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Abstract

Automatic evaluation of Grammatical Error001
Correction (GEC) is essential in developing002
efficient GEC systems. Existing methods for003
automatic evaluation require multiple reference004
sentences or manual scores. However, such005
resources are costly, which hinders automatic006
evaluation for various domains and correction007
types. This paper proposes IMpact-based met-008
ric for GEC using PARAllel data (IMPARA)009
that utilizes parallel data consisting of pairs of010
grammatical/ungrammatical sentences and cor-011
rection impacts. Because parallel data can be012
obtained with less effort than manually assess-013
ing evaluation scores, IMPARA can reduce the014
cost of data creation. Correlations between IM-015
PARA and human scores show that IMPARA016
is comparable or better than existing methods.017
Furthermore, we find that IMPARA can per-018
form evaluations that fit different domains and019
correction styles by changing the parallel data.020

1 Introduction021

GEC is the task of correcting grammatically incor-022

rect sentences (Yuan and Briscoe, 2016; Chollam-023

patt and Ng, 2018; Junczys-Dowmunt et al., 2018;024

Kaneko et al., 2020; Omelianchuk et al., 2020).025

GEC is useful in various domains including web-026

site text (Flachs et al., 2020) and essays written027

by language learners (Yannakoudakis et al., 2011).028

Moreover, GEC systems have different correction029

styles such as minimal and fluency edits (Ng et al.,030

2013; Napoles et al., 2017; Hotate et al., 2019). A031

GEC model is evaluated by computing correlations032

between automatic and manual corrections. Be-033

cause the cost of a manual evaluation is high, we034

need to establish an automatic evaluation measures035

that correlate well with manual evaluation.036

Automatic evaluation measures of GEC are cate-037

gorized into two. One is reference-based methods038

(Dahlmeier and Ng, 2012; Napoles et al., 2015;039

Bryant et al., 2017) that evaluate the closeness of040

output sentences from a GEC system and the ref- 041

erence sentences created by human annotators. In 042

general, an ungrammartical sentence can be cor- 043

rected in different ways. Therefore, reference- 044

based methods require multiple reference sentences 045

for accurate evaluation. However, Choshen and 046

Abend (2018b) argue that it is unrealistic to pre- 047

pare sufficient reference sentences that cover all 048

correction patterns. In addition, they show that 049

using low-coverage reference sets deteriorates the 050

reliability of reference-based evaluation. 051

The other category includes reference-less meth- 052

ods that use only input sentences and system out- 053

puts. Researchers proposed several reference-less 054

methods based on language models (Napoles et al., 055

2016; Flachs et al., 2020). However, they do not 056

leverage GEC specific supervision data, which 057

causes low correlations with manual evaluation. 058

Therefore, Asano et al. (2017) and Yoshimura et al. 059

(2020) proposed reference-less methods optimized 060

directly for manual evaluation. These methods re- 061

quire manual evaluation to adapt evaluation models 062

for different domains and correction styles. Still, 063

it is difficult and costly to create a reliable data for 064

manual evaluation (Choshen and Abend, 2018a). 065

In order to realize an accurate evaluation metric 066

at a lower cost, we propose a reference-less method 067

IMPARA1 that can be trained only on parallel data 068

consisting of grammatical and ungrammatical sen- 069

tence pairs. We introduce the idea of correction im- 070

pact to effectively train an evaluation model from 071

parallel data. IMPARA can use parallel data in the 072

same format as GEC training data, which greatly 073

reduces the cost of data creation. In addition, an 074

IMPARA model can take into account the charac- 075

teristics of various domains and correction styles. 076

Meta-evaluation experiments show that IM- 077

PARA has the comparable or better evaluation 078

performance than existing reference-less methods 079

(Yoshimura et al., 2020; Flachs et al., 2020). Fur- 080

1https://... (see the attached code during the review)
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Figure 1: Generation of supervision data (left), training (middle), and the usage (right) of an IMPARA model.

