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ABSTRACT

Long-term time series forecasting (LTSF) plays a crucial role in fields such as
energy management, finance, and traffic prediction. Transformer-based models
have adopted patch-based strategies to capture long-range dependencies, but ac-
curately modeling shape similarities across patches and variables remains chal-
lenging due to scale differences. To address this, we introduce patch-mean de-
coupling (PMD), which separates the trend and residual shape information by
subtracting the mean of each patch, preserving the original structure and ensur-
ing that the attention mechanism captures true shape similarities. Futhermore, to
more effectively model long-range dependencies and capture cross-variable rela-
tionships, we propose Trend Restoration Attention (TRA) and Proximal Variable
Attention (PVA). The former module reintegrates the decoupled trend from PMD
while calculating attention output. And the latter focuses cross-variable attention
on the most relevant, recent time segments to avoid overfitting on outdated corre-
lations. Combining these components, we propose PMDformer, a model designed
to effectively capture shape similarity in long-term forecasting scenarios. Exten-
sive experiments indicate that PMDformer outperforms existing state-of-the-art
methods in stability and accuracy across multiple LTSF benchmarks.

1 INTRODUCTION

Long-term time series forecasting (LTSF) is a key task in machine learning, with wide applications
in areas like energy management (Box & Jenkins| [1990), financial markets (Hu et al. 2025), and
traffic prediction (Guo et al.|[2019; Y1 et al., [ 2023b). Recent Transformer-based models have drawn
inspiration from computer vision (Dosovitskiy et al., |2020), increasingly using patch-based strate-
gies (Nie et al., 2023; Zhang & Yan, [2023} (Chen et al., 2024; |Wang et al., 2024c) to better capture
long-range dependencies. Most of these approaches treat variables independently (VI) (Huang et al.,
2025; |Lin et al., [2024)), while variable-dependent (VD) methods (Liu et al., [2024a; Luo & Wang,
2024) that model interactions across variables have not yet shown clear gains over VI baselines.

Unlike 2D images with a fixed spatial structure, time series are one-dimensional curve |Germain
et al.[(2024); Hamilton| (2020), with the primary focus being on capturing shape similarities between
patches or variables (Grabocka et al., 2014} [Kacprzyk et al.| 2024)) as well as modeling long-range
trend (L1 et al.,2023)). For instance, two patches may share similar trends, such as gradual increases
with comparable rates of change. Identifying such shape correspondence helps the model extract
temporally consistent patterns and improves forecast accuracy. However, time series data is inher-
ently non-stationary (Fan et al.| |2023; [Liu et al.| [2022b), where patch scales fluctuate wildly across
time. As illustrated in the top panels of Figure [I} The attention weight of (P, Ps) is higher than
that of (P, P»), despite the more similar shape between P; and P,. This occurs due to the different
scales among P, P> and Ps, which influence the attention weights, thereby failing to reflect true
shape similarity. Consequently, the model may learn incorrect similarity relationships, leading to
performance degradation. Furthermore, this scale bias is even more pronounced when modeling
dependencies between variables, further hindering the effectiveness of VD models.

To balance the scale differences of patches, recent methods have employed Patch Normalization (Liu
et al.| [2023b)), which Z-score normalizes each patch by subtracting the mean and dividing by the
standard deviation. However, the removal of the standard deviation inadvertently distorts the original
shape of the patch. As a result, it hampers the model’s ability to identify shape similarities across
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Figure 1: Attention weights for three patches before and after Figure 2: Comparison of the MSE
patch-mean decoupling. Scale differences initially obscure true of all baselines with our proposed
shape similarity, which are clearly revealed after decoupling as PMDformer. The results are the
increased (red) or decreased (green) correlations, with analo- averages for all prediction lengths.
gous similarity shown in blue for (Ps, P;) and (Ps, P5).

patches or variables. In this paper, we propose a simple yet effective alternative method called
patch-mean decoupling (PMD). We subtract the mean of each patch, which recenters each patch to
zero mean and explicitly separates the long-range trend component which is encoded in the means
of patches from the residual shape information. Unlike Patch Normalization, our method preserves
the original amplitude variations and maintains the intrinsic shape structure, ensuring that the model
better captures true shape similarities across patches. As shown in Figure [T} through our method
attention favors shape-aligned pairs (P;, P») over shape-unaligned (P, Ps).

