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Abstract

Automatic evaluation of Grammatical Error
Correction (GEC) is essential in developing
efficient GEC systems. Existing methods for
automatic evaluation require multiple reference
sentences or manual scores. However, such
resources are costly, which hinders automatic
evaluation for various domains and correction
types. This paper proposes IMpact-based met-
ric for GEC using PARAllel data (IMPARA)
that utilizes parallel data consisting of pairs of
grammatical/ungrammatical sentences and cor-
rection impacts. Because parallel data can be
obtained with less effort than manually assess-
ing evaluation scores, IMPARA can reduce the
cost of data creation. Correlations between IM-
PARA and human scores show that IMPARA
is comparable or better than existing methods.
Furthermore, we find that IMPARA can per-
form evaluations that fit different domains and
correction styles by changing the parallel data.

1 Introduction

GEC is the task of correcting grammatically incor-
rect sentences (Yuan and Briscoe, 2016; Chollam-
patt and Ng, 2018; Junczys-Dowmunt et al., 2018;
Kaneko et al., 2020; Omelianchuk et al., 2020).
GEC is useful in various domains including web-
site text (Flachs et al., 2020) and essays written
by language learners (Yannakoudakis et al., 2011).
Moreover, GEC systems have different correction
styles such as minimal and fluency edits (Ng et al.,
2013; Napoles et al., 2017; Hotate et al., 2019). A
GEC model is evaluated by computing correlations
between automatic and manual corrections. Be-
cause the cost of a manual evaluation is high, we
need to establish an automatic evaluation measures
that correlate well with manual evaluation.
Automatic evaluation measures of GEC are cate-
gorized into two. One is reference-based methods
(Dahlmeier and Ng, 2012; Napoles et al., 2015;
Bryant et al., 2017) that evaluate the closeness of

output sentences from a GEC system and the ref-
erence sentences created by human annotators. In
general, an ungrammartical sentence can be cor-
rected in different ways. Therefore, reference-
based methods require multiple reference sentences
for accurate evaluation. However, Choshen and
Abend (2018b) argue that it is unrealistic to pre-
pare sufficient reference sentences that cover all
correction patterns. In addition, they show that
using low-coverage reference sets deteriorates the
reliability of reference-based evaluation.

The other category includes reference-less meth-
ods that use only input sentences and system out-
puts. Researchers proposed several reference-less
methods based on language models (Napoles et al.,
2016; Flachs et al., 2020). However, they do not
leverage GEC specific supervision data, which
causes low correlations with manual evaluation.
Therefore, Asano et al. (2017) and Yoshimura et al.
(2020) proposed reference-less methods optimized
directly for manual evaluation. These methods re-
quire manual evaluation to adapt evaluation models
for different domains and correction styles. Still,
it is difficult and costly to create a reliable data for
manual evaluation (Choshen and Abend, 2018a).

In order to realize an accurate evaluation metric
at a lower cost, we propose a reference-less method
IMPARA! that can be trained only on parallel data
consisting of grammatical and ungrammatical sen-
tence pairs. We introduce the idea of correction im-
pact to effectively train an evaluation model from
parallel data. IMPARA can use parallel data in the
same format as GEC training data, which greatly
reduces the cost of data creation. In addition, an
IMPARA model can take into account the charac-
teristics of various domains and correction styles.

Meta-evaluation experiments show that IM-
PARA has the comparable or better evaluation
performance than existing reference-less methods
(Yoshimura et al., 2020; Flachs et al., 2020). Fur-
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Figure 1: Generation of supervision data (left), training (middle), and the usage (right) of an IMPARA model.

thermore, we find that training an IMPARA model
on data from the domain and correction style cor-
responding to the meta-evaluation data improves
evaluation performance.

2 IMPARA

Figure 1 illustrates IMPARA, which consists of
two evaluation models of correction and similarity.

