

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PMDFORMER: PATCH-MEAN DECOUPLING TRANSFORMER FOR LONG-TERM FORECASTING

Anonymous authors

Paper under double-blind review

## ABSTRACT

Long-term time series forecasting (LTSF) plays a crucial role in fields such as energy management, finance, and traffic prediction. Transformer-based models have adopted patch-based strategies to capture long-range dependencies, but accurately modeling shape similarities across patches and variables remains challenging due to scale differences. To address this, we introduce patch-mean decoupling (PMD), which separates the trend and residual shape information by subtracting the mean of each patch, preserving the original structure and ensuring that the **attention mechanism** captures true shape similarities. Furthermore, to **more effectively model long-range dependencies and capture cross-variable relationships**, we propose Trend Restoration Attention (TRA) and Proximal Variable Attention (PVA). The former module reintegrates the decoupled trend **from PMD while calculating attention output**. And the latter focuses **cross-variable** attention on the most relevant, recent time segments to avoid overfitting on outdated correlations. Combining these components, we propose PMDformer, a model designed **to effectively capture shape similarity in long-term forecasting scenarios**. Extensive experiments indicate that PMDformer outperforms existing state-of-the-art methods in stability and accuracy across multiple LTSF benchmarks.

## 1 INTRODUCTION

Long-term time series forecasting (LTSF) is a key task in machine learning, with wide applications in areas like energy management (Box & Jenkins, 1990), financial markets (Hu et al., 2025), and traffic prediction (Guo et al., 2019; Yi et al., 2023b). Recent Transformer-based models have drawn inspiration from computer vision (Dosovitskiy et al., 2020), increasingly using patch-based strategies (Nie et al., 2023; Zhang & Yan, 2023; Chen et al., 2024; Wang et al., 2024c) to better capture long-range dependencies. Most of these approaches treat variables independently (VI) (Huang et al., 2025; Lin et al., 2024), while variable-dependent (VD) methods (Liu et al., 2024a; Luo & Wang, 2024) that model interactions across variables have not yet shown clear gains over VI baselines.

Unlike 2D images with a fixed spatial structure, time series are one-dimensional curve Germain et al. (2024); Hamilton (2020), with the primary focus being on capturing shape similarities between patches or variables (Grabocka et al., 2014; Kacprzyk et al., 2024) as well as modeling long-range trend (Li et al., 2023). For instance, two patches may share similar trends, such as gradual increases with comparable rates of change. Identifying such shape correspondence helps the model extract temporally consistent patterns and improves forecast accuracy. However, time series data is inherently non-stationary (Fan et al., 2023; Liu et al., 2022b), where patch scales fluctuate wildly across time. As illustrated in the top panels of Figure 1, **The attention weight of  $(P_1, P_3)$  is higher than that of  $(P_1, P_2)$ , despite the more similar shape between  $P_1$  and  $P_2$ .** This occurs due to the different scales among  $P_1$ ,  $P_2$  and  $P_3$ , which influence the attention weights, thereby failing to reflect true shape similarity. Consequently, the model may learn incorrect similarity relationships, leading to performance degradation. Furthermore, this scale bias is even more pronounced when modeling dependencies between variables, further hindering the effectiveness of VD models.

To balance the scale differences of patches, recent methods have employed Patch Normalization (Liu et al., 2023b), which Z-score normalizes each patch by subtracting the mean and dividing by the standard deviation. However, the removal of the standard deviation inadvertently distorts the original shape of the patch. As a result, it hampers the model’s ability to identify shape similarities across



Figure 1: Attention weights for three patches before and after patch-mean decoupling. Scale differences initially obscure true shape similarities, which are clearly revealed after decoupling as increased (red) or decreased (green) correlations, with analogous similarity shown in blue for  $(P_3, P_1)$  and  $(P_3, P_2)$ .



Figure 2: Comparison of the MSE of all baselines with our proposed PMDformer. The results are the averages for all prediction lengths.

patches or variables. In this paper, we propose a simple yet effective alternative method called patch-mean decoupling (PMD). We subtract the mean of each patch, which recenters each patch to zero mean and explicitly separates the long-range trend component which is encoded in the means of patches from the residual shape information. Unlike Patch Normalization, our method preserves the original amplitude variations and maintains the intrinsic shape structure, ensuring that the model better captures true shape similarities across patches. As shown in Figure 1, through our method attention favors shape-aligned pairs  $(P_1, P_2)$  over shape-unaligned  $(P_1, P_3)$ .

PMD thus enables more shape-focused attention across patches and variables, revealing true similarities obscured by scales. For cross-variable shape modeling, existing methods (Luo & Wang, 2024; Zhang & Yan, 2023) often compute interactions over the entire historical window. However, cross-variable relationships are often non-stationary and evolve over time, so recent interactions are the most predictive of future dynamics. For example, in financial markets asset correlations often spike sharply during crises. Relying on the entire historical dependencies introduces substantial noise and redundancy, degrading performance. To address this, we introduce proximal variable attention (PVA), which confines self-attention to the most recent patch—the segment most proximal to the prediction horizon. By capturing shape similarities among variables in this temporally relevant window, PVA minimizes noise from historical drifts and risk overfitting.

Complementarily, recentering via PMD inherently attenuates the long-term trend signal, potentially overlooking global dependencies. To restore this without disrupting shape matching between temporal patches, we propose trend restoration attention (TRA), which explicitly injects the decoupled means (long-range trend information) into the value pathway of the attention mechanism. This seamless integration allows the model to jointly encode local shape patterns and global trend yielding more stable forecasts.

Building on above, we propose **PMDformer**, which combines patch-mean decoupling (PMD) module, Proximal variable attention (PVA), trend reinsertion attention (TRA) and a projection layer for final forecasting. The comparison of predictive accuracy of our PMDformer and other state of the art models refer to Figure 2. Our contributions are:

- We introduce a novel mechanism to decouple trend and residual shape within the attention module via residual mean deduction, enabling more effectively capture shape similarity among temporal patches and variables.
- We introduce proximal variable attention, which focuses on the most recent patch to capture the most relevant shape similarities, mitigating overfitting.
- We demonstrate the effectiveness of our approach through extensive experiments on a variety of LTSF benchmarks, showing that PMDformer provides more stable and accurate forecasts than current state-of-the-art methods.

