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Abstract

Unstructured pruning is a popular compression method for efficiently reducing model pa-
rameters. However, while it effectively decreases the number of parameters, it is commonly
believed that unstructured pruning cannot shorten the computational critical path, i.e., the
maximum number of layers traversed during forward propagation.
In this paper, we study when and how unstructured pruning can yield structural ef-
fects. For rectifier-activated networks, we introduce the notion of neuron entropy, which
quantifies the degree of nonlinearity utilization. We show that magnitude-based prun-
ing naturally lowers this entropy, sometimes down to zero-entropy layers that become
linearizable and can thus be removed. Building on this insight, we propose a method
that leverages "unstructured" pruning to favor sparsity in low-entropy layers, enabling
their complete removal. We validate the phenomenon across CNNs, Vision Transform-
ers, and NLP models: unstructured pruning can induce effective layer removal with little
or no performance degradation in over-parameterized networks. Our code is available at
https://github.com/ZhuLIAO001/NEPENTHE.git.

1 Introduction

Artificial Intelligence has undergone a transformative evolution propelled by the advent of Deep Neural
Networks (DNNs), which have emerged as instrumental in achieving state-of-the-art outcomes across pivotal
computer vision domains, including semantic segmentation (Lu et al., 2022) and classification (Zhang et al.,
2023; Arslan et al., 2022). Notably, the pervasive impact of DNNs extends beyond conventional computer
vision tasks, showcasing absolute potential in realms such as natural language processing (Touvron et al.,
2023), and multi-modal tasks (Sun et al., 2018).

While DNNs’ performance has exhibited scalability concerning model and dataset size (Hestness et al., 2017),
the inherent computational burden is one major downside. Notably, contemporary state-of-the-art models
are characterized by millions (or even billions) of parameters, demanding billions (or trillions) of floating-
point operations (FLOPs) for a single input prediction (Guo et al., 2022). The heavy hardware and energy
demands of large networks hinder real-time and edge applications.

Over the past decade, the research landscape has witnessed the emergence of compression techniques as a
crucial avenue to address the resource-intensive nature of DNNs. Intrinsically, there exists a link between
the generalization capability of DNNs and the model’s complexity: off-the-shelf architectures employed in
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Figure 1: In this work, we show that the average neuron’s entropy calculated at the layer scale reduces as
we induce some sparsity in the model, and once it reaches zero, the layer becomes linearizable and thus can
be removed.

downstream tasks are, in many cases, over-parametrized, representing a threat for generalization (Hestness
et al., 2017). Removing redundant parameters improves both computation and generalization (Tartaglione
et al., 2021; 2022). Recently, the most widely used compression technique that removes the greatest number
of parameters is unstructured pruning (Han et al., 2015), which eliminates individual weights based on their
magnitude without considering the network’s structure.

Nevertheless, the impact of removing individual parameters or whole filters on recent computing resources,
such as GPUs, is relatively marginal. Due to the parallelization of computations, the size of layers, whether
larger or smaller, is primarily constrained by memory caching and core availability. The bottleneck in
computation lies in the critical path that forward-propagation must traverse (Ali Mehmeti-Göpel & Disselhoff,
2023), a challenge that can be addressed by strategically removing layers.

It is commonly believed that unstructured pruning can only remove parameters but not shorten network
depth. However, our theoretical and experimental evidence demonstrates that this perception is incomplete:
unstructured pruning can induce layer collapse. In rectifier-activated networks, unstructured pruning reduces
the neuron entropy and when a layer’s average entropy drops to zero, the layer becomes linearizable and
can be removed. Therefore, we design an unstructured entropy-weighted allocation pruning scheme aimed
at driving the entropy value of the low-entropy layer to zero with minimal performance loss. We summarize,
here below, our key messages and contributions.

• We propose an entropy measure at the single-neuron level, indicating how much a neuron relies
on its linear component. By minimizing this entropy, the neuron can be effectively linearized, and
when the average entropy across neurons approaches zero, the layer itself becomes entirely linear
(Sec. 3.1).

• We theoretically show that “unstructured” pruning, in rectifier-activated layers, naturally reduces
the layer’s entropy (Sec. 3.2), and further demonstrate it empirically (Sec. 4.2).

• We propose NEPENTHE, a novel method that reduces a neural network’s effective depth (Sec. 3.3)
by performing an entropy-guided reallocation of the unstructured pruning budget across layers
(Sec. 3.3), and validate its effectiveness across a variety of setups and popular architectures (Sec. 4.3).

2 Related Works

Neural Network Pruning. Neural network pruning attracts attention for improving efficiency and re-
ducing overfitting. Its goal is to reduce a cumbersome network to a smaller one while maintaining accuracy
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by removing irrelevant weights, filters, or other structures from neural networks. While structured pruning
removes entire neurons, filters, or channels (Tartaglione et al., 2021; He & Xiao, 2023; Lin et al., 2020),
unstructured pruning algorithms remove weights without explicitly considering the neural network’s struc-
ture (Han et al., 2015). Magnitude-based pruning, where the importance score to prune parameters is based
on their magnitude (Han et al., 2015; Louizos et al., 2018; Zhu & Gupta, 2017), and gradient-based pruning,
where the ranking or the penalty term is a function of the gradient magnitude (or to higher order deriva-
tives) (Lee et al., 2019; Tartaglione et al., 2022), are the main types of unstructured pruning approaches.
Blalock et al. (2020) compared the effectiveness of these approaches and concluded that, in general, gradient-
based methods are less accurate than magnitude-based methods. Moreover, Gale et al. (2019) showed that
simple magnitude pruning approaches achieve comparable or better results than complex methods, making
them a good trade-off between complexity and competitiveness. In addition to magnitude-based pruning, a
recent method called Wanda (Sun et al., 2024) ranks each weight by the absolute product of its magnitude
and its input feature, pruning those with the lowest scores. We verify that the phenomenon discussed in this
paper also holds for Wanda, showing its generality across different pruning criteria. From a computational
perspective, it is widely recognized that structured pruning offers greater advantages over unstructured
methods in general-purpose hardware environments, both in terms of memory and computation, despite
achieving significantly lower sparsity levels (Bragagnolo et al., 2021). In this work, we focus on bridging this
gap: investigating when and how unstructured pruning can induce structural effects.

Entropy-Guided Pruning. Some works have already tried to propose entropy-based approaches to guide
pruning. For convolutional neural networks, Luo & Wu (2017) put forward an iterative filter pruning
strategy in which the importance of each filter is calculated by its entropy-based channel selection metric.
To recover performance, the pruned model is then fine-tuned. Also for CNNs, Hur & Kang (2019) suggested
an entropy-based method that determines dynamically during training the threshold by considering the
average amount of information from the weights to the output. Moreover, Min et al. (2018) proposed a two-
stage filter pruning framework, first intra-layer and then extra-layer. Given that the entropy is a measure of
disorder, evidently, it identifies filters that mutually have low entropy: these can be considered redundant
and can be removed from the model. These methods reduce width, not depth. EASIER (Quétu et al.,
2024) proposed an entropy-based importance metric to collapse low-information layers and reduce network
depth. By measuring per-layer neuron entropy, they identify layers whose activations lie almost entirely in
a linear or inactive regime and remove them wholesale. Although this approach relies on an entropy-based
metric, it performs structured layer removal rather than applying unstructured weight pruning to directly
lower entropy values. Similarly, recent work (Lin et al., 2024) shows that certain self-attention blocks in
Vision Transformers exhibit low feature entropy and can be merged into their subsequent MLPs without
harming accuracy. In their approach, entropy is used as a post-hoc scoring metric: layers with lower entropy
are identified as redundant and directly removed, but the method itself does not attempt to reduce entropy
during training. By contrast, in our framework, unstructured pruning actively drives the entropy of neurons
and layers downward, allowing them to naturally reach a linearizable state in which they can be safely
removed. By prioritizing pruning connections in low-entropy layers, EGP (Liao et al., 2023) is also an
unstructured entropy-guided pruning method that reduces DNN depth. Nevertheless, when EGP performs
unstructured pruning, it classifies rectifier states into fewer categories than ours and does not account for
the entropy of individual neurons.

Neural Network Depth Reduction. Towards neural network depth reduction, Structured Sparsity
Learning (SSL) (Wen et al., 2016) uses group lasso regularization on the weights of each layer to determine
which layers are less critical. This approach aims to reduce redundant layers with minor performance
loss. However, SSL does not guarantee entire layer removal while maintaining model performance, as depth
reduction is often achieved at the cost of accuracy degradation. Then, Chen & Zhao (2019) inspects the
possibility of having a layer-wise pruning method based on feature representation, a-posteriori employing a
retraining strategy that utilizes knowledge distillation. However, its effectiveness strongly depends on the
retraining stage, and the additional knowledge distillation step increases training cost and limits scalability
to larger models. Endorsing this, Dror et al. (2022) proposed a method that learns whether non-linear
activations can be removed, allowing the folding of consecutive linear layers into one. More specifically, ReLU-
activated layers are replaced with PReLU activations, showcasing a regularized slope. During post-training,
the PReLUs almost linear are removed, and the layer can be folded with its subsequent one. Ali Mehmeti-
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Göpel & Disselhoff (2023) proposes a similar channel-wise approach that enables reducing more non-linear
units in the network while maintaining similar performance. While previous methods attempted to reduce
network depth by constraining activations to remain either linear or non-linear, our approach reveals that
unstructured pruning naturally leads the model to achieve this behavior without explicit enforcement. We
demonstrate, both theoretically and empirically, that there exists the possibility of network layers "collapsing
on their own" to reduce their depth, even with the classical unstructured pruning strategy. This finding
provides a new perspective on network depth reduction.

3 Unstructured Pruning Induces Layer Collapse

In this section, we first introduce the notion of neuron entropy, which quantifies the degree of nonlinearity
utilization (Sec. 3.1). Then, we show that unstructured pruning naturally minimizes the neuron’s entropy
(in rectifier-activated layers) (Sec. 3.2). This motivates our entropy-guided pruning approach, which allows a
gradual layer removal. Finally, we propose our method NEPENTHE, which focuses on pruning connections
in layers with low entropy to remove them entirely (Sec. 3.3).

3.1 Entropy for Rectifier Activations

Let us assume ψ is the rectifier of the l-th layer, populated by Nl neurons. We can monitor the output yx
l,i

of the i-th neuron from a given input x of the dataset D and write it as:

yx
l,i = ψ(zx

l,i), (1)

where zx
l,i is the output of the i-th neuron inside the l-th layer. From equation 1, we can define three possible

“states” for the neuron:

sx
l,i =


+1 if zx

l,i > 0
−1 if zx

l,i < 0
0 if zx

l,i = 0.
(2)

More synthetically, for the output of the i-th neuron, we can easily identify in which of these states we are by
simply applying the sign function to zx

l,i, obtaining sx
l,i = sign(zx

l,i). Informally, we can say that the neuron
is in the ON State when sx

l,i = +1 (as it is typically the linear region) while it is in the OFF State when
sx

l,i = −1 (given that limx→−∞ ψ(x) = 0).1 The third State sx
l,i = 0 is a special case, as it can be either

mapped as an ON or OFF State. From the average over a batch of outputs for the neuron, we can obtain
the probability (in the frequentist sense) of the i-th neuron of being in either the ON or the OFF States.
For instance, we can obtain the probability of the ON State as:

p(sl,i =+1) =
{

1
Sl,i

∑∥D∥0
j=1 s

xj

l,i Θ(sxj

l,i ) if Sl,i ̸= 0
0 otherwise,

(3)

where

Sl,i =
∥D∥0∑
j=1

∣∣∣sxj

l,i

∣∣∣ (4)

counts how many times the ON and the OFF states are encountered, ∥D∥0 is the number of the input
samples, and Θ is the Heaviside function.2 Evidently, we exclude the third state from this count as it can be
associated with being either within ON or OFF. Given that we are either interested in the ON or the OFF
States, we can then deduce that, when Sl,i ̸= 0, p(sl,i =−1) = 1− p(sl,i =+1). Given this, we can calculate
the entropy of the i-th neuron in the l-th layer as follows:

Hl,i = −
∑

sl,i=±1
p(sl,i) log2 [p(sl,i)] . (5)

1There are few exceptions, such as LeakyReLU. In these cases, although the activation doesn’t converge to zero, we still call
it the OFF state since the output’s magnitude is lower for the same input magnitude.