PMD thus enables more shape-focused attention across patches and variables, revealing true sim-
ilarities obscured by scales. For cross-variable shape modeling, existing methods
[2024} [Zhang & Yan| [2023)) often compute interactions over the entire historical window. However,
cross-variable relationships are often non-stationary and evolve over time, so recent interactions are
the most predictive of future dynamics. For example, in financial markets asset correlations often
spike sharply during crises. Relying on the entire historical dependencies introduces substantial
noise and redundancy, degrading performance. To address this, we introduce proximal variable at-
tention (PVA), which confines self-attention to the most recent patch—the segment most proximal to
the prediction horizon. By capturing shape similarities among variables in this temporally relevant
window, PVA minimizes noise from historical drifts and risk overfitting.

Complementarily, recentering via PMD inherently attenuates the long-term trend signal, potentially
overlooking global dependencies. To restore this without disrupting shape matching between tem-
poral patches, we propose trend restoration attention (TRA), which explicitly injects the decoupled
means (long-range trend information) into the value pathway of the attention mechanism. This
seamless integration allows the model to jointly encode local shape patterns and global trend yield-
ing more stable forecasts.

Building on above, we propose PMDformer, which combines patch-mean decoupling (PMD) mod-
ule, Proximal variable attention (PVA), trend reinsertion attention (TRA) and a projection layer for
final forecasting. The comparison of predictive accuracy of our PMDformer and other state of the
art models refer to Figure[2] Our contributions are:

* We introduce a novel mechanism to decouple trend and residual shape within the attention
module via residual mean deduction, enabling more effectively capture shape similarity
among temporal patches and varibles.

* We introduce proximal variable attention, which focuses on the most recent patch to capture
the most relevant shape similarities, mitigating overfitting.

* We demonstrate the effectiveness of our approach through extensive experiments on a va-
riety of LTSF benchmarks, showing that PMDformer provides more stable and accurate
forecasts than current state-of-the-art methods.
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2 RELATED WORK

Deep learning models have demonstrated remarkable performance in long-term time series forecast-
ing. These models can be broadly divided into Transformer-based modelsVaswani et al.| (2017));[Wu
et al.| (2021); [Liu et al.| (2022a); Zhou et al.| (2022), MLP-based models Zeng et al.| (2023)); |Li et al.
(2023)); ILin et al.| (2024); Wang et al.| (2024a), GNN-based models Huang et al.| (2023); |Yi et al.
(2023a) and CNN-based models Wang et al.| (2023); |[Eldele et al.| (2024).

Transformer-based time series models. The success of Transformers (Vaswani et al.l [2017) in
NLP has inspired their adaptation for LTSF to capture long-range dependencies. Early models treat
series as token sequences with efficient attention: Informer (Zhou et al.| 2021)) uses ProbSparse for
complexity reduction; Pyraformer (Liu et al.,|2022a)) employs pyramidal attention; Autoformer (Wu
et al.,2021) adds decomposition; and FEDformer (Zhou et al.,[2022) incorporates frequency blocks.
Yet, their efficacy is challenged by simple linear models (Zeng et al.| 2023)), underscoring needs for
better temporal modeling.

Patch-based time series models. Inspired by vision transformers (Dosovitskiy et al., 2020), re-
cent works segment time series into overlapping or non-overlapping patches to bolster local semantic
capture. Transformer-based examples include PatchTST (Nie et al., |2023)), which uses variable-
independent shared encoders for temporal patch semantics (SOTA in LTSF), and Pathformer (Chen
et al.| 2024) with multi-scale patches and adaptive path selection for intra/inter-dependencies. MLP
variants like TSMixer (Ekambaram et al.| [2023)) and PatchMixer (Gong et al., 2023)) model patch
relations via MLPs, while foundation models such as Moirai (Woo et al., 2024), Timer (Liu et al.,
2024b), TimesFM (Das et al.| 2024), and LLM-based (Pan et al., [2024; Jin et al., 2023)leverage
patches for pretraining and cross-modal alignment. Recent TimeBase (Huang et al.l [2025) em-
ploys orthogonalized patches to reduce redundancy for SOTA efficiency, which further underscores
patches’ success in LTSF modeling.

Patch-Normalization. Due to the non-stationary nature of time series, some works (Fan et al.,
2023} |[Kim et al.,|2021) apply normalization to mitigate scale discrepancies and stabilize distribu-
tions. Among them, Patch-level normalization works include SAN (Liu et al. 2023b), a model-
agnostic framework that adaptively normalizes slices by removing non-stationarity for flexible fore-
casting, and SIN (Han et al.,|2024b), which selectively learns normalization parameters to maximize
local invariance and global variability, enabling interpretable long-term predictions. However, these
normalization methods distort intrinsic patch shapes by scaling with standard deviation, hindering
true shape similarity capture. In contrast, our PMD overcomes through mean subtraction to preserve
amplitudes.