108  
109  

## 2 RELATED WORK

110  
111  
112  
113  
114  
115  
Deep learning models have demonstrated remarkable performance in long-term time series forecasting. These models can be broadly divided into Transformer-based models Vaswani et al. (2017); Wu et al. (2021); Liu et al. (2022a); Zhou et al. (2022), MLP-based models Zeng et al. (2023); Li et al. (2023); Lin et al. (2024); Wang et al. (2024a), GNN-based models Huang et al. (2023); Yi et al. (2023a) and CNN-based models Wang et al. (2023); Eldele et al. (2024).116  
117  
118  
119  
120  
121  
**Transformer-based time series models.** The success of Transformers (Vaswani et al., 2017) in NLP has inspired their adaptation for LTSF to capture long-range dependencies. Early models treat series as token sequences with efficient attention: Informer (Zhou et al., 2021) uses ProbSparse for complexity reduction; Pyraformer (Liu et al., 2022a) employs pyramidal attention; Autoformer (Wu et al., 2021) adds decomposition; and FEDformer (Zhou et al., 2022) incorporates frequency blocks. Yet, their efficacy is challenged by simple linear models (Zeng et al., 2023), underscoring needs for better temporal modeling.123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
**Patch-based time series models.** Inspired by vision transformers (Dosovitskiy et al., 2020), recent works segment time series into overlapping or non-overlapping patches to bolster local semantic capture. Transformer-based examples include PatchTST (Nie et al., 2023), which uses variable-independent shared encoders for temporal patch semantics (SOTA in LTSF), and Pathformer (Chen et al., 2024) with multi-scale patches and adaptive path selection for intra/inter-dependencies. MLP variants like TSMixer (Ekambaram et al., 2023) and PatchMixer (Gong et al., 2023) model patch relations via MLPs, while foundation models such as Moirai (Woo et al., 2024), Timer (Liu et al., 2024b), TimesFM (Das et al., 2024), and LLM-based (Pan et al., 2024; Jin et al., 2023) leverage patches for pretraining and cross-modal alignment. Recent TimeBase (Huang et al., 2025) employs orthogonalized patches to reduce redundancy for SOTA efficiency, which further underscores patches’ success in LTSF modeling.134  
135  
136  
137  
138  
139  
140  
141  
142  
**Patch-Normalization.** Due to the non-stationary nature of time series, some works (Fan et al., 2023; Kim et al., 2021) apply normalization to mitigate scale discrepancies and stabilize distributions. Among them, Patch-level normalization works include SAN (Liu et al., 2023b), a model-agnostic framework that adaptively normalizes slices by removing non-stationarity for flexible forecasting, and SIN (Han et al., 2024b), which selectively learns normalization parameters to maximize local invariance and global variability, enabling interpretable long-term predictions. However, these normalization methods distort intrinsic patch shapes by scaling with standard deviation, hindering true shape similarity capture. In contrast, our PMD overcomes through mean subtraction to preserve amplitudes.143  
144  
145  

## 3 PROPOSED METHOD

146  
147  
148  
149  
150  
151  
We consider the task of long-term time series forecasting, where the goal is to predict the future evolution of multiple correlated variables given their historical observations. Formally, let  $\mathbf{X} = \{x_t \in \mathbb{R}^C \mid t = 1, 2, \dots, L\}$  denote an input sequence of length  $L$ , where  $C$  is the number of variables. Each  $x_t = (x_t^1, x_t^2, \dots, x_t^C)$  contains the values of all variables at time  $t$ . Given  $\mathbf{X}$ , the objective is to forecast the subsequent  $T$  time steps  $\hat{\mathbf{Y}} = \{\hat{x}_t \in \mathbb{R}^C \mid t = L + 1, \dots, L + T\}$ .152  
153  

### 3.1 THE GENERAL STRUCTURE

154  
155  
156  
157  
158  
159  
160  
161  
Our proposed **PMDformer** architecture is a unified framework composed of four synergistic modules designed to explicitly decouple the long-term trend from the shape structure, selectively focus on the most relevant inter-variable dependencies, and ensure the accurate restoration of global dynamics for stable forecasting, as illustrated in Figure 3. (a) **Patch-Mean Decoupling (PMD)**: This module partitions the input time series into non-overlapping patches and explicitly separates each patch into its long-term trend component and its residual shape component. (b) **Proximal Variable Attention (PVA)**: To capture the most relevant cross-variable dependencies, the PVA module focuses its self-attention mechanism only on the  $C$  tokens of the **last (proximal) patch**, modeling interactions across all variables. (c) **Trend Restoration Attention (TRA)**: This module is designed



Figure 3: Overview of the proposed PMDformer. The model comprises: (a) **Patch-Mean Decoupling** module re-centers each patch and separates patches into trend and shape components; (b) **Proximal Variable Attention** operates only on the most recent token to capture variable interactions which are most relevant for forecasting; (c) **Trend Restoration Attention** restores long-range trends after value projections, restoring trend modeling; (d) **Projection Layer** adds the trend back to model long-range trend information for stable and accurate predictions.

to model the shape similarities across patches. Crucially, it then **restores** the long-range trend information into the value pathway, enabling to accurately capture and utilize the overall long-term trend. (d) **Projection Layer**: This final layer combines the learned temporal representations with the reincorporated trend information through a fully connected projection to produce the final predictions.

### 3.2 MODEL ARCHITECTURE

**Patch-Mean Decoupling (PMD) & Embedding.** We first divide the input sequence  $\mathbf{X} = \{x_t \in \mathbb{R}^C\}_{t=1}^L$  into  $N$  non-overlapping patches of length  $S$ , where  $N = \lfloor L/S \rfloor$ . For variable  $i \in [C]$  and patch index  $j \in [N]$ , the raw patch vector is

$$\mathbf{P}_j^i = (x_{(j-1)S+1}^i, x_{(j-1)S+2}^i, \dots, x_{jS}^i) \in \mathbb{R}^S. \quad (1)$$

We then compute its temporal mean and the corresponding mean-decoupled residual:

$$\mu_j^i = \frac{1}{S} \sum_{k=1}^S x_{(j-1)S+k}^i, \quad \mathbf{r}_j^i = \mathbf{P}_j^i - \mu_j^i \mathbf{1}_S, \quad (2)$$

where  $\mathbf{1}_S$  is the  $S$ -dimensional all-ones vector. Each residual patch is then embedded into a  $d$ -dimensional representation through a shared linear projection. To encode location, we add learned positional embeddings to form the Transformer token:

$$\mathbf{P}_j^i := \mathbf{r}_j^i \mathbf{W}_E + \mathbf{b}_E + \mathbf{z}_{p_j} \quad (3)$$

where  $\mathbf{W}_E \in \mathbb{R}^{S \times d}$ ,  $\mathbf{b}_E \in \mathbb{R}^d$ , and  $\mathbf{z}_{p_j} \in \mathbb{R}^d$  denotes the positional embedding of patch  $j$ . By removing patch means before embedding, each patch is centered, which alleviates local inconsistencies across patches and variables so that attention mechanism can focus on shape similarities.

**Proximal Variable Attention (PVA).** Intuitively, accurate time series forecasting hinges on the immediate interactions between variables at the most recent time steps, as these dependencies are most indicative of near-term changes. Therefore, the PVA module is designed to concentrate its attention mechanism on the most **proximal** (i.e., most recent) tokens to model these critical cross-variable relationships.

Let  $N$  be the index of the last (most recent) patch. We collect the most recent tokens of all  $C$  variables, denoted as  $\mathcal{P}_N = \{\mathbf{P}_N^1, \dots, \mathbf{P}_N^C\}$ , where each token  $\mathbf{P}_N^i \in \mathbb{R}^d$  is derived from the Patch-Mean Decoupling (PMD) embedding. The PVA then applies Multi-Head Self-Attention (MHSA) exclusively within the set  $\mathcal{P}_N$  to effectively capture the cross-variable shape dependencies that are most relevant for forecasting. Following the attention mechanism, a Feed-Forward Network (FFN) is employed to enhance the non-linear feature representation:

$$\hat{\mathcal{P}}_N = \text{LayerNorm}(\text{MHSA}(\mathcal{P}_N) + \mathcal{P}_N), \quad (4)$$

$$\mathcal{P}_N = \text{LayerNorm}(\text{FFN}(\hat{\mathcal{P}}_N) + \hat{\mathcal{P}}_N). \quad (5)$$

Tokens from the earlier historical patches, specifically those indexed  $\{1, \dots, N-1\}$ , maintain their original representation derived from the PMD module. Following the PVA operation, the refined token set  $\mathcal{P}_N$  is concatenated with these remaining historical tokens along the patch dimension to form the full sequence of shape embeddings, denoted as  $\mathcal{P} \in \mathbb{R}^{C \times N \times d}$ . This deliberate strategy of restricting cross-variable attention solely to the most proximal patch offers dual advantages: it **enhances model robustness** by avoiding spurious long-range couplings from historical noise, and it improves **computational efficiency** by reducing the complexity from  $O(C^2N)$  to  $O(C^2)$ .