2For convolutional layers, it is necessary to sum and average over the entire feature map generated per input.
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Figure 2: (a) Distribution of a layer’s parameters with magnitude pruning at threshold t; (b) pre-activation
distribution at varying t under the assumption of independence and centering of the Gaussian distributed
input and layer’s parameters; (c) entropy of the rectifier-activated neuron’s output as a function of t , all in
the large N limit.

With the definition in equation 5, Hl,i can be zero in two possible cases:

• sl,i =−1 ∀j. In this case, zl,i ≤ 0 ∀j. When employing a ReLU, the output of the i-th neuron is
always 0, and in this specific case, the neuron can be simply pruned.

• sl,i = +1 ∀j. In this case, zl,i ≥ 0 ∀j. When employing a ReLU, the output of the i-th neuron is
always the same as its input, and the neuron can be absorbed by the following layer as there is no
non-linearity between them anymore. For smooth rectifier variants such as GELU/SiLU, this process
is an approximation where the error can be negligible. We formalize and bound this approximation
error in Appendix A.

By averaging the entropy values for the total number of neurons Nl inside the l-th layer, we can define the
average layer entropy of the l-th layer as:

Ĥl = 1
Nl

∑
i

Hl,i. (6)

We refer to Ĥl as the average first-order layer entropy of layer l, i.e., the mean neural entropy across its
neurons. This quantity is a scalable proxy for layer linearizability and is not intended to estimate the joint
entropy of the layer’s activation-state vector.

Since we aim to minimize the depth of deep neural networks by eliminating zero-entropy layers, we would
like to have Ĥl = 0.

3.2 Unstructured Pruning Naturally Reduces the Entropy

Let us assume the input x for a given neuron is a sequence of random variables X ∼ N (µX , σ
2
X). Similarly,

we can assume the N parameters populating such neuron, for a large N limit, follow as well a Gaussian
distribution, and we model it as W ∼ N (µW , σ2

W ). These assumptions are empirically validated in Ap-
pendix D.5. Let us assume we apply a magnitude-based pruning mask to the neuron’s parameters, where
we apply some threshold t. As such, we obtain a modified distribution for the layer’s parameters:

f
Ŵ

(w, t)=


1

σW

√
2π

exp
[
−1

2

(
w − µW

σW

)2
]
|w| > t

ζ(t)δ(w) |w| ≤ t,

(7)
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Algorithm 1 Our proposed method NEPENTHE.
1: function NEPENTHE(winit, L, D, ζ, θ)
2: w ← Train(winit, Dtrain)
3: dense_acc ←Evaluate(w, Dval)
4: current_acc ← dense_acc
5: while current_acc > θ· dense_acc do
6: Ĥ ← Entropy(w, L, Dtrain)
7: ∥w∥pruned

0 ← ζ · ∥w∥0
8: ∥wL∥pruned

0 ← Weights_to_prune(L, Ĥ, ∥w∥pruned
0 , Dtrain)

9: w ← Prune(∥wL∥pruned
0 )

10: w ← Train(w, Dtrain)
11: current_acc ← Evaluate(w, Dval)
12: end while
13: return w
14: end function

where
ζ(t) = 1

2

[
erf

(
t− µW

σW

√
2

)
− erf

(
−t− µW

σW

√
2

)]
(8)

is the fraction of parameters pruned, or pruning rate, δ is the Dirac delta and erf is the error function.
Fig. 2a displays an example of distribution when applying magnitude pruning having threshold t against the
original distribution. Following Craig (1936), we work with the standardised variables

X̃ = X − µX

σX
, W̃ = W − µW

σW
,

so that X̃, W̃ ∼ N (0, 1), and with the normalised pre-activation

Z̃ = X̃W̃ = Z

σXσW
.

For notational simplicity, we denote Z̃ again by Z in what follows. Under the assumption of independent-
centered distributions having a unitary variance, we can obtain the distribution for the pre-activation z
(resulting from the product of the weights and the input, modeled through the random variable Z), according
to the result obtained by Craig (1936); Seijas-Macías & Oliveira (2012), follows

fZ(z, t) = 1
π
K0

(∣∣∣∣ 1
q(t) · z

∣∣∣∣) , (9)

where
q(t) = 1− erf

(
t√
2

)
(10)

and Kn is the n-th order modified Bessel function of the second kind. We can observe, from Fig. 2b, how fZ

is affected by increasing the thresholding t. Now, let us assume the activation function of such a neuron is
a rectifier function, and we are interested in observing what is the probability of the post-activation output
being in the linear region: we are interested in measuring

p[Z > ε] = 1
π

∫ +∞

ϵ

K0

(∣∣∣∣ 1
q(t) · z

∣∣∣∣) dz = 1
2

[
1− I

(
ϵ

q(t)

)]
, (11)

where
I(x) = x[L−1(x)K0(x) + L0(x)K1(x)], (12)

Ln is the n-th order modified Struve function, and ϵ is a positive small value. From this, we can easily obtain
the complementary probability p[Z ≤ ε] and for instance calculate the entropy between the two States.
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Algorithm 2 Function Weights_to_prune.

1: function Weights_to_prune(L, Ĥ, ∥w∥pruned
0 , D)

2: for l ∈ L do
3: Il ← ∥wl∥1

∥wl∥0
· Ĥl

4: Rl ←

{ ∑
j∈L

I|

Il
if Il ̸= 0

0 otherwise.
5: ∥wl∥pruned

0 ← ∥w∥pruned
0 · exp[Rl]∑

j
exp[R(j)]

6: end for
7: return ∥wL∥pruned

0
8: end function

Fig. 2c displays the entropy as a function of the thresholding parameter t: as we observe, the entropy
decreases given that the threshold increases: through unstructured pruning, the neuron’s output entropy is
naturally minimized when employing rectified activations, even in the oversimplified case here treated.

In the following, we will present how we are exploiting such a property of unstructured pruning towards
layer entropy minimization.

3.3 NEPENTHE

Driven by the promising theoretical results presented in Sec. 3.1 and Sec. 3.2, we design here NEPENTHE
(eNtropy-basEd Pruning as a nEural Network depTH’s rEducer) that guides the unstructured pruning to
lower the whole layer’s entropy Ĥl. Since we aim to increase the number of zero-entropy layers, intuitively
more pruning should be applied to layers with lower entropy, as they are the best candidates to be removed.
Concurrently, to minimize the impact on performance, only low-magnitude weights should be removed, as
they are typically those providing the lowest contribution to the neural network’s output (Han et al., 2015;
Tartaglione et al., 2021). To reach these two objectives, we first define an intra-layer’s pruning irrelevance
score

Il = ∥wl∥1

∥wl∥0
· Ĥl, (13)

where ∥wl∥0 is the current layer’s parameters cardinality (hence, not accounting for the already pruned
weights, if any) and ∥wl∥1 is the ℓ1 norm (sum of absolute values). This metric accounts for the average
parameter’s magnitude and the layer’s entropy at the same time: layers with few parameters but high
entropy are less prone to be removed than layers with more parameters but lower entropy (under the same
parameter’s norm constraint). Besides, the parameter’s magnitude of neurons with zero entropy is not
accounted for in the importance score calculation. Symmetrically, to remove parameters from layers having
lower pruning irrelevance, we define the inter-layer’s pruning relevance score Rl as:

Rl =
{ 1

Il

∑
j∈L Ij if Il ̸= 0
0 otherwise. (14)

This measure is as large as the l-th layer’s pruning irrelevance score is smaller compared to the other layer’s.
Noticeably, Rl ∈ [1; +∞): to exactly establish how many parameters ∥wl∥pruned

0 should be removed inside
each layer l at a given pruning iteration, we have the entropy-weighted pruned parameter budget

∥wl∥pruned
0 = ∥w∥pruned

0 · exp[Rl]∑
j exp[R(j)] . (15)

In Alg. 1, we present a summary of NEPENTHE. Indeed, if a layer has an entropy equal to zero, then all of
its neurons have an entropy equal to zero: Ĥl = 0⇔ Hl,i = 0 , ∀i. Hence, this layer doesn’t necessarily need
to have a rectifier: this layer can be removed entirely without the need for future pruning. Towards this
end, we first train the neural network, represented by its weights at initialization winit, on the training set

7



Published in Transactions on Machine Learning Research (02/2026)

Dtrain (line 2) and evaluate it on the validation set Dval (line 3). As defined in equation 6, we then calculate
the entropy Ĥ on the training set Dtrain for each layer l of the considered list of layers L (line 6). This list
is initialized to all the layers of the neural network having a rectifier activation (hence, the output layer is
excluded).
Considering that ζ represents the percentage of parameters to remove at each pruning iteration and ∥w∥0
the total weight parameters of the considered L layers in the model, we can define the number of weight
parameters to be pruned at each iteration ∥w∥pruned

0 (line 7) as:

∥w∥pruned
0 = ζ · ∥w∥0. (16)

To determine the parameters to prune in each layer, we define a function Weights_to_prune, as presented
in Alg. 2. This function calculates the weights to remove for each layer and returns a list indicating the
number of neurons that need to be removed from each layer, as discussed in Sec. 3.3. At this point, for each
layer l, the neurons having non-zero entropy are first selected and then ∥wl∥pruned

0 non-zero weights having
the lowest absolute magnitude are removed (line 9). The model is then retrained (line 10) and re-evaluated
on the validation set Dval (line 11). The final model is obtained once the performance on the validation set
drops below some relative threshold θ.

4 Experiments

In this section, we empirically apply unstructured magnitude pruning across multiple architectures and
datasets for traditional image classification and natural language processing setups to validate the mechanism:
whether unstructured pruning can lower layer entropy and yield zero-entropy, linearizable layers with no
performance degradation. We further analyze how pruning affects each layer’s entropy and the model’s loss
landscape sharpness.

Then, we compare NEPENTHE with the iterative magnitude pruning (IMP) baseline from Han et al. (2015).
Additionally, in image classification tasks, we compare our results with two other approaches: removing the
layers having the lowest sum of weights/gradients. These baselines serve as naive structural criteria that
directly measure layer importance without considering activation behavior, allowing us to isolate the specific
contribution of entropy-based guidance. We further induce intra-layer sparsity using HRank (Lin et al., 2020),
a filter pruning method that removes filters with low-rank feature maps. This comparison highlights the
distinction between width-oriented compression and our depth-reduction strategy. In addition, we minimize
the group lasso penalty for each layer following the approach of Ochiai et al. (2017). We also compare our
method with EGP (Liao et al., 2023), which removes layers through an unstructured pruning process and
represents the work most closely related to ours. Furthermore, we demonstrate that our approach can be
combined with structured pruning, suggesting promising directions for future pruning method development.

4.1 Experimental setup

Table 1: Trend in the bottom six layers’ entropies for ResNet-18
trained on CIFAR-10.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1
Dense 0.647 0.680 0.728 0.785 0.791 0.797 91.66

IMP (iter #1) 0.585 0.650 0.699 0.725 0.767 0.778 92.29
IMP (iter #2) 0.506 0.580 0.647 0.654 0.700 0.722 92.25
IMP (iter #3) 0.256 0.623 0.658 0.672 0.682 0.737 92.46
IMP (iter #4) 0.192 0.660 0.667 0.676 0.698 0.763 92.27
IMP (iter #5) 0.136 0.589 0.648 0.727 0.728 0.791 92.44
IMP (iter #6) 0.093 0.447 0.640 0.650 0.764 0.765 91.89
IMP (iter #7) 0.055 0.335 0.487 0.592 0.640 0.775 91.66
NEPENTHE 0 0 0 0.014 0.121 0.942 92.55

A variety of setups is covered by evalu-
ating our method on three popular im-
age classification models: ResNet-18 (He
et al., 2016), MobileNet-V2 (Howard
et al., 2017), and Swin-T (Liu et al.,
2021), trained on five datasets: CIFAR-
10 (Krizhevsky et al., 2009), Tiny-
ImageNet (Le & Yang, 2015), and
PACS, VLCS, and SVIRO from Do-
mainBed (Gulrajani & Lopez-Paz, 2021),
following the same training policies
as Quétu & Tartaglione (2024) and Xu
et al. (2021). Moreover, two natural lan-
guage processing models: BERT (Kenton
& Toutanova, 2019) and RoBERTa (Liu
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Table 2: Test performance (top-1) and the number of removed layers (Rem.) for all the considered image
classification setups. The results achieved by our method are in italics.

