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Probing the Decision Boundaries of In-context
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Anonymous Authors1

Abstract
In-context learning is a key paradigm in large lan-
guage models (LLMs) that enables them to gener-
alize to new tasks and domains by simply prompt-
ing these models with a few exemplars without
explicit parameter updates. Many attempts have
been made to understand in-context learning in
LLMs as a function of model scale, pretraining
data, and other factors. In this work, we propose
a new mechanism to probe and understand in-
context learning from the lens of decision bound-
aries for in-context binary classification. Decision
boundaries are straightforward to visualize and
provide important information about the qualita-
tive behavior of the inductive biases of standard
classifiers. To our surprise, we find that the deci-
sion boundaries learned by current LLMs in sim-
ple binary classification tasks are often irregular
and non-smooth, regardless of linear separability
in the underlying task. This paper investigates
the factors influencing these decision boundaries
and explores methods to enhance their generaliz-
ability. We assess various approaches, including
training-free and fine-tuning methods for LLMs,
the impact of model architecture, and the effective-
ness of active prompting techniques for smooth-
ing decision boundaries in a data-efficient manner.
Our findings provide a deeper understanding of
in-context learning dynamics and offer practical
improvements for enhancing robustness and gen-
eralizability of in-context learning.

1. Introduction
Recent language models, such as GPT-3+ (Brown et al.,
2020; Achiam et al., 2023), have demonstrated the ability to

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Workshop at the International Conference on Machine Learning
(ICML). Do not distribute.

scale performance with increased training dataset size and
model capacity through the simple objective of next token
prediction (Kaplan et al., 2020). A key emergent behavior
of these transformer-based models is in-context learning,
which allows the model to learn tasks by conditioning on a
sequence of demonstrations without explicit training (Wei
et al., 2022). This unique capability allows LLMs to adapt
seamlessly to new tasks, often achieving superior perfor-
mance in few-shot settings (Brown et al., 2020). Despite
significant successes, the underlying mechanisms of how
in-context learning works remain partially understood.

Recent attempts to understand in-context learning have fo-
cused on various aspects. From a theoretical standpoint,
studies by Von Oswald et al. (2023) and Dai et al. (2023)
have linked the mechanisms of in-context learning to gra-
dient descent, suggesting that transformers can emulate op-
timization processes. On the practical side, research has
investigated the impact of different factors on in-context
learning. Works by Min et al. (2022b) and Shi et al. (2023)
reveal that accurate demonstrations are not essential for ef-
fective in-context learning. On the other hand, factors such
as the prompt structure and model size (Wei et al., 2023;
Webson and Pavlick, 2022), or the order of in-context ex-
amples (Chen et al., 2024) greatly affect outcomes. More
recently, with the development of LLMs supporting longer
context lengths up to 10M (Reid et al., 2024), studies have
shown that in-context learning performance improves with
significant number of demonstrations (Agarwal et al., 2024;
Bertsch et al., 2024), where the performance can be com-
parable to fine-tuning on the same amount of demonstra-
tions. Additionally, works by (Garg et al., 2022; Nguyen
and Grover, 2022) have demonstrated that small transform-
ers trained from scratch can learn unseen function classes
in-context from examples.

In contrast to existing approaches, our study introduces a
fresh perspective by viewing in-context learning in large
language models (LLMs) as a unique machine learning al-
gorithm. This conceptual framework enables us to leverage
a classical tool from machine learning – analyzing decision
boundaries in binary classification tasks. By visualizing
these decision boundaries, both in linear and non-linear con-
texts, we gain invaluable insights into the performance and
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Figure 1. Decision boundaries of LLMs and traditional machine learning models on a linearly separable binary classification task. The
background colors represent the model’s predictions, while the points represent the in-context or training examples. LLMs exhibit
non-smooth decision boundaries compared to the classical models. See Appendix G for model hyperparameters.

behavior of in-context learning. This method allows us to
probe the inductive biases and generalization capabilities of
LLMs and offers a unique assessment of the robustness of
their in-context learning performance. Consequently, this
approach provides a comprehensive means to qualitatively
analyze the underlying mechanisms that govern in-context
learning and suggest ways to improve its performance in
LLMs.