thermore, we find that training an IMPARA model081

on data from the domain and correction style cor-082

responding to the meta-evaluation data improves083

evaluation performance.084

2 IMPARA085

Figure 1 illustrates IMPARA, which consists of086

two evaluation models of correction and similarity.087

The Correction Evaluation (CE) model computes088

a relative correction score to an output sentence.089

The CE model was inspired by MAEGE (Choshen090

and Abend, 2018a), which meta-evaluates the au-091

tomatic evaluation measure using sentence pairs092

ranked by the number of editing operations applied093

to ungrammatical sentences. The model learns or-094

der relation by comparing edited sentence pairs095

where partial edits are applied at random to an un-096

grammatical sentence. We assume that each edit097

corrects an error of a different severity. Therefore,098

we introduce the impact of an edit and detemine an099

order relation on edited sentence pairs.100

The Similarity Evaluation (SE) model prevents101

deviations of an output sentence from an input.102

While Islam and Magnani (2021) computes the103

similarity score between input and output sentences104

at surface level, the proposed SE model computes105

a similarity score from sentence vectors.106

2.1 Edit Impact107

Let (S, T ) be a pair of ungrammatical and gram-108

matical sentences, f be a function applying edits109

to an ungrammatical sentence, and E be a set of110

edits. Applying all edits in E to S obtains T , i.e.,111

T = f(S, E). We consider that an edit e ∈ E112

changing the meaning of a sentence drastically has113

a high impact. Then, we define an impact score Ie114

of e by the distance between a grammarical sen- 115

tence T and another sentence T−e = f(S, E \ e) 116

that excludes an edit e from E . 117

Ie = 1− BERT(T ) · BERT(T−e)

∥BERT(T )∥∥BERT(T−e)∥
(1) 118

Here, BERT(T ) presents a vector representation 119

of the sentence T computed by the pre-trained 120

BERT2. When we obtain a sentence f(S,E) by 121

applying a subset of edit operations E ⊆ E , we 122

define the overall impact score as the sum of the 123

impact scores of all edits in E, i.e.,
∑

e∈E Ie. 124

2.2 IMPARA Architecture 125

Considering the scores of both the CE and SE 126

models for the input sentence S and the GEC out- 127

put sentence O, we computes the overall score 128

score(S,O) ∈ [0, 1]. Denoting the correction 129

score as corr(O), the similarity score as sim(S,O), 130

and the threshold for the similarity score as θ, we 131

define the overall score, 132

score(S,O) =

{
corr(O) (if sim(S,O) > θ)
0 (otherwise)

.

(2) 133

If the similarity score is less than or equal to θ, we 134

regard that the output sentence is unrelated to the 135

input sentence, and set the correction score to 0. In 136

contrast, if the similarity score is greater than θ, we 137

use the correction score as the overall score. 138

Correction score We compute the correction score 139

as corr(O) = σ(R(O)), where R presents the CE 140

model and σ does the sigmoid function. We build 141

R by fine-tuning a BERT model; more specifically, 142

we model R as a linear transformation from the 143

2The mean of all token vectors in T at the final layer.
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embeddings of the first token at the final layer to a144