3 PROPOSED METHOD

We consider the task of long-term time series forecasting, where the goal is to predict the future
evolution of multiple correlated variables given their historical observations. Formally, let X =
{z; € RY | t = 1,2,..., L} denote an input sequence of length L, where C' is the number of
variables. Each z; = (2}, 22,...,2%) contains the values of all variables at time ¢. Given X, the

objective is to forecast the subsequent 7" time steps Y = {i; € R® |t = L+ 1,..., L+ T}.

3.1 THE GENERAL STRUCTURE

Our proposed PMDformer architecture is a unified framework composed of four synergistic mod-
ules designed to explicitly decouple the long-term trend from the shape structure, selectively focus
on the most relevant inter-variable dependencies, and ensure the accurate restoration of global dy-
namics for stable forecasting, as illustrated in Figure[3] (a) Patch-Mean Decoupling (PMD): This
module partitions the input time series into non-overlapping patches and explicitly separates each
patch into its long-term trend component and its residual shape component. (b) Proximal Vari-
able Attention (PVA): To capture the most relevant cross-variable dependencies, the PVA module
focuses its self-attention mechanism only on the C' tokens of the last (proximal) patch, modeling
interactions across all variables. (c) Trend Restoration Attention (TRA): This module is designed
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Figure 3: Overview of the proposed PMDformer. The model comprises: (a) Patch-Mean Decou-
pling module re-centers each patch and separates patches into trend and shape components; (b)
Proximal Variable Attention operates only on the most recent token to capture variable interac-
tions which are most relevant for forecasting; (c) Trend Restoration Attention restores long-range
trends after value projections, restoring trend modeling; (d) Projection Linear adds the trend back
to model long-range trend information for stable and accurate predictions.

to model the shape similarities across patches. Crucially, it then restores the long-range trend infor-
mation into the value pathway, enabling to accurately capture and utilize the overall long-term trend.
(d) Projection Layer: This final layer combines the learned temporal representations with the rein-
corporated trend information through a fully connected projection to produce the final predictions.

3.2 MODEL ARCHITECTURE

Patch-Mean Decoupling (PMD) & Embedding. We first divide the input sequence X = {x; €
R} | into N non-overlapping patches of length S, where N = |L/S]. For variable i € [C] and
patch index j € [N], the raw patch vector is

P} = (2015415 Tjonsa oo Tys) ERY. O

We then compute its temporal mean and the corresponding mean-decoupled residual:

s
_ , . , ,
W= 5D Thinsee T =Py pls, )
k=1

where 1g is the S-dimensional all-ones vector. Each residual patch is then embedded into a d-
dimensional representation through a shared linear projection. To encode location, we add learned
positional embeddings to form the Transformer token:

P =1, Wg+bg+1z,, 3)
where W € R5%4 by € R? and z,, € R? denotes the positional embedding of patch j. By
removing patch means before embedding, each patch is centered, which alleviates local inconsisten-
cies across patches and variables so that attention mechanism can focus on shape similarities.

Proximal Variable Attention (PVA). Intuitively, accurate time series forecasting hinges on the
immediate interactions between variables at the most recent time steps, as these dependencies are
most indicative of near-term changes. Therefore, the PVA module is designed to concentrate its
attention mechanism on the most proximal (i.e., most recent) tokens to model these critical cross-
variable relationships.
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Let IV be the index of the last (most recent) patch. We collect the most recent tokens of all C
variables, denoted as Py = {P}V, e P%}, where each token Pﬁv € R4 is derived from the Patch-
Mean Decoupling (PMD) embedding. The PVA then applies Multi-Head Self-Attention (MHSA)
exclusively within the set Py to effectively capture the cross-variable shape dependencies that are
most relevant for forecasting. Following the attention mechanism, a Feed-Forward Network (FFN)
is employed to enhance the non-linear feature representation:

Py = LayerNorm(MHSA(Py) + Pn), 4)
P = LayerNorm(FEN(Py) + P ). (5)
Tokens from the earlier historical patches, specifically those indexed {1,..., N — 1}, maintain their

original representation derived from the PMD module. Following the PVA operation, the refined
token set Py is concatenated with these remaining historical tokens along the patch dimension to
form the full sequence of shape embeddings, denoted as P € RE*N x4 This deliberate strategy
of restricting cross-variable attention solely to the most proximal patch offers dual advantages: it
enhances model robustness by avoiding spurious long-range couplings from historical noise, and
it improves computational efficiency by reducing the complexity from O(C2N) to O(C?).