To our surprise, we found that the recent LLMs struggle to
provide smooth decision boundaries in all the classification
tasks we considered, regardless of the model size, the num-
ber and ordering of in-context examples, and semantics of
the label format. This issue persists even for simple binary
linear classification tasks, where classical methods such
as SVM can easily achieve smooth boundaries with fewer
examples as shown in Figure 1. This observation raises ques-
tions about the factors that influence the decision boundaries
of LLMs. To explore this, we experimented with a series
of open-source LLMs including Llama2-7b, Llama2-13b,
Llama3-8b (Touvron et al., 2023) , Mistral-7b (Jiang et al.,
2023), pruned Llama2-1.3b (Xia et al., 2023), as well as
state-of-the-art closed-source LLMs GPT-4o and GPT-3-
Turbo. We then explore methods to smooth the decision
boundary, including fine-tuning and adaptive prompting
strategies. Our contributions can be summarized as follows:

• Introduced a novel mechanism to probe and understand
in-context learning in LLMs by visualizing and analyz-
ing the decision boundaries on classification tasks.

• Discovered that state-of-the-art LLMs exhibit non-
smooth, irregular decision boundaries even on simple
linearly separable tasks, unlike classical ML models.

• Identified several factors impacting decision bound-
ary smoothness, including model size, number of in-
context examples, quantization levels, label semantics,
and order of examples.

• Evaluated methods to improve decision boundary

smoothness, such as fine-tuning earlier layers and ac-
tive learning with uncertainty-based sample selection.

• Demonstrated that fine-tuning LLMs on simple tasks
can generalize to complex ones, and training trans-
formers from scratch for in-context learning can lead
to smoother boundaries.

2. Background
2.1. Training Large Language Models

Large Language Models (LLMs) are trained on vast cor-
pora of text using unsupervised learning. During training,
these models learn to predict the next token in a sequence.
Given a sequence of tokens (x1, x2, . . . , xt−1), the model
predicts the next token xt by maximizing the likelihood
P (xt|x1, x2, . . . , xt−1). The training objective typically
involves minimizing the cross-entropy loss:

L = −
N∑
i=1

Ti∑
t=1

logP (xt|x1, x2, . . . , xt−1) (1)

where Ti is the number of tokens in the i-th sequence and
N is the total number of sequences in the corpus. During
training, teacher forcing is often employed, where the model
receives the ground truth token xt as input at each time step
instead of its own prediction, enabling parallel training.

2.2. In-Context Learning in LLMs

After training, LLMs can generalize to new tasks
through a mechanism known as in-context learning.
Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} represent
the set of n input-output pairs provided as examples
in the prompt, where xi is an input and yi is the
corresponding output. Given a new input xnew, the
LLM is turned into a task-specific model that predicts
the output ŷnew by conditioning on the given exam-
ples: P (ŷnew|xnew, {(x1, y1), (x2, y2), . . . , (xn, yn)}). In-
context learning allows the LLM to perform tasks by lever-
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Probing the Decision Boundaries of In-context Learning in LLMs

aging the context provided by these examples, thereby in-
ferring the task and generating appropriate responses for
new inputs. This approach utilizes the model’s ability to
recognize patterns and apply learned knowledge without
additional training or fine-tuning.

3. Methodology
We aim to better understand in-context learning in Large
Language Models by investigating their decision boundaries
on a series of binary classification tasks. To increase the gen-
erality of our framework, we evaluate several existing LLMs
on different task distributions under different settings. We
present the general framework here, and refer to Section 4
for specific experiment settings.

3.1. In-Context Classification

Consider a K-class classification task with a data distri-
bution pdata(x, y), where x is the input feature and y ∈
{1, . . . ,K} is the class label. To construct an in-context
prompt, we sample n examples (xi, yi) ∼ pdata for i =
1, . . . , n. Given a new test point xtest, in-context learning
constructs a prompt P = (x1, y1, . . . ,xn, yn,xtest) by con-
catenating the n sampled examples and the test point. The
prompt P is then fed to the LLM π, which predicts a class
ŷ for xtest.