**Trend Restoration Attention (TRA).** Following the refinement of the most proximal tokens by the PVA module, the TRA module aims to capture temporal shape similarities across all historical patches while preserving long-range trend information. This is achieved by applying a parameter-shared Transformer encoder (MHSA + FFN) along the patch axis for each variable independently.

In this design, the Query( $\mathbf{Q}$ ) and Key( $\mathbf{K}$ ) projections operate solely on the shape embeddings, ensuring that the resulting attention scores  $\mathcal{A}$  emphasize precise inter-patch shape similarity. To counteract the potential loss of global dynamics inherent in shape-focused modeling, we explicitly **incorporate the per-patch mean** ( $\mu^i$ ) into the **Value** ( $\mathbf{V}$ ) pathway. **The additive reintegration is inspired by residual connections in ResNet (He et al., 2016)**. Concretely, for the  $i$ -th variable's patch sequence  $\mathbf{P}^i \in \mathbb{R}^{N \times d}$ , the computation is defined as:

$$\mathbf{Q}^i = \mathbf{P}^i \mathbf{W}_Q, \quad \mathbf{K}^i = \mathbf{P}^i \mathbf{W}_K, \quad (6)$$

$$\mathcal{A} = \text{Softmax}\left(\frac{\mathbf{Q}^i(\mathbf{K}^i)^\top}{\sqrt{d}}\right), \quad (7)$$

$$\mathbf{V}^i = \mathbf{P}^i \mathbf{W}_V + \mu^i, \quad (8)$$

where  $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$  are the projection matrices, and  $\mu^i$  is the per-patch mean (Eq. 2), broadcast to match the dimensions of  $\mathbf{P}^i \mathbf{W}_V$ . This architectural separation allows the  $\mathbf{Q}/\mathbf{K}$  pathway to model fine-grained local shape dependencies, while the  $\mathbf{V}$  pathway ensures the preservation of the essential **global trend dynamics**. The resulting trend-integrated tokens are then refined through a Feed-Forward Network (FFN) to enhance the temporal representation learning.

**Projection Layer.** The temporal tokens produced by the TRA module are rich in shape dependencies but still require the final **restoration of the global trend information** for stable and accurate multi-step forecasting. This final step is essential to fully recover the original scale and long-term dynamics that were decoupled earlier. To achieve this, before generating the multi-step forecasts, we **re-incorporate** the per-patch trend means ( $\mu^i$ ) into the refined shape embeddings:

$$\hat{\mathbf{Y}}^i = (\mathbf{P}^i + \mu^i) \mathbf{W}_o + \mathbf{b}_o, \quad \hat{\mathbf{Y}}^i \in \mathbb{R}^T. \quad (9)$$

Here,  $\mathbf{W}_o \in \mathbb{R}^{(N \times d) \times T}$  and  $\mathbf{b}_o \in \mathbb{R}^T$  are the weight matrix and bias vector, respectively. The mean  $\mu^i$  is implicitly broadcast to align with the dimensions of  $\mathbf{P}^i$ . This final step ensures the model's predictions are well-calibrated with the long-range trend observed in the input series.

### 3.3 THEORETICAL ANALYSIS

#### 3.3.1 SCALE BIAS WITHOUT PATCH-MEAN DECOUPLING (PMD)

Consider embedding raw patches  $\tilde{\mathbf{x}} = \mathbf{r} + \mu \mathbf{1}$ , where  $\mathbf{r}$  is the residual and  $\mu$  is the patch mean. The attention logit between tokens  $(i, j)$  is given by:

$$\tilde{z}_{ij} = \mathbf{q}_i^\top \mathbf{k}_j = \tilde{\mathbf{x}}_i^\top \mathbf{M} \tilde{\mathbf{x}}_j = \underbrace{\mu_i \mu_j \mathbf{1}^\top \mathbf{M} \mathbf{1}}_{\text{mean-mean}} + \underbrace{\mu_i \mathbf{1}^\top \mathbf{M} \mathbf{r}_j + \mu_j \mathbf{r}_i^\top \mathbf{M} \mathbf{1}}_{\text{cross}} + \underbrace{\mathbf{r}_i^\top \mathbf{M} \mathbf{r}_j}_{\text{residual similarity}}, \quad (10)$$

270 where  $\mathbf{M} := \mathbf{W}_E^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{W}_E$  and  $\mathbf{1}$  is the all-ones vector. The first three terms depend on the  
 271 means and can dominate the residual similarity, inducing scale bias.  
 272

273 **Proposition 1: Sufficient Condition for Level-Dominated Logits** Let  $i$  be a fixed query. A  
 274 sufficient condition for the mean-dependent part of  $\tilde{z}_{ij}$  to dominate the residual similarity uniformly  
 275 over all keys  $j$  is:  
 276

$$277 \quad |\mu_i| |\mu_j| |\mathbf{1}^\top \mathbf{M} \mathbf{1}| \geq \|\mathbf{M}\|_2 \|\mathbf{r}_i\| \|\mathbf{r}_j\| + |\mu_i| \|\mathbf{M} \mathbf{1}\| \|\mathbf{r}_j\| + |\mu_j| \|\mathbf{M} \mathbf{1}\| \|\mathbf{r}_i\|, \quad (11)$$

279 where  $\|\cdot\|_2$  represents the spectral norm. This condition guarantees that the mean-dependent terms  
 280 outweigh the residual term and cross terms, leading to scale-induced bias in attention. This confirms  
 281 that attention is biased toward scale when the means are large, which motivates the need for patch-  
 282 mean decoupling in our method.  
 283

## 284 4 EXPERIMENT

### 285 4.1 EXPERIMENT SETUP

288 **Datasets** We conduct experiments on 8 widely-used and publicly available real-world datasets.  
 289 These include: ECL<sup>1</sup>, Traffic<sup>2</sup>, Weather<sup>3</sup>, Solar<sup>4</sup>, ETTh1, ETTh2, ETTm1, and ETTm2<sup>5</sup>. Following  
 290 the experimental protocol established in prior work (Wang et al., 2024b; Qiu et al., 2024; Liu et al.,  
 291 2023a), we partition the datasets into training, validation, and test sets with the following ratios:  
 292 6:2:2 for the four ETT datasets and 7:1:2 for the remaining datasets. The detailed statistics of each  
 293 dataset are summarized in Table 1.  
 294