Model Approach CIFAR-10 Tiny-ImageNet PACS VLCS SVIRO
top-1 Rem. top-1 Rem. top-1 Rem. top-1 Rem. top-1 Rem.

ResNet-18

Dense 91.66 0/17 41.44 0/17 94.70 0/17 80.89 0/17 99.93 0/17
Smallest weights 10.00 1/17 0.5 1/17 16.20 1/17 46.13 1/17 35.55 1/17

Smallest gradients 9.29 1/17 0.5 1/17 16.20 1/17 46.13 1/17 35.55 1/17
Hrank 91.70 0/17 – – – –

Group lasso 92.11 1/17 38.92 0/17 81.20 0/17 67.85 0/17 99.57 0/17
IMP 91.66 0/17 39.14 0/17 89.80 0/17 74.09 0/17 99.45 0/17
EGP 92.18 3/17 39.50 4/17 84.30 2/17 74.28 2/17 98.66 5/17

NEPENTHE 92.55 3/17 39.56 5/17 90.10 3/17 78.38 2/17 99.61 8/17

MobileNet-V2

Dense 93.68 0/35 45.86 0/35 93.20 0/35 81.83 0/35 99.95 0/35
Smallest weights 10.00 1/35 0.50 1/35 18.50 1/35 6.43 1/35 35.55 1/35

Smallest gradients 10.00 1/35 46.62 1/35 16.20 1/35 46.13 1/35 35.55 1/35
Hrank 91.73 0/35 – – – –

Group lasso 83.00 4/35 47.1 0/35 92.10 0/35 78.84 0/35 99.93 0/35
IMP 92.50 0/35 45.24 0/35 91.40 0/35 79.43 0/35 99.95 0/35
EGP 92.22 6/35 47.52 6/35 17.70 3/35 45.85 2/35 35.05 2/35

NEPENTHE 93.26 7/35 47.92 12/35 92.20 1/35 80.06 2/35 99.98 2/35

Swin-T

Dense 91.54 0/12 75.60 0/12 97.10 0/12 86.58 0/12 99.95 0/12
Smallest weights 89.22 2/12 75.12 1/12 96.10 2/12 84.62 1/12 99.70 4/12

Smallest gradients 89.21 2/12 74.54 1/12 95.70 2/12 84.15 1/12 99.55 4/12
Hrank 91.87 0/12 – – – –

Group lasso 91.68 0/12 71.30 0/12 94.30 0/12 84.81 0/12 99.69 0/12
IMP 90.53 0/12 67.56 0/12 93.90 0/12 80.06 0/12 99.75 0/12
EGP 92.01 1/12 71.48 1/12 93.50 1/12 82.95 1/12 99.64 5/12

NEPENTHE 92.29 2/12 72.58 1/12 95.10 2/12 85.27 1/12 99.75 5/12

et al., 2019) are trained on three datasets: SST-2 (Socher et al., 2013), QNLI (Williams et al., 2018), and
RTE (Bentivogli et al., 2009), following the training strategies of Peer et al. (2022). To verify the generality
of the layer collapse phenomenon induced by unstructured pruning across models with different depths and
widths, as well as on datasets of higher complexity, NEPENTHE has also been implemented for ResNet-50,
ResNet-152, and MobileNetV2-0.75 models trained on CIFAR-10, as well as ResNet-18 trained on Ima-
geNet (Deng et al., 2009). Results appear in Appendix D.2. In all the setups, we set ζ = 0.5 for ResNet-18,
ζ = 0.25 for Swin-T, and ζ = 0.1 for MobileNet-V2. Moreover, we set ζ = 0.25 (respectively ζ = 0.15) for the
models trained on QNLI and RTE (respectively SST-2). All the hyperparameters, augmentation strategies,
learning policies, and a study to choose ζ are provided in Appendix C.

4.2 Trend of Layer’s Entropy and Model’s Sharpness
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Figure 3: Filter states per layer for ResNet-18 trained
on CIFAR-10 pruned by NEPENTHE.

First, we study the effect of pruning on the layer’s
entropy. Table 1 reports the entropy trend of the
six layers having the lowest entropy for ResNet-18
trained on CIFAR-10. As expected from the deriva-
tion in Sec. 3.1, as the pruning progresses (and im-
plicitly as t grows), the entropy is naturally de-
creased, showcasing very small values after some
pruning iterations. However, we also observe that as
the entropy Ĥ1 decreases, the top-1 accuracy begins
to deteriorate. This occurs without proper prun-
ing reallocation, unlike in NEPENTHE with equa-
tion 14. Indeed, in this case, our method not only
preserves the model performance (even improves it),
but we can also successfully remove three layers from
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Table 3: Trend for the model’s Sharpness for
Swin-T trained on CIFAR-10.

Approach Sharpness top-1 Rem.
Dense 20.62 91.54 0/12

IMP (iter #1) 6.78 91.73 0/12
IMP (iter #2) 3.70 91.80 0/12
IMP (iter #3) 3.18 91.43 0/12
IMP (iter #4) 4.78 91.46 0/12
IMP (iter #5) 5.39 91.27 0/12
IMP (iter #6) 6.81 91.05 0/12
IMP (iter #7) 7.66 90.53 0/12

NEPENTHE (iter #1) 7.71 91.77 0/12
NEPENTHE (iter #2) 2.82 92.06 0/12
NEPENTHE (iter #3) 1.58 92.08 0/12
NEPENTHE (iter #4) 1.17 92.31 0/12
NEPENTHE (iter #5) 1.85 92.29 2/12
NEPENTHE (iter #6) 1.62 92.21 2/12
NEPENTHE (iter #7) 1.72 92.11 2/12

Table 4: Test performance (top-1) and the number of
removed layers (Rem.) for all the considered NLP setups.
The results achieved by our method are in italics.

Dataset Approach BERT RoBERTa
top-1 Rem. top-1 Rem.

QNLI

Dense 90.48 0/12 92.18 0/12
Smallest weights 88.15 3/12 85.93 2/12

Smallest gradients 88.44 3/12 86.84 2/12
IMP 85.87 0/12 88.10 0/12
EGP 87.90 4/12 84.66 2/12

NEPENTHE 88.69 4/12 87.41 2/12

RTE

Dense 61.01 0/12 66.79 0/12
Smallest weights 46.93 1/12 65.81 1/12

Smallest gradients 55.23 1/12 62.20 1/12
IMP 57.76 0/12 62.82 0/12
EGP 57.73 1/12 52.71 1/12

NEPENTHE 58.12 4/12 66.06 1/12

SST-2

Dense 92.20 0/12 92.66 0/12
Smallest weights 88.14 3/12 89.43 4/12

Smallest gradients 87.25 3/12 89.43 4/12
IMP 88.65 0/12 88.76 0/12
EGP 85.09 3/12 86.47 4/12

NEPENTHE 88.99 3/12 89.79 4/12

the model. Noticeably, Ĥ4 and Ĥ5 are also very low, while already starting from Ĥ6, the entropy is very
high. As opposed to IMP where in general the entropy lies in intermediate-range values, NEPENTHE tries to
push all the encoded information toward layers having already high entropy, enabling effective layer removal
with little (or in this case no) performance loss. This is also illustrated in Fig. 3, showing the distribution
of the filter states per layer for the same setup. Our unstructured pruning approach effectively removes
three layers by pushing all the neurons inside low-entropy layers to be either in the ON or in the OFF state.
Besides, we also notice that in some layers (like 13 and 17), entire units reach zero entropy, indicating that
structured sparsity can naturally emerge from an unstructured pruning process, as previously reported in
related works (Han et al., 2015; Tartaglione et al., 2021).

Moreover, we analyze the layers pruned from a ResNet-18 trained on CIFAR-10 by other baselines in Ap-
pendix D.1. While with NEPENTHE, the layers with the lowest entropy are typically found near the deepest
layers of the network, the layers near the output are often pruned first with EGP (Fig. 6c). This happens
because the layers near the output usually capture highly task-specific or redundant features whose removal
causes limited disturbance to earlier representations, allowing the network to retain most of its predictive ca-
pacity. In contrast, methods that prune layers based on the lowest sum of weights/gradients tend to remove
layers near the input of the model first(Fig. 6a and Fig. 6b). These early layers have fewer parameters and
smaller cumulative sums, making them appear less important. Once removed, however, the forward signal
is broken and the model’s accuracy drops to a random level.

Table 3 shows how pruning affects loss landscape sharpness for Swin-T on CIFAR-10 trained with IMP
and NEPENTHE. Following Lee et al. (2025), we compute the maximum Hessian eigenvalues to measure
the sharpness of the models. Lower sharpness values correspond to flatter loss surfaces. As in previous
studies (Liebenwein et al., 2021), IMP is able to reduce the model’s loss landscape sharpness at moderate
or low sparsity, but the sharpness increases at higher sparsity. Unlike IMP, NEPENTHE can significantly
reduce the model’s loss landscape and improve generalization.

4.3 Main Results

Image classification tasks. Table 2 shows the test performance (top-1) and the number of removed layers
(Rem.) for all the considered image classification setups. Removing layers with the lowest weight/gradient
sums only works for Swin-T. On ResNet-18 and MobileNet-V2, these methods reduce accuracy to random
levels after one layer removal. Since Hrank operates at the level of the neuron, even though it can help mod-
els maintain a good (or even better) performance after pruning, no layer can be removed with this method.
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Table 5: Ablation study on ResNet-18 trained on CIFAR-10. Each
component contributes to the effectiveness of NEPENTHE.

Entropy-based Don’t care Neurons top-1 Rem.budget state selection
91.66 0/17
92.18 3/17
92.33 3/17
92.55 3/17

Depth reduced model trained from initialization 91.57 3/17

Table 6: MobileNet-V2 with ReLU6
trained on CIFAR-10 dataset.

Method top-1 Rem.
Dense 93.68 0/35

NEPENTHE 93.55 1/35
NEPENTHE 93.25 2/35
NEPENTHE 93.37 4/35
NEPENTHE 93.15 5/35
NEPENTHE 93.26 7/35
NEPENTHE 92.78 9/35

Thus, we report Hrank results only for CIFAR-10 to save computational resources. Moreover, although min-
imizing the group lasso penalty has little impact on the performance, its effectiveness in layer removal is not
significant. Furthermore, IMP does not support the removal of any layers despite successfully maintaining
performance. However, EGP enables the removal of some layers but at the expense of compromising gen-
eralizability. For example, on MobileNet-V2 trained on PACS, EGP removes three layers outright, leading
to a significant drop in accuracy. In contrast, NEPENTHE produces models with a substantial number
of removable layers with little (or no) performance loss compared to the dense baseline. For instance, on
MobileNet-V2 trained on Tiny-ImageNet, NEPENTHE successfully removes 12 layers while even improving
the top-1 accuracy by about 2%.

NLP tasks. The results for all NLP setups are presented in Table 4. Similarly to what was observed
for image classification setups, we observe that while IMP does not significantly harm performance, it does
not support whole-layer removal. In contrast, NEPENTHE produces models with a significant number of
removable layers while maintaining a performance comparable to the dense models.

4.4 Combination of Unstructured Pruning and Structured Pruning Methods
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Figure 4: Test performance (top-1) and the number
of removed layers (Rem.) for ResNet-18 trained on
CIFAR-10.

Besides pure unstructured pruning, we also explore
the potential of combining NEPENTHE with struc-
tured layer removal methods to extend its applica-
bility. In particular, we integrate the group lasso
regularization used in SSL with NEPENTHE. Fig. 4
shows the results of this combination. Although a
slight drop in accuracy is observed when fewer lay-
ers are pruned compared with pure NEPENTHE, the
joint approach enables the removal of a larger number
of layers while maintaining competitive performance.
This demonstrates NEPENTHE’s flexibility and its
potential to serve as a general framework that can
be coupled with various structured sparsity or layer-
selection techniques to achieve both entropy-driven
and structure-aware depth reduction.

