117 0.3179 ± 0.0060 8.3509 ± 0.6852 0.4912 ± 0.0403
HalfCheetah 12.5915 ± 0.3289 0.7406 ± 0.0193 12.3376 ± 0.2032 0.7257 ± 0.0119

To understand how the labyrinth diverges from training, we analyse the action distribution over all
possible settings (described in Sec. 2.3). Figure 2 shows the cell distribution and action distributions
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for the solutions over the train, evaluation, and test splits for a 5× 5 labyrinth3. We observe that for
the first two settings (Fig. 2a and 2b) the action distribution remains close to the same during each
split. However, the cell distribution changes, which means that to reach g, the agent will have to adapt
its solution and better rank information to achieve the goal. In other words, if the agent only learns to
find the closest state to the training data, and perform the same action, there will be labyrinth settings
it will not solve. Moreover, by changing both s0 and g and maintaining the same structure (Fig. 2c),
the action distribution drastically shifts to a more uniform one.

(a) Different structure, same s0 and g (b) Same structure and g, different s0 (c) Same structure, different s0 and g

Figure 2: Tile and action distribution over different settings for the Labyrinth environment.

The third requirement is necessary for all methods to be evaluated under fair and explainable
conditions. Labyrinth enables precise control over how environments differ between training and
evaluation, allowing researchers to isolate specific generalisation challenges. For instance, one can
hold the labyrinth structure fixed while varying the agent’s initial position (Fig. 2b), or conversely,
alter the structure while maintaining consistent start and goal locations (Fig. 2a). This granularity
helps identify whether failure modes are due to perceptual mismatch, action distribution shifts, or
poor task abstraction. Full access to the graph structure makes it easier to inspect agent failures and
identify brittle behaviour, which is often opaque in high-dimensional or continuous control settings.

The final requirement is that the environment must allow for effective debugging and inspection
of the agent’s behaviour. Labyrinth satisfies this by offering full access to both the structural and
observational components of the environment, and by allowing researchers to place the agent in any
arbitrary state. More importantly, due to its discrete and fully defined transition graph, Labyrinth
allows us to compute the optimal action for every individual state under any configuration. This
enables researchers to directly test whether the agent selects the correct action in a given state,
quantify deviations from optimal behaviour, and compare across structurally similar settings. In
contrast, widely used benchmarks such as MuJoCo-based (e.g., Hopper, HalfCheetah) and Atari-
based environments make it virtually impossible to define the optimal action in most states due to
high-dimensional, continuous dynamics and implicit goals. Similarly, in visual environments like
Atari, researchers may not even have access to the full internal state, making it difficult to determine
what constitutes a correct action. Labyrinth’s explicit structure and ground-truth optimality afford a
level of transparency and controllability that these environments lack, making it especially suitable
for interpretability, policy debugging, and fine-grained evaluation of generalisation.

4 Benchmarking common imitation learning methods

We now benchmark some imitation learning methods to demonstrate the effectiveness of this environ-
ment in testing generalisation. Due to space constraints, this section only displays the results for the
labyrinth navigation setting. We show all other settings in the supplementary material.

4.1 Implementations and Metrics

We use implementations from IL-Datasets [5] for all imitation learning methods. IL-Datasets provides
us with implementations for Behavioural Cloning (BC) [15], DAgger [17], Generative Adversarial
Imitation Learning (GAIL) [10], Behavioural Cloning from Observation (BCO) [20], Soft Q Imitation
Learning (SQIL) [16], and Imitating Unknown Policies via Exploration (IUPE) [6]. We selected these
methods because they offer a diverse range of imitation learning approaches. BC, GAIL, DAgger,

3The supplementary material contains all other labyrinth sizes.
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and SQIL are all imitation learning from demonstration methods, while BCO and IUPE are imitation
learning from observation methods. Moreover, DAgger requires access to the expert, which can
benefit the training since any given labyrinth knows the optimal action. On the other hand, GAIL, BC
and BCO are offline (do not interact with the environment during training), and the others are online.
To prevent any method from accessing other labyrinth structures outside of those in the training data,
we enforce that the online portion of their training is conducted only under the same conditions as
those in which the dataset was created. In other words, we load the same labyrinth structures from
the training dataset split during these interactions. Finally, they are also diverse in their learning
approaches, employing adversarial and inverse reinforcement learning (GAIL, DAgger, and SQIL),
dynamic methods [8] (BCO and IUPE), or behavioural cloning (BC).