295 Table 1: Characteristics of Long-term Time Series Datasets. This table summarizes key attributes of  
 296 each dataset, including the application domain; the number of variables; total time points; data split  
 297 ratios for training, validation, and testing and sampling interval.  
 298

| 299 <b>Domain</b>      | 300 <b>Electricity</b> |        |        |        |        | <b>Weather</b> | <b>Energy</b> | <b>Transportation</b> |
|------------------------|------------------------|--------|--------|--------|--------|----------------|---------------|-----------------------|
|                        | 301 <b>Dataset</b>     | ETTh1  | ETTh2  | ETTm1  | ETTm2  | ECL            |               |                       |
| 302 <b>Variables</b>   | 7                      | 7      | 7      | 7      | 321    | 21             | 137           | 862                   |
| 303 <b>Time Points</b> | 14,400                 | 14,400 | 57,600 | 57,600 | 26,304 | 52,696         | 52,560        | 17,544                |
| 304 <b>Split Ratio</b> | 6:2:2                  | 6:2:2  | 6:2:2  | 6:2:2  | 7:1:2  | 7:1:2          | 7:1:2         | 7:1:2                 |
| <b>Sampling</b>        | 1 hr                   | 1 hr   | 15 min | 15 min | 1 hr   | 10 min         | 10 min        | 1 hr                  |

306  
 307 **Baselines** We compare PMDformer against 9 baselines, including state-of-the-art (SOTA) long-  
 308 term forecasting models: TQNet (Lin et al., 2025), TimeBase (Huang et al., 2025), SOFTS (Han  
 309 et al., 2024a), SparseTSF (Lin et al., 2024), ModernTCN (Luo & Wang, 2024), iTransformer (Liu  
 310 et al., 2024a), TimeMixer (Wang et al., 2024a), and PatchTST (Nie et al., 2023).  
 311

312 **Setups** Consistent with prior research (Huang et al., 2025), we use an input length  $L$  of 720 and  
 313 evaluate prediction lengths  $T$  of {96, 192, 336, 720}. Results for TimeBase, SparseTSF, iTrans-  
 314 former, TimeMixer, and PatchTST are derived from the TimeBase study, while other outcomes are  
 315 from our own experiments. All experiments are conducted using PyTorch (Paszke et al., 2019) on  
 316 an NVIDIA A100 80GB GPU. The Adam optimizer (Kingma, 2014) is employed, with learning  
 317 rates chosen from {2e-4, 5e-4, 1e-3, 1e-2}. The number of patches  $N$  is adjusted based on the  
 318 requirements of each dataset.  
 319

320 <sup>1</sup><https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014>

321 <sup>2</sup><https://pems.dot.ca.gov/>

322 <sup>3</sup><https://www.bgc-jena.mpg.de/wetter/>

323 <sup>4</sup><http://www.nrel.gov/grid/solar-power-data.html>

<sup>5</sup><https://github.com/zhouhaoyi/ETDataset>

324  
 325 Table 2: Comprehensive results for multivariable time series forecasting with a lookback window of  
 326 720 time steps. Performance metrics for TQNet (Lin et al., 2025) and SOFTS (Han et al., 2024a)  
 327 were obtained through our experiments, while results for other methods were sourced from Time-  
 328 Base (Huang et al., 2025). The best results are highlighted in **bold**, and the second-best are indicated  
 329 with underlining.