4.5 Ablation Study

In this section, we conduct several studies. First, we perform a classical ablation to analyze the contribution
of each term within NEPENTHE. Second, we verify the layer collapse phenomenon induced by unstructured
pruning using some of the most common two-interval rectifiers. Then, we extend this validation to rectifiers
with more intervals. Moreover, we test the phenomenon beyond magnitude-based pruning by applying it to
Wanda. Finally, we demonstrate the practical benefits of our approach in terms of inference time, memory
usage, and energy consumption.
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Table 7: Test performance (top-1) and
the number of removed layers (Rem.) for
ResNet-18 trained on CIFAR-10 dataset
and pruned by combining NEPENTHE and
Wanda.

Method top-1 Rem.
Dense 91.66 0/17

NEPENTHE Wanda 92.67 1/17
NEPENTHE Wanda 89.80 3/17
NEPENTHE Wanda 89.37 5/17
NEPENTHE Wanda 88.31 6/17

Table 8: The accuracy and number of layers removable for
Llama 3.1-8B (16FP) evaluated on MMLU - High school US
history and pruned by NEPENTHE without fine-tuning (no
ft).

Method Val top-1 Test top-1 Rem.
Dense 40.91 33.82 0/32

NEPENTHE (no ft) 38.49 36.76 3/32
NEPENTHE (no ft) 36.36 29.90 5/32
NEPENTHE (no ft) 33.82 35.08 7/32
NEPENTHE (no ft) 31.82 28.92 9/32
NEPENTHE (no ft) 18.18 27.45 11/32

First, Table 5 provides an ablation study on the three key components identifiable within NEPENTHE: the
entropy-based weighted pruned parameter budget (equation 13), the presence of the don’t care state in the
entropy formulation (equation 2), and the filtering mechanism of non-zero entropy neurons (equation 13).
In table 5, we also report a depth-matched baseline trained from initialization. The results show that each
component contributes to the overall effectiveness of NEPENTHE, jointly enhancing both pruning stability
and the emergence of layer collapse.

Table 9: Different activation functions
on ResNet-18 trained on CIFAR-10.

Activation Method top-1 Rem.
Dense 91.66 0/17ReLU NEPENTHE 92.55 3/17
Dense 91.66 0/17SiLU NEPENTHE 92.77 3/17
Dense 91.25 0/17PReLU NEPENTHE 92.27 3/17
Dense 91.66 0/17LeakyReLU NEPENTHE 92.49 3/17
Dense 91.89 0/17GELU NEPENTHE 92.57 3/17

Second, Table 9 shows the test performance of ResNet-18 on CIFAR-
10 and pruned by NEPENTHE, for different rectifiers. The fact
that unstructured pruning induces layer collapse is not dependent
on any particular rectifier and can be effective with any, since our
method removes three layers without performance loss for all the
tested activations.

Moreover, we evaluate NEPENTHE on MobileNet-V2 with ReLU6
trained on CIFAR-10. Table 6 shows the results, indicating that NE-
PENTHE can remove layers with minimal performance loss. Note
that ReLU6 is a rectifier divided into three intervals, suggesting that
this layer collapse phenomenon also appears in models with rectifiers
that have more states. We present the theory analysis for rectifiers
with more than two intervals in Appendix B.

Furthermore, Table 7 presents the results of applying Wanda pruning within the NEPENTHE framework
for ResNet-18 on CIFAR-10. In this setting, we replace magnitude pruning with Wanda as the underlying
pruning criterion. With one layer removed, the model even achieves better performance, confirming that the
layer collapse phenomenon induced by unstructured pruning is not limited to magnitude-based strategies
but also arises under other popular methods such as Wanda.

Table 10: Inference time [ms], Memory usage [MBs]
and Energy consumption [mJ] of ResNet-18 on
CIFAR-10 on a NVIDIA A4500.

Rem. Inference Mem.usage Energy top-1time [ms] [MBs] [mJ]
0/17 3.32 230 498.7 91.66
1/17 3.27 202 490.2 92.25
3/17 2.96 170 444.0 92.55
5/17 2.60 60 389.7 89.30

Finally, Table 10 showcases the potential savings in
terms of inference time, memory usage, and energy
consumption on an NVIDIA A4500 GPU for a ResNet-
18 trained on CIFAR-10 with NEPENTHE: the fewer
layers the network has, the lower the inference time,
the smaller the memory usage and energy consump-
tion. Note that FLOPs do not necessarily decrease due
to the fact that composing consecutive linear operators
may not preserve unstructured sparsity; we clarify this
point in Appendix D.3.

4.6 Limitations

The work here presented shows two major limitations that will be tackled in future work.
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The first limitation is related to the established theoretical framework. While our main objective is to shed
light over the mechanism by which unstructured pruning drives rectifier-activated layers toward a low-entropy
regime, the analysis is limited to ReLU activations. We derive in the supplementary material error bounds
for other popular rectifiers; nevertheless this results in a limitation of the conducted analysis. Moreover,
since Ĥl averages first-order neuron entropies, that represents nothing but a proxy for linearizability rather
than the joint entropy of the layer’s activation-state pattern.

The second limitation involves the iterative nature of NEPENTHE can limit its direct application to very
large models, as repeated pruning and retraining cycles are computationally demanding. To keep the study
tractable, our main experiments focus on moderate-scale architectures, with the corresponding training time
analysis provided in Appendix D.4. Nevertheless, to illustrate the broader applicability of our approach, we
apply NEPENTHE to a pre-trained Llama 3.1-8B model without any fine-tuning. As shown in Table 8, the
method still performs reliably, indicating that it can scale to larger language models and remain effective
in more complex scenarios. Future work will explore strategies to reduce iteration cost and further improve
scalability.

5 Conclusion

In this work, we show that unstructured pruning can inherently induce structural effects in deep neural
networks. Specifically, in rectifier-activated architectures, it naturally reduces neuron entropy, and when
a layer’s average entropy reaches zero, that layer becomes linearizable and can be safely removed without
degrading representational capacity. Building on this observation, we introduced NEPENTHE, an entropy-
guided unstructured pruning framework that reallocates pruning budgets toward low-entropy layers. This
enables networks to collapse redundant layers while preserving or even improving accuracy. Across diverse
architectures and datasets, NEPENTHE removes layers with minimal or no performance loss and yields
flatter landscapes, better generalization, and efficiency gains.

Beyond empirical results, this study provides a new theoretical perspective: unstructured pruning can serve
as an implicit depth-regularization mechanism, driving networks toward simpler and more linear repre-
sentations. We hope that this study encourages further investigation into how apparently “unstructured”
operations can yield structural behaviors in deep networks.
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A Approximation Error for Smooth Rectifiers

For smooth rectifiers (e.g., GELU/SiLU), ψ(z) is not exactly the identity even when z > 0, and that collapsing
such layers is not a mathematically lossless operation. In this section, we formalize the approximation error
and show why this error is negligible under the training and pruning regime considered in this work.

Consider a neuron with pre-activation
z(x) = w⊤x+ b, (17)

and a smooth rectifier activation ϕ ∈ {GELU,SiLU}. Removing the activation corresponds to replacing ϕ(z)
by the identity map z. The induced neuron-level approximation error is

ε(x) := ϕ(z(x))− z(x). (18)

Since layer removal is evaluated at the dataset level, the relevant quantity is the expected squared error

E := Ex∼D
[
∥ϕ(z(x))− z(x)∥2]

. (19)

Both GELU and SiLU admit the decomposition

ϕ(z) = z − r(z), (20)

where r(z) denotes the residual nonlinearity measuring the deviation from the identity map. For these
smooth rectifiers, r(z) exhibits strong tail decay in the positive regime:

|r(z)| ≤ C exp(−αz2) for GELU, |r(z)| ≤ C exp(−αz) for SiLU, (21)

for some constants C,α > 0. As a consequence, ϕ′(z) → 1 and ϕ′′(z) → 0 exponentially fast as z → +∞,
implying that deviations from linearity are concentrated in a narrow neighborhood around z ≈ 0.

In our setting, the distribution of pre-activations z is jointly shaped by three mechanisms: (i) ℓ2 weight
decay controls the operator norms and variance of the weights; (ii) magnitude-based unstructured pruning
removes small-magnitude parameters, further reducing variance; (iii) entropy minimization enforces that
neurons remain almost always in the same activation regime.

As shown in Sec. 3.2, the combined effect of these mechanisms is that pre-activations become increasingly
concentrated and biased toward a single regime. In particular, in the almost-always-ON case, the distribution
of z can be well approximated by

z ∼ N (µz, σ
2
z), with µz ≫ σz, (22)

Using the decay properties of the residual nonlinearity r(z) established above, the expected neuron-level
approximation error can be bounded as

E
[
ε(z)2]

= E
[
r(z)2]

≤
∫
r(z)2N (z;µz, σ

2
z) dz ≤ C exp(−αµ2

z), (23)

for GELU (and analogously exponential decay in µz for SiLU). Therefore, once a neuron enters a low-
entropy (almost-always-ON) regime, the approximation error induced by replacing ϕ(z) with the identity
decays exponentially in the mean pre-activation and rapidly becomes negligible in practice.

Let δℓ denote the approximation error introduced by collapsing layer ℓ. The propagated error satisfies

∥δℓ+1∥ ≤ ∥Wℓ+1∥ ∥δℓ∥. (24)

Under ℓ2 regularization, the operator norms ∥Wℓ∥ remain controlled and empirically decrease with pruning,
which also consistent with the observed reduction in loss landscape sharpness (Table. 3). Consequently, over
k collapsed layers, the accumulated output error admits the bound

∥δout∥ ≤
k∑

ℓ=1

( ∏
j>ℓ

∥Wj∥
)
εℓ, (25)

which remains small since each εℓ is exponentially suppressed. This explains why approximation errors
introduced by collapsing multiple layers do not accumulate catastrophically in deep networks.
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B Analysis for Rectifiers with More Intervals

Unstructured pruning can still induce layer collapse in networks where rectifiers have more intervals. Let
us take the rectifier ReLU6 and apply NEPENTHE as an example. If zx

l,i is the output of the i-th neuron
inside the l-th layer from a given input x of the dataset D, the output yx

l,i is:

yx
l,i = min(max(0, zx

l,i), 6), (26)

There are two OFF states:

• zl,i ≤ 0. In this case, when employing a ReLU6, the output of the i-th neuron is always 0, we call
this state OFF-. If a neuron has all its output in this state, this neuron can be simply pruned.

• zl,i ≥ 6. In this case, when employing a ReLU6, the output of the i-th neuron is always 6, we call
this state OFF+. If a neuron has all its output in this state, this neuron can be replaced by a bias
6.

There is also one ON state:

• 0 ≤ zl,i ≤ 6. In this case, the output of the i-th neuron’s rectifier is always the same as its input,
we call this state ON. If a neuron has all its output in this state, this neuron can in principle be
absorbed by the following layer as there is no non-linearity between them anymore.
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Figure 5: Error plot for the i-th neuron of the l-th ReLU6 activated layer as a function of the output average
ŷl,i.

Fig. 5a shows how a neuron’s error varies with its average output ŷl,i when substituting the rectifier with a
null function, which means pushing all the neurons to always OFF- state. Fig. 5b shows the error of pushing
all the neurons to always ON state by substituting the rectifier ψl by an identity function. Fig. 5c shows the
error of pushing all the neurons to always OFF+ state by substituting the rectifier ψl by a bias 6. Each of
the above methods produces obvious errors in some cases. As shown in Fig. 5d, NEPENTHE can remove
layers without introducing any error. It appears that the phenomenon that unstructured pruning induces
layer collapse also appears in networks with rectifiers with more intervals rather than two.

C Details on the Learning Strategies Employed

The implementation details used in this paper are presented here.

Like in the He et al. (2022)’s setup, for the ResNet-18 network, a modified version of the torchvision model
is used: the first convolutional layer is set with a filter of size 3 × 3 and the max-pooling layer that follows
has been eliminated to adapt ResNet-18 for CIFAR-10.
CIFAR-10 is augmented with per-channel normalization, random horizontal flipping, and random shifting by
up to four pixels in any direction. For the datasets of DomainBed, the images are augmented with per-channel
normalization, random horizontal flipping, random cropping, and resizing to 224. The brightness, contrast,
saturation, and hue are also randomly affected with a factor fixed to 0.4. Tiny ImageNet is augmented

18



Published in Transactions on Machine Learning Research (02/2026)

Table 11: Iterations (Iter.), Test performance (top-1), and the number of removed layers (Rem.) for
MobileNet-V2 trained on CIFAR-10 and pruned by NEPENTHE with different ζ

(a) ζ = 0.05

Iter. top-1 Rem.
1 93.42 1/35
3 93.56 2/35
7 93.36 5/35
9 93.54 7/35

(b) ζ = 0.1

Iter. top-1 Rem.
1 93.55 1/35
3 93.14 2/35
7 93.26 7/35
9 92.78 9/35

(c) ζ = 0.25

Iter. top-1 Rem.
1 94.12 1/35
3 10 18/35
7 - -
9 - -

Table 12: Table of the different employed learning strategies.