The Correction Evaluation (CE) model computes
a relative correction score to an output sentence.
The CE model was inspired by MAEGE (Choshen
and Abend, 2018a), which meta-evaluates the au-
tomatic evaluation measure using sentence pairs
ranked by the number of editing operations applied
to ungrammatical sentences. The model learns or-
der relation by comparing edited sentence pairs
where partial edits are applied at random to an un-
grammatical sentence. We assume that each edit
corrects an error of a different severity. Therefore,
we introduce the impact of an edit and detemine an
order relation on edited sentence pairs.

The Similarity Evaluation (SE) model prevents
deviations of an output sentence from an input.
While Islam and Magnani (2021) computes the
similarity score between input and output sentences
at surface level, the proposed SE model computes
a similarity score from sentence vectors.

2.1 Edit Impact

Let (S,T') be a pair of ungrammatical and gram-
matical sentences, f be a function applying edits
to an ungrammatical sentence, and £ be a set of
edits. Applying all edits in £ to S obtains 7, i.e.,
T = f(S,€). We consider that an edit e € £
changing the meaning of a sentence drastically has
a high impact. Then, we define an impact score I,

of e by the distance between a grammarical sen-
tence 7" and another sentence 7. = f(S,& \ e)
that excludes an edit e from £.

BERT(T) - BERT(T_,)

L=1-—
IBERT(T')||||BERT(T-)||

ey

Here, BERT(T') presents a vector representation
of the sentence 7' computed by the pre-trained
BERT?. When we obtain a sentence f(S, E) by
applying a subset of edit operations £ C &, we
define the overall impact score as the sum of the
impact scores of all edits in F, i.e., ZGGE I..

2.2 IMPARA Architecture

Considering the scores of both the CE and SE
models for the input sentence S and the GEC out-
put sentence O, we computes the overall score
score(S,0) € [0,1]. Denoting the correction
score as corr(Q), the similarity score as sim(.S, O),
and the threshold for the similarity score as 6, we
define the overall score,

score(S, 0) = corr(O)  (if sim(tS’, 0) > 6) '
0 (otherwise)

2
If the similarity score is less than or equal to 6, we
regard that the output sentence is unrelated to the
input sentence, and set the correction score to 0. In
contrast, if the similarity score is greater than 6, we
use the correction score as the overall score.
Correction score We compute the correction score
as corr(O) = o(R(0)), where R presents the CE
model and o does the sigmoid function. We build
R by fine-tuning a BERT model; more specifically,
we model R as a linear transformation from the

2The mean of all token vectors in T at the final layer.



embeddings of the first token at the final layer to a
scalar value. Hence, we describe the procedure for
automatic construction of the supervision data (for
training R) only from the parallel data of grammat-
ical and ungrammatical sentences.

Let C = {(S;,T;)}"_, be the parallel data of n
instances of ungrammatical .S; and grammatical 7;
sentences. For each instance (S, 7T") € C, we create
pairs of pseudo edited sentences by applying dif-
ferent partial edits to .S, and determine their order
relations using the impact score (Eq. 1). In order to
extract edit operations from (5, 7"), we find align-
ments using ERRANT (Bryant et al., 2017), and
extract edits £ = {ey, ..., e g} from StoT. We

randomly create a subset E C FE with k elements,
where k € {1,2,...,|E|} is chosen from the dis-
crete uniform distribution. Because comparing two
subsets with large differences is difficult, we mod-
ify E' to create another subset E. We initialize
E" = F', and apply the following operation for
each element e € E with the probability ﬁ

E,/%{E U{elife¢ E -

E'\{e}ifec F

We reject £ and E” when this operation results in
E" = F'. In this way, we obtain psuedo edited sen-
tences (S, E'), f(S, E") by applying E" and E”
to the ungrammatical sentence S. We determine
the order relation of the two sentence by using the
impact score: we denote the edited sentence with
a higher impact score as S and the other as S_.
Generating at most c sentence pairs from a single
pair of grammatical/ungrammatical sentences, we
build the supervision data 7 for R.

We train R by minimizing the loss function L to
learn the order of correction sentences.