| 330 Models  | PMDformer |              | TQNet        |              | TimeBase     |              | SOFTS        |              | SparseTSF    |              | ModernTCN    |              | iTransformer |       | TimeMixer |       | PatchTST |              |              |
|-------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|-----------|-------|----------|--------------|--------------|
|             | Year      | <u>ours</u>  | 2025         | 2025         | 2025         | 2024         | 2024         | 2024         | 2024         | 2024         | 2024         | 2024         | 2024         | 2024  | 2024      | 2023  |          |              |              |
| Metric      |           | MSE          | MAE          | MSE   | MAE       | MSE   | MAE      |              |              |
| 332 ECL     | 96        | <b>0.122</b> | <b>0.214</b> | 0.143        | 0.244        | 0.139        | 0.231        | 0.133        | 0.229        | 0.139        | 0.239        | <u>0.131</u> | <u>0.227</u> | 0.135 | 0.233     | 0.142 | 0.247    | 0.141        | 0.240        |
|             | 192       | <b>0.140</b> | <b>0.231</b> | 0.151        | 0.247        | 0.153        | 0.255        | 0.160        | 0.255        | 0.155        | 0.250        | <u>0.145</u> | <u>0.241</u> | 0.155 | 0.253     | 0.159 | 0.256    | 0.156        | 0.256        |
|             | 336       | <b>0.152</b> | <b>0.245</b> | 0.166        | <u>0.261</u> | 0.169        | 0.262        | 0.182        | 0.277        | 0.171        | 0.265        | <u>0.162</u> | <u>0.261</u> | 0.169 | 0.267     | 0.169 | 0.270    | 0.172        | 0.267        |
|             | 720       | <b>0.177</b> | <b>0.272</b> | 0.194        | 0.291        | 0.207        | 0.294        | 0.224        | 0.310        | 0.208        | 0.300        | <u>0.193</u> | <u>0.289</u> | 0.204 | 0.301     | 0.209 | 0.313    | 0.208        | 0.299        |
| 335 Traffic | Avg       | <b>0.148</b> | <b>0.241</b> | 0.164        | 0.261        | 0.167        | 0.258        | 0.175        | 0.268        | 0.180        | 0.264        | <u>0.158</u> | <u>0.255</u> | 0.166 | 0.264     | 0.170 | 0.272    | 0.169        | 0.266        |
|             | 96        | <b>0.338</b> | <b>0.212</b> | 0.398        | 0.297        | 0.394        | 0.267        | <u>0.355</u> | 0.255        | 0.389        | 0.268        | 0.382        | 0.267        | 0.374 | 0.273     | 0.396 | 0.294    | 0.363        | <b>0.250</b> |
|             | 192       | <u>0.367</u> | <b>0.227</b> | 0.397        | 0.277        | 0.403        | 0.271        | <b>0.365</b> | <u>0.258</u> | 0.399        | 0.272        | 0.393        | 0.271        | 0.393 | 0.283     | 0.404 | 0.295    | 0.382        | <b>0.258</b> |
|             | 336       | <b>0.379</b> | <b>0.235</b> | 0.403        | 0.279        | 0.417        | 0.278        | <u>0.390</u> | 0.278        | 0.417        | 0.279        | 0.406        | 0.277        | 0.409 | 0.292     | 0.419 | 0.302    | 0.399        | <b>0.268</b> |
| 337 Weather | 720       | <b>0.426</b> | <b>0.262</b> | 0.448        | 0.304        | 0.456        | 0.298        | <u>0.429</u> | 0.294        | 0.449        | 0.299        | 0.452        | 0.305        | 0.450 | 0.314     | 0.458 | 0.309    | 0.432        | <b>0.289</b> |
|             | Avg       | <b>0.378</b> | <b>0.234</b> | 0.412        | 0.289        | 0.418        | 0.279        | <u>0.385</u> | 0.271        | 0.414        | 0.280        | 0.408        | 0.280        | 0.407 | 0.291     | 0.419 | 0.300    | 0.394        | <b>0.266</b> |
|             | 96        | <b>0.141</b> | <b>0.181</b> | <u>0.160</u> | 0.213        | 0.146        | <u>0.198</u> | 0.165        | 0.219        | 0.174        | 0.231        | 0.155        | 0.210        | 0.159 | 0.212     | 0.163 | 0.223    | 0.149        | 0.199        |
|             | 192       | <b>0.185</b> | <b>0.226</b> | 0.212        | 0.261        | <u>0.185</u> | <u>0.241</u> | 0.213        | 0.258        | 0.216        | 0.267        | 0.205        | 0.254        | 0.203 | 0.252     | 0.202 | 0.254    | 0.193        | 0.243        |
| 339 Solar   | 336       | <b>0.236</b> | <b>0.274</b> | 0.260        | 0.299        | <b>0.236</b> | <b>0.281</b> | 0.272        | 0.305        | 0.260        | <u>0.299</u> | 0.255        | 0.290        | 0.253 | 0.291     | 0.258 | 0.300    | 0.240        | 0.281        |
|             | 720       | <b>0.305</b> | <b>0.323</b> | 0.328        | 0.343        | <u>0.309</u> | <u>0.331</u> | 0.380        | 0.371        | 0.325        | 0.345        | 0.317        | 0.336        | 0.317 | 0.337     | 0.329 | 0.348    | 0.312        | 0.334        |
|             | Avg       | <b>0.217</b> | <b>0.251</b> | 0.240        | 0.279        | <u>0.219</u> | <u>0.263</u> | 0.258        | 0.288        | 0.244        | 0.286        | 0.233        | 0.273        | 0.233 | 0.273     | 0.238 | 0.281    | 0.224        | 0.264        |
|             | 96        | <b>0.160</b> | <b>0.193</b> | 0.181        | 0.242        | <u>0.179</u> | 0.248        | <u>0.192</u> | <u>0.239</u> | 0.205        | 0.241        | 0.196        | 0.258        | 0.217 | 0.255     | 0.232 | 0.271    | <b>0.205</b> | <b>0.239</b> |
| 340 ETTh1   | 192       | <b>0.178</b> | <b>0.211</b> | 0.203        | 0.261        | <u>0.213</u> | <u>0.252</u> | <u>0.197</u> | 0.259        | 0.215        | 0.265        | 0.224        | 0.280        | 0.208 | 0.257     | 0.238 | 0.293    | 0.227        | 0.280        |
|             | 336       | <b>0.190</b> | <b>0.218</b> | 0.219        | 0.272        | 0.222        | <u>0.261</u> | <u>0.212</u> | 0.273        | 0.213        | 0.276        | 0.240        | 0.288        | 0.238 | 0.309     | 0.234 | 0.301    | 0.225        | 0.290        |
|             | 720       | <b>0.196</b> | <b>0.221</b> | 0.231        | 0.281        | 0.235        | <u>0.264</u> | <u>0.217</u> | 0.274        | 0.232        | 0.272        | 0.246        | 0.299        | 0.270 | 0.319     | 0.273 | 0.319    | 0.249        | 0.291        |
|             | Avg       | <b>0.181</b> | <b>0.211</b> | 0.209        | 0.264        | 0.216        | <u>0.254</u> | <u>0.201</u> | 0.264        | 0.216        | 0.264        | 0.227        | 0.281        | 0.233 | 0.285     | 0.244 | 0.296    | 0.227        | 0.275        |
| 345 ETTh2   | 96        | <b>0.356</b> | <b>0.388</b> | 0.379        | 0.404        | <b>0.349</b> | <b>0.384</b> | 0.389        | 0.417        | 0.362        | 0.389        | 0.380        | 0.405        | 0.389 | 0.421     | 0.410 | 0.441    | 0.377        | 0.408        |
|             | 192       | <b>0.397</b> | 0.416        | 0.429        | 0.441        | <b>0.387</b> | <b>0.410</b> | 0.427        | <u>0.443</u> | 0.404        | <u>0.412</u> | 0.418        | 0.428        | 0.424 | 0.446     | 0.448 | 0.465    | 0.413        | 0.431        |
|             | 336       | <b>0.420</b> | 0.432        | 0.454        | 0.455        | <b>0.408</b> | <b>0.418</b> | 0.446        | 0.458        | 0.435        | <u>0.428</u> | 0.453        | 0.450        | 0.456 | 0.469     | 0.482 | 0.490    | 0.436        | 0.446        |
|             | 720       | <b>0.432</b> | 0.456        | 0.499        | 0.506        | 0.439        | <b>0.446</b> | 0.468        | 0.491        | <u>0.426</u> | <u>0.448</u> | 0.480        | 0.484        | 0.545 | 0.532     | 0.475 | 0.500    | 0.455        | 0.475        |
| 347 Avg     | Avg       | <b>0.401</b> | 0.423        | 0.440        | 0.452        | <b>0.396</b> | <b>0.415</b> | 0.433        | 0.452        | 0.407        | <u>0.419</u> | 0.433        | 0.442        | 0.454 | 0.467     | 0.454 | 0.474    | 0.420        | 0.440        |
|             | 96        | <b>0.269</b> | <b>0.329</b> | 0.288        | 0.354        | 0.292        | 0.345        | 0.309        | 0.365        | 0.294        | 0.346        | <u>0.273</u> | <u>0.341</u> | 0.305 | 0.361     | 0.315 | 0.380    | 0.276        | 0.339        |
|             | 192       | <b>0.333</b> | <b>0.373</b> | 0.377        | 0.403        | 0.339        | 0.387        | 0.378        | 0.405        | 0.340        | <u>0.377</u> | 0.337        | 0.385        | 0.405 | 0.421     | 0.383 | 0.415    | 0.342        | 0.385        |
|             | 336       | <b>0.357</b> | <b>0.396</b> | 0.377        | 0.415        | 0.358        | 0.410        | 0.460        | 0.461        | <u>0.360</u> | <u>0.398</u> | 0.369        | 0.414        | 0.411 | 0.436     | 0.385 | 0.438    | 0.364        | 0.405        |
| 350 ETM1    | 720       | <b>0.390</b> | <b>0.429</b> | 0.424        | 0.452        | 0.400        | 0.448        | 0.441        | 0.467        | <u>0.383</u> | <u>0.425</u> | 0.408        | 0.448        | 0.448 | 0.470     | 0.432 | 0.471    | 0.395        | 0.434        |
|             | Avg       | <b>0.337</b> | <b>0.382</b> | 0.367        | 0.406        | 0.347        | 0.398        | 0.397        | 0.425        | <u>0.344</u> | <u>0.387</u> | 0.347        | 0.397        | 0.392 | 0.422     | 0.379 | 0.426    | <b>0.344</b> | 0.391        |
|             | 96        | <b>0.279</b> | <b>0.328</b> | <u>0.296</u> | <u>0.349</u> | 0.311        | 0.351        | 0.303        | 0.361        | 0.314        | 0.359        | 0.313        | 0.357        | 0.315 | 0.369     | 0.332 | 0.384    | 0.298        | 0.352        |
|             | 192       | <b>0.323</b> | <b>0.358</b> | 0.337        | 0.374        | 0.338        | <u>0.371</u> | <u>0.336</u> | 0.377        | 0.348        | 0.376        | 0.343        | 0.377        | 0.349 | 0.388     | 0.355 | 0.398    | <b>0.335</b> | 0.373        |
| 352 ETM2    | 336       | <b>0.361</b> | <b>0.383</b> | 0.369        | 0.393        | <u>0.364</u> | <u>0.386</u> | 0.384        | 0.407        | 0.368        | 0.386        | 0.372        | 0.393        | 0.381 | 0.409     | 0.386 | 0.416    | 0.366        | 0.394        |
|             | 720       | 0.421        | 0.416        | 0.447        | 0.434        | <b>0.413</b> | <b>0.414</b> | 0.438        | 0.438        | 0.419        | <u>0.413</u> | 0.420        | 0.437        | 0.439 | 0.452     | 0.457 | 0.420    | 0.421        | 0.421        |
|             | Avg       | <b>0.346</b> | <b>0.371</b> | 0.362        | 0.388        | 0.357        | <u>0.381</u> | 0.365        | 0.396        | 0.362        | 0.384        | 0.362        | 0.387        | 0.371 | 0.401     | 0.381 | 0.414    | <b>0.355</b> | 0.385        |
|             | 96        | <b>0.155</b> | <b>0.240</b> | 0.169        | <u>0.257</u> | 0.167        | 0.259        | 0.188        | 0.274        | 0.167        | 0.259        | 0.179        | 0.269        | 0.179 | 0.274     | 0.192 | 0.285    | <b>0.165</b> | 0.260        |
| 354 Avg     | 192       | <b>0.213</b> | <b>0.282</b> | 0.231        | 0.299        | <u>0.219</u> | <u>0.297</u> | 0.256        | 0.317        | 0.219        | 0.297        | 0.243        | 0.312        | 0.239 | 0.314     | 0.253 | 0.329    | <b>0.219</b> | 0.298        |
|             | 336       | <b>0.267</b> | <b>0.319</b> | 0.282        | 0.337        | 0.271        | 0.330        | 0.334        | 0.366        | 0.271        | 0.330        | 0.270        | <u>0.330</u> | 0.309 | 0.356     | 0.307 | 0.362    | <b>0.268</b> | 0.333        |
|             | 720       | <b>0.347</b> | <b>0.373</b> | 0.371        | 0.398        | 0.353        | <u>0.380</u> | 0.392        | 0.406        | <u>0.353</u> | 0.380        | 0.362        | 0.393        | 0.387 | 0.407     | 0.380 | 0.412    | 0.352        | 0.386        |
|             | 1st Count | <b>32</b>    | <b>33</b>    | 0            | 0            | 7            | 4            | 1            | 0            | 2            | 3            | 0            | 0            | 0     | 0         | 0     | 0        | 0            | 0            |