Trend Restoration Attention (TRA). Following the refinement of the most proximal tokens by
the PVA module, the TRA module aims to capture temporal shape similarities across all historical
patches while preserving long-range trend information. This is achieved by applying a parameter-
shared Transformer encoder (MHSA + FFN) along the patch axis for each variable independently.

In this design, the Query(Q) and Key(K) projections operate solely on the shape embeddings, ensur-
ing that the resulting attention scores .4 emphasize precise inter-patch shape similarity. To counteract
the potential loss of global dynamics inherent in shape-focused modeling, we explicitly incorpo-
rate the per-patch mean (1) into the Value (V) pathway. The additive reintegration is inspired by
residual connections in ResNet (He et al.||2016). Concretely, for the ¢-th variable’s patch sequence
P? ¢ RV*? the computation is defined as:

Q' =P'Wy, K' = P'Wy, (6)
QK"

A = Soft =27 ), 7

) max( 7 ) @)

Vi=P'Wy + ', (8)

where W, W, Wy are the projection matrices, and p° is the per-patch mean (Eq. , broadcast
to match the dimensions of P*Wy,. This architectural separation allows the Q/K pathway to
model fine-grained local shape dependencies, while the V pathway ensures the preservation of the
essential global trend dynamics. The resulting trend-integrated tokens are then refined through a
Feed-Forward Network (FFN) to enhance the temporal representation learning.

Projection Layer. The temporal tokens produced by the TRA module are rich in shape dependen-
cies but still require the final restoration of the global trend information for stable and accurate
multi-step forecasting. This final step is essential to fully recover the original scale and long-term
dynamics that were decoupled earlier. To achieve this, before generating the multi-step forecasts,
we re-incorporate the per-patch trend means (1°) into the refined shape embeddings:

Y = (P +4)W,+b,, Y ecR”. )
Here, W, € RIWXAXT and b, € R” are the weight matrix and bias vector, respectively. The mean

1 is implicitly broadcast to align with the dimensions of P?. This final step ensures the model’s
predictions are well-calibrated with the long-range trend observed in the input series.

3.3 THEORETICAL ANALYSIS

3.3.1 SCALE B1AS WITHOUT PATCH-MEAN DECOUPLING (PMD)

Consider embedding raw patches X = r + p1, where r is the residual and y is the patch mean. The
attention logit between tokens (3, j) is given by:

Zii=q] kj =% MX; = pip; 1M1+ ;1" Mrj + e, M1+ v/ Mr; ,  (10)
mean—mean Cross residual similarity
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where M := WEW%W x Wg and 1 is the all-ones vector. The first three terms depend on the
means and can dominate the residual similarity, inducing scale bias.

Proposition 1: Sufficient Condition for Level-Dominated Logits Let ¢ be a fixed query. A
sufficient condition for the mean-dependent part of Z;; to dominate the residual similarity uniformly
over all keys j is:

[l |11 VL] > (VAo o |+ e IVEL e ]+ Lo VL e (11)

where || - ||2 represents the spectral norm. This condition guarantees that the mean-dependent terms
outweigh the residual term and cross terms, leading to scale-induced bias in attention. This confirms
that attention is biased toward scale when the means are large, which motivates the need for patch-
mean decoupling in our method.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets We conduct experiments on 8 widely-used and publicly available real-world datasets.
These include: ECL'| Traffi]} Weatheff] Solaff ETTh1, ETTh2, ETTm1, and ETTmZ} Following
the experimental protocol established in prior work (Wang et al., 2024b; |Qiu et al.| [2024; [Liu et al.,
2023a), we partition the datasets into training, validation, and test sets with the following ratios:
6:2:2 for the four ETT datasets and 7:1:2 for the remaining datasets. The detailed statistics of each
dataset are summarized in Table Il

Table 1: Characteristics of Long-term Time Series Datasets. This table summarizes key attributes of
each dataset, including the application domain; the number of variables; total time points; data split
ratios for training, validation, and testing and sampling interval.

