1.5em Opt

Approved for Public release: Distribution Unlimited

Amplitude Amplification for Quadratic
Unconstrained Binary Optimization with Regression
Based Neural Network Bootstrapping

Cody Kearse, Daniel Koch

Abstract—A series of recent studies has demonstrated that
Quantum Amplitude Amplification (QAA), the generalization of
Grover’s search algorithm, is capable of solving combinatorial
optimization problems using oracle operations which apply phases
proportional to all possible solutions. However, the algorithm’s
success is highly sensitive to a free parameter choice which
must be determined before running the quantum algorithm. In
this study we demonstrate the feasibility of using regression
neural network architectures to predict this parameter using
only the weights and connections of a discrete objective function.
We show that for both fixed length and varying length linear
QUBO (quadratic unconstrained binary optimization) problems
the neural network architectures can be trained to accurately
predict the free parameter with sufficient error rates necessary
for performing successful QAA.

Index Terms—Amplitude Amplification, Amp Amp, Quantum
Computing, Graph Neural Network, Quantum Machine Learning,
Hybridization, Hybrid Modeling, QUBO, Graph Convolutional
Neural Network

I. INTRODUCTION

Quantum Amplitude Amplification (QAA) is the general-
ization of Grover’s search algorithm [1], and is a staple of
quantum computational techniques. When marking a single
or subset of states, Grover’s algorithm has been proven to
be optimal [2], [3]], capable of reaching 100% probability of
success [4]-[6], and has been experimentally demonstrated up
to 5 qubits [7]-[10]], [12]-[14]. Additionally, QAA itself has
been incorporated as a subroutine in more complex quantum
algorithms [15]-[19] that go beyond database searching.

In light of QAA’s mathematical and theoretical success,
physically realizing the core unitary operators of the algorithm
has proven difficult due to circuit depth scaling [20], [21]. The
work of Pokharel & Lidar [12] represents the extent to which
QAA is achievable on today’s hardware, incorporating state-
of-the-art circuit optimization [22]-[24f], dynamical decoupling
[25]], and quantum error detection [26]. All of these techniques
are needed in order to achieve the N-qubit control operations
necessary for both the oracle and diffusion operators of QAA.
However, as discussed in Stoudenmire & Waintal’s recent
work [27], there is doubt as to whether an N-control unitary
implementation of the oracle operator is computationally
advantageous.

Address: Air Force Research Laboratory, Rome, NY 13441, USA.
Emails: cody.kearse@us.af.mil, & daniel.koch.13@us.af.mil

In this study we focus on a formalism of QAA that uses or-
acle operations which apply phases proportional to all possible
solutions of a discrete cost function [28]-[30], which we refer
to as cost oracles [31]-[33]]. The variant of QAA discussed in
this work has strong overlap with a variant of QAOA which
utilizes Grover-Mixers (diffusion) [34]]-[36] together with
the phase-separator operator (cost oracle). Similar to Grover
Adaptive Search [37] (GAS), the goal is to find the extrema
min/max solution(s) of a weighted combinatorial optimization
problem, in this case QUBO (quadratic unconstrained binary
optimization). Unlike the oracle construction of GAS which
requires the creation of quantum dictionaries [38], cost oracles
are very circuit depth efficient [32]], especially on hardware
architectures with support parallel gate operations such as
superconducting qubits [39]]. It has been shown that QAA
encoding QUBO problems as the oracle is able to achieve
probabilities of 90%+ for solutions near the global optimum
[28]], [30]-[32], but its success is very sensitive to the choice
of a single free parameter in the oracle operation. Methods for
approximating an optimal value for this parameter have been
proposed [30], [32], but have yet to demonstrate the required
precision necessary for large problem sizes.

The results of this study contribute to the growing research
literature of applying machine learning to enhance quantum
algorithms [40]-[47]. Dawid et. al. highlight several broad
categories in which machine learning has assisted in quantum
research: reproducing Hilbert spaces with kernels [41]], quantum
dynamics and physics modeling [42], wave function represen-
tation [43]], quantum-feedback control [44], optimization [45],
error-correction [40], and circuit-parameterization [47]]. Our
methods in this study are similar to those of Swaddle [48]],
utilizing neural network architectures to assist QAA.

The novel contribution of this work is the demonstration
that a machine learning based approach can predict the optimal
value for this free parameter to a level of precision which
enables reliable QAA success. In the work of [32]], [33]] it
was observed that there is a strong mathematical correlation
between the numerical value of cost function solutions and
the optimal free parameter value for finding them via QAA.
Deep neural networks in particular have been shown to
approximate a wide range of mathematical structures and
phenomena with remarkable precision [49]-[52]. Aa a modern
example, physics-informed neural networks (PINNs), have a
strong history of producing numerical solutions for higher
order differential equations for fluids dynamics with Navier-
Stokes Equations [53]], weather forecasting [54]], modeling

thermodynamic systems, and even the prediction of ground

state Hamiltonian’s for quantum many body problems [50], [S5].

In [56], Cichy argues there are even specific use-cases in which
the predictive power of neural networks can help to jump-start
the beginning of a larger theoretical framework. Given the well
documented success of neural networks to regressively model
mathematical phenomena, here we demonstrate that a highly
performative regression model with strong generalization can
capture to a sufficient degree, the mathematical link between
the weights of a discrete cost function and the optimal cost
oracle parameter value for finding the global optimum.

II. AMPLITUDE AMPLIFICATION

We begin with an overview of the form of Amplitude
Amplification that we seek to improve in this study, given
by Alg. [T below.