scalar value. Hence, we describe the procedure for145

automatic construction of the supervision data (for146

training R) only from the parallel data of grammat-147

ical and ungrammatical sentences.148

Let C = {(Si, Ti)}ni=1 be the parallel data of n149

instances of ungrammatical Si and grammatical Ti150

sentences. For each instance (S, T ) ∈ C, we create151

pairs of pseudo edited sentences by applying dif-152

ferent partial edits to S, and determine their order153

relations using the impact score (Eq. 1). In order to154

extract edit operations from (S, T ), we find align-155

ments using ERRANT (Bryant et al., 2017), and156

extract edits E = {e1, . . . , e|E|} from S to T . We157

randomly create a subset E
′ ⊆ E with k elements,158

where k ∈ {1, 2, . . . , |E|} is chosen from the dis-159

crete uniform distribution. Because comparing two160

subsets with large differences is difficult, we mod-161

ify E
′

to create another subset E
′′
. We initialize162

E
′′
= E

′
, and apply the following operation for163

each element e ∈ E with the probability 1
|E| .164

E
′′ ←

{
E

′′ ∪ {e} if e /∈ E
′

E
′′ \ {e} if e ∈ E

′ (3)165

We reject E′ and E′′ when this operation results in166

E′′ = E′. In this way, we obtain psuedo edited sen-167

tences f(S,E
′
), f(S,E

′′
) by applying E

′
and E

′′
168

to the ungrammatical sentence S. We determine169

the order relation of the two sentence by using the170

impact score: we denote the edited sentence with171

a higher impact score as S+ and the other as S−.172

Generating at most c sentence pairs from a single173

pair of grammatical/ungrammatical sentences, we174

build the supervision data T for R.175

We train R by minimizing the loss function L to176

learn the order of correction sentences.177

L =
1

|T |
∑

(S−,S+)∈T

σ (R(S−)−R(S+)) (4)178

Here, we use the sigmoid function σ to avoid over-179

weighting for some pairs in the supervision data3.180

Similarity score: To measure the semantic similar-181

ity between an input S and output O sentences, we182

calculate the cosine similarity sim(S,O) using the183

sentence vectors from a pre-trained BERT model.184

3Preliminary experiments confirmed that the sigmoid func-
tion contirubted to improve the evaluation performance.

3 Experiments 185

3.1 Settings 186

We conduct two experiments for meta-evaluation of 187

automatic evaluation metrics. The first evaluation 188

assesses correlations between automatic and hu- 189

man evaluations on CoNLL-2014 dataset (Grund- 190

kiewicz et al., 2015), which is human-created rank- 191

ing of the several GEC system outputs4. We com- 192

pute Pearson’s correlation (Pea) and Spearman’s 193

correlation (Spe) coefficients. We also measure 194

accuracy (Acc) and Kendall’s rank correlation coef- 195

ficients (Ken) for sentence-level comparison. The 196

CE model is trained on the parallel supervision data 197

from CoNLL-2013 (Ng et al., 2013). 198

Second, we examine the ability of IMPARA to 199

reflect domains and correction styles present in su- 200

pervision data. We perform meta-evaluation with 201

MAEGE (Choshen and Abend, 2018a)5 on differ- 202

ent combinations of supervision data for the CE 203

model and meta-evaluation data. In these experi- 204

ments, we use CWEB (Flachs et al., 2020) (website 205

texts), FCE (Yannakoudakis et al., 2011) (essay), 206

CoNLL-2014 (Ng et al., 2014) (minimal edits), and 207

JFLEG (Napoles et al., 2017) (fluency edits). 208

We randomly sampled 90% of data for training, 209

and used the remaining 10% for meta-evaluation. 210

Pre-trained BERT6 was used for the SE model, 211

and fine-tuned for the CE model. We employ 212

SOME (Yoshimura et al., 2020) and Scribendi 213

Score (Islam and Magnani, 2021) as baselines. To 214

verify the effectiveness of the construction method 215

of the supervision data of IMPARA, we compare 216

a CE model fine-tuned only on the sentence pairs 217

of the original parallel corpus (only parallel). To 218

train SOME, we used TMU dataset7, with the same 219

split as the holdout method in IMPARA and the 220

hyperparameter settings of Yoshimura et al. (2020). 221

3.2 Results 222

Table 1 shows correlations between automatic and 223

human evaluations8. IMPARA shows compara- 224

ble correlations with SOME at sentence level, and 225

outperforms SOME at corpus level. In the meta- 226

evaluation of MAEGE (Table 2), IMPARA per- 227

4In this experiment, we used the Expected Wins.
5https://github.com/borgr/EoE
6https://github.com/huggingface/

transformers
7https://huggingface.co/datasets/tmu_

gfm_dataset
8As we could not reproduce Scribendi scores, we report

the reported scores and ones computed by our implementation.
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Corpus Sentence
Pea. Spe. Acc. Ken.