## 4.2 MAIN RESULTS

362 Table 2 summarizes the quantitative results for long-term time series forecasting across multiple  
 363 prediction horizons and datasets. As shown, our proposed PMDformer achieves the lowest Mean  
 364 Squared Error (MSE) and Mean Absolute Error (MAE) on 7 out of 8 real-world datasets, outper-  
 365 forming all baselines in the majority of cases. This success is directly tied to PMDformer’s ability  
 366 to overcome fundamental limitations in existing architectures.

367 Specifically, compared to the patch-based model TimeBase, PMDformer yields an average MSE  
 368 reduction of 5.68% and MAE reduction of 6.61%. This improvement stems from our method’s  
 369 capacity to identify meaningful shape similarities across patches, a capability that TimeBase’s  
 370 orthogonal patch selection inherently sacrifices to reduce redundancy. Moreover, against TQNet,  
 371 PMDformer achieves an average MSE reduction of 8.62% and MAE reduction of 9.96%. TQNet’s  
 372 fixed periodic queries constrain its ability to handle diverse cycles, whereas PMDformer’s adaptive  
 373 proximal variable attention offers greater flexibility in modeling variables’ shape similarities. Com-  
 374 pared to the Transformer-based iTransformer, PMDformer delivers an average MSE reduction of  
 375 11.44% and MAE reduction of 12.38%. iTransformer captures dependencies among variable tokens  
 376 embedded from the entire historical sequence, which can lead to overfitting on early, weakly relevant  
 377 variable relationships that degrade future predictions. In contrast, our PVA module succeed to avoid  
 378 this by focusing on the shape similarities of variables within the most nearest patch.

378 Table 3: Ablation study on PMD module. We assess different modules for patch-wise normalization,  
 379 along with removing PMD module. Results are averaged across all prediction horizons.  
 380

| 381 Design | 382 Norm | ETTh2        |              | ETTm1        |              | Weather      |              | Traffic      |              | Solar        |              |
|------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|            |          | 383 MSE      | 383 MAE      |
| PMDformer  | PMD      | <b>0.337</b> | <b>0.382</b> | <b>0.346</b> | <b>0.371</b> | <b>0.217</b> | <b>0.251</b> | <b>0.378</b> | <b>0.234</b> | <b>0.181</b> | <b>0.211</b> |
| Replace    | w/ stdev | 0.354        | 0.392        | 0.347        | 0.370        | 0.218        | 0.252        | 0.396        | 0.259        | 0.205        | 0.221        |
|            | SAN      | 0.360        | 0.403        | 0.353        | 0.380        | 0.225        | 0.275        | 0.392        | 0.273        | 0.182        | 0.235        |
|            | $\times$ | 0.359        | 0.394        | 0.347        | 0.370        | 0.223        | 0.260        | 0.397        | 0.258        | 0.199        | 0.212        |

388 Table 4: Ablation studies on TRA and PVA modules in PMDformer: Performance impacts of re-  
 389 placements, removals, and order swaps across ETTh2, ETTm1, Traffic, and Solar datasets. Results  
 390 are averaged across all prediction horizons.  
 391

| 392 Design | 393 TRA                 | 394 PVA    | ETTh2        |              | ETTm1        |              | Traffic      |              | Solar        |              |
|------------|-------------------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|            |                         |            | 395 MSE      | 395 MAE      |
| PMDformer  | $\checkmark$            | Last Token | <b>0.337</b> | <b>0.382</b> | <b>0.346</b> | <b>0.371</b> | <b>0.378</b> | <b>0.234</b> | <b>0.181</b> | <b>0.211</b> |
| Replace    | $\checkmark$            | All Token  | 0.340        | 0.384        | 0.354        | 0.375        | 0.380        | 0.239        | 0.186        | 0.214        |
|            | Self-attention          | Last Token | 0.345        | 0.386        | 0.352        | 0.372        | 0.388        | 0.251        | 0.196        | 0.217        |
|            | Swap Order $\Leftarrow$ |            | 0.342        | 0.385        | 0.350        | 0.372        | 0.379        | 0.235        | 0.188        | 0.216        |
| w/o        | $\times$                | Last Token | 0.344        | 0.381        | 0.347        | 0.372        | 0.410        | 0.270        | 0.215        | 0.226        |
|            | $\checkmark$            | $\times$   | 0.340        | 0.383        | 0.347        | 0.371        | 0.386        | 0.240        | 0.194        | 0.214        |
|            | $\times$                | $\times$   | 0.346        | 0.384        | 0.351        | 0.372        | 0.426        | 0.288        | 0.222        | 0.230        |

401  
 402 **PMD Module Analysis.** We assessed the effectiveness of the PMD module through extensive  
 403 ablations conducted on five non-stationary benchmarks: ETTh2, ETTm1, Weather, Traffic, and Solar  
 404 (Wen et al., 2023; Kim et al., 2025). Using a fixed input length of 720, we tested the model’s per-  
 405 formance across various prediction horizons (96, 192, 336, and 720) against several patch-wise nor-  
 406 malization variants: (i) mean-variance standardization (‘w/ stdev’), (ii) utilizing the Scale-Adaptive  
 407 Normalization (SAN) (Liu et al., 2023b) method, and (iii) removing the PMD module entirely. As  
 408 presented in Table 3, the PMDformer consistently achieves superior accuracy across all datasets. We  
 409 attribute this advantage to the PMD module’s per-patch centering mechanism, which effectively pre-  
 410 serves crucial intra-patch shape information. This preservation allows the Transformer architecture to  
 411 specifically concentrate its attention on modeling **shape similarity**. Furthermore, by explicitly  
 412 injecting the patch mean as a separated trend component into the Transformer pathway, PMDformer  
 413 is uniquely positioned to accurately capture and model long-term trends. In stark contrast, SAN  
 414 explicitly decouples the scale and residual components for independent prediction. Since global  
 415 scale estimation is inherently unstable in highly non-stationary series, this rigid decoupling under-  
 416 mines the essential joint modeling of scale–shape interactions, consequently leading to overfitting  
 417 and weaker generalization capabilities.  
 418