Algorithm 1 Amplitude Amplification Algorithm

Initialize: |¥) = |0)®V
Prepare: HEN |U) = |s)
for k iterations do
Oracle: Uc(ps)|¥)
Diffusion: U(6)|¥)
Measure |¥)

The strategy of QAA begins with the preparation of |s), the
equal superposition state given in equation [T} For the N-qubit
QUBO problems presented in this study, |s) represents the
state of equal uncertainty across all 2V possible solutions.

1 2
B>¢ﬁ;%> (M
Following the preparation of |s), the structure of QAA is
to apply alternating oracle and diffusion operators, given in
equations 2] and 3] After k iterations of oracle and diffusion,
the algorithm concludes with a measurement on every qubit in
|¥), collapsing the quantum system down to single state |Z;)
in the computational basis (|0) and |1) for every qubit). If done
successfully, the measured state |Z;) is the desired solution to

the QUBO cost function C(Z) encoded by the oracle Uc.

2N
Uc(ps) = Y e Z;)(Z; 2)
J

Ug(0) =T — (1 — €")[s)(s| (3)

Diffusion as defined in equation [3] above is controllable by
the free parameter 6, but in this study we only consider the
case of 6 = « [28]]-[32] as the focus of this study is to use
ML for determining optimal ps.

A. QUBO Cost Oracles

In this study we consider oracle operations according to
equation [2| which apply phases proportional to all possible
solutions of a cost function C(Z). Implementing Uc(ps) as a

gate-based circuit is very depth efficient [32], [39] as compared
to Grover’s [[12], [37], in some instances equivalent to the phase-
separator operator in the QAOA literature [34]]—[36]. Given
in equation El] below is the QUBO cost function C(Z) which
will be the focus of this study, where z; € {0,1} are binary
variables which are represented by the computational basis
states |0) and |1) of each qubit within |Z;).

N
7 1]

Implementing a quadratic cost function as a cost oracle Uc
requires only single and 2-qubit phases gates. Specifically, P(6)
on every qubit for the linear weights W, and likewise CP(6)
between qubits for every w;; between nodes, given in equation
[5] below. We shall use the terms node and edge for referring to
the weighted graph interpretation of QUBOs, where each qubit
represents one node (W;) and each edge is a pair of nodes that
share a connection (w;;).

1 0 0 O
1 0 01 0 O

PO =y | PO=[0 0§ o] ©
0 0 0 ¢

With Us(7) as the diffusion operator, the success of QAA
according to Alg. [I|boils down to correctly determining p, and
k, where pg stands for phase scale as its roles is to effectively
scale all of the solutions of C(Z) to a range of approximately
2m. For large N problem sizes it has been shown that k can be
approximated to the familiar ~ 7 \/2% /M of Grover’s [33] (for
M marked states), which leaves ps as the sole parameter to be
determined. This problem of determining ps can be understood
as the phase matching condition in traditional Grover’s [57],
which for cost oracles exists for each possible solution. In
section IV we show that machine learning can accurately predict
optimal p, values for QUBOs composed of randomized weights
WL‘ and Wij.

III. MACHINE LEARNING ARCHITECTURES

The core of our approach is to formulate the determination
of ps into a machine learning task, specifically neural network
regression in the form of mathematical modeling. We show
that a machine-learning regression algorithm can bootstrap the
computational relationship between QUBO node values W,
edges w;;, and the predicted p, parameter. Our model uses
upfront training costs in the form of simulating QAA using
QUBO cost oracles to determine optimal ps. After training our
model produces ps values for newly generated QUBOs almost
instantaneously, with only model instantiation and throughput
speed as limitations.

A. Regression Formulation

Much like other classical regression tools, machine-learning
regression algorithms can produce accurate numerical approx-
imation(s) given a set of starting feature values and their
corresponding output values [58]. Typically through back-
propagation, a network optimizes or trains to mimic a functional

Approved for Public release: Distribution Unlimited

mapping of the input and output feature space. In practice,
regression neural networks are deployed in cases where the
functional mapping is assumed to be challenging in both
the dimensionality of the feature space and complexity of
the nonlinear relationships [59]. In modern algorithms, the
nonlinear activation functions of each neural node and the
density of node connections allows for extremely expressive
learning and modeling facilitation [52].

B. Advanced Architectures

During the later stages of experimentation, the complexity
of the QUBO structures increased such that a standard feed-
forward neural network struggled to reach reasonable training
thresholds. This warranted the investigation of more advanced
machine learning architectures including Long-Term Short-
Term (LSTM) recurrent networks and hybrid models. It
is common in machine learning practice to scale models
proportionately with the increase in task demands [S9]-[61]

LSTM recurrent networks are capable of modeling data in
sequential order to further analyze the relationships between
each feature. For QUBO Analysis it was theorized that layers
of LSTM cells could learn the relational nuances between
each node and edge value. The feature space of nodes and
edges is formatted linearly and consequently can be interpreted
and fed into an a bidirectional LSTM layer without additional
overhead.

Within an LSTM cell block the algorithm maintains a
rudimentary form of memory within a hidden state that is
passed along with each sequential feature step. Next, the Forget
Gate determines the value of information within the hidden
state, either concatenating the information for the forward pass
with a value close to one, or diminishing it’s additive effect
with values close to zero. The newly updated candidate cell
is is then passed through the output gate. This final output is
both the output from the cell during this forward pass as well
as the updated hidden state for the next sequential feature pass.
[62]. A detailed breakdown of the Long-Term Short-Term cell
workflow is presented below in figure one.