Scribendi Score(ref.) 0.951 0.940 - -
Scribendi Score(our impl.) 0.303 0.729 0.414 -0.170
SOME 0.956 0.923 0.777 0.555
IMPARA(only parallel) 0.936 0.929 0.742 0.485
IMPARA 0.974 0.934 0.748 0.496

Table 1: Correlation with manual evaluation on CoNLL-
2014

Corpus Sentence Chain
Pea Spe Pea Spe Ken

Scribendi Score 0.884 0.981 0.374 0.421 0.824
SOME 0.965 1.000 0.394 0.439 0.563
IMPARA 0.951 0.990 0.522 0.608 0.692

Table 2: Meta-evaluation by MAEGE on CoNLL-2014

formed similarly to the baselines at corpus level,228

and outperformed the the baselines by up to 0.18229

points in sentence-level and chain-level evaluations.230

These results indicate that IMPARA achieves the231

comparable or better evaluation performance than232

the existing reference-less methods, even with au-233

tomatically generated supervision data.234

Table 3 reports meta-evaluation using MAEGE235

on four evaluation corpora with diffirent training236

corpora. The results deminstrate that training and237

evaluating a CE model on the data of the same238

type improves the performance of automatic evalua-239

tion. Moreover, we compared the evaluation perfor-240

mance with existing methods using MAEGE (See241

table 4 in appendix). SOME and Scribendi Score242

sufferred from low performance on CWEB, FCE,243

and JFLEG. In contrast, IMPARA achieved the244

high performance in all evaluation corpora. This re-245

sults suggest that IMPARA evaluates GEC outputs246

with characteristics of a dataset into consideration.247

A further analysis indicates that correction im-248

pacts learned from parallel corpora focus more on249

corrections related to content words than those re-250

lated to function words (see Section B in appendix).251

4 Related Work252

Major reference-based metrics include I-measure253

(Felice and Briscoe, 2015), M2 (Dahlmeier and Ng,254

2012), and ERRANT (Bryant et al., 2017) with255

precision, recall, and F0.5 values. GLEU (Napoles256

et al., 2015) is based on BLEU metric (Papineni257

et al., 2002). These metrics require multiple refer-258

ences while IMPARA uses a single reference only.259

Napoles et al. (2016) first introduced a reference-260

less method, which uses a detection tool of gram-261

matical error and a language model. They showed262

Eval Train Corpus Sentence Chain
Pea Spe Pea Spe Ken

CoNLL2013 0.932 1.000 0.411 0.515 0.688
CoNLL CWEB 0.961 1.000 0.380 0.468 0.574
2013 JFLEG 0.959 0.990 0.344 0.408 0.568

FCE 0.967 1.000 0.404 0.490 0.567

CWEB

CoNLL2013 0.750 0.836 0.331 0.328 0.713
CWEB 0.790 0.963 0.472 0.432 0.780
JFLEG 0.757 0.818 0.353 0.354 0.775
FCE 0.805 0.936 0.350 0.397 0.775

JFLEG

CoNLL2013 0.959 0.990 0.516 0.604 0.677
CWEB 0.952 0.972 0.524 0.572 0.644
JFLEG 0.937 1.000 0.618 0.685 0.783
FCE 0.961 0.990 0.581 0.649 0.627

FCE

CoNLL2013 0.865 0.972 0.377 0.388 0.758
CWEB 0.882 0.990 0.435 0.441 0.753
JFLEG 0.852 0.972 0.390 0.429 0.739
FCE 0.853 0.990 0.541 0.616 0.848