1
L_m( Z

S_,S+)ET

o (R(S-) = R(S})) 4

Here, we use the sigmoid function ¢ to avoid over-
weighting for some pairs in the supervision data’.
Similarity score: To measure the semantic similar-
ity between an input S and output O sentences, we
calculate the cosine similarity sim(.S, O) using the
sentence vectors from a pre-trained BERT model.

3Preliminary experiments confirmed that the sigmoid func-
tion contirubted to improve the evaluation performance.

3 Experiments

3.1 Settings

We conduct two experiments for meta-evaluation of
automatic evaluation metrics. The first evaluation
assesses correlations between automatic and hu-
man evaluations on CoNLL-2014 dataset (Grund-
kiewicz et al., 2015), which is human-created rank-
ing of the several GEC system outputs*. We com-
pute Pearson’s correlation (Pea) and Spearman’s
correlation (Spe) coefficients. We also measure
accuracy (Acc) and Kendall’s rank correlation coef-
ficients (Ken) for sentence-level comparison. The
CE model is trained on the parallel supervision data
from CoNLL-2013 (Ng et al., 2013).

Second, we examine the ability of IMPARA to
reflect domains and correction styles present in su-
pervision data. We perform meta-evaluation with
MAEGE (Choshen and Abend, 2018a)’ on differ-
ent combinations of supervision data for the CE
model and meta-evaluation data. In these experi-
ments, we use CWEB (Flachs et al., 2020) (website
texts), FCE (Yannakoudakis et al., 2011) (essay),
CoNLL-2014 (Ng et al., 2014) (minimal edits), and
JFLEG (Napoles et al., 2017) (fluency edits).

We randomly sampled 90% of data for training,
and used the remaining 10% for meta-evaluation.
Pre-trained BERT® was used for the SE model,
and fine-tuned for the CE model. We employ
SOME (Yoshimura et al., 2020) and Scribendi
Score (Islam and Magnani, 2021) as baselines. To
verify the effectiveness of the construction method
of the supervision data of IMPARA, we compare
a CE model fine-tuned only on the sentence pairs
of the original parallel corpus (only parallel). To
train SOME, we used TMU dataset’, with the same
split as the holdout method in IMPARA and the
hyperparameter settings of Yoshimura et al. (2020).

3.2 Results

Table 1 shows correlations between automatic and
human evaluations®. IMPARA shows compara-
ble correlations with SOME at sentence level, and
outperforms SOME at corpus level. In the meta-
evaluation of MAEGE (Table 2), IMPARA per-

*In this experiment, we used the Expected Wins.

Shttps://github.com/borgr/EoE

®https://github.com/huggingface/
transformers

"https://huggingface.co/datasets/tmu_
gfm_dataset

8 As we could not reproduce Scribendi scores, we report
the reported scores and ones computed by our implementation.
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Corpus Sentence Eval Train Corpus Sentence  Chain

Pea. Spe. Acc. Ken. Pea Spe Pea Spe Ken

Scribendi Score(ref.) 0.951 0.940 - - CoNLL2013 0.932 1.000 0.411 0.515 0.688
Scribendi Score(our impl.) 0.303 0.729 0.414 -0.170 CoNLL CWEB 0.961 1.000 0.380 0.468 0.574
SOME 0.956 0.923 0.777 0.555 2013  JFLEG 0.959 0.990 0.344 0.408 0.568
IMPARA (only parallel)  0.936 0.929 0.742 0.485 FCE 0.967 1.000 0.404 0.490 0.567
IMPARA 0.974 0.934 0.748 0.496 CoNLL2013 0.750 0.836 0.331 0.328 0.713
CWEB CWEB 0.790 0.963 0.472 0.432 0.780