LSTM Cell Equations:

ft = o(Wilhi—1, 2] + by) Forget gate (6)
it = o(Wilhi—1,] + b;) Input gate @)
C, = tanh(Welhi—1, 2] + be) Candidate state (8)
Cy = fi,Ci—1 +i,C, Cell update ©)
or = o(Wolhs—1, 2] + bo) Output gate (10)

ht = og tanh(C}) Hidden state 11

Variable Definitions:

Tt Input at time step ¢

hi_q Hidden state from previous time step

Cy Cell state at time ¢
Wi, W;,We, W, Weights for gates and candidate cell
bg,bi,bc, b, Bias vectors associated with each gate
o Sigmoid activation function, ————
14+e®
T _ o
tanh Hyperbolic tangent activation,

et 4+ e *

[Input xtHForget Gate ftJ»(Cell State Ct} [Output ht}
L 7 ~ 7
[Input Gate it]—{CandidateC't} (Output Gate ot}

Fig. 1: LSTM Pipeline Overview

During algorithm development it also is a common practice
to conjoin algorithm functions through hybridized layer types.
Doing this can allow for richer numerical expression and
combine the advantages of multiple algorithm techniques [63].
Common hybrid structures include LSTM or CNN input layers
for feature extraction followed by dense linear layers for
classification [64]. In this work, both LSTM layers and CNN
backbone layers were conjoined with dense linear layers to
support the increase in complexity of the research challenge
for experiment 2.

IV. METHODS

Predicting ps can be framed as a linear regression problem
in classical machine learning. The values W; and w;; of the
QUBO'’s cost function are used as input features of the network,
and the output labels are the optimal p, values for finding global
optimum (both min and max). In this section we demonstrate
two cases where the mathematical structure underlying the
connection between weights and ps is direct enough for the
machine learning tools to predict ps. The first use is a fixed
length QUBO structure while the second varies the problem
size. In the second case study we emphasize the improvements
made to the ML architecture as compared to the first in order
to address the challenges of scaling and problem flexibility for
solving more complicated QUBO problems.

A. Experiment 1: Fixed-Length QUBO

Let us now define the graphical representation of equation
which we shall use for the remainder of this study. Given a
C(Z) composed of randomly generated integer weights from
[—200,200] for both W; and w;;, the corresponding graph is
n = N nodes with m = N — 1 connections between nodes
in the manner shown in figure 2] which we define as a linear
QUBO. Each node n; is assigned the linear weight W;, and
similarly each connection m; a quadratic weight w;;. The
objective is to predict the quantities pui, and pmax given the set
of n nodes and m connections, which are the ps values which

Approved for Public release: Distribution Unlimited

maximize the probability of measuring the basis states | Zn)
and |Zmax) (the global optimal solutions to C(Z)) according to

Alg.

my my my my ms mg Mmyg
. — — d— ----. e onee qu—

Fig. 2: Graphical representation of a length-N linear QUBO.

There were special considerations for choosing both the
length of the QUBOs n, as well as the node and edge values
n; and my;. First, n = 22 was chosen for experiment 1 due to
the classical compute resources necessary for generating and
solving QUBOs, ultimately warranting parallelization across
multiple CPUs of our locally available high performance
computing (HPC) systems. Data generation scales exponentially
with the number of n nodes and m edges, creating an upper
bound on the size of testable QUBOQ’s, for which it was
determined that n = 22 was the largest size at which a sufficient
collection of data could be generated. It has been shown that
as n increases the overall performance and reliability of Alg.
improves [32], [33[]. Thus, n = 22 is sufficiently large enough
to produce results which represent the algorithm’s large N
tendencies while also being reserved enough to generate the
necessary training data within 2 weeks of compute time on a
HPC cluster.

Second, the weights n; and m; were randomly selected to be
integers from [—200, 200] inclusively to guarantee good QAA
performance [31[]-[33[], and to ensure that the training data
would be representative of many possible problem instances.
In total 100,000 QUBOs were generated in order to ensure our
the training data would result in a model that is robust and
generalizable over a wide variety of value settings. All data
was normalized before training protocols within the neural
network, which is a common practice in machine learning.
The general symmetry of the distribution and normalization
practices would also permit the model to be used tentatively
with any data distributions that showed similar distribution
qualities, further adding to its generalization capacity.

A traditional, fully-connected network of dense layers was
determined to be the best choice for a preliminary training
run. This architecture, while generic, would likely evidence
any strong mathematical undertones within the problem space
[49] [53]]. It was reasoned that if a simple architecture
could demonstrate promise, scaling and iterating through
more complicated architectures would yield strong fine-tuned
model performance [|65]]. Fine-tuning the preliminary model
testing established the following architectural design and hyper-
parameter optimization scheme for experiment one:

1. A standard feed-forward regression neural network with
dense layers performed strongly for the preliminary QUBO
task and was adopted as the architecture to fine-tune.

2. The width of the network was determined to be n = 96 for
m = 4 hidden layers. Variations of n = 32,64, 128,256
were also considered as well as layer depths of m = 3
and 5.