Domain ‘ Electricity ‘ Weather ‘ Energy ‘ Transportation
Dataset | ETThl ETTh2 ETTml ETTm2 ECL | Weather | Solar-Energy |  Traffic
Variables 7 7 7 7 321 21 137 862
Time Points | 14,400 14,400 57,600 57,600 26,304 | 52,696 52,560 17,544
Split Ratio 6:2:2 6:2:2 6:2:2 6:2:2 7:1:2 7:1:2 7:1:2 7:1:2
Sampling 1 hr 1 hr ISmin 15 min 1 hr 10 min 10 min 1 hr

Baselines We compare PMDformer against 9 baselines, including state-of-the-art (SOTA) long-
term forecasting models: TQNet (Lin et al.l 2025), TimeBase (Huang et al., 2025), SOFTS (Han
et al., [2024a)), SparseTSF (Lin et al.| [2024)), ModernTCN (Luo & Wang, 2024), iTransformer (Liu
et al.| 20244), TimeMixer (Wang et al.,[2024a), and PatchTST (Nie et al.|[2023).

Setups Consistent with prior research (Huang et al.l 2025), we use an input length L of 720 and
evaluate prediction lengths 7' of {96, 192, 336, 720}. Results for TimeBase, SparseTSF, iTrans-
former, TimeMixer, and PatchTST are derived from the TimeBase study, while other outcomes are
from our own experiments. All experiments are conducted using PyTorch (Paszke et al., 2019) on
an NVIDIA A100 80GB GPU. The Adam optimizer (Kingma, |2014) is employed, with learning
rates chosen from {2e-4, 5e-4, le-3, le-2}. The number of patches IV is adjusted based on the
requirements of each dataset.

Uhttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
Zhttps://pems.dot.ca.gov/

*https://www.bgc-jena.mpg.de/wetter/
*http://www.nrel.gov/grid/solar-power-data.html
>https://github.com/zhouhaoyi/ETDataset


https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://pems.dot.ca.gov/
https://www.bgc-jena.mpg.de/wetter/
http://www.nrel.gov/grid/solar-power-data.html
https://github.com/zhouhaoyi/ETDataset
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Table 2: Comprehensive results for multivariable time series forecasting with a lookback window of
720 time steps. Performance metrics for TQNet (Lin et al.l |2025) and SOFTS (Han et al. [2024a)
were obtained through our experiments, while results for other methods were sourced from Time-
Base (Huang et al.| 2025)). The best results are highlighted in bold, and the second-best are indicated
with underlining.

Models PMDformer TQNet TimeBase SOFTS SparseTSF ModernTCN  iTransformer TimeMixer PatchTST
Year ours 2025 2025 2024 2024 2024 2024 2024 2023
Metric MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