We prompt the LLM with P and obtain its prediction for
xtest by choosing the most likely class in the next token
distribution. Formally, let V denote the size of the LLM’s
vocabulary, and l ∈ RV be the vector of logit values for
each of the tokens. To obtain a class prediction, we convert
each class label i into a unique token id, say c(i) and choose
the class with the maximum logit value as the predicted
label for xquery, i.e., ŷ = argmaxi∈{1,...,K} lc(i).

3.2. Decision Boundary Visualization

To visualize the decision boundary of a model π, we
generate a grid of points covering the feature space de-
fined by the in-context examples set S. Let S =
{(x1, y1), (x2, y2), . . . , (xk, yk)} represent the set of in-
context examples, and xmin,xmax ∈ Rd denote the mini-
mum and maximum values of the features in S along each
dimension. We create a uniform grid with G points along
each dimension, resulting in a total of Gd grid points. The
grid points are denoted as Xgrid = {xquery | xquery ∈
[xmin,xmax]

d,xquery = xmin + i∆x, i ∈ {0, 1, . . . , G −
1}} where ∆x = 1

G−1 (xmax − xmin) is the grid spac-
ing along each dimension. Each point xquery ∈ Xgrid
is a query input, and the model π is prompted with the
sequence (x1, y1, . . . ,xk, yk,xquery) to predict the corre-
sponding class label ŷ. The decision boundary is then vi-
sualized by plotting the predicted labels ŷ over the grid

Xgrid.

4. Experiments
In this section, we examine existing LLMs through the lens
of decision boundaries by conducting a series of binary clas-
sification tasks under varying conditions. Our experiments
aim to address the following key questions:

• How do existing pretrained LLMs perform on binary
classification tasks? §4.1

• How do different factors influence the decision bound-
aries of these models? §4.2

• How can we improve the smoothness of decision
boundaries through finetuning or prompting? §4.3

Classification Tasks. We investigate the decision boundary
of LLMs by prompting them with n in-context examples
of binary classification tasks, with an equal number of ex-
amples for each class. We generate classification datasets
using scikit-learn (Pedregosa et al., 2011), creating
three types of linear and non-linear classification tasks: lin-
ear, circle, and moon, each describing different shapes of
ground-truth decision boundaries. Detailed information on
the dataset generation can be found in Appendix H. In addi-
tion to the in-context examples, we calculate the in-context
learning accuracy on a held-out test set of size 100. We sam-
ple in-context examples and test points from classification
task and convert them into prompt, with an example shown
in Appendix F.

Obtaining Decision Boundaries of Language Models.
We study an extensive range of models, with sizes ranging
from 1.3B to 13B parameters, including open-source models
such as Llama2-7B, Llama3-8B, Llama2-13B, Mistral-7B-
v0.1, and sheared-Llama-1.3B. We also extend our analysis
to state-of-the-art closed-source LLMs, including GPT-4o
and GPT-3.5-turbo. We generate the decision boundaries
of the open-source models with 8-bit quantization due to
computational constraints. We choose a grid size scale of 50
x 50, resulting in 2500 queries for each decision boundary.
For the open-source models, we use the approach described
in 3.2 to get predictions. For the closed-source models, we
use the next token generation as the prediction.

4.1. Non-Smooth Decision Boundaries of LLMs.

Figure 2 compares the decision boundaries of 6 LLMs when
provided with 128 in-context examples. Even on simple
linearly separable classification problems, all of these mod-
els exhibit non-smooth decision boundaries. The decision
boundaries vary significantly across models, indicating that
these models have different reasoning abilities to interpret
the same in-context data. All models show fragmented
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Figure 2. Visualizations of decision boundaries for various LLMs, ranging in size from 1.3B to 13B, on a linearly seperable binary
classification task. The in-context data points are shown as scatter points and the colors indicate the label determined by each model.
These decision boundaries are obtained using 128 in-context examples. The visualization highlights that the decision boundaries of these
language models are not smooth.
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Figure 3. Test accuracy for LLMs and baselines across three classification tasks (linear, circle, and moon), with each subplot illustrating
the test accuracy as the number of in-context examples increases. The baselines are the SVM with a polynomial kernel and the MLP with
two hidden layers. Shaded regions represent the standard error of the mean accuracy across 5 seeds.

decision regions, which means small changes in the input
features can result in different classifications. This raises
concerns about the reliability of LLMs and their practical
deployment, as even when test accuracy for classification is
high (shown in Figure 3), the underlying decision boundary
lacks generalization. In the following sections, we will ex-
plore factors that affect decision boundary smoothness and
investigate methods to improve smoothness.