3. The Mish activation function performed better than
standard ReLU activations functions and was selected

for the hidden layers. This finding aligns with previous
work utilizing the Mish activation function when modeling
strongly represented underlying mathematical structures.
[66]. The Mish function is defined as:

f(z) = z tanh(softplus(x)), (12)

softplus(z) = In(1 + €”) (13)

4. The learning rate was kept as default (0.001).

5. The LogCosh cost function was selected after showing
better performance over standard mean squared error
(MSE). This was attributed to the Gaussian nature of
the problem space. The LogCosh function is defined as
the following:

LogCosh(z) = In(cosh(z)) (14)

aaaaaaaaaaaaaaaaaaaaaaaaaaaa
nnnnnnnnnnnnnnnnnnnnn

V

Hidden Hidden Hidden Hidden output

Fig. 3: Proof of Concept Network Configuration

B. Experiment 2: Multi-length QUBO Generalization

For the second experiment we increased the complexity of
the problem by creating a training set consisting of randomized
length-N QUBOs in addition to randomized weights. The
data included QUBOs with node lengths between 18 and 23
inclusively. To improve upon the design of experiment 1 we
created 100,000 samples of each length, bringing the total to
600,000 training examples (which includes the original n = 22
100,000 from before).

To tackle the task of generalization within the range of
QUBO sizes, more hyper-parameter tuning and architectural
scaling was necessary for maximal performance. Additional
alternative network configurations were tested which included
a Long-Term Short-Term recurrent network (LSTM), a graph
convolution neural networks (GCNN), transformer architectures,
and hybridization combinations of differing network layers.
During the trial processes graph convolution neural networks
and transformer architectures were eventually eliminated from
the testing criteria due to poor performance on the task. The best
architectural choices and hyperparameters determined through
fine tuning for the multi-length QUBO solver were as followed:

1. The best performing architecture was an LSTM backbone
hybridized with dense layers connected at the front of the

Approved for Public release: Distribution Unlimited

pipeline. This aligned with our initial intuition to test the
LSTM layers and noted that they performed strongly as
the complexity of the solution space increased.

2. The best performing LSTM Backbone configuration
included a single layer with 128 cells. Variations of the
LSTM cell size including 32, 64, 256. We also tried
differing the number of stacked LSTM layers of (=
1, 2,3 ,4,5. The connected dense layer width of the
network was determined to be n = 512 for m = 3 hidden
layers. Variations of n = 96, 128,256, 1024 were tested
on hidden layer depths of m =1,3,5,7

3. Like the first experiment, the Mish activation function
outperformed its ReLU counterpart at deeper training
layers, where the number of epochs Ny > 500.

4. A learning rate of 0.01 yielded better results than the
default (0.001).

5. The LogCosh cost function was carried over into this
experiment due to previous successes in experiment 1 and
performed similarly.

V. RESULTS

Here we report on our models’ ability to predict ps values
for both experiments. For each model, 15% of the original data
collection was isolated from training and kept as testing data,
yielding a total of 15,000 and 90,000 QUBOs for the static
and varied size experiments respectively.

A. Metrics & Success Criteria

In the coming results we report on the percentage difference
between our models’ predictions of P, and pmax versus their
true values, given in equation [I5] We track the average percent
error as y (the average of equation [I3] across all 15,000 and
90,000 QUBOs respectively), and similarly the percent of all
ps predictions that exceed an error of 2% as e. See figure []
for an example which illustrates a gaussian profile centered at
ZEro error.

|ps — prediction|

error % = (15)
Ds

04 |
2
&
(&)
@)

2z 02} .
=
<
e
e
&

5% > ¢
O - |
| | | | |

0% 1% 2% 3% 4%
Ps prediction error

Fig. 4: Example distribution of pg predictions showing y =
0.075% and € = 5%.

Based on the results of [28]-[33]] as well as our own
preliminary analysis on the QUBOs generated for experiments
1 and 2, it was determined that a 2% or less error in p;
was needed to produce a computationally meaningful solution
using QAA according to Alg. [T} To determine this threshold
we analyzed the range of ps values that could produce |Z;)
solutions within the top 500 global optimum (see [32], [33]]
for more details) and found that 2% or less was necessary. In
the Conclusions sections we discuss further the implications of
these errors from using ML predicted ps values and potential
QAA strategies as future research.

B. Experiment 1: Static Length Linear QUBO’s

An initial proof of concept experiment was able to success-
fully demonstrate that a neural network can learn relationships
between QUBO node & edge weights and the optimal ps oracle
parameters. Baseline model development was initiated with a
standard series of three dense hidden layers in between a single
input and output layer. Initial trials with this feedforward dense
neural network produced regression prediction averages within
5-10% of the testing data values. Architectural adjustments in
the number of layers, layer depth, and hyperparameter fine-
tuning yielded improvements in the model such that the final
version produced an average error of u = 0.64% and 0.68%
for pmin and pmax respectively on the testing data. The full
results for this final model are shown in figure [5] This version
of the model successfully predicted ps values under 2% error
for a total of 96.5% of the 15,000 testing examples, resulting
in € ~ 3.5%. The distribution of errors closely matched the
ideal distribution shown in figure [f] whereby the highest
concentration of predictions were skewed towards 0% error
followed by a sharp gaussian-like decrease away from zero.

C. Experiment 2: Multi-length QUBO Generalization

The multi-length QUBO generalization of experiment 2
yielded particularly stronger results as compared to experiment
2, which may imply that the increased complexity of the
training data gave the model more mathematical structure
to learn. Initial model tests yielded regression predictions
around an average of 2%, but after finetuning the p, predictions
improved by nearly two orders of magnitude. The results of
the final model are shown in figure [5] with mean errors of
i = 0.04% and 0.05% for puin and ppuax respectively. For this
final version of the model only 108 instances of the 90,000
total test QUBOs produced errors above the 2% threshold,
yielding ¢ = 0.12%. To achieve these results we note that the
deep learning LSTM designs required 5 days of training time
on a stand alone research laptop.