Table 1: Correlation with manual evaluation on CoNLL- JELEG 0.757 0.818 0.353 0.354 0.775
2014 FCE 0.805 0.936 0.350 0.397 0.775
CoNLL2013 0.959 0.990 0.516 0.604 0.677

i CWEB 0.952 0.972 0.524 0.572 0.644

Corpus — Sentence  Chain JFLEG |pEG  0.937 1.000 0.618 0.685 0.783

- Pea Spe Pea Spe Ken FCE 0.961 0.990 0.581 0.649 0.627
IMPARA 0.951 0.990 0.522 0.608 0.692 FCE JFLEG 0.852 0.972 0.390 0.429 0.739
FCE 0.853 0.990 0.541 0.616 0.848

Table 2: Meta-evaluation by MAEGE on CoNLL-2014

formed similarly to the baselines at corpus level,
and outperformed the the baselines by up to 0.18
points in sentence-level and chain-level evaluations.
These results indicate that IMPARA achieves the
comparable or better evaluation performance than
the existing reference-less methods, even with au-
tomatically generated supervision data.

Table 3 reports meta-evaluation using MAEGE
on four evaluation corpora with diffirent training
corpora. The results deminstrate that training and
evaluating a CE model on the data of the same
type improves the performance of automatic evalua-
tion. Moreover, we compared the evaluation perfor-
mance with existing methods using MAEGE (See
table 4 in appendix). SOME and Scribendi Score
sufferred from low performance on CWEB, FCE,
and JFLEG. In contrast, IMPARA achieved the
high performance in all evaluation corpora. This re-
sults suggest that IMPARA evaluates GEC outputs
with characteristics of a dataset into consideration.

A further analysis indicates that correction im-
pacts learned from parallel corpora focus more on
corrections related to content words than those re-
lated to function words (see Section B in appendix).

4 Related Work

Major reference-based metrics include I-measure
(Felice and Briscoe, 2015), M? (Dahlmeier and N g,
2012), and ERRANT (Bryant et al., 2017) with
precision, recall, and Fy 5 values. GLEU (Napoles
et al., 2015) is based on BLEU metric (Papineni
et al., 2002). These metrics require multiple refer-
ences while IMPARA uses a single reference only.

Napoles et al. (2016) first introduced a reference-
less method, which uses a detection tool of gram-
matical error and a language model. They showed

Table 3: Performance variation by combination of train-
ing and evaluation corpora

that its performance was comparable to reference-
based methods. Islam and Magnani (2021) pro-
posed another method using GPT-2 (Radford et al.,
2019). Although these methods require no supervi-
sion data for an evaluation model, we cannot adapt
them to different domains or correction styles.

Asano et al. (2017) proposed a reference-less
method, and outperformed reference-based meth-
ods by combining grammaticality, fluency, and
meaning-preservation sub-metrics. This method
uses regressor trained on GUG data (Heilman et al.,
2014), language model and METEOR (Denkowski
and Lavie, 2014) as sub-metrics. Yoshimura et al.
(2020) showed that it was adequate to optimize an
evaluation model for manual evaluation. However,
they need costly data of human evaluation.

5 Conclusion

We proposed IMPARA, a method for constructing
an automatic evaluation measure for GEC using
a parallel corpus. The proposed method obtained
a relative score for corrected sentences, utilizing
impact scores of edits. We confirmed that IMPARA
performed comparable or better than the existing
methods in terms of correlations with human evalu-
ation, and that it can perform automatic evaluation
considering the characteristics of the used corpora.

Since IMPARA relies on parallel data, it needs
parallel corpus corresponding to the domain or cor-
rection style of the evaluation data. Future work
include construction of evaluation metrics without
using parallel data, human evaluation data, mul-
tiple references, and treatment of mismatches of
domain and/or correction styles.



References

Hiroki Asano, Tomoya Mizumoto, and Kentaro Inui.
2017. Reference-based metrics can be replaced with
reference-less metrics in evaluating grammatical er-
ror correction systems. In Proceedings of the Eighth
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 343—
348, Taipei, Taiwan. Asian Federation of Natural
Language Processing.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793-805, Vancouver, Canada. Association for
Computational Linguistics.