4.2. How Do Different Factors Influence the Decision
Boundaries?

Impact of Model Size on Decision Boundary and Accu-
racy From Figure 2, model sizes increase from left to right,
yet there is no clear correlation between model size and
the smoothness of the decision boundary. Even the most
powerful model, GPT-4o, demonstrates fragmented decision
regions. This suggests that increasing model size alone is
insufficient for improving decision boundary smoothness.
However, as shown in Figure 3, larger models tend to per-
form better in terms of test accuracy compared to smaller
models, with Llama-1.3B often performing the worst.

Increasing In-Context Examples Does Not Guarantee
Smoother Decision Boundaries While classification accu-
racies tend to improve with more in-context examples—and

it’s worth noting that Llama-3-8B and Mistral-7B’s accuracy
scales similarly to the SVM and MLP baselines—Figure 4
reveals that this does not translate to smoother decision
boundaries. Despite the increase in accuracy, the decision
boundaries remain fragmented, indicating that merely pro-
viding more in-context examples is not sufficient for achiev-
ing smoother decision regions.

How Quantization Affects the Decision Boundary? Fig-
ure 5a illustrates the decision boundaries of the LLaMA-
2-7B model under different quantization levels (Dettmers
et al., 2022). When transitioning from 8-bit to 4-bit quan-
tization, the red regions around the red in-context learning
examples turn blue. This indicates that the reduced preci-
sion from 4-bit quantization significantly affects points near
the decision boundary or areas where the model is most
uncertain. To further investigate, we plotted the probability
prediction for class 1 (Figure 5b). The white regions, indi-
cating a 50% probability for both classes, highlight the areas
most impacted by quantization. This provides a practical
insight: varying quantization levels can flip or revert the
LLM’s decisions in the regions of highest uncertainty.

Are Decision Boundaries Sensitive to the Prompt For-
mat? Yes, decision boundaries are sensitive to the labels’
names, as shown in Figure 6. Using semantically unrelated

4
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Figure 4. Decision boundary of Llama2-7b with increasing in-context examples from 8 to 256.
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(a) Decision boundaries of Llama-2-7b with different quantization choices
on a linearly seperable tsak.
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Figure 5. Impact of quantization on Llama2-7-8b’s decision boundaries and probability predictions.

labels, such as “Foo” and “Bar” as suggested in (Wei et al.,
2023), results in flipped predictions compared to using re-
versed class names like ”Bar” and ”Foo”. This suggests
that the LLM’s prediction still depend on its semantic prior
knowledge of the labels.

Are Decision Boundaries Sensitive to the Order of In-
Context Learning Examples? Recent works have shown
that LLMs are sensitive to the order of in-context examples
(Chen et al., 2024), which can significantly influence down-
stream performance. Similarly, as illustrated in Figure 7, we
demonstrate that the model’s decision boundaries vary with
different shuffles of the in-context examples, highlighting
the sensitivity of the decision boundaries to the order of the
examples.

4.3. How to Improve the Decision Boundary
Smoothness?

Can We Finetune LLMs on the In-Context Examples
to Achieve Smoother Decision Boundaries? Our experi-
ments indicate that finetuning LLMs on in-context examples
does not result in smoother decision boundaries. Specifi-
cally, we finetuned Llama3-8B on 128 in-context learning
examples and found that the resulting decision boundaries
remained non-smooth. Examples of the decision boundaries
after finetuning are provided in Appendix C.