Model Dataset Epochs Batch Opt. LR β1 β2 ϵ

BERT QNLI 3 32 AdamW 2e-5 0.9 0.999 1e-8
RoBERTa QNLI 3 32 AdamW 2e-5 0.9 0.999 1e-8

BERT RTE 3 32 AdamW 2e-5 0.9 0.999 1e-8
RoBERTa RTE 3 32 AdamW 2e-5 0.9 0.999 1e-8

BERT SST-2 3 32 AdamW 2e-5 0.9 0.999 1e-8
RoBERTa SST-2 3 32 AdamW 2e-5 0.9 0.999 1e-8

with per-channel normalization and random horizontal flipping. ImageNet is augmented with per-channel
normalization, random horizontal flipping, random cropping, and resizing to 224. The sequence length of
SST-2, QNLI from Williams et al, and RTE is set to 128.

All weights from ReLU-actived layers are set as prunable for ResNet-18. For Swin-T, BERT, and RoBERTa,
all weights from GELU-activated layers are prunable. while for MobileNetv2 all weights from ReLU6-
activated layers are considered in the pruning. Neither biases nor batch normalization parameters are
pruned.

ζ is a crucial parameter. As Table 11 shows, in our approach, since we utilize iterative pruning, if the
sparse ratio is set too low, more iterations will be required to get removable layers (because we remove fewer
parameters at a time). On the other hand, if the sparse ratio is set too high, the model’s performance will be
destroyed quickly (because essential parameters are removed). Currently, we follow commonly used sparse
ratios from unstructured pruning.

The training hyperparameters used in the Image classification experiments are presented in Table 13, hyper-
parameters used in the NLP experiments are presented in Table 12. We have performed our experiments on
an NVIDIA A4500 GPU. Our code is attached to this supplementary material and will be publicly available
upon acceptance of the article.

D More Detailed Results

D.1 Layer States for Models Trained on CIFAR-10

Fig. 6 shows the layers’ states for ResNet-18 trained on CIFAR-10 with different methods.

D.2 Experiments on More Architectures

Table 23 presents the results for ResNet-50, ResNet-152, and MobileNetV2-0.75 models trained on Cifar-10
dataset. Table 24 presents the results for ResNet-18 model trained on ImageNet dataset.

We also provide an ablation study on the three key components identifiable within NEPENTHE for Swin-T
trained on Tiny-ImageNet. As shown in Table 14, each component contributes to the overall effectiveness of
NEPENTHE.
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Table 13: Table of the different employed learning strategies.

Model Dataset Epochs Batch Opt. Mom. LR Milestones Drop Factor Weight Decay
ResNet-18 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
ResNet-50 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
ResNet-152 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4

Swin-T CIFAR-10 160 128 SGD 0.9 0.001 [80, 120] 0.1 1e-4
MobileNetv2 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4

MobileNetV2-0.75 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
ResNet-18 PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

Swin-T PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
MobileNetv2 PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
ResNet-18 VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

Swin-T VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
MobileNetv2 VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
ResNet-18 SVIRO 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

Swin-T SVIRO 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
MobileNetv2 SVIRO 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
ResNet-18 Tiny ImageNet 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4

Swin-T Tiny ImageNet 160 128 SGD 0.9 0.001 [80, 120] 0.1 1e-4
MobileNetv2 Tiny ImageNet 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
ResNet-18 ImageNet 90 128 SGD 0.9 0.1 [30, 90] 0.1 1e-4

Table 14: Ablation study on Swin-T trained on Tiny-ImageNet. Each component contributes to the effec-
tiveness of NEPENTHE.

Entropy-based Don’t care Neurons top-1 Rem.budget state selection
75.60 0/12
71.48 1/12
71.54 1/12
72.85 1/12

D.3 Potential Computational Savings

Table 15, 16, 17, 18, 19, 20, 21, 22 present the potential savings in terms of FLOPs, latency, and
memory across different tasks trained by NEPENTHE and on different hardware. It appears that in general,
the fewer layers the networks have, the lower the inference time.

Moreover, for unstructured sparsity, the FLOPs of the composed operator do not necessarily decrease, since
multiplying two sparse matrices may introduce sparsity fill-in and yield a denser effective operator. However,
this concern does not apply to the computational setting considered in our work, and we clarify the distinction
here.
Our statement that a linearized layer can be “absorbed by the following layer” is an algebraic statement
about function composition:

Wl+1(Wlx) = (Wl+1Wl)x. (27)

Importantly, NEPENTHE does not rely on performing runtime multiplication of two unstructured sparse
matrices. Once a layer reaches (near-)zero entropy and is deemed linearizable, it is removed entirely from the
computational graph, and the model is recompiled with reduced depth. This is a layer removal operation,
not a sparse-sparse fusion executed at inference time.
We do not claim that the product Wl+1Wl preserves the sparsity pattern of the original matrices. Indeed,
sparsity fill-in is expected in general. However, our method does not require sparsity preservation in the
merged operator, because the primary source of computational savings in our work is depth reduction, i.e.,
shortening the critical path of forward propagation, rather than exploiting sparse matrix kernels.
The reductions reported in our efficiency evaluation are based on actual measured inference time, memory us-
age, and energy consumption, rather than on idealized sparse FLOP counts. On modern GPUs, unstructured
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Table 15: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of ResNet-18
on CIFAR-10 across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/17 725.47 3.32 230 91.66
3/17 231.79 2.96 170 92.55

RTX 2080 0/17 725.47 3.32 230 91.66
3/17 231.79 2.96 170 92.55

RTX 4000 0/17 725.47 4.52 241 91.66
3/17 231.79 3.94 212 92.55

Jetson Nano 0/17 725.47 8.52 241 91.66
3/17 231.79 7.38 178 92.55

Table 16: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of ResNet-18
on Tiny-ImageNet across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/17 7292.87 3.56 227 41.44
2/17 7618.77 3.24 225 41.42

RTX 2080 0/17 7292.87 4.62 227 41.44
2/17 7618.77 4.21 225 41.42

NVIDIA A4000 0/17 7292.87 4.73 228 41.44
2/17 7618.77 4.27 225 41.42

Jetson Nano 0/17 7292.87 12.06 228 41.44
2/17 7618.77 11.87 226 41.42

sparsity alone often yields limited speedups due to kernel launch overheads and memory access patterns. In
contrast, reducing the number of layers directly reduces (i) kernel invocations, (ii) synchronization points,
and (iii) activation storage and memory traffic. Therefore, even if the merged linear operator were dense,
removing an entire layer can still lead to tangible performance gains, as empirically demonstrated.

D.4 Trend of Layer’s Entropy and Training Time

Tables 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 41, 42, 43, 44, 45, present the
entropy trends in the six layers exhibiting the lowest entropy and the training time, for all the unstructured
pruning and NEPENTHE setups. This illustrates that while unstructured pruning inherently reduces the
entropy of certain layers, as detailed in Section 4.2, it lacks the capability to entirely eliminate any specific
layer. In contrast, our methodology, NEPENTHE, aims to push all the encoded information from layers with
low entropy to those with already high entropy. This strategy enables the removal of zero-entropy layers.
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Table 17: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of ResNet-18
on PACS across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/17 7292.67 3.58 248 94.70
3/17 6736.15 3.04 181 90.10

RTX 2080 0/17 7292.67 4.54 248 94.70
3/17 6736.15 4.00 181 90.10

NVIDIA A4000 0/17 7292.67 4.61 248 94.70
3/17 6736.15 4.09 182 90.10

Jetson Nano 0/17 7292.67 12.00 248 94.70
3/17 6736.15 11.04 181 90.10

Table 18: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of ResNet-18
on VLCS across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/17 7292.67 3.56 285 80.89
2/17 6760.27 3.05 258 78.38

RTX 2080 0/17 7292.67 4.58 285 80.89
2/17 6760.27 4.21 257 78.38

NVIDIA A4000 0/17 7292.67 4.66 286 80.89
2/17 6760.27 4.17 258 78.38

Jetson Nano 0/17 7292.67 12.00 285 80.89
2/17 6760.27 7.75 258 78.38

Table 19: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of Swin-T on
CIFAR-10 across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/12 1041.34 7.79 245 91.54
2/12 1020.11 7.71 79 92.29

RTX 2080 0/12 1041.34 3.32 230 91.54
2/12 1020.11 2.96 120 92.29

RTX 4000 0/12 1041.34 4.52 241 91.54
2/12 1020.11 3.94 212 92.29

Jetson Nano 0/12 1041.34 8.52 241 91.54
2/12 1020.11 7.38 128 92.29
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Table 20: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of Swin-T on
Tiny-ImageNet across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/12 7546.87 3.56 155 75.60
1/12 7511.50 3.24 100 72.58

RTX 2080 0/12 7546.87 4.62 245 75.60
1/12 7511.50 4.21 80 72.58

NVIDIA A4000 0/12 7546.87 4.73 155 75.60
1/12 7511.50 4.27 100 72.58

Jetson Nano 0/12 7546.87 12.06 156 75.60
1/12 7511.50 11.87 100 72.58

Table 21: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of Swin-T on
PACS across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/12 8989.52 9.47 212 97.10
2/12 8177.89 9.27 115 95.10

RTX 2080 0/12 8989.52 15.09 212 97.10
2/12 8177.89 14.92 114 95.10

NVIDIA A4000 0/12 8989.52 16.02 209 97.10
2/12 8177.89 15.76 115 95.10

Jetson Nano 0/12 8989.52 38.71 212 97.10
2/12 8177.89 38.93 115 95.10

Table 22: MFLOPs, Inference time [ms], Memory usage [MBs], and Energy consumption [mJ] of Swin-T on
VLCS across different hardware platforms.

Hardward Rem. MFLOPs Inference Mem.usage top-1time [ms] [MBs]

NVIDIA A4500 0/12 8989.48 9.48 194 80.89
1/12 8582.50 9.34 118 78.38

RTX 2080 0/12 8989.48 15.09 194 80.89
1/12 8582.50 14.94 120 78.38

NVIDIA A4000 0/12 8989.48 16.00 194 80.89
1/12 8582.50 15.85 120 78.38

Jetson Nano 0/12 8989.48 39.61 195 80.89
1/12 8582.50 38.93 118 78.38

Table 23: Test performance (top-1) and the number of removed layers (Rem.) for ResNet-50, ResNet-152,
and MobileNetV2-0.75 models trained on CIFAR-10.

Dataset Approach ResNet-50 ResNet-152 MobileNetV2-0.75
Top-1 Rem. Top-1 Rem. Top-1 Rem.

CIFAR-10 Dense 87.37 0/49 85.61 0/151 85.17 0/35
NEPENTHE 89.06 16/49 89.20 82/151 87.06 12/35
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Figure 6: Layer states for ResNet-18 trained on CIFAR-10 with different methods.

Table 24: Test performance (top-1) and the number of removed layers (Rem.) for Resnet-18 trained on
Imagenet.

Dataset Approach ResNet-18
top-1 Rem.