Shamil Chollampatt and Hwee Tou Ng. 2018. A Mul-
tilayer Convolutional Encoder-Decoder Neural Net-
work for Grammatical Error Correction. In Proceed-
ings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence, pages 5755-5762, New Orleans,
Louisiana. Association for the Advancement of Arti-
ficial Intelligence.

Leshem Choshen and Omri Abend. 2018a. Automatic
metric validation for grammatical error correction.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1372-1382, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Leshem Choshen and Omri Abend. 2018b. Inherent
biases in reference-based evaluation for grammatical
error correction. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 632-642,
Melbourne, Australia. Association for Computational
Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568-572, Montréal, Canada. Association for Compu-
tational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376-380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Mariano Felice and Ted Briscoe. 2015. Towards a stan-
dard evaluation method for grammatical error de-
tection and correction. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 578-587, Denver, Col-
orado. Association for Computational Linguistics.

Simon Flachs, Ophélie Lacroix, Helen Yannakoudakis,

Marek Rei, and Anders Sggaard. 2020. Grammati-
cal error correction in low error density domains: A
new benchmark and analyses. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8467-8478,
Online. Association for Computational Linguistics.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and

Edward Gillian. 2015. Human evaluation of gram-
matical error correction systems. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 461-470, Lisbon,
Portugal. Association for Computational Linguistics.

Michael Heilman, Aoife Cahill, Nitin Madnani, Melissa

Lopez, Matthew Mulholland, and Joel Tetreault.
2014. Predicting grammaticality on an ordinal scale.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 174—180, Baltimore, Maryland.
Association for Computational Linguistics.

Kengo Hotate, Masahiro Kaneko, Satoru Katsumata,

and Mamoru Komachi. 2019. Controlling grammati-
cal error correction using word edit rate. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 149—154, Florence, Italy. Association for
Computational Linguistics.

Md Asadul Islam and Enrico Magnani. 2021. Is this the

end of the gold standard? a straightforward reference-
less grammatical error correction metric. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3009-3015,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,

Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 595-606, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun

Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4248-4254, On-
line. Association for Computational Linguistics.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and

Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 588-593, Beijing, China. Asso-
ciation for Computational Linguistics.


https://aclanthology.org/I17-2058
https://aclanthology.org/I17-2058
https://aclanthology.org/I17-2058
https://aclanthology.org/I17-2058
https://aclanthology.org/I17-2058
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://doi.org/10.18653/v1/P18-1127
https://doi.org/10.18653/v1/P18-1127
https://doi.org/10.18653/v1/P18-1127
https://doi.org/10.18653/v1/P18-1059
https://doi.org/10.18653/v1/P18-1059
https://doi.org/10.18653/v1/P18-1059
https://doi.org/10.18653/v1/P18-1059
https://doi.org/10.18653/v1/P18-1059
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/N15-1060
https://doi.org/10.3115/v1/N15-1060
https://doi.org/10.3115/v1/N15-1060
https://doi.org/10.3115/v1/N15-1060
https://doi.org/10.3115/v1/N15-1060
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/D15-1052
https://doi.org/10.18653/v1/D15-1052
https://doi.org/10.18653/v1/D15-1052
https://doi.org/10.3115/v1/P14-2029
https://doi.org/10.18653/v1/P19-2020
https://doi.org/10.18653/v1/P19-2020
https://doi.org/10.18653/v1/P19-2020
https://aclanthology.org/2021.emnlp-main.239
https://aclanthology.org/2021.emnlp-main.239
https://aclanthology.org/2021.emnlp-main.239
https://aclanthology.org/2021.emnlp-main.239
https://aclanthology.org/2021.emnlp-main.239
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/P15-2097

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2016. There’s no comparison: Reference-
less evaluation metrics in grammatical error correc-
tion. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2109-2115, Austin, Texas. Association
for Computational Linguistics.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. Jfleg: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 229-234, Valencia,
Spain. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1-14,
Baltimore, Maryland. Association for Computational
Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1-12, Sofia, Bulgaria. Association for
Computational Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR - grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163—170, Seattle, WA, USA —
Online. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180-189, Portland, Oregon, USA. Association for
Computational Linguistics.