VI. CONCLUSION

The results of section IV serve as a proof of principle that
the ps problem of QAA for combinatorial optimization [30],
[33]] is solvable using classical machine learning techniques
such as neural networks. In this study we demonstrated this
functionality for linear QUBOs of both fixed and varying
lengths, which suggests the same success may be possible for

Approved for Public release: Distribution Unlimited

Experiment 1

I
250 1 ! P
{ min
I
200 1 1
I
1
1
1 .
£ i e = 2%
1 HCEaE S
S ! i
100 1 i
| M= 0.64%
1]
50 i
I s
| 97.14%} 2.86%
0 L -
0% 1% 2% 3% 4% 3% 6% T 8%
Percentage of Error
1
1
I
250 P
: max
1
|
200 1
1
1
e 1 H
150 I i
3 i i £=2%
3 L
I
1 i
100 :
|1 = 0.6B%
1 i
1
50 |
I s
196.54%: 3.46%
0 L -
0% 1% 2% 3% 4% 5% 6% 7% 8%

Percentage of Error

Experiment 2

1
1
i P .
sooo { | min
1
1
1
1
6000 1{ |
€ i 5
5 | fe=2%
o - i
“ apoo { | i
1 H
L= 0.22%
i i
2000 1 :
I s
1 99.937%; 0.063%
o+ :
0% 1% 2% 3% 4% 5% 6% T% 8%
Percentage of Error
]
I
| P
8000 { | max
I
I
I
I
6000 4 |
s I :
| H
3 i = 29
2 : EE 2%
Y 4000 4
I
u=021%
I
2000 1 :
I s
| 99.952%: 0.048%
o H :
0% 1% 2% 3% 4% 5% 6% 7% 8%

Percentage of Error

Fig. 5: Results from experiments 1 (left) and 2 (right) for our models’ predictions on py;, (top) and pyax (right) on 15,000 and

90,000 QUBOs respectively.

larger and more complex problems. Because the mathematical
relation demonstrated by our models was between only the
weights of a cost function and py, this relation should in prin-
ciple go beyond QUBO to HUPO (higher order unconstrained
polynomial optimization) problems as well. These include use
cases such as traveling salesmen, traffic modeling, supply chain,
logistics and routing, where variables are not necessarily always
binary (requiring qudits) and cost function weights go beyond
quadratic. The ideal scenario for when classical ML solutions
are applicable to assist Quantum Amplitude Amplification
is one in which there is a high volume of continually new
optimization problems that possess similar structure (ex. flight
scheduling across airports or mail delivery routes across a city).
Conversely, users in novel situations with rapidly evolving
state-spaces might find significant challenges with integration
[67]]. Sufficient historical data of past problem instances is
necessary for training, but after the upfront computational cost

of producing the models the payoff is in faster solutions to
future problem instances.

A. Future Work

Accuracy in predicting py for QAA is step one towards
a future hybrid computational pipeline, but more research is
necessary to determine exactly how these approximate values
can be utilized most effectively. The results of experiment
2 are particularly exciting, producing average errors around
0.05% which exceeded our original expectations. Error within
this order of magnitude or lower is accurate enough to deliver
on globally optimal solutions, while conversely a 1 ~ 0.5%
would warrant alternative QAA strategies to try and find near
optimal solutions.

With regards to the machine learning side of the hybrid
computation, there is still room for significant advances
through architectural improvements. These include trimming

Approved for Public release: Distribution Unlimited

the algorithm to the smallest size possible while still delivering
on high performance metrics, as well as testing differing
learning protocols including potentially quantum variations
like QNN’s (quantum neural networks) and other quantum
techniques. Testing these variations of learning algorithms
will be crucial for scaling the technique to more complex
optimization problems.

And finally, perhaps the most important consideration for the
future viability of assisting QAA is to problem sizes beyond
classically simulatable, which is the motivation for quantum
computing to begin with. Neural networks are excellent at
interpolation within the range the are trained on, but have
limited use when generalizing outside of their training range.
As we consider our hybrid approach for future applications
it is important to remember that the performance of machine
learning solutions are significantly tied to data quality and
volume [68]—[70]. In the case of optimization solvers, the
regression networks of this study were trained on previously
solved problem instances that were well representative of the
distribution in which they will be deployed. A next milestone
proof of principle for future research would be to successfully
predict values for QAA at problem sizes larger than those
trained on, unlocking the potential for the successful use of
Amplitude Amplification at classically intractable scales.

Approved for Public release: Distribution Unlimited

[1]
[2]
[3

[t

[4]

[5]

[6

=

[7

—

[8]

[9

—

(10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

L. K. Grover, “A fast quantum mechanical algorithm for database search,”
1996.

M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum
searching,” Fortschritte der Physik, vol. 46, pp. 493-506, 1998.

C. Zalka, “Grover’s quantum searching algorithm is optimal,” Phys. Rev.
A., vol. 60, p. 2746, 1999.

G. L. Long, Y. S. Li, W. L. Zhang, and C. C. Tu, “Dominant
gate imperfection in grover’s quantum search algorithm,” Phys.
Rev. A, vol. 61, p. 042305, Mar 2000. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.61.042305

T. J. Yoder, G. H. Low, and I. L. Chuang, “Fixed-point
quantum search with an optimal number of queries,” Physical
Review Letters, vol. 113, no. 21, Nov. 2014. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevLett.113.210501

T. Roy, L. Jiang, and D. I. Schuster, “Deterministic grover with a restricted
oracle,” Phys. Rev. Research, vol. 4, 2022, article L022013.