419 **TRA & PVA Analysis.** To assess the effectiveness of the TRA and PVA modules, we conducted  
 420 ablation studies on the ETTh2, ETTm1, Traffic, and Solar datasets. For the TRA module, we tested  
 421 two alternatives: replacing it with standard self-attention or removing it entirely. For the PVA mod-  
 422 ule, we either modified it to compute variable-wise shape similarity across *all* patches or removed  
 423 the module completely. Additionally, we investigated a structural variant that swaps the sequential  
 424 order of the two modules. The experimental outcomes are summarized in Table 4.  
 425

426 The results unequivocally show that PMDformer consistently outperforms all ablated variants across  
 427 every dataset and configuration. When TRA is replaced with standard self-attention, performance  
 428 degrades significantly because the crucial long-term trend information is neglected. Similarly, when  
 429 PVA is forced to compute variable-wise shape similarity across all historical patches, performance  
 430 decreases. This confirms our hypothesis that early variable relationships are often only weakly or  
 431 spuriously correlated with the predictive sequences, justifying PVA’s proximal focus. Furthermore,  
 432 removing both TRA and PVA results in the largest performance drop observed, emphatically high-  
 433 lighting the dual importance of TRA in modeling temporal patch shapes and long-range trends,  
 434 and PVA in capturing relevant variable-wise shape similarity. Finally, swapping the original or-  
 435



Figure 4: Parameter Sensitivity Analysis. (a) Selection of the number of  $k$  nearest patches to the prediction sequence for capturing inter-variable dependencies on these patches. Superior and more stable performance is achieved when  $k = 1$ . (b) Different patch sizes are used to partition the input sequence, and a moderate patch size yields the optimal choice.

der of TRA and PVA also causes notable performance degradation. When TRA is applied first, it compresses patch information too early, making it harder for the subsequent variable modeling to identify meaningful cross-variable dependencies.

### 4.3 PARAMETER SENSITIVITY ANALYSIS

**Patch Count for Cross-Variable Modeling.** We evaluate the impact of capturing variable patterns within different numbers of patches, where  $k \in \{1, 2, 3, 5, 7, 10\}$ . For each setting, the  $k$  nearest patches to future sequences are selected to capture the shape similarity of variable, thereby further validating the effectiveness of PVA. Experiments are conducted on the ETTh1 and Solar datasets. As shown in Figure 4 (a), the mean squared error (MSE) exhibits an overall upward trend as  $k$  gradually increases on the ETTh1 dataset. On the Solar dataset, this increase is more pronounced when predicting 192, 336, or 720 steps ahead, because future sequences are more weakly correlated with early variable relationships. Moreover, the MSE curves show some fluctuations, indicating that different values of  $k$  may lead to more significant differences in prediction performance. In contrast, across all four prediction horizons, using  $k = 1$  yields more stable performance compared with larger  $k$ . This is because the nearest patch is typically more closely aligned with the target sequence to be predicted, making it more beneficial for accurate modeling.

**Patch Size.** Different patch sizes lead to varying degrees of distinction among patches. To investigate this, we evaluate multiple patch sizes  $\{8, 16, 24, 48, 72, 120\}$  on the ETTh2 and ECL datasets. As shown in Figure 4 (b), both overly small and overly large patch sizes fail to deliver optimal performance. This is because excessively small patches provide insufficient shape information to distinguish similarity, making it difficult for the attention mechanism to capture underlying temporal dependencies or genuine variable correlations. Conversely, overly large patches reduce the number of tokens, thereby limiting the model’s ability to capture long-range dependencies. Based on these observations, we find that moderate patch sizes, particularly within  $\{24, 48, 72\}$ , achieve a better trade-off and yield more robust performance.

## 5 CONCLUSION

In this paper, we tackle challenges in long-term time series forecasting by emphasizing true shape similarities hidden by scale variations in non-stationary data. Our patch-mean decoupling (PMD) separates trends from residual shapes while preserving amplitudes, enabling shape-focused attention across patches and variables. Integrated with proximal variable attention (PVA) for recent inter-variable dependencies and trend restoration attention (TRA) for global trend reintegration, PMDformer excels in capturing temporal patterns. Experiments on LTSF benchmarks show PMDformer surpasses state-of-the-art baselines in accuracy and stability, underscoring the value of shape-centric Transformer designs. Future directions include scaling to higher-dimensional multivariate data and multimodal integrations for applications in energy, finance, and traffic.

486 REFERENCES  
487

488 George Edward Pelham Box and Gwilym Jenkins. *Time Series Analysis, Forecasting and Control*.  
489 Holden-Day, Inc., 1990.

490 Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,  
491 and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series  
492 forecasting. *arXiv preprint arXiv:2402.05956*, 2024.

493 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for  
494 time-series forecasting. In *Forty-first International Conference on Machine Learning*, 2024.

495

496 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
497 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
498 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint  
499 arXiv:2010.11929*, 2020.

500 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.  
501 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *Proceedings  
502 of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2023.

503

504 Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking  
505 transformers for time series representation learning. *arXiv preprint arXiv:2404.08472*, 2024.

506 Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu. Dish-ts:  
507 a general paradigm for alleviating distribution shift in time series forecasting. In *Proceedings of  
508 the AAAI conference on artificial intelligence*, volume 37, pp. 7522–7529, 2023.

509

510 Thibaut Germain, Samuel Gruffaz, Charles Truong, Alain Durmus, and Laurent Oudre. Shape  
511 analysis for time series. *Advances in neural information processing systems*, 37:95607–95638,  
512 2024.

513 Zeying Gong, Yujin Tang, and Junwei Liang. Patchmixer: A patch-mixing architecture for long-term  
514 time series forecasting. *arXiv preprint arXiv:2310.00655*, 2023.

515 Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. Learning time-series  
516 shapelets. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge  
517 discovery and data mining*, pp. 392–401, 2014.

518

519 Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-  
520 temporal graph convolutional networks for traffic flow forecasting. *Proceedings of the AAAI  
521 Conference on Artificial Intelligence*, 2019.

522 James D Hamilton. *Time series analysis*. Princeton university press, 2020.

523

524 Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time series  
525 forecasting with series-core fusion. *arXiv preprint arXiv:2404.14197*, 2024a.

526 Lu Han, Han-Jia Ye, and De-Chuan Zhan. Sin: Selective and interpretable normalization for long-  
527 term time series forecasting. In *Forty-first International Conference on Machine Learning*, 2024b.

528

529 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
530 nition. In *CVPR*, 2016.

531 Yifan Hu, Yuante Li, Peiyuan Liu, Yuxia Zhu, Naiqi Li, Tao Dai, Shu tao Xia, Dawei Cheng, and  
532 Changjun Jiang. Fintsb: A comprehensive and practical benchmark for financial time series  
533 forecasting. *arXiv preprint arXiv:2502.18834*, 2025.