ImageNet

Dense model 68.20 0/17
IMP (low prune) 68.38 0/17
IMP (mid prune) 67.88 0/17
IMP (high prune) 66.63 0/17

NEPENTHE (low prune) 66.17 0/17
NEPENTHE (mid prune) 62.74 1/17
NEPENTHE (high prune) 62.15 3/17
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Table 25: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for ResNet-18 on CIFAR-10.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.647 0.680 0.728 0.785 0.791 0.797 91.66 0/17 0h48
IMP(iter #1) 0.585 0.650 0.699 0.725 0.767 0.778 92.29 0/17 1h36
IMP(iter #2) 0.506 0.580 0.647 0.654 0.700 0.722 92.25 0/17 2h24
IMP(iter #3) 0.256 0.623 0.658 0.672 0.682 0.737 92.46 0/17 3h12
IMP(iter #4) 0.192 0.660 0.667 0.676 0.698 0.763 92.27 0/17 4h00
IMP(iter #5) 0.136 0.589 0.648 0.727 0.728 0.791 92.44 0/17 4h48
IMP(iter #6) 0.093 0.447 0.640 0.650 0.764 0.765 91.89 0/17 5h36
IMP(iter #7) 0.055 0.335 0.487 0.592 0.640 0.775 91.66 0/17 6h24

NEPENTHE(iter #1) 0 0.168 0.581 0.654 0.681 0.714 92.25 1/17 1h37
NEPENTHE(iter #2) 0 0.076 0.615 0.619 0.633 0.644 92.60 1/17 2h26
NEPENTHE(iter #3) 0 0 0 0.121 0.139 0.642 92.55 3/17 3h15
NEPENTHE(iter #4) 0 0 0 0.003 0.242 0.320 91.93 3/17 4h04
NEPENTHE(iter #5) 0 0 0 0 0 0.114 89.30 5/17 4h53
NEPENTHE(iter #6) 0 0 0 0 0 0.019 89.43 5/17 5h42
NEPENTHE(iter #7) 0 0 0 0 0 0 83.42 6/17 6h31

Table 26: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for Swin-T on CIFAR-10.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.03 0.054 0.382 0.394 0.394 0.44 91,54 0/12 1h53
IMP(iter #1) 0.03 0.055 0.383 0.397 0.398 0.444 91.73 0/12 3h46
IMP(iter #2) 0.031 0.057 0.382 0.392 0.399 0.443 91.80 0/12 5h39
IMP(iter #3) 0.034 0.063 0.375 0.383 0.393 0.438 91.43 0/12 7h32
IMP(iter #4) 0.036 0.072 0.365 0.379 0.382 0.426 91.46 0/12 9h25
IMP(iter #5) 0.041 0.080 0.349 0.361 0.369 0.409 91.27 0/12 11h18
IMP(iter #6) 0.048 0.096 0.334 0.343 0.350 0.386 91.05 0/12 13h11
IMP(iter #7) 0.055 0.113 0.31 0.325 0.327 0.355 90.53 0/12 15h04

NEPENTHE(iter #1) 0.001 0.215 0.385 0.397 0.407 0.443 91.77 0/12 3h48
NEPENTHE(iter #2) 0.001 0.219 0.387 0.399 0.409 0.445 92.06 0/12 5h45
NEPENTHE(iter #3) 0.001 0.254 0.380 0.395 0.405 0.440 92.08 0/12 7h38
NEPENTHE(iter #4) 0,001 0.001 0.377 0.388 0.404 0.433 92.31 0/12 9h33
NEPENTHE(iter #5) 0 0 0.363 0.373 0.406 0.423 92.29 2/12 11h28
NEPENTHE(iter #6) 0 0 0.344 0.359 0.407 0.412 92.21 2/12 13h23
NEPENTHE(iter #7) 0 0 0.287 0.317 0.405 0.405 92.11 2/12 15h18
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Table 27: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for MobileNetv2 on CIFAR-10.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.386 0.474 0.486 0.504 0.528 0.544 93.68 0/35 0h43
IMP(iter #1) 0.186 0.206 0.233 0.241 0.249 0.260 94.07 0/35 1h26
IMP(iter #2) 0.116 0.117 0.153 0.167 0.167 0.168 93.67 0/35 2h09
IMP(iter #3) 0.082 0.084 0.111 0.119 0.119 0.125 93.83 0/35 2h52
IMP(iter #4) 0.063 0.066 0.090 0.094 0.095 0.101 93.32 0/35 3h35
IMP(iter #5) 0.056 0.057 0.074 0.075 0.086 0.088 93.26 0/35 4h18
IMP(iter #6) 0.050 0.050 0.065 0.067 0.071 0.076 93.47 0/35 5h01
IMP(iter #7) 0.046 0.047 0.059 0.060 0.061 0.064 93.50 0/35 5h44

NEPENTHE(iter #1) 0 0.198 0.229 0.232 0.244 0.248 93.55 1/35 1h27
NEPENTHE(iter #2) 0 0.109 0.127 0.138 0.139 0.149 93.42 1/35 2h11
NEPENTHE(iter #3) 0 0.082 0.085 0.103 0.106 0.107 93.14 1/35 2h55
NEPENTHE(iter #4) 0 0 0.063 0.065 0.074 0.076 93.25 2/35 3h39
NEPENTHE(iter #5) 0 0 0.064 0.067 0.049 0.051 93.37 4/35 4h23
NEPENTHE(iter #6) 0 0 0 0 0 0.042 93.15 5/35 5h07
NEPENTHE(iter #7) 0 0 0 0 0 0 93.26 7/35 5h51

Table 28: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for ResNet-18 on Tiny ImageNet.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.471 0.500 0.592 0.625 0.627 0.783 41,44 0/17 2h15
IMP(iter #1) 0.470 0.540 0.621 0.662 0.666 0.780 42.24 0/17 4h30
IMP(iter #2) 0.461 0.621 0.637 0.697 0.726 0.781 42.12 0/17 6h45
IMP(iter #3) 0.487 0.643 0.735 0.736 0.776 0.779 42.10 0/17 9h00
IMP(iter #4) 0.488 0.643 0.760 0.783 0.831 0.831 41.18 0/17 11h15
IMP(iter #5) 0.482 0.605 0.727 0.839 0.845 0.872 39.92 0/17 13h30
IMP(iter #6) 0.469 0.585 0.690 0.814 0.834 0.834 37.16 0/17 15h45
IMP(iter #7) 0.464 0.544 0.641 0.661 0.725 0.741 39.14 0/17 18h00

NEPENTHE(iter #1) 0 0 0.063 0.559 0.633 0.699 41.42 2/17 4h33
NEPENTHE(iter #2) 0 0 0 0 0 0.129 39.56 5/17 6h51
NEPENTHE(iter #3) 0 0 0 0 0 0.169 40.00 5/17 9h09
NEPENTHE(iter #4) 0 0 0 0 0 0.109 39.40 5/17 11h27
NEPENTHE(iter #5) 0 0 0 0 0 0.107 38.58 5/17 13h45
NEPENTHE(iter #6) 0 0 0 0 0 0.125 37.34 5/17 16h03
NEPENTHE(iter #7) 0 0 0 0 0 0.138 35.80 5/17 18h21
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Table 29: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for Swin-T on Tiny ImageNet.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.067 0.133 0.38 0.388 0.395 0.411 75.60 0/12 5h41
IMP(iter #1) 0.069 0.131 0.370 0.373 0.384 0.399 75.86 0/12 11h22
IMP(iter #2) 0.073 0.133 0.355 0.356 0.367 0.380 75.26 0/12 17h03
IMP(iter #3) 0.080 0.143 0.335 0.336 0.346 0.357 73.60 0/12 22h44
IMP(iter #4) 0.089 0.156 0.313 0.314 0.319 0.330 72.32 0/12 28h25
IMP(iter #5) 0.096 0.169 0.291 0.291 0.295 0.309 70.90 0/12 34h06
IMP(iter #6) 0.102 0.184 0.268 0.269 0.275 0.294 69.80 0/12 39h47
IMP(iter #7) 0.104 0.193 0.249 0.255 0.266 0.289 67.56 0/12 45h28

NEPENTHE(iter #1) 0 0.139 0.370 0.377 0.392 0.394 72.58 1/12 11h27
NEPENTHE(iter #2) 0 0.143 0.150 0.183 0.195 0.381 71.02 1/12 17h13
NEPENTHE(iter #3) 0 0.143 0.158 0.183 0.192 0.269 70.76 1/12 22h59
NEPENTHE(iter #4) 0 0.133 0.137 0.165 0.178 0.187 70.12 1/12 28h45
NEPENTHE(iter #5) 0 0.128 0.132 0.172 0.173 0.180 69.68 1/12 34h36
NEPENTHE(iter #6) 0 0.124 0.129 0.164 0.174 0.176 70.06 1/12 39h17
NEPENTHE(iter #7) 0 0.123 0.128 0.160 0.170 0.180 69.42 1/12 46h03

Table 30: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for MobileNetv2 on Tiny ImageNet.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.076 0.112 0.131 0.133 0.153 0.154 45.860 0/35 1h47
IMP(iter #1) 0.036 0.039 0.039 0.045 0.048 0.054 45.84 0/35 3h34
IMP(iter #2) 0.025 0.026 0.031 0.035 0.037 0.037 47.10 0/35 5h21
IMP(iter #3) 0.018 0.021 0.030 0.030 0.031 0.031 47.740 0/35 7h08
IMP(iter #4) 0.016 0.017 0.028 0.028 0.030 0.030 46.800 0/35 8h55
IMP(iter #5) 0.013 0.016 0.025 0.025 0.028 0.029 47.560 0/35 10h42
IMP(iter #6) 0.008 0.011 0.022 0.023 0.028 0.028 47.580 0/35 12h29
IMP(iter #7) 0.007 0.01 0.022 0.023 0.028 0.029 47.440 0/35 14h16

NEPENTHE(iter #1) 0.001 0.004 0.095 0.096 0.098 0.110 46.70 0/35 3h37
NEPENTHE(iter #2) 0 0.003 0.058 0.064 0.071 0.073 47.22 1/35 5h27
NEPENTHE(iter #3) 0 0 0 0 0 0 47.26 6/35 7h17
NEPENTHE(iter #4) 0 0 0 0 0 0 47.82 9/35 9h07
NEPENTHE(iter #5) 0 0 0 0 0 0 47.92 12/35 10h57
NEPENTHE(iter #6) 0 0 0 0 0 0 0.50 34/35 12h37
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Table 31: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for ResNet-18 on PACS.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.332 0.439 0.602 0.667 0.686 0.687 94.70 0/17 0h46
IMP(iter #1) 0.331 0.423 0.608 0.669 0.688 0.688 95.40 0/17 1h31
IMP(iter #2) 0.319 0.429 0.602 0.668 0.670 0.683 95.30 0/17 2h17
IMP(iter #3) 0.324 0.419 0.607 0.631 0.682 0.682 94.60 0/17 3h03
IMP(iter #4) 0.318 0.441 0.613 0.613 0.661 0.688 95.10 0/17 3h49
IMP(iter #5) 0.300 0.452 0.587 0.621 0.636 0.694 94.00 0/17 4h35
IMP(iter #6) 0.285 0.458 0.533 0.643 0.647 0.694 92.30 0/17 5h21
IMP(iter #7) 0.280 0.418 0.479 0.584 0.646 0.657 90.80 0/17 6h07

NEPENTHE(iter #1) 0.129 0.430 0.482 0.634 0.668 0.669 94.20 0/17 1h32
NEPENTHE(iter #2) 0 0.041 0.091 0.482 0.596 0.596 92.40 1/17 2h19
NEPENTHE(iter #3) 0 0.030 0.066 0.527 0.559 0.599 93.00 1/17 3h06
NEPENTHE(iter #4) 0 0 0.033 0.067 0.422 0.565 90.40 2/17 3h53
NEPENTHE(iter #5) 0 0 0.032 0.061 0.084 0.217 89.50 2/17 4h40
NEPENTHE(iter #6) 0 0 0 0.001 0.002 0.028 90.10 3/17 5h27
NEPENTHE(iter #7) 0 0 0 0.002 0.002 0.040 86.30 3/17 6h14

Table 32: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for Swin-T on PACS.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.057 0.184 0.344 0.362 0.380 0.381 97.10 0/12 0h57
IMP(iter #1) 0.060 0.204 0.349 0.362 0.382 0.389 96.60 0/12 1h54
IMP(iter #2) 0.067 0.214 0.357 0.370 0.383 0.388 96.20 0/12 2h51
IMP(iter #3) 0.081 0.245 0.362 0.366 0.375 0.378 96.00 0/12 3h48
IMP(iter #4) 0.095 0.269 0.352 0.353 0.355 0.372 96.60 0/12 4h45
IMP(iter #5) 0.110 0.303 0.314 0.335 0.339 0.341 95.00 0/12 5h42
IMP(iter #6) 0.113 0.278 0.306 0.318 0.321 0.329 94.60 0/12 6h39
IMP(iter #7) 0.101 0.232 0.269 0.284 0.293 0.298 93.90 0/12 7h36