In this work, we use two metrics: average episodic reward (AER) and success ratio (SR). AER is
the average reward the agent accumulates over n episodes. In our experiments, we display the AER
for each of the 100 train, evaluation, and test labyrinths. An AER of 1 means the agent achieves the
goal using the shortest path. SR is the ratio of the agent achieving the goal tile over n episodes.

4.2 Results

Table 2 shows the benchmark results for each method in a 5× 5 labyrinth with the same starting and
goal tiles (biased setting) for the training, evaluation, and test splits. The dataset for this benchmark4

(and for all others in the supplementary material) is hosted on HuggingFace [4], as explained in
Section 2.4, and we provide all links to the datasets used in this work in the supplementary material.
Besides the images, the dataset also contains all the information needed to recreate each labyrinth
according to each entry. The experiments in Tab. 2 use the convolutional neural network based on
the original Atari Deep Q-Network [13] as the encoder for each model, and we train all methods
for 1, 000 epochs. As an addendum, we conducted additional experiments for other labyrinth sizes
and settings, and a brief ablation of other neural network structures. These are described in the
supplemental material.

Our experiments show that pure imitation learning methods (those not using inverse reinforcement
learning techniques) perform better in Labyrinth. We believe that the reason for this is that pure
imitation learning methods rely primarily on supervised learning losses, which encourages these
models to learn better encodings for each image state. This results in the model generalising more,
i.e., performing better in labyrinth structures not seen during training. When looking for the closest
training examples in the encoding space given an evaluation or a test input, we discover that the
agent’s position itself for these models is less important than the actual wall structure surrounding
the position. In these cases, the closest training images might have the agent in a different position,
but the wall structure remains similar. The inverse reinforcement learning methods’ optimisation
is less direct, and the models do not learn the same patterns, resulting in less optimal behaviour.
Unfortunately, all methods perform poorly in this setting, except IUPE, which is the only method to
achieve a result higher than 10% on the evaluation set. Yet, this result did not translate into the test
split, which we see as evidence that IUPE did not learn the navigation task itself. It generalised well
in the validation set, but not in the testing one. The other methods performed similarly badly in the
test and validation sets.

Table 2: Benchmark results for training, validation and testing splits.
Splits Metric BC DAgger GAIL BCO SQIL IUPE

Train AER −2.11 ± 2.41 −1.18 ± 2.45 −0.98 ± 1.89 −0.53 ± 2.23 −3.80 ± 0.96 0.27 ± 2.39
SR 37% 57% 61% 70% 4% 75%

Valid. AER −3.70 ± 1.18 −3.75 ± 1.08 −3.57 ± 1.58 −3.90 ± 0.69 −3.95 ± 0.49 −2.80 ± 2.12
SR 6% 5% 9% 2% 1% 21%

Test AER −3.90 ± 0.70 −3.80 ± 0.97 −3.85 ± 0.85 −3.85 ± 0.85 −4.00 ± 0.00 −3.85 ± 1.00
SR 2% 4% 3% 3% 0% 5%

Finally, to understand whether Labyrinth was too complex a challenge for imitation learning, we
evaluated BC under an extended period of training (10, 000 epochs) and using a more robust neural
network architecture (ResNet-18 [9]). We chose BC as the baseline for this experiment because it is
the most simplistic approach to pure imitation learning and the worst-performing of these methods.

4https://huggingface.co/datasets/NathanGavenski/Labyrinth-v0_5x5
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When running BC with the same structure but for an extended period, it achieved 100% during
training, 41% in the validation, and 34% in the test splits, an improvement over Tab. 2 results. Yet,
when running BC with a ResNet encoder, it achieves 100% SR in the training, 56% in the validation
and 53% in the test splits, a significant improvement from the results in Tab. 2. We believe these
numbers result from the model learning a less spurious encoding space. Therefore, with time, the
model learns the correct characteristics to classify the correct action. However, it does not learn
how to perform the underlying task of navigating the structure. This is backed up by the fact that
improving the encoding architecture improves the method’s performance, but does not guarantee the
results from the other splits.