Table 3: Performance variation by combination of train-
ing and evaluation corpora

that its performance was comparable to reference- 263

based methods. Islam and Magnani (2021) pro- 264

posed another method using GPT-2 (Radford et al., 265

2019). Although these methods require no supervi- 266

sion data for an evaluation model, we cannot adapt 267

them to different domains or correction styles. 268

Asano et al. (2017) proposed a reference-less 269

method, and outperformed reference-based meth- 270

ods by combining grammaticality, fluency, and 271

meaning-preservation sub-metrics. This method 272

uses regressor trained on GUG data (Heilman et al., 273

2014), language model and METEOR (Denkowski 274

and Lavie, 2014) as sub-metrics. Yoshimura et al. 275

(2020) showed that it was adequate to optimize an 276

evaluation model for manual evaluation. However, 277

they need costly data of human evaluation. 278

5 Conclusion 279

We proposed IMPARA, a method for constructing 280

an automatic evaluation measure for GEC using 281

a parallel corpus. The proposed method obtained 282

a relative score for corrected sentences, utilizing 283

impact scores of edits. We confirmed that IMPARA 284

performed comparable or better than the existing 285

methods in terms of correlations with human evalu- 286

ation, and that it can perform automatic evaluation 287

considering the characteristics of the used corpora. 288

Since IMPARA relies on parallel data, it needs 289

parallel corpus corresponding to the domain or cor- 290

rection style of the evaluation data. Future work 291

include construction of evaluation metrics without 292

using parallel data, human evaluation data, mul- 293

tiple references, and treatment of mismatches of 294

domain and/or correction styles. 295
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Train and Method Corpus Sentence Chain
test data Pea Spe Pea Spe Ken

CoNLL2013
Scribendi 0.938 0.984 0.331 0.355 0.698
SOME 0.961 1.000 0.370 0.419 0.502
IMPARA 0.932 1.000 0.411 0.515 0.688

CWEB
Scribendi 0.637 0.451 0.177 0.194 0.616
SOME 0.767 0.663 0.055 0.155 0.678
IMPARA 0.790 0.963 0.472 0.432 0.780

JFLEG
Scribendi 0.932 0.945 0.255 0.303 0.574
SOME 0.955 0.990 0.523 0.531 0.639
IMPARA 0.937 1.000 0.618 0.685 0.783

FCE
Scribendi 0.869 0.933 0.342 0.449 0.897
SOME 0.843 0.972 0.165 0.254 0.663
IMPARA 0.853 0.990 0.541 0.616 0.848

Table 4: Performance of IMPARA and existing methods
using the same data for training and evaluation

Error type Impact (10−2) Frequency
NOUN 0.652 408
VERB:TENSE 0.649 480
VERB 0.580 557
NOUN:NUM 0.385 534
PUNCT 0.367 473
DET 0.364 1142
PREP 0.325 700

Table 5: Error types with frequency more than 400
(excluding OTHER) in CoNLL2014 and their assinged
impact scores.

A Hyperparameters479

To avoid the effect of the size of different corpora480

for fine-tuning the CE model during the compar-481

isons, we adjusted the size of the training data to482

|T | = 4096 regardless of the target corpus. We483

set the maximum number of edited sentence pairs484

generated from a pair of grammtical and ungramat-485

ical sentences to c = 30, the learning rate to 10−5,486

and the batch size to 32. The number of epochs487

for fine-tuning varies from 1, 2, ..., 10 to train the488

model. The threshold of similarity score θ is set489

to 0.9. We trained the models with four GPUs490

(RTX2080 Ti), performed a hyperparameter search491

on development set to select the best models.492

B Impact on Different Error Types493

We analyzed impact scores (defined in Section 2.1)494

assigned to different error types. For the sentence495

pairs in CoNLL-2014, we extracted edits and error496

types using ERRANT, and calculated the average497

impact score for each error type. Table 5 shows498

the averaged impact score for each error type that499

apperaed more than 400 times (excluding OTHER500

type).501

As we expected, errors of content words such as502

NOUN (nouns) and VERB (verbs) were assigned503

with higher impact scores compared to those of 504

functional words such as DET (determiner) and 505

PREP (prepositions). In addition, we also observed 506

that a lower impact score was calculated for correc- 507

tions related to quantity. These results suggest that 508

the impact score designed in this study is more con- 509

cerned with changes in meaning caused by content 510

words than with corrections related to grammatical 511

roles caused by function words. 512
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