Can We Finetune LLMs on a Dataset of Classification
Tasks to Achieve Smoother Decision Boundaries? Pre-
vious works have shown that finetuning a pretrained LLM

on a large collection of tasks improves its in-context learn-
ing performance on unseen tasks (Min et al., 2022a). In
this section, we investigate if the same paradigm helps im-
prove the decision boundary smoothness of LLMs. To do
this, we finetune a pretrained Llama model (Touvron et al.,
2023) on a set of 1000 binary classification tasks gener-
ated from scikit-learn (Pedregosa et al., 2011), where
the ground-truth decision boundary is either linear, circle-
shaped, or moon-shaped, with equal probabilities. For each
task, we sample randomly N = 256 data points x ∼ Xgrid
and their corresponding label y′s. We then sample the num-
ber of context points m ∼ U [8, 128], and finetune the LLM
to predict yi>m given xi>m and the preceding examples:

L(π) = E

[
N∑

i=m+1

log p(yi | xi, x1:i−1, y1:i−1)

]
, (2)

where the expectation is with respect to task, data points
{(xi, yi)}Ni=1, and the number of context points m. After
training, we evaluate the same finetuned model on various
binary classification tasks with varying numbers of context
points. To ensure the test tasks are unseen during training,
we use different parameters in creating the datasets, such as
the separateness between two classes and the scale between
the inner and outer circles in the circle task. See Appendix H
for more details.

We consider several finetuning settings for ablation studies.
1) In the first setting, we finetune the pretrained LLM using
LoRA (Hu et al., 2021) and finetune the attention layers.
2) We finetune only the token embedding layer of LLM.

5
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Figure 6. The decision boundaries of LLama-2-7B and LLama-3-8B, across various class labels. Each row corresponds to a model, and
each column represents a different class label, shown in quotes.
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Figure 7. The sensitivity of the Llama3-8b model’s decision boundary to the order of in-context examples. Each subplot (Order 0 to Order
4) shows the model’s decision boundary with the same 32 examples shuffled differently.

3) We finetune only the linear head layer of LLM. Then
we consider modifying the architecture of the LLM: In this
setting, we keep the core transformer backbone of the LLM
frozen, attach randomly initialized embedding layers and
prediction head to the model, and train the entire model
using objective (2). This stems from the intuition that task-
specific embedding and prediction layers allow the model to
maximally utlize the general pattern-matching capabilities
of the transformer backbone for the new task. We refer to
this model as CustomLLM, and consider its three variants,
which add 1) a new embedding layer for x, 2) a new pre-
diction head for y, and 3) new embedding layers for x, y,
and a new prediction head for y. The embedding layers and
prediction head are MLPs with one hidden layer. We embed
the raw numerical values instead of the text representation
of x whenever a new embeddding layer for x is used (same
for y), and predict directly the binary class values instead
of text labels whenever the new prediction head is used.
Results of Finetuning LLM and CustomLLM in Figure 8
and Figure 18 show that finetuning the intermediate and ear-
lier embedding layers leads to smoother decision boundary
compared to finetuning the top prediction head.
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Figure 8. LLM finetuning ablations. Decision boundary after fine-
tuning the linear head, embedding layer and the attention layers.

Can LLMs finetuned on one in-context learning task
generalize to more complex in-context learning tasks?
We demonstrated that SFT on the dataset can smooth the
decision boundary on that dataset. In this section, we further
explore whether a LLM fine-tuned only on a linear task can
achiever smoother decision boundaries on unseen and more
complex tasks. As shown in Figure 9, we compare the
decision boundaries of Llama3-8b before and after SFT on
the linear task only. Unexpectedly, we found it generalizes
to unseen non-linear tasks as well as 3-class and 4-class
classification tasks, despite only being trained on a binary
linear task. The smoother decision boundaries observed in
these unseen tasks suggest that fine-tuning on a synthetic in-
context learning task can have downstream benefits for other
tasks, enabling the model to be more robust in in-context
learning.