NEPENTHE(iter #1) 0.086 0.240 0.344 0.376 0.376 0.403 96.90 0/12 1h55
NEPENTHE(iter #2) 0.001 0.369 0.372 0.383 0.398 0.416 96.50 0/12 2h53
NEPENTHE(iter #3) 0.001 0.368 0.383 0.385 0.390 0.406 95.90 0/12 3h51
NEPENTHE(iter #4) 0.001 0.360 0.369 0.369 0.392 0.394 96.30 0/12 4h49
NEPENTHE(iter #5) 0 0 0.001 0.335 0.359 0.366 95.10 2/12 5h47
NEPENTHE(iter #6) 0 0 0.107 0.298 0.348 0.349 94.60 2/12 6h45
NEPENTHE(iter #7) 0 0 0.001 0.001 0.161 0.232 93.30 2/12 7h43
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Table 33: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for MobileNetv2 on PACS.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.207 0.291 0.324 0.372 0.463 0.471 93.20 0/35 0h34
IMP(iter #1) 0.218 0.263 0.284 0.390 0.457 0.467 95.70 0/35 1h09
IMP(iter #2) 0.216 0.235 0.257 0.373 0.453 0.462 95.50 0/35 1h44
IMP(iter #3) 0.224 0.244 0.252 0.403 0.464 0.478 95.40 0/35 2h19
IMP(iter #4) 0.222 0.229 0.241 0.386 0.459 0.476 95.70 0/35 2h54
IMP(iter #5) 0.212 0.223 0.233 0.397 0.464 0.47 95.60 0/35 3h29
IMP(iter #6) 0.196 0.212 0.237 0.405 0.470 0.485 96.20 0/35 4h04
IMP(iter #7) 0.170 0.207 0.234 0.412 0.468 0.472 95.40 0/35 4h39

NEPENTHE(iter #1) 0.119 0.139 0.151 0.192 0.200 0.225 93.30 0/35 1h10
NEPENTHE(iter #2) 0.093 0.128 0.129 0.130 0.135 0.165 93.20 0/35 1h46
NEPENTHE(iter #3) 0.077 0.093 0.112 0.125 0.140 0.141 92.50 0/35 2h22
NEPENTHE(iter #4) 0 0.076 0.083 0.105 0.106 0.116 92.20 1/35 2h58
NEPENTHE(iter #5) 0 0.054 0.068 0.096 0.097 0.115 89.70 1/35 3h34
NEPENTHE(iter #6) 0 0.014 0.016 0.036 0.050 0.051 89.00 1/35 4h10
NEPENTHE(iter #7) 0 0.004 0.008 0.023 0.027 0.034 88.70 1/35 4h46

Table 34: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for ResNet-18 on VLCS.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.382 0.457 0.647 0.676 0.681 0.698 80.89 0/17 3h49
IMP(iter #1) 0.387 0.471 0.647 0.679 0.681 0.703 82.76 0/17 8h37
IMP(iter #2) 0.392 0.476 0.644 0.654 0.69 0.703 82.01 0/17 13h06
IMP(iter #3) 0.378 0.474 0.620 0.658 0.707 0.707 82.01 0/17 17h15
IMP(iter #4) 0.391 0.491 0.595 0.672 0.711 0.726 80.15 0/17 22h24
IMP(iter #5) 0.372 0.479 0.571 0.665 0.716 0.739 79.31 0/17 27h13
IMP(iter #6) 0.383 0.519 0.531 0.699 0.721 0.750 78.84 0/17 31h22
IMP(iter #7) 0.357 0.409 0.502 0.64 0.707 0.712 74.09 0/17 35h11

NEPENTHE(iter #1) 0,001 0.453 0.497 0.651 0.676 0.680 78.99 0/17 8h44
NEPENTHE(iter #2) 0 0 0,001 0.508 0.516 0.619 78.38 2/17 13h20
NEPENTHE(iter #3) 0 0 0 0 0.518 0.553 76.98 4/17 17h36
NEPENTHE(iter #4) 0 0 0 0 0.516 0.574 78.66 4/17 22h52
NEPENTHE(iter #5) 0 0 0 0 0 0 76.05 6/17 27h48
NEPENTHE(iter #6) 0 0 0 0 0 0 74.28 6/17 32h04
NEPENTHE(iter #7) 0 0 0 0 0 0 74.37 6/17 36h01

29



Published in Transactions on Machine Learning Research (02/2026)

Table 35: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for Swin-T on VLCS.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.070 0.175 0.373 0.385 0.414 0.427 86.58 0/12 2h22
IMP(iter #1) 0.078 0.179 0.391 0.402 0.421 0.433 84.72 0/12 4h45
IMP(iter #2) 0.093 0.195 0.387 0.403 0.416 0.419 85.65 0/12 8h08
IMP(iter #3) 0.102 0.224 0.388 0.411 0.424 0.424 84.34 0/12 11h31
IMP(iter #4) 0.122 0.236 0.395 0.402 0.415 0.418 84.06 0/12 14h54
IMP(iter #5) 0.140 0.261 0.369 0.394 0.404 0.412 82.01 0/12 18h56
IMP(iter #6) 0.141 0.292 0.331 0.387 0.390 0.393 81.36 0/12 22h38
IMP(iter #7) 0.139 0.277 0.304 0.370 0.373 0.374 80.06 0/12 26h20

NEPENTHE(iter #1) 0.121 0.187 0.400 0.402 0.430 0.437 85.46 0/12 4h57
NEPENTHE(iter #2) 0.132 0.225 0.403 0.406 0.428 0.438 85.09 0/12 8h26
NEPENTHE(iter #3) 0 0.411 0.413 0.432 0.437 0.457 85.27 1/12 11h55
NEPENTHE(iter #4) 0 0.409 0.420 0.441 0.446 0.463 83.88 1/12 15h18
NEPENTHE(iter #5) 0 0.406 0.409 0.428 0.434 0.469 81.73 1/12 19h28
NEPENTHE(iter #6) 0 0.318 0.383 0.398 0.413 0.469 81.55 1/12 23h20
NEPENTHE(iter #7) 0 0.001 0.304 0.369 0.374 0.475 79.22 1/12 27h08

Table 36: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for MobileNetv2 on VLCS.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.257 0.353 0.46 0.513 0.514 0.572 81.83 0/35 3h00
IMP(iter #1) 0.270 0.292 0.490 0.503 0.533 0.573 80.80 0/35 6h01
IMP(iter #2) 0.261 0.263 0.507 0.524 0.528 0.562 81.64 0/35 9h01
IMP(iter #3) 0.269 0.271 0.496 0.501 0.536 0.573 80.43 0/35 12h02
IMP(iter #4) 0.258 0.258 0.491 0.521 0.550 0.579 79.59 0/35 15h03
IMP(iter #5) 0.264 0.271 0.474 0.540 0.545 0.589 79.96 0/35 18h03
IMP(iter #6) 0.268 0.277 0.468 0.547 0.549 0.585 80.80 0/35 21h04
IMP(iter #7) 0.273 0.279 0.470 0.524 0.554 0.592 80.43 0/35 24h05

NEPENTHE(iter #1) 0.184 0.249 0.342 0.505 0.534 0.581 81.08 0/35 6h04
NEPENTHE(iter #2) 0.001 0.077 0.251 0.345 0.417 0.500 80.52 0/35 9h07
NEPENTHE(iter #3) 0 0.002 0.005 0.260 0.354 0.488 78.84 1/35 12h11
NEPENTHE(iter #4) 0 0.001 0.040 0.261 0.363 0.527 77.91 1/35 15h15
NEPENTHE(iter #5) 0 0 0.001 0.274 0.366 0.523 80.06 2/35 18h18
NEPENTHE(iter #6) 0 0 0.001 0.26 0.351 0.485 79.31 2/35 21h22
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Table 37: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for ResNet-18 on SVIRO.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.009 0.446 0.631 0.685 0.693 0.707 99,93 0/17 7h03
IMP(iter #1) 0.009 0.456 0.629 0.679 0.684 0.705 99.98 0/17 14h06
IMP(iter #2) 0.008 0.446 0.624 0.646 0.68 0.700 99.98 0/17 21h09
IMP(iter #3) 0.009 0.454 0.638 0.655 0.676 0.689 100 0/17 28h12
IMP(iter #4) 0.007 0.478 0.641 0.658 0.677 0.687 99.95 0/17 35h15
IMP(iter #5) 0.010 0.507 0.658 0.659 0.698 0.702 99.96 0/17 42h18
IMP(iter #6) 0.006 0.530 0.577 0.676 0.688 0.691 100 0/17 49h21
IMP(iter #7) 0.003 0.488 0.495 0.518 0.629 0.657 99.95 0/17 56h26

NEPENTHE(iter #1) 0,001 0.512 0.551 0.649 0.686 0.702 99.98 0/17 14h19
NEPENTHE(iter #2) 0 0 0,001 0.031 0.453 0.460 99.93 2/17 21h35
NEPENTHE(iter #3) 0 0 0.012 0.397 0.440 0.598 99.91 2/17 28h51
NEPENTHE(iter #4) 0 0 0 0.006 0.013 0.371 99.86 3/17 36h07
NEPENTHE(iter #5) 0 0 0 0.001 0.005 0.054 99.84 3/17 43h23
NEPENTHE(iter #6) 0 0 0 0 0 0 99.61 8/17 50h44
NEPENTHE(iter #7) 0 0 0 0 0 0 98.75 8/17 57h57

Table 38: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for Swin-T on SVIRO.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.061 0.205 0.280 0.290 0.321 0.325 99,95 0/12 5h38
IMP(iter #1) 0.046 0.232 0.284 0.285 0.291 0.303 99.84 0/12 12h17
IMP(iter #2) 0.026 0.125 0.273 0.280 0.283 0.289 99.77 0/12 18h56
IMP(iter #3) 0.022 0.062 0.216 0.233 0.238 0.275 99.84 0/12 25h55
IMP(iter #4) 0.027 0.071 0.163 0.183 0.187 0.187 99.68 0/12 32h14
IMP(iter #5) 0.034 0.095 0.101 0.115 0.143 0.149 99.68 0/12 39h33
IMP(iter #6) 0.036 0.047 0.090 0.125 0.127 0.129 99.79 0/12 46h12
IMP(iter #7) 0.026 0.041 0.074 0.124 0.127 0.137 99.75 0/12 52h01

NEPENTHE(iter #1) 0.001 0.269 0.321 0.326 0.343 0.348 99.93 0/12 12h28
NEPENTHE(iter #2) 0 0.338 0.347 0.357 0.362 0.367 99.82 1/12 19h18
NEPENTHE(iter #3) 0 0.156 0.282 0.309 0.376 0.381 99.79 1/12 26h28
NEPENTHE(iter #4) 0 0.001 0.092 0.235 0.267 0.356 99.68 1/12 32h58
NEPENTHE(iter #5) 0 0 0.001 0.001 0.001 0.339 99.77 2/12 40h28
NEPENTHE(iter #6) 0 0 0 0 0 0.162 99.75 5/12 47h18
NEPENTHE(iter #7) 0 0 0 0 0 0.001 99.70 5/12 53h18
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Table 39: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for MobileNetv2 on SVIRO.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.187 0.241 0.337 0.341 0.484 0.508 99.98 0/35 5h35
IMP(iter #1) 0.165 0.218 0.248 0.366 0.478 0.515 99.98 0/35 12h11
IMP(iter #2) 0.152 0.191 0.232 0.402 0.471 0.560 100 0/35 18h47
IMP(iter #3) 0.161 0.180 0.290 0.411 0.483 0.521 99.98 0/35 24h23
IMP(iter #4) 0.169 0.215 0.296 0.419 0.430 0.483 99.96 0/35 30h19
IMP(iter #5) 0.162 0.173 0.306 0.372 0.417 0.435 99.93 0/35 36h35
IMP(iter #6) 0.155 0.196 0.333 0.337 0.362 0.417 99.93 0/35 42h31
IMP(iter #7) 0.146 0.185 0.291 0.317 0.322 0.381 99.95 0/35 48h47