C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and
C. Monroe, “Complete 3-qubit grover search on a programmable quantum
computer,” Nature Comms, vol. 8, no. 1918, 2017.

A. Mandviwalla, K. Ohshiro, and B. Ji, “Implementing grover’s algorithm
on the ibm quantum computers,” in 2018 IEEE International Conference
on Big Data (Big Data), 2018, pp. 2531-2537.

K. Zhang, P. Rao, K. Yu, H. Lim, and V. Korepin, “Implementation of
efficient quantum search algorithms on nisq computers,” QIP, vol. 20, p.
233, 2021.

K. Zhang, K. Yu, and V. Korepin, “Quantum search on noisy intermediate-
scale quantum devices,” Europhys. Lett., vol. 140, 2024, 18002 (2022)
B. Pokharel, D. A. Lidar, Better-than-classical Grover search via quantum
error detection and suppresion. npj Quant. Inf. 10, 23.

B. Pokharel and D. A. Lidar, “Better-than-classical grover search via
quantum error detection and suppresion,” npj Quantum Inf., vol. 10,
no. 23, 2022.

1. Thorvaldson, D. Poulos, C. M. Moehle, S. H. Misha, H. Edlbauer,
J. Reiner, H. Geng, B. Voisin, M. T. Jones, M. B. Donnelly, L. F. Pefia,
C. D. Hill, C. R. Myers, J. G. Keizer, Y. Chung, S. K. Gorman, L. Kranz,
and M. Y. Simmons, “Grover’s algorithm in a four-qubit silicon processor
above the fault-tolerant threshold,” Nature Nanotechnology, Feb. 2025.
[Online]. Available: http://dx.doi.org/10.1038/s41565-024-01853-5

M. AbuGhanem, “Characterizing grover search algorithm on large-scale
superconducting quantum computers,” Scientific Reports, vol. 15,
no. 1281, Jan. 2025. [Online]. Available: https://doi.org/10.1038/
s41598-024-80188-6

A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear
systems of equations,” Phys. Rev. Lett., vol. 103, p. 150502, 2009.

G. Brassard, P. Hoyer, and A. Tapp, “Quantum counting,” 25th Intl.
Colloquium on Automata, Languages, and Programming (ICALP), LNCS,
vol. 1443, pp. 820-831, 1998.

G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude
amplification and estimation,” Quantum Computation and Quantum
Information: AMS Contemporary Mathematics, vol. 305, pp. 53-74,
2002.

D. Grinko, J. Gacon, C. Zoufal, and S. Woerner, “Iterative quantum
amplitude estimation,” npj Quant. Inf., vol. 7, 52, 2021.

T. Muser, E. Zapusek, V. Bellis, and F. Reiter, “Provable advantages
of kernel-based quantum learners and quantum preprocessing based on
grover’s algorithm,” Phys. Rev. A, vol. 110, p. 032434, 2024.

R. Babbush, J. R. McClean, M. Newman, C. Gidney, S. Boixo, and
H. Neven, “Focus beyond quadratic speedups for error-corrected quantum
advantage,” PRX Quantum, vol. 2, p. 010103, 2021.

T. Hoefler, T. Haener, and M. Troyer, “Disentangling hype from
practicality: On realistically achieving quantum advantage,” 2023.

Y. He, M. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang, “Decompositions
of n-qubit toffoli gates with linear circuit complexity,” International
Journal of Theoretical Physics, vol. 56, 07 2017.

A. J. da Silva and D. K. Park, “Linear-depth quantum circuits for
multiqubit controlled gates,” Phys. Rev. A, vol. 106, p. 042602, Oct
2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA|
106.042602

J. Nie, W. Zi, and X. Sun, “Quantum circuit for multi-qubit
toffoli gate with optimal resource,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.05053

N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz, and D. A. Lidar,
“Dynamical decoupling for superconducting qubits: A performance
survey,” Physical Review Applied, vol. 20, no. 6, Dec. 2023. [Online].
Available: http://dx.doi.org/10.1103/PhysRevApplied.20.064027

[26]

[27]
(28]
[29]
[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

L. Vaidman, L. Goldenberg, and S. Wiesner, “Error prevention scheme
with four particles,” Phys. Rev. A, vol. 54, pp. R1745-R1748, Sep 1996.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.54.R1745
E. M. Stoudenmire and X. Waintal, “Opening the black box inside
grover’s algorithm,” Phys. Rev. X, vol. 14, p. 041029, 2024.

N. Benchasattabuse, T. Satoh, M. Hajdusek, and R. V., “Meter,” 2022,
amplitude amplification for optimization via subdivided phase oracle.
K. Tani, S. Tsuchiya, S. Tani, and Y. Takeuchi, “Quantum algorithm for
unstructured search of ranked targets,” 2024.

A. Zhukov, A. Lebedev, and W. Pogosov, “Grover’s search meets ising
models: a quantum algorithm for finding low-energy states,” 2024.

D. Koch, S. Karlson, S. Patel, L. Wessting, and P. Alsing, “Gaussian
amplitude amplification for quantum pathfinding,” Entropy, vol. 24, no. 7,
p. 963, 2022.

D. Koch, M. Cutugno, S. Patel, L. Wessing, and P. M. Alsing, “Variational
amplitude amplification for solving qubo problems,” Quantum Reports,
vol. 5, no. 4, pp. 625-658, 2023.

K. N. J. S. D. Koch, B. Pardo, “Analysis and experimental demonstration
of amplitude amplification for combinatorial optimization,” 2025.