In summary, our experiments highlight that existing imitation learning methods struggle to generalise
effectively in the Labyrinth environment, especially when faced with unseen structures. These results
show Labyrinth’s suitability for rigorous generalisation testing and underscore the need for more
robust learning approaches.

5 Conclusion

In this work, we proposed Labyrinth, an easy-to-use, reproducible, and customisable environment
for testing generalisation with imitation learning agents. Labyrinth provides researchers with: (i) a
way to explicitly separate training, validation and test data via different labyrinth structures, start and
goal positions; (ii) a discrete and fully observable state space where all possible states, transitions
and optimal actions are explicitly defined, enabling precise analysis of an agent’s decision-making
process; (iii) a way to systematically analyse an agent’s ability to learn and adapt to structural
changes and action distribution shifts, offering insights into the agent’s robustness and generalisation
capabilities; and (iv) the ability to increase difficulty while preserving the nature of the task, and to
analyse the inner parameters of the agents.

We analysed other commonly used imitation learning benchmarks and showed how the field could
benefit from using Labyrinth as a platform for testing generalisation. Labyrinth is challenging
enough to require agents to learn the underlying task to solve each unseen labyrinth structure. It
offers customisable evaluation sets that are different enough from the training data (e.g., action
distribution shift and other transition functions) to allow for controlled evaluation and debugging of
each agent. Furthermore, Labyrinth provides the same features as all other standard benchmarks,
such as accessibility via gymnasium, vector and image representations, and a reward function to
compare different agents’ results.

We performed a benchmark in the Labyrinth environment using common imitation learning methods,
concluding that the field has yet to improve its generalisation capabilities. Although machine learning
techniques can improve their results when solving unseen structures, they still do not generalise
well, even if the action distribution remains the same. Moreover, the type of generalisation from the
machine learning field would not theoretically apply to the required generalisation for the agents in
this setting. To achieve a high success rate across each split, agents must build knowledge for the
underlying task (navigation) instead of only correlating training samples to the agent’s current state.
We believe Labyrinth can help researchers benchmark their method’s generalisation capabilities and
improve the field perception over how to benchmark novel methods better.

Finally, Labyrinth comes with some limitations we envision tackling in the future. As it is developed
now, Labyrinth only allows for discrete actions, which is ideal for finding the optimal action for
each state. However, some imitation learning methods are only suited for continuous actions, such
as OPOLO [21], MAHALO [12] and CILO [7]. Ideally, we would like to provide the option of
performing continuous actions while keeping all the features Labyrinth provides (cf. 2), which other
labyrinth-like environments do not have (such as Ant and Point Maze [2]). We would also like to
develop a customisable tile feature that would allow researchers to specify particular behaviours in
some tiles easily. As it stands now, this can be done, but requires researchers to change the source
code in the environment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide all evidence for the claims made in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5, we discuss all limitations of the proposed environment and future
work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not introduce any new theories or require any proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the code for the environment, which can be installed using the
GitHub link, the datasets are hosted on HuggingFace with the croissant files provided (as
requested for all submissions), and the baselines are all provided by the IL-Datasets package,
which allows for running the benchmarks with the same parameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide all links to the datasets, the code for the environment and the
baselines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The supplementary material contains all information for reproducibility, with
the learning rates used on IL-Datasets and the splits provided from the HuggingFace dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Both tables 1 and 2 provide their error margins via standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The supplementary material describes the hardware used for experimentation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the code of ethics from NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Although we belive this work will have a positive impact to the imitation
learning community, we do not expect any societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The environment does not uses any data or models that have high risk for
misuse and is all based on public data (coded implementations for all baselines).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: All assets used in this work were created by the authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We follow the best practices for python implementations, using unit tests and
code documentation to guarantee the quality of the environment. We follow the IL-Datasets
pattern for the dataset and document the structure on the HuggingFace page.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research does not involve any crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve any crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs for any part of this work. Neither the implementation,
the dataset creation, nor the writing used LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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