96 | 0122 0214 | 0.143 0244 [ 0.139 0231 | 0.133 0229 [ 0.139 0239 | 0131 0227 | 0.135 0233 | 0.142 0247 | 0.141 0.240
| 192 | 0140 0231 | 0.151 0247 | 0153 0255 | 0.160 0255 | 0.155 0250 | 0.145 0241 | 0.155 0.253 | 0.159 0256 | 0.156 0.256
Q| 336 | 0052 0245 | 0.166 0261 | 0.169 0262 | 0.182 0277 | 0.171 0265 | 0162 0261 | 0.169 0267 | 0.169 0270 | 0172 0.267
720 | 0.177 0272 | 0.194 0291 | 0.207 0.294 | 0224 0310 | 0.208 0.300 | 0.193 0.289 | 0204 0301 | 0.209 0313 | 0.208 0.299
| Avg | 0.148 0241 | 0.164 0.261 | 0.167 0258 | 0.175 0268 | 0.180 0.264 | 0158 0.255 | 0.166 0.264 | 0.170 0.272 | 0.169 0.266
96 | 0.338 0212 | 0.398 0.297 | 0394 0267 | 0355 0255 | 0.389 0.268 | 0.382 0.267 | 0374 0273 | 0.396 0.294 | 0.363 0.250
2| 192 | 0367 0227 | 0397 0277 | 0403 0271 | 0365 0258 | 0.399 0272 | 0.393 0.271 | 0393 0283 | 0.404 0295 | 0.382 0.258
S| 336 | 0379 0235 | 0403 0279 | 0417 0278 | 0390 0278 | 0.417 0279 | 0.406 0.277 | 0.409 0292 | 0.419 0302 | 0.399 0.268
£ 720 | 0426 0262 | 0448 0304 | 0456 0298 | 0429 0.294 | 0.449 0299 | 0452 0.305 | 0.450 0314 | 0.458 0309 | 0.432 0.289
| Avg | 0378 0234 | 0412 0289 | 0418 0279 | 0385 0271 | 0.414 0280 | 0408 0.280 | 0.407 0.291 | 0.419 0.300 | 0.394 0.266
_| 96 | 0141 0181|0160 0213 | 0.146 0198 | 0.165 0219 | 0.174 0231 | 0.155 0210 | 0.159 0212 [ 0.163 0.223 | 0.149 0.199
B 192 | 0185 0226 | 0212 0261 | 0185 0241 | 0213 0258 | 0.216 0.267 | 0.205 0.254 | 0203 0252 | 0.201 0254 | 0.193 0.243
2| 336 | 0236 0274 | 0260 0.299 | 0.236 0281 | 0272 0305 | 0.260 0.209 | 0.255 0.290 | 0.253 0.291 | 0258 0300 | 0.240 0.281
Z| 720 | 0305 0323|0328 0343 | 0.309 0331 | 0380 0371 | 0325 0345 | 0.317 0336 | 0.317 0337 | 0329 0348 | 0312 0334
| Avg | 0217 0251 | 0240 0279 | 0219 0263 | 0258 0288 | 0.244 0.286 | 0.233 0273 | 0233 0273 | 0.238 0281 | 0.224 0.264
96 | 0.160 0.193 | 0.181 0.242 [ 0179 0248 | 0.192 0239 | 0.205 0241 | 0.196 0.258 | 0217 0255 | 0.232 0271 | 0.205 0.239
5| 192 10178 0211|0203 0261 | 0213 0252 [ 0197 0259 | 0215 0265 | 0224 0280 | 0.208 0.257 | 0.238 0.293 | 0.227 0.280
S| 336 | 0190 0218 | 0219 0272 | 0222 0.261 | 0.212 0273 | 0213 0276 | 0.240 0288 | 0.238 0.309 | 0.234 0301 | 0.225 0.290
| 720 | 0196 0221 | 0231 0.281 | 0.235 0264 | 0217 0274 | 0232 0272 | 0.246 0.299 | 0270 0319 | 0273 0319 | 0.249 0.291
| Avg | 0181 0211 | 0.209 0.264 | 0216 0254 | 0201 0264 | 0.216 0.264 | 0.227 0.281 | 0233 0285 | 0.244 0296 | 0.227 0.275
96 | 0.356 0.388 | 0.379 0404 | 0.349 0384 | 0389 0417 | 0.362 0.389 | 0.380 0.405 | 0389 0.421 | 0.410 0.441 | 0.377 0.408
= | 192 | 0397 0416 | 0429 0441 | 0.387 0410 | 0427 0443 | 0.404 0412 | 0.418 0428 | 0424 0446 | 0.448 0465 | 0.413 0.431
E| 336 | 0420 0432 | 0454 0455 | 0.408 0.418 | 0446 0458 | 0.435 0428 | 0453 0450 | 0.456 0469 | 0.482 0490 | 0.436 0.446
M| 720 | 0432 0456 | 0499 0.506 | 0439 0.446 | 0.468 0491 | 0.426 0448 | 0.480 0484 | 0.545 0532 | 0475 0.500 | 0.455 0.475
| Avg | 0401 0423 | 0440 0452 | 0396 0.415 | 0433 0452 | 0407 0419 | 0433 0442 | 0454 0467 | 0.454 0474 | 0420 0.440
96 | 0.269 0329 | 0.288 0354 [ 0292 0345 | 0309 0365 | 0.294 0.346 | 0273 0341 | 0305 0361 | 0.315 0380 | 0.276 0.339
Q| 192 | 0333 0373 | 0377 0403 | 0339 0387 | 0378 0405 | 0.340 0377 | 0.337 0.385 | 0405 0.421 | 0383 0415 [ 0.342 0.385
E| 336 | 0357 039 | 0377 0415 | 0.358 0410 | 0460 0.461 | 0360 0398 | 0369 0.414 | 0411 0436 | 0385 0438 | 0.364 0405
S| 720 | 0390 0429 | 0.424 0452 | 0.400 0448 | 0441 0467 | 0.383 0.425 | 0.408 0448 | 0.448 0470 | 0432 0471 | 0395 0.434
| Avg | 0337 0382 | 0.367 0406 | 0347 0398 | 0397 0425 | 0.344 0387 | 0.347 0.397 | 0392 0422 | 0379 0426 | 0.344 0.391
96 | 0279 0328 | 0.296 0349 | 0311 0351 | 0303 0361 | 0.314 0359 | 0.313 0357 | 0315 0369 | 0.332 0384 | 0.298 0.352
2| 192 | 0323 0358 | 0337 0374 | 0338 0371 | 0336 0377 | 0.348 0376 | 0.343 0.377 | 0349 0388 | 0355 0398 | 0.335 0.373
£ 336 | 0361 0383 | 0369 0393 | 0.364 0.386 | 0.384 0407 | 0.368 0.386 | 0372 0393 | 0381 0409 | 0386 0416 | 0366 0394
D] 720 | 0421 0416 | 0447 0434 | 0.413 0414 | 0438 0438 | 0419 0.413 | 0.420 0420 | 0437 0439 | 0452 0457 | 0420 0.421
| Avg | 0346 0371 | 0.362 0388 | 0357 0.381 | 0.365 0396 | 0362 0.384 | 0.362 0387 | 0.371 0401 | 0381 0414 | 0.355 0.385
96 | 0.155 0.240 | 0.169 0257 | 0.167 0.259 | 0.188 0274 | 0.167 0.259 | 0.179 0269 | 0.179 0274 | 0.192 0.285 | 0.165 0.260
S| 192 | 0213 0282 | 0231 0299 | 0219 0297 | 0.256 0317 [ 0219 0297 | 0243 0312 | 0239 0314 | 0253 0329 | 0219 0.298
E| 336 | 0267 0319|0282 0337 | 0271 0330 | 0.334 0366 | 0271 0.330 | 0270 0330 | 0309 0356 | 0307 0362 | 0268 0333
D] 720 | 0347 0373 | 0371 0398 | 0.353 0.380 | 0392 0406 | 0353 0380 | 0.362 0.393 | 0.387 0407 | 0380 0412 | 0.352 0.386
| Avg | 0246 0304 | 0263 0323 | 0253 0317 | 0293 0341 | 0.253 0317 | 0.264 0326 | 0279 0338 | 0.283 0347 | 0.251 0.319
1" Count 32 33 | 0 o | 7 4 | 1 0o | 2 3] 0 0] o 0] o 0 | o 0