Can we train a transformer from scratch to learn
smooth decision boundary in-context? One may wonder
whether a small transformer trained from scratch can pro-
vide smooth decision boundaries. To answer this, we train
TNPs (Nguyen and Grover, 2022) , a transformer-based
model specifically designed for in-context learning. For
each sequence of data points {(xi, yi)}Ni=1 from a task C,
TNPs learn to predict the query labels yi>m given the query
inputs xi>m and the context pairs, assuming conditional
independence among the queries given the context:

L(θ) = E

[
N∑

i=m+1

log p(yi | xi, x1:m, y1:m)

]
, (3)

where the expectation is with respect to task C, data points
{(xi, yi)}Ni=1, and the number of context points m. TNPs
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(a) Decision boundaries before SFT on linear data of Llama3-
8b across 4 tasks.
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(b) Decision boundaries after SFT on linear data of Llama3-
8b across 4 unseen tasks.

Figure 9. Generalization ability of Llama-3-8B after supervised
fine-tuning on a single binary linear classification task. The first
two columns show the model’s performance on non-linear clas-
sification tasks before and after fine-tuning, while the last two
columns demonstrate its ability to generalize to 3-class and 4-class
classification tasks.

employ a specialized mask to ensure the conditional in-
dependence assumption. We showed in Appendix D that
transformers trained from sctrach can learn to in-context
learn smooth decision boundary. Details are in Appendix D.

How to Use Uncertainty-aware Active Learning to Learn
Decision Boundaries We investigate whether the decision
boundary can be smoothed by providing the LLM with la-
bels of the most uncertain points on the grid as additional
in-context examples. Uncertainty is measured as the entropy
of the probability distribution of the two classes after soft-
max normalization of the logits. Our study focuses on an
active learning scheme where new in-context examples are
incrementally added based on the LLM’s current uncertainty.
Initially, we obtain the decision boundary conditioned on
the existing in-context examples. To refine this boundary,
we query the LLM over a grid and select the top-k most
uncertain points, ensuring they are spatially distant from
each other using a greedy sampling approach. For labeling
these uncertain points, we use a logistic regression model
well-trained on a larger dataset with perfect accuracy as the
ground truth decision boundary. As shown in Figure 10,
this uncertainty-aware active sampling method results in
a smoother decision boundary over iterations compared to
random sampling. The iterative refinement enhances the
model’s generalization capabilities, leading to higher test set
accuracies and greater sample efficiency, requiring fewer ad-
ditional in-context examples to achieve performance gains.
These findings indicate that leveraging the LLM’s uncer-
tainty measurements is valuable for selecting new in-context
examples in resource-constrained settings where labeled
data is scarce. We show more examples in Appendix E.

5. Related Works
Understanding in-context learning in transformers and
LLMs is an active area of research, with existing works
approaching this problem from both theoretical and practi-
cal perspectives.

Theoretical understanding of in-context learning Recent
works aim to establish a theoretical connection between in-
context learning and gradient descent (GD). The pioneering
work by Von Oswald et al. (2023) proves the equivalence
between linear self-attention and GD on linear regression
by construction. Similarly, Dai et al. (2023) shows that
attention in transformers has a dual form of GD and views
transformers as meta-optimizers. Subsequent works extend
these ideas to characterize the global optimum of single-
layer linear transformers. Ahn et al. (2024) observe that
with the optimal parameters, the transformer implements a
single step of preconditioned gradient descent, while Zhang
et al. (2023) shows that at the global optimum, the trans-
former achieves competitive prediction error with the best
linear predictor on a new prediction task. In addition to the-
oretical connections to GD, a complementary direction aims
to establish statistical complexity and generalization bounds
of in-context learning in transformers (Bai et al., 2024; Li
et al., 2023b; Wies et al., 2024; Wu et al., 2023). The com-
mon limitation of these existing theoretical frameworks is
the reliance on strong assumptions about the transformer
architecture or the functional form of the in-context learning
tasks which may not reflect real-world practices.