NEPENTHE(iter #1) 0.001 0.168 0.220 0.385 0.459 0.508 100 0/35 12h22
NEPENTHE(iter #2) 0.001 0.001 0.163 0.196 0.321 0.367 99.98 0/35 19h09
NEPENTHE(iter #3) 0 0 0.002 0.059 0.218 0.375 99.98 2/35 24h56
NEPENTHE(iter #4) 0 0 0.004 0.020 0.268 0.392 99.95 2/35 30h54
NEPENTHE(iter #5) 0 0 0.001 0.045 0.262 0.388 99.97 2/35 37h19
NEPENTHE(iter #6) 0 0 0 0 0.020 0.147 35.55 4/35 49h53

Table 40: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for BERT on QNLI.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.173 0.191 0.212 0.219 0.223 0.227 90.48 0/12 0h34
IMP(iter #1) 0.179 0.198 0.224 0.229 0.238 0.248 89.60 0/12 1h11
IMP(iter #2) 0.202 0.209 0.213 0.220 0.224 0.258 89.91 0/12 1h47
IMP(iter #3) 0.215 0.217 0.234 0.243 0.250 0.269 89.80 0/12 2h23
IMP(iter #4) 0.231 0.235 0.251 0.252 0.269 0.300 89.75 0/12 2h59
IMP(iter #5) 0.238 0.241 0.248 0.256 0.284 0.306 89.38 0/12 3h35
IMP(iter #6) 0.265 0.268 0.269 0.280 0.294 0.335 89.15 0/12 4h11
IMP(iter #7) 0.273 0.274 0.280 0.283 0.291 0.356 88.41 0/12 4h47

NEPENTHE(iter #1) 0 0 0.218 0.234 0.240 0.244 89.58 2/12 1h23
NEPENTHE(iter #2) 0 0 0.215 0.246 0.251 0.264 89.46 2/12 2h11
NEPENTHE(iter #3) 0 0 0 0.227 0.239 0.246 88.89 3/12 2h59
NEPENTHE(iter #4) 0 0 0 0.239 0.248 0.252 88.94 3/12 3h47
NEPENTHE(iter #5) 0 0 0 0.192 0.263 0.279 89.38 3/12 4h35
NEPENTHE(iter #6) 0 0 0 0 0.280 0.299 88.21 3/12 5h23
NEPENTHE(iter #7) 0 0 0 0 0.251 0.314 88.69 4/12 6h11
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Table 41: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for RoBERTa on QNLI.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.190 0.201 0.210 0.235 0.275 0.303 92.18 0/12 0h35
IMP(iter #1) 0.198 0.214 0.215 0.260 0.271 0.276 92.07 0/12 1h10
IMP(iter #2) 0.205 0.212 0.255 0.263 0.300 0.325 92.07 0/12 1h45
IMP(iter #3) 0.216 0.223 0.265 0.266 0.325 0.334 91.56 0/12 2h21
IMP(iter #4) 0.227 0.234 0.265 0.278 0.343 0.383 91.65 0/12 2h56
IMP(iter #5) 0.227 0.255 0.268 0.321 0.379 0.380 91.51 0/12 3h31
IMP(iter #6) 0.239 0.259 0.261 0.313 0.368 0.386 90.19 0/12 4h06
IMP(iter #7) 0.248 0.254 0.300 0.346 0.393 0.420 90.08 0/12 4h41

NEPENTHE(iter #1) 0.001 0.001 0.230 0.274 0.426 0.475 88.36 0/12 1h22
NEPENTHE(iter #2) 0 0 0.001 0.028 0.031 0.487 87.41 2/12 2h09
NEPENTHE(iter #3) 0 0 0.001 0.001 0.003 0.322 86.43 2/12 2h56
NEPENTHE(iter #4) 0 0 0 0.001 0.001 0.023 87.26 3/12 3h43
NEPENTHE(iter #5) 0 0 0 0.000 0.001 0.017 86.03 3/12 4h30
NEPENTHE(iter #6) 0 0 0 0.001 0.001 0.006 85.21 3/12 5h17
NEPENTHE(iter #7) 0 0 0 0 0 0 84.37 6/12 6h04

Table 42: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for BERT on RTE.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.211 0.216 0.233 0.242 0.252 0.261 61.01 0/12 0h02
IMP(iter #1) 0.224 0.225 0.237 0.250 0.260 0.276 55.60 0/12 0h03
IMP(iter #2) 0.243 0.244 0.245 0.274 0.288 0.294 62.09 0/12 0h04
IMP(iter #3) 0.258 0.263 0.279 0.286 0.309 0.344 59.21 0/12 0h05
IMP(iter #4) 0.275 0.282 0.321 0.326 0.342 0.386 58.84 0/12 0h06
IMP(iter #5) 0.287 0.293 0.328 0.366 0.369 0.397 58.48 0/12 0h07
IMP(iter #6) 0.303 0.313 0.342 0.388 0.403 0.409 59.21 0/12 0h08
IMP(iter #7) 0.335 0.343 0.370 0.374 0.432 0.451 57.76 0/12 0h09

NEPENTHE(iter #1) 0.204 0.223 0.230 0.233 0.244 0.260 57.04 0/12 0h03
NEPENTHE(iter #2) 0.001 0.153 0.173 0.181 0.264 0.280 52.71 0/12 0h04
NEPENTHE(iter #3) 0 0.001 0.201 0.283 0.298 0.311 54.87 1/12 0h05
NEPENTHE(iter #4) 0 0 0 0.246 0.258 0.266 53.43 3/12 0h06
NEPENTHE(iter #5) 0 0 0 0.007 0.287 0.296 56.32 3/12 0h07
NEPENTHE(iter #6) 0 0 0 0.022 0.296 0.309 54.87 3/12 0h08
NEPENTHE(iter #7) 0 0 0 0.008 0.327 0.339 53.79 3/12 0h09
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Table 43: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for RoBERTa on RTE.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.236 0.242 0.263 0.292 0.302 0.303 66,787 0/12 0h02
IMP(iter #1) 0.241 0.243 0.282 0.296 0.314 0.321 72.56 0/12 0h03
IMP(iter #2) 0.253 0.256 0.296 0.341 0.352 0.385 72.92 0/12 0h04
IMP(iter #3) 0.249 0.293 0.304 0.376 0.401 0.409 66.06 0/12 0h05
IMP(iter #4) 0.254 0.291 0.326 0.387 0.434 0.435 67.51 0/12 0h06
IMP(iter #5) 0.262 0.291 0.363 0.418 0.459 0.484 63.54 0/12 0h07
IMP(iter #6) 0.285 0.296 0.385 0.426 0.465 0.497 64.98 0/12 0h08
IMP(iter #7) 0.297 0.305 0.405 0.445 0.492 0.502 60.29 0/12 0h09

NEPENTHE(iter #1) 0.001 0.252 0.263 0.298 0.310 0.325 64.26 0/12 0h03
NEPENTHE(iter #2) 0.001 0.271 0.295 0.322 0.347 0.351 68.23 0/12 0h04
NEPENTHE(iter #3) 0 0.001 0.265 0.295 0.363 0.380 66.06 1/12 0h05
NEPENTHE(iter #4) 0 0 0.326 0.333 0.344 0.349 54.15 2/12 0h06
NEPENTHE(iter #5) 0 0 0.263 0.359 0.392 0.399 59.93 2/12 0h07
NEPENTHE(iter #6) 0 0 0.001 0.001 0.325 0.387 54.15 2/12 0h08
NEPENTHE(iter #7) 0 0 0.001 0.001 0.001 0.390 59.21 2/12 0h09

Table 44: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for BERT on SST-2.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.114 0.122 0.130 0.172 0.178 0.205 92,20 0/12 0h21
IMP(iter #1) 0.119 0.126 0.139 0.190 0.213 0.226 91.63 0/12 0h41
IMP(iter #2) 0.138 0.141 0.161 0.241 0.264 0.267 90.83 0/12 1h01
IMP(iter #3) 0.133 0.144 0.185 0.239 0.280 0.307 90.48 0/12 1h22
IMP(iter #4) 0.142 0.167 0.205 0.251 0.303 0.332 90.37 0/12 1h43
IMP(iter #5) 0.158 0.181 0.219 0.279 0.312 0.376 89.91 0/12 2h04
IMP(iter #6) 0.178 0.215 0.241 0.322 0.361 0.363 88.53 0/12 2h25
IMP(iter #7) 0.187 0.226 0.270 0.365 0.370 0.466 87.96 0/12 2h46

NEPENTHE(iter #1) 0.001 0.132 0.137 0.182 0.224 0.229 91.17 0/12 0h48
NEPENTHE(iter #2) 0.001 0.001 0.191 0.209 0.238 0.246 89.68 0/12 1h16
NEPENTHE(iter #3) 0 0 0 0.193 0.205 0.224 89.00 3/12 1h44
NEPENTHE(iter #4) 0 0 0 0.001 0.204 0.243 88.88 3/12 2h12
NEPENTHE(iter #5) 0 0 0 0.001 0.228 0.254 87.39 3/12 3h01
NEPENTHE(iter #6) 0 0 0 0.001 0.246 0.252 88.76 3/12 3h29
NEPENTHE(iter #7) 0 0 0 0.001 0.245 0.253 87.73 3/12 3h57
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Table 45: Test performance (top-1), bottom six layer’s entropies Ĥ and the number of removed layers (Rem.)
for RoBERTa on SST-2.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1 Rem. Time
Dense model 0.131 0.145 0.152 0.187 0.192 0.278 92.66 0/12 0h21
IMP(iter #1) 0.129 0.151 0.153 0.189 0.196 0.276 92.32 0/12 0h41
IMP(iter #2) 0.136 0.155 0.156 0.186 0.226 0.266 92.43 0/12 1h01
IMP(iter #3) 0.159 0.173 0.179 0.195 0.234 0.346 93.23 0/12 1h22
IMP(iter #4) 0.178 0.180 0.215 0.227 0.304 0.374 92.66 0/12 1h43
IMP(iter #5) 0.178 0.199 0.253 0.293 0.319 0.419 92.20 0/12 2h04
IMP(iter #6) 0.177 0.208 0.226 0.280 0.323 0.416 91.17 0/12 2h25
IMP(iter #7) 0.174 0.200 0.220 0.285 0.344 0.428 90.83 0/12 2h46

NEPENTHE(iter #1) 0.001 0.128 0.160 0.161 0.202 0.255 92.32 0/12 0h48
NEPENTHE(iter #2) 0.001 0.001 0.166 0.205 0.216 0.251 92.09 0/12 1h16
NEPENTHE(iter #3) 0 0.001 0.162 0.197 0.283 0.322 90.83 1/12 1h44
NEPENTHE(iter #4) 0 0 0.191 0.198 0.257 0.267 90.60 2/12 2h12
NEPENTHE(iter #5) 0 0 0.191 0.212 0.281 0.345 90.48 2/12 3h01
NEPENTHE(iter #6) 0 0 0.001 0.210 0.293 0.378 90.71 2/12 3h29
NEPENTHE(iter #7) 0 0 0.001 0.215 0.272 0.275 89.68 2/12 3h57
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D.5 Practical Sanity Checks on Gaussian Assumptions

Our derivation is based on the assumption that the weights of a layer and the inputs for its corresponding
rectifier activation are Gaussian distributed. We validate here this assumption empirically. Fig. 7, 9, 11, 13, 15
show the weights distribution for each rectifier activated layer for all the models employed in our experiments.
Moreover, Fig. 8, 10, 12, 14, 16 show the input distribution for each rectifier layer for each model used in
our experiments. Inputs from CIFAR-10 are used for ResNet-18, Swin-T, and MobileNet-V2 models, while
inputs from QNLI are employed for BERT and RoBERTa models. It appears that the weights and the inputs
of the corresponding layers are following a Gaussian distribution.
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Figure 7: Weights distribution of each layer in ResNet-18.
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Figure 8: Input distribution of each layer in ResNet-18.
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Figure 9: Weights distribution of each layer in Swin-T.
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Figure 10: Input distribution of each layer in Swin-T.
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Figure 11: Weights distribution of each layer in MobileNet.
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Figure 12: Input distribution of each layer in MobileNet.
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Figure 13: Weights distribution of each layer in BERT.
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Figure 14: Input distribution of each layer in BERT.
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Figure 15: Weights distribution of each layer in RoBERTa.
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Figure 16: Input distribution of each layer in RoBERTa.
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