K. Blekos, D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li, K. Pandya, and
A. Summer, “A review on quantum approximate optimization algorithm
and its variants,” Physics Reports, vol. 1068, p. 1-66, Jun. 2024.
[Online]. Available: http://dx.doi.org/10.1016/j.physrep.2024.03.002

D. Headley and F. K. Wilhelm, “Problem-size-independent angles
for a grover-driven quantum approximate optimization algorithm,”
Phys. Rev. A, vol. 107, p. 012412, Jan 2023. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.107.012412

G. A. Bridi and F. d. L. Marquezino, “Analytical results for
the quantum alternating operator ansatz with grover mixer,” Phys.
Rev. A, vol. 110, p. 052409, Nov 2024. [Online]. Available:
https://link.aps.org/doi1/10.1103/PhysRevA.110.052409

A. Gilliam, S. Woerner, and C. Gonciulea, “Grover adaptive search for
constrained polynomial binary optimization,” Quantum, vol. 5, p. 428,
2021.

A. Gilliam, C. Venci, S. Muralidharan, V. Dorum, E. May, R. Narasimhan,
and C. Gonciulea, “Foundational patterns for efficient quantum comput-
ing,” 2019.

D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. G. Govia, and
S. T. Merkel, “Benchmarking quantum processor performance at scale,”
2023. [Online]. Available: https://arxiv.org/abs/2311.05933

A. Dawid, J. Arnold, B. Requena, A. Gresch, M. Plodzien, K. Donatella,
K. A. Nicoli, P. Stornati, R. Koch, M. Buttner, R. Okula, G. Munoz-Gil,
R. A. Vargas-Hernandez, A. Cervera-Lierta, J. Carrasquilla, V. Dunjko,
M. Gabrie, P. Huembeli, E. van Nieuwenburg, F. Vicentini, L. Wang,
S. J. Wetzel, G. Carleo, E. Greplova, R. Krems, F. Marquardt, M. Tomza,
M. Lewenstein, and A. Dauphin, “Modern applications of machine
learning in quantum sciences,” Modern applications of machine learning
in quantum sciences, Cambridge University Press, 2023.

M. L. T. Szotdra, P. Sierant and J. Zakrzewski, “Unsupervised detection
of decouples subspaces: Many-body scars and beyond,” Physics Review,
vol. B 105, 2022.

A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil,
N. Balakrishnan, J. Dai, R. A. Vargas-Hernandez, and R. V.
Krems, “Machine learning corrected quantum dynamics calculations,”
Phys. Rev. Res., vol. 2, p. 032051, Aug 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevResearch.2.032051

M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko, and
J. Carrasquilla, “Recurrent neural network wave functions,” Physical
Review Research, vol. 2, no. 2, Jun. 2020. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevResearch.2.023358

T. Fosel, P. Tighineanu, T. Weiss, and F. Marquardt, “Reinforcement
learning with neural networks for quantum feedback,” Phys. Rev. X,
vol. 8, p. 031084, 2018.

T. Fosel, M. Y. Niu, F. Marquardt, and L. Li, “Quantum circuit
optimization with deep reinforcement learning,” arXiv, 2021.

P. Andreasson, J. Johansson, S. Liljestrand, and M. Granath, “Quantum
error correction for the toric code using deep reinforcement learning,”
Quantum, vol. 3, p. 183, 2019.

R. A. Vargas-Hernandez, K. Jorner, R. Pollice, and A. Aspuru-Guzik,
“Inverse molecular design and parameter optimization with hiickel theory
using automatic differentiation,” The Journal of Chemical Physics, vol.
158, no. 10, 2023.

M. Swaddle, L. Noakes, L. Salter, H. Smallbone, and J. Wang, “Gener-
ating 3 qubit quantum circuits with neural networks,” School of Physics,
The University of Western Australia, 2017, dated: April 3, 2017.

Approved for Public release: Distribution Unlimited

https://link.aps.org/doi/10.1103/PhysRevA.61.042305
http://dx.doi.org/10.1103/PhysRevLett.113.210501
http://dx.doi.org/10.1038/s41565-024-01853-5
https://doi.org/10.1038/s41598-024-80188-6
https://doi.org/10.1038/s41598-024-80188-6
https://link.aps.org/doi/10.1103/PhysRevA.106.042602
https://link.aps.org/doi/10.1103/PhysRevA.106.042602
https://arxiv.org/abs/2402.05053
http://dx.doi.org/10.1103/PhysRevApplied.20.064027
https://link.aps.org/doi/10.1103/PhysRevA.54.R1745
http://dx.doi.org/10.1016/j.physrep.2024.03.002
https://link.aps.org/doi/10.1103/PhysRevA.107.012412
https://link.aps.org/doi/10.1103/PhysRevA.110.052409
https://arxiv.org/abs/2311.05933
https://link.aps.org/doi/10.1103/PhysRevResearch.2.032051
http://dx.doi.org/10.1103/PhysRevResearch.2.023358

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

G. V. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Mathematics of Control, Signals and Systems, vol. 2, pp. 303—
314, 1989. [Online]. Available: https://api.semanticscholar.org/CorpusID:
3958369

H. Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. Preskill, “Provably
efficient machine learning for quantum many-body problems,” National
Institute of Standards and Technology and University of Maryland, 2022.
R. Vinuesa and S. L. Brunton, “Enhancing computational fluid dynamics
with machine learning,” Nature Computational Science, vol. 2, pp. 358—
366, 2022.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair,
and J.-W. Pan, “Experimental realization of one-way quantum computing
with two-photon four-qubit cluster states,” Phys. Rev. Lett., vol. 99, p.
120503, 2007.