Practical understanding of in-context learning More
relevant to our paper is a line of works focusing on un-
derstanding the practical aspects of in-context learning in
LLMs. Many existing works investigate the roles of in-
context examples and prompts. Min et al. (2022b) show a
surprising result that ground-truth demonstrations are not
required for in-context learning, while other factors such as
the label space, input text distribution, and overall sequence
format play an important role. Shi et al. (2023) investigate
the distractibility of LLMs and shows that their performance
dramatically drops when irrelevant context is included. Sub-
sequently, Wei et al. (2023) characterize these behaviors of
LLMs with respect to model size, and show that larger lan-
guage models perform in-context learning differently in the
presence of flipped or semantically unrelated labels. Web-
son and Pavlick (2022) argue against the current practice of
prompt engineering, showing that intentionally irrelevant
or even pathologically misleading prompts achieve simi-
lar downstream performance to instructively good prompts.
Orthogonally, Lampinen et al. (2022) find that including
explanations in the in-context examples significantly im-
proves the few-shot performance of LLMs. Finally, given
the expanded context windows of modern LLMs, recent
works have explored in-context learning in the many-shot
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(a) Decision boundaries with different numbers of context examples when using active sampling.
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(b) Decision boundaries with different numbers of context examples when using random sampling.

Figure 10. Comparison of active and random sampling methods. We plot the decision boundaries and uncertainty plot across different
number of in-context examples from 32 to 256, where the in-context examples are gradually added to the prompt using active or random
methods. Active sampling gives smoother decision boundary and the uncertain points lie on it. The test set accuracies is plotted in the
titles.

setting with hundreds or thousands of examples (Agarwal
et al., 2024; Li et al., 2023a; Bertsch et al., 2024).

Learning to learn in-context In contrast to the emergent
in-context capabilities of LLMs, existing works have also
studied methods that learn to perform in-context learning ex-
plicitly. Min et al. (2022a) propose MetaICL, a meta-training
framework for finetuning pretrained LLMs to perform in-
context learning on a large and diverse collection of tasks.
MetaICL outperforms several baselines including emergent
in-context learning and multi-task learning followed by zero-
shot transfer. Going beyond the text domain, TNP (Nguyen
and Grover, 2022) and PFNs (Müller et al., 2021) are two
concurrent works that propose to train transformer models
to perform in-context prediction for a family of functions,
which allows in-context generalization to unseen functions
after training. Similarly, (Garg et al., 2022) show that au-
toregressive transformers can be trained from scratch to
learn function classes such as linear functions and 2-layer

ReLU networks. These works present an interesting set of
baselines for our work to examine the in-context learning
ability of LLMs.

6. Conclusion
We propose a novel approach to understanding in-context
learning in LLMs by probing their decision boundaries
in in-context learning in binary classification tasks. De-
spite achieving high test accuracy, we observe that the deci-
sion boundaries of LLMs are often irregularly non-smooth.
Through extensive experiments, we identify factors that af-
fect this decision boundary. We also explore fine-tuning
and adaptive sampling methods, finding them effective in
improving boundary smoothness. Our findings provide new
insights into the mechanics of in-context learning and sug-
gest pathways for further research and optimization.
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A. Pretrained LLMs decision boundary on linear and non-linear classification tasks
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Figure 11. Visualizations of decision boundaries for various LLMs, ranging in size from 1.3B to 13B, on three classification tasks. The
tasks are, from top to bottom, circle, linear, and moon classifications. Note that the circle and moon tasks are not linearly separable. The
in-context data points are shown as scatter points and the colors indicate the label determined by each model. These decision boundaries
are obtained using 128 in-context examples. The visualization highlights that the decision boundaries of these language models are not
smooth.

B. SFT LLMs for in-context classification
We used LoRA (Hu et al., 2021) to supervise fine-tune the Llama series models on both non-linear and linear classification
tasks, including circle, linear, and moon datasets. The models fine-tuned are Sheared-Llama-1.3B, Llama2-7B, Llama2-13B,
and Llama3-8B. Visualization in Figure 13 demonstrates that these language models produce smoother decision boundaries
after training on the classification datasets using SFT.
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Figure 12. Decision boundary of in-context learning on 128 examples across Llama series models after supervised finetuning with LoRA.
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C. Finetune on in-context examples only
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Figure 13. Two examples of Llama2-7B finetuned on the in-context examples points, which are scattered points in the plot.