4.2 MAIN RESULTS

Table 2] summarizes the quantitative results for long-term time series forecasting across multiple
prediction horizons and datasets. As shown, our proposed PMDformer achieves the lowest Mean
Squared Error (MSE) and Mean Absolute Error (MAE) on 7 out of 8 real-world datasets, outper-
forming all baselines in the majority of cases. This success is directly tied to PMDformer’s ability
to overcome fundamental limitations in existing architectures.

Specifically, compared to the patch-based model TimeBase, PMDformer yields an average MSE
reduction of 5.68% and MAE reduction of 6.61%. This improvement stems from our method’s
capacity to indentify meaningful shape similarities across patches, a capability that TimeBase’s
orthogonal patch selection inherently sacrifices to reduce redundancy. Moreover, against TQNet,
PMDformer achieves an average MSE reduction of 8.62% and MAE reduction of 9.96%. TQNet’s
fixed periodic queries constrain its ability to handle diverse cycles, whereas PMDformer’s adaptive
proximal variable attention offers greater flexibility in modeling variables’ shape similarities. Com-
pared to the Transformer-based iTransformer, PMDformer delivers an average MSE reduction of
11.44% and MAE reduction of 12.38%. iTransformer captures dependencies among variable tokens
embedded from the entire historical sequence, which can lead to overfitting on early, weakly relevant
variable relationships that degrade future predictions. In contrast, our PVA module succeed to avoid
this by focusing on the shape similarities of variables within the most nearest patch.
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Table 3: Ablation study on PMD module. We assess different modules for patch-wise normalization,
along with removing PMD module. Results are averaged across all prediction horizons.

Desi | | ETTh2 | ETTml1 |  Weather | Traffic | Solar
esign Norm
| | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
PMDformer | PMD | 0.337 0.382 | 0.346 0.371 | 0.217 0.251 | 0.378 0.234 | 0.181 0.211
w/ stdev | 0.354 0.392 | 0.347 0.370 | 0.218 0.252 | 0.396 0.259 | 0.205 0.221
Replace SAN 0.360 0.403 | 0.353 0.380 | 0.225 0.275 | 0392 0.273 | 0.182 0.235
X 0.359 0.394 | 0.347 0.370 | 0.223 0.260 | 0.397 0.258 | 0.199 0.212

Table 4: Ablation studies on TRA and PVA modules in PMDformer: Performance impacts of re-
placements, removals, and order swaps across ETTh2, ETTml, Traffic, and Solar datasets. Results
are averaged across all prediction horizons.