Ryoma Yoshimura, Masahiro Kaneko, Tomoyuki Ka-
jiwara, and Mamoru Komachi. 2020. SOME:
Reference-less sub-metrics optimized for manual
evaluations of grammatical error correction. In

Proceedings of the 28th International Conference
on Computational Linguistics, pages 6516-6522,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-

ror correction using neural machine translation. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380-386, San Diego, California. Association
for Computational Linguistics.


https://doi.org/10.18653/v1/D16-1228
https://doi.org/10.18653/v1/D16-1228
https://doi.org/10.18653/v1/D16-1228
https://doi.org/10.18653/v1/D16-1228
https://doi.org/10.18653/v1/D16-1228
http://www.aclweb.org/anthology/E17-2037
http://www.aclweb.org/anthology/E17-2037
http://www.aclweb.org/anthology/E17-2037
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://doi.org/10.18653/v1/2020.coling-main.573
https://doi.org/10.18653/v1/2020.coling-main.573
https://doi.org/10.18653/v1/2020.coling-main.573
https://doi.org/10.18653/v1/2020.coling-main.573
https://doi.org/10.18653/v1/2020.coling-main.573
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042

Chain

Train and Method Corpus Sentence
Ken

test data Pea Spe Pea Spe

Scribendi 0.938 0.984 0.331 0.355
SOME  0.961 1.000 0.370 0.419
IMPARA 0.932 1.000 0.411 0.515

0.698
0.502
0.688

CoNLL2013

0.616
0.678
0.780

Scribendi 0.637 0.451 0.177 0.194
SOME  0.767 0.663 0.055 0.155
IMPARA 0.790 0.963 0.472 0.432

CWEB

Scribendi 0.932 0.945 0.255 0.303
SOME  0.955 0.990 0.523 0.531
IMPARA 0.937 1.000 0.618 0.685

0.574
0.639
0.783

JFLEG

Scribendi 0.869 0.933 0.342 0.449
SOME  0.843 0.972 0.165 0.254
IMPARA 0.853 0.990 0.541 0.616

0.897
0.663
0.848

FCE

Table 4: Performance of IMPARA and existing methods
using the same data for training and evaluation

Error type  Impact (10~ %) Frequency
NOUN 0.652 408
VERB:TENSE 0.649 480
VERB 0.580 557
NOUN:NUM 0.385 534
PUNCT 0.367 473
DET 0.364 1142
PREP 0.325 700

Table 5: Error types with frequency more than 400
(excluding OTHER) in CoNLL2014 and their assinged
impact scores.

A Hyperparameters

To avoid the effect of the size of different corpora
for fine-tuning the CE model during the compar-
isons, we adjusted the size of the training data to
|T| = 4096 regardless of the target corpus. We
set the maximum number of edited sentence pairs
generated from a pair of grammtical and ungramat-
ical sentences to ¢ = 30, the learning rate to 1072,
and the batch size to 32. The number of epochs
for fine-tuning varies from 1, 2, ..., 10 to train the
model. The threshold of similarity score 6 is set
to 0.9. We trained the models with four GPUs
(RTX2080 Ti), performed a hyperparameter search
on development set to select the best models.

B Impact on Different Error Types

We analyzed impact scores (defined in Section 2.1)
assigned to different error types. For the sentence
pairs in CoNLL-2014, we extracted edits and error
types using ERRANT, and calculated the average
impact score for each error type. Table 5 shows
the averaged impact score for each error type that
apperaed more than 400 times (excluding OTHER
type).

As we expected, errors of content words such as
NOUN (nouns) and VERB (verbs) were assigned

with higher impact scores compared to those of
functional words such as DET (determiner) and
PREP (prepositions). In addition, we also observed
that a lower impact score was calculated for correc-
tions related to quantity. These results suggest that
the impact score designed in this study is more con-
cerned with changes in meaning caused by content
words than with corrections related to grammatical
roles caused by function words.