M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,” Journal of
Computational Physics, vol. 378, pp. 686707, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999118307125
K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-
range global weather forecasting with 3d neural networks,” Nature, vol.
619, pp. 533-538, 2023.

F. Masi, 1. Stefanou, P. Vannucci, and V. Maffi-Berthier,
“Thermodynamics-based artificial neural networks for constitutive
modeling,” Journal of the Mechanics and Physics of Solids, vol. 147,
2021.

R. M. Cichy and D. Kaiser, “Deep neural networks as scientific models,”
Trends in Cognitive Sciences, vol. 23, no. 4, pp. 305-317, 2019.

G. L. Long, Y. S. Li, W. L. Zhang, and L. Niu, “Phase matching in
quantum searching,” Phys. Lett. A, vol. 262, pp. 27-34, 1999.

D. Chen, F. Hu, G. Nian, and T. Yang, “Deep residual learning for
nonlinear regression,” Entropy, vol. 22, p. 193, February 2020. [Online].
Available: https://www.mdpi.com/1099-4300/22/2/193

K. Liu and E. Zuazua, “Representation and regression problems in
neural networks: Relaxation, generalization, and numerics,” eprint
arXiv:2412.01619, 2024.

P. Dolldr, M. Singh, and R. Girshick, “Fast and accurate model scaling,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 1IEEE, jun 2021, pp. 924-932. [On-
line]. Available: https://openaccess.thecvf.com/content/CVPR2021/html/
Dollar_Fast_and_Accurate_Model_Scaling_ CVPR_2021_paper.html

V. Balachandran, J. Chen, L. Chen, S. Garg, N. Joshi, Y. Lara,
J. Langford, B. Nushi, V. Vineet, Y. Wu, and S. Yousefi, “Inference-time
scaling for complex tasks: Where we stand and what lies ahead,”
arXiv preprint arXiv:2504.00294, mar 2025. [Online]. Available:
https://arxiv.org/abs/2504.00294

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, pp. 1735-1780, November 1997.
[Online]. Available: https://direct.mit.edu/neco/article/9/8/1735/6109/
Long-Short-Term-Memory

C. Valle, J. Moncks, A. A. Freitas, and R. C. Barros, “A
systematic literature review on hybrid approaches to optimization and
machine learning,” Machine Learning, Nov. 2023. [Online]. Available:
https://doi.org/10.1007/s10994-023-06467-x

F. Lu, “Domain-name classification using hybrid cnn-lstm architecture,”
GitHub Repository, 2023, model architecture includes CNN and LSTM
layers followed by a dense layer for binary classification. [Online]. Avail-
able: https://github.com/fruitfoxlu/Domain-name- Classifier- CNN-LSTM
C. Arnold, L. Biedebach, A. Kiipfer, and M. Neunhoeffer, “The role
of hyperparameters in machine learning models and how to tune them,”
Political Science Research and Methods, vol. 12, no. 4, pp. 841-848,
2024.

D. Misra, “Mish: A self regularized non-monotonic activation
function,” in Proceedings of the British Machine Vision Conference
(BMVC). BMVA, aug 2020. [Online]. Available: https://www
bmvc2020-conference.com/assets/papers/0928.pdf

K. Azevedo, L. Quaranta, F. Calefato, and M. Kalinowski, “A multivocal
literature review on the benefits and limitations of automated machine
learning tools,” arXiv, 2024.

C. E. Brodley and M. A. Friedl, “Identifying and eliminating mislabeled
training instances,” Proceedings of the National Conference on Artificial
Intelligence (AAAI), vol. 16, pp. 799-805, jul 1999. [Online]. Available:
https://www.aaai.org/Papers/AAAI/1999/AAAI99-114.pdf|

S. Mohammed, L. Budach, M. Feuerpfeil, N. Thde, A. Nathansen,
N. Noack, H. Patzlaff, F. Naumann, and H. Harmouch, “The effects
of data quality on machine learning performance on tabular data,”

[70]

arXiv preprint arXiv:2207.14529, may 2025. [Online]. Available:
https://arxiv.org/abs/2207.14529

S. Schelter, A. Eberle, and F. Biessmann, “Data quality management for
machine learning applications,” arXiv preprint arXiv:2301.07299, jan
2023. [Online]. Available: https://arxiv.org/abs/2301.07299

Approved for Public release: Distribution Unlimited

https://api.semanticscholar.org/CorpusID:3958369
https://api.semanticscholar.org/CorpusID:3958369
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.mdpi.com/1099-4300/22/2/193
https://openaccess.thecvf.com/content/CVPR2021/html/Dollar_Fast_and_Accurate_Model_Scaling_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Dollar_Fast_and_Accurate_Model_Scaling_CVPR_2021_paper.html
https://arxiv.org/abs/2504.00294
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://doi.org/10.1007/s10994-023-06467-x
https://github.com/fruitfoxlu/Domain-name-Classifier-CNN-LSTM
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://www.aaai.org/Papers/AAAI/1999/AAAI99-114.pdf
https://arxiv.org/abs/2207.14529
https://arxiv.org/abs/2301.07299

	Introduction
	Amplitude Amplification
	 QUBO Cost Oracles

	Machine Learning Architectures
	Regression Formulation
	Advanced Architectures

	Methods
	Experiment 1: Fixed-Length QUBO
	Experiment 2: Multi-length QUBO Generalization

	Results
	Metrics & Success Criteria
	Experiment 1: Static Length Linear QUBO's
	Experiment 2: Multi-length QUBO Generalization

	Conclusion
	Future Work

	References