D. Training Transformers from Scratch: TNP models decision boundaries
We trained TNP models of four different sizes as shown in the Table 1 below. We plot how does the TNP models decision
boudnary changes as more in-context examples are added in Figure 14. TNP models learn smooth deicision boundary for
this moon-shaped non-linear task. And we did not observe a scaling law of transformer sizes versus the decision boundary
smoothness. In contrast the smaller model generalize better than the larger model.

Table 1. TNP transformers model sizes and architectures.
Model Parameters (M) Input embed dim feedforward dim num heads num layers
Small 0.1 64 64 2 3
Medium 0.6 128 128 4 6
Large 1.6 128 256 8 12
Larger 9.7 256 512 16 18
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Figure 14. Decision boundary of TNP models of different model sizes.
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E. Uncertainty Aware Active Sampling For Smoother Decision Boundary and Better Test set
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Figure 15. (a) Active sampling
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Figure 15. (b) Random sampling

Figure 15. Comparison of decision boundaries of uncertainty-based actively sampling and randomly sampling in-context examples.
Example 1.
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Figure 16. (a) Active sampling
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Figure 16. (b) Random sampling

Figure 16. Comparison of decision boundaries of uncertainty-based actively sampling and randomly sampling in-context examples.
Example 2.

F. Prompt Format for binary classification
The prompt format we used in our experiments to query the classification result is shown in Figure 17.

G. Traditional Classifiers Model Details
In our experiments, we used several classical machine learning models with the following hyperparameters:

• Decision Tree Classifier: We set the maximum depth of the tree to 3.

• Multi-Layer Perceptron: The neural network consists of two hidden layers, each with 256 neurons, and the maximum
number of iterations is set to 1000.

• K-Nearest Neighbors: The number of neighbors is set to 5.

• Support Vector Machine (SVM): We used a radial basis function (RBF) kernel with a gamma value of 0.2.
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Given pairs of numbers and their labels, predict the label for a new input
pair of numbers based on the provided data.
Answer with only one of the labels ‘Foo’ and ‘Bar’:

Input: 64 24
Label: Bar
Input: 34 41
Label: Bar
Input: 71 66
Label: Bar
...
Input: 96 49
Label: Foo
Input: 21 56
Label: Foo

What is the label for this input?
Input: 2 3
Label:

Figure 17. Few-shot in-context prompt with n context questions.

H. Classification Datasets Creation Details
We use three types of classification tasks from scikit-learn (Pedregosa et al., 2011) to probe the decision boundary
of LLMs and transformers: linear, circle, and moon classification problems. For linear classification tasks, we utilize
the make classification function, which generates random classification problems by creating clusters of points
normally distributed around the vertices of a hypercube with sides of length 2× class sep. Circle classification tasks are
generated using the make circles function, creating a binary classification problem with a large circle containing a
smaller circle. The factor parameter controls the scale of the inner circle relative to the outer circle. Moon classification
tasks are generated using the make moons function, creating a binary classification problem with two interleaving half
circles. The noise parameter controls the standard deviation of Gaussian noise added to the data points.

For training tasks, the class sep parameter is randomly sampled from the range [1.5, 2], and the factor parameter
for circular tasks is sampled from [0.1, 0.4]. For testing tasks, the class sep parameter is sampled from [1, 1.4], and
the factor parameter from [0.5, 0.9], ensuring that testing tasks differ from training tasks. The noise parameter for
moon-shaped tasks is sampled from [0.05, 0.1] for training and [0.1, 0.2] for testing, introducing varying levels of complexity
in the classification problems.

I. Limitation
One limitation of our study is the focus on demonstrating mainly binary classification tasks. Limited by the available
compute, we chose binary tasks and also for better qualitative reasoning. However, we also extended our experiments to
tasks with four classes and found that our methods generalize to multi-class classification and other more complex tasks.
Additionally, the exploration of fine-tuning and adaptive sampling methods, although effective in our experiments, may
not be universally applicable across closed-source LLMs that do not allow access to logits. Future work should consider a
broader range of tasks and datasets, as well as a more diverse set of LLM models, to validate and extend our findings.
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I.1. CustomLLM finetuning ablations
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Figure 18. CustomLLM finetuning ablations. Decision boundary after finetuning the prediction head, input embedding layer, and both
layers for the CustomLLM.
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