534

535 Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang  
536 Wang. Crossggn: Confronting noisy multivariate time series via cross interaction refinement.  
537 *NeurIPS*, 2023.

538 Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, and Yang Wang. Timebase:  
539 The power of minimalism in long-term time series forecasting. In *Proceedings of the Forty-Second  
International Conference on Machine Learning (ICML)*, 2025.

540 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming  
541 large language models. *arXiv preprint arXiv:2310.01728*, 2023.

542

543 Krzysztof Kacprzyk, Tennison Liu, and Mihaela van der Schaar. Towards transparent time series  
544 forecasting. In *The Twelfth International Conference on Learning Representations*, 2024.

545

546 HyunGi Kim, Siwon Kim, Jisoo Mok, and Sungroh Yoon. Battling the non-stationarity in time  
547 series forecasting via test-time adaptation. In *Proceedings of the AAAI Conference on Artificial  
548 Intelligence*, volume 39, pp. 17868–17876, 2025.

549

550 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-  
551 versible instance normalization for accurate time-series forecasting against distribution shift. In  
552 *International conference on learning representations*, 2021.

553

554 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,  
555 2014.

556

557 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An  
558 investigation on linear mapping. *arXiv preprint arXiv:2305.10721*, 2023.

559

560 Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsesf: Modeling  
561 long-term time series forecasting with 1k parameters. In *Forty-first International Conference on  
562 Machine Learning*, 2024.

563

564 Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, and Weiwei Lin. Temporal query network  
565 for efficient multivariate time series forecasting. In *Forty-second International Conference on  
566 Machine Learning*, 2025.

567

568 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.  
569 Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-  
570 casting. In # *PLACEHOLDER\_PARENT\_METADATA\_VALUE*#, 2022a.

571

572 Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang  
573 Liu, Bryan Hooi, and Roger Zimmermann. Largest: A benchmark dataset for large-scale traffic  
574 forecasting. In *Advances in Neural Information Processing Systems*, 2023a.

575

576 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring  
577 the stationarity in time series forecasting. *Advances in neural information processing systems*, 35:  
578 9881–9893, 2022b.

579

580 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.  
581 itransformer: Inverted transformers are effective for time series forecasting. *ICLR*, 2024a.

582

583 Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.  
584 Timer: Generative pre-trained transformers are large time series models. *arXiv preprint  
585 arXiv:2402.02368*, 2024b.

586

587 Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen. Adap-  
588 tive normalization for non-stationary time series forecasting: A temporal slice perspective. In  
589 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b.

590

591 Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time  
592 series analysis. In *The twelfth international conference on learning representations*, 2024.

593

594 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64  
595 words: Long-term forecasting with transformers. *ICLR*, 2023.

596

597 Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song.  
598  $s^2$  ip-llm: Semantic space informed prompt learning with llm for time series forecasting. In  
599 *Forty-first International Conference on Machine Learning*, 2024.

600

601 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor  
602 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-  
603 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

594 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-  
 595 ing Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair bench-  
 596 marking of time series forecasting methods. *arXiv preprint arXiv:2403.20150*, 2024.

597

598 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 599 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-  
 600 tion processing systems*, 2017.

601 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-  
 602 scale local and global context modeling for long-term series forecasting. 2023.

603

604 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,  
 605 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In  
 606 *International Conference on Learning Representations (ICLR)*, 2024a.

607 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep  
 608 time series models: A comprehensive survey and benchmark. *arXiv preprint arXiv:2407.13278*,  
 609 2024b.

610 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Yunzhong Qiu, Haoran Zhang, Jianmin Wang,  
 611 and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with ex-  
 612ogenous variables. *Advances in Neural Information Processing Systems*, 2024c.

613

614 Qingsong Wen, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan, et al.  
 615 Onenet: Enhancing time series forecasting models under concept drift by online ensembling.  
 616 *Advances in Neural Information Processing Systems*, 36:69949–69980, 2023.

617 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.  
 618 Unified training of universal time series forecasting transformers. 2024.

619

620 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-  
 621 formers with auto-correlation for long-term series forecasting. *Advances in neural information  
 622 processing systems*, 34:22419–22430, 2021.

623 Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and  
 624 Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph  
 625 perspective. *Advances in neural information processing systems*, 36:69638–69660, 2023a.

626

627 Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and  
 628 Zhendong Niu. FourierGNN: Rethinking multivariate time series forecasting from a pure graph  
 629 perspective. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b.

630 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series  
 631 forecasting? *AAAI*, 2023.

632

633 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency  
 634 for multivariate time series forecasting. In *The eleventh international conference on learning  
 635 representations*, 2023.

636

637 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.  
 638 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings  
 639 of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

640

641 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency  
 642 enhanced decomposed transformer for long-term series forecasting. In *International conference  
 643 on machine learning*, pp. 27268–27286. PMLR, 2022.

644

645

646

647

## A APPENDIX

## A.1 EFFICIENCY ANALYSIS

To evaluate the efficiency of our model in handling complex tasks, we conduct experiments under two settings: varying the number of variables and varying the input length. In the first setting, we fix the input length at 720 and change the number of variables; in the second setting, we fix the number of variables at 100 and test PMDformer with different input lengths. The batch size is set to 1 in all experiments. The results are shown in Figure 5. Under both settings, compared with recent popular models such as PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024a), and ModernTCN (Luo & Wang, 2024), PMDformer requires significantly less GPU memory, thereby reducing the overall computational cost.



Figure 5: (a) Comparison of memory usage with varying number of variables  $C$ . (b) Comparison of memory usage with varying input sequence length  $L$ . PMDformer consistently requires the lowest memory.



Figure 6: Comparison on synthetic data. The ground truth alternates between pulse and sine shapes with varying scales. The 'w/o PMD' yields smoothed outputs and struggles to recognize the shape similarity, while 'w/ PMD' effectively fits the shapes and trends.

## A.2 COMPARISON ON SYNTHETIC DATA

To further validate the effectiveness of our PMD module, we conduct an experiment on a synthetic dataset. This dataset consists of patches alternating between two different shapes: a sharp pulse wave

702 with large amplitude and a smooth sine wave with small amplitude. To simulate non-stationary time  
703 series, the patches exhibit varying scales and are augmented with moderate noise. We compare a  
704 standard patch-based Transformer (w/o PMD) against our model incorporating the patch-mean de-  
705 coupling module (w/ PMD). As illustrated in Figure 6, the ‘w/o PMD’ model struggles to recognize  
706 true shape similarities due to scale differences between patches, leading to predictions that resemble  
707 mostly smooth curves with inadequate trend fitting. In contrast, our ‘w/ PMD’ model, by removing  
708 scale factors, enables attention to focus more effectively on intrinsic shapes, resulting in predictions  
709 that better capture both the underlying patterns and long-range trends.

## 710 B ON THE USE OF LARGE LANGUAGE MODELS

711 The authors used large language models (LLMs) exclusively for language polishing and minor  
712 rephrasing during the final writing stage. All scientific content, ideas, and initial drafts were created  
713 entirely by the authors without any text improved by LLMs was carefully checked and edited by the  
714 authors. LLMs played no role in developing research questions, designing experiments, analyzing  
715 results, or any other aspect of the research itself.

716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755