Design | TRA | pya | ETTR2 | ETTml |  Traffic | Solar
| | | MSE MAE | MSE MAE | MSE MAE | MSE MAE
PMDformer | v | Last Token | 0.337 0.382 | 0.346 0.371 | 0.378 0.234 | 0.181 0.211
v All Token | 0.340 0.384 | 0.354 0.375 | 0.380 0.239 | 0.186 0.214
Replace Self-attention | Last Token | 0.345 0.386 | 0.352 0.372 | 0.388 0.251 | 0.196 0.217
Swap Order = 0.342 0.385 | 0.350 0.372 | 0.379 0.235 | 0.188 0.216
X Last Token | 0.344 0.381 | 0.347 0.372 | 0.410 0.270 | 0.215 0.226
w/o v X 0.340 0.383 | 0.347 0.371 | 0.386 0.240 | 0.194 0.214
X X 0.346 0.384 | 0351 0.372 | 0.426 0.288 | 0.222 0.230

PMD Module Analysis. We assessed the effectiveness of the PMD module through extensive
ablations conducted on five non-stationary benchmarks: ETTh2, ETTm1, Weather, Traffic, and So-
lar (Wen et al., 2023} |Kim et al.,|2025)). Using a fixed input length of 720, we tested the model’s per-
formance across various prediction horizons (96, 192, 336, and 720) against several patch-wise nor-
malization variants: (i) mean—variance standardization ("w/ stdev’), (ii) utilizing the Scale-Adaptive
Normalization (SAN) (Liu et al.,[2023b)) method, and (iii) removing the PMD module entirely. As
presented in Table[3] the PMDformer consistently achieves superior accuracy across all datasets. We
attribute this advantage to the PMD module’s per-patch centering mechanism, which effectively pre-
serves crucial intra-patch shape information. This preservation allows the Transformer architecture
to specifically concentrate its attention on modeling shape similarity. Furthermore, by explicitly
injecting the patch mean as a separated trend component into the Transformer pathway, PMDformer
is uniquely positioned to accurately capture and model long-term trends. In stark contrast, SAN
explicitly decouples the scale and residual components for independent prediction. Since global
scale estimation is inherently unstable in highly non-stationary series, this rigid decoupling under-
mines the essential joint modeling of scale—shape interactions, consequently leading to overfitting
and weaker generalization capabilities.

TRA & PVA Analysis. To assess the effectiveness of the TRA and PVA modules, we conducted
ablation studies on the ETTh2, ETTm]1, Traffic, and Solar datasets. For the TRA module, we tested
two alternatives: replacing it with standard self-attention or removing it entirely. For the PVA mod-
ule, we either modified it to compute variable-wise shape similarity across all patches or removed
the module completely. Additionally, we investigated a structural variant that swaps the sequential
order of the two modules. The experimental outcomes are summarized in Table

The results unequivocally show that PMDformer consistently outperforms all ablated variants across
every dataset and configuration. When TRA is replaced with standard self-attention, performance
degrades significantly because the crucial long-term trend information is neglected. Similarly, when
PVA is forced to compute variable-wise shape similarity across all historical patches, performance
decreases. This confirms our hypothesis that early variable relationships are often only weakly or
spuriously correlated with the predictive sequences, justifying PVA’s proximal focus. Furthermore,
removing both TRA and PVA results in the largest performance drop observed, emphatically high-
lighting the dual importance of TRA in modeling temporal patch shapes and long-range trends,
and PVA in capturing relevant variable-wise shape similarity. Finally, swapping the original or-
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Figure 4: Parameter Sensitivity Analysis. (a) Selection of the number of k nearest patches to the
prediction sequence for capturing inter-variable dependencies on these patches. Superior and more
stable performance is achieved when k = 1. (b) Different patch sizes are used to partition the input
sequence, and a moderate patch size yields the optimal choice.

der of TRA and PVA also causes notable performance degradation. When TRA is applied first, it
compresses patch information too early, making it harder for the subsequent variable modeling to
identify meaningful cross-variable dependencies.

4.3 PARAMETER SENSITIVITY ANALYSIS

Patch Count for Cross-Variable Modeling. We evaluate the impact of capturing variable patterns
within different numbers of patches, where k£ € {1,2,3,5,7,10}. For each setting, the k nearest
patches to future sequences are selected to capture the shape similarity of variable, thereby further
validating the effectiveness of PVA. Experiments are conducted on the ETTh1 and Solar datasets.
As shown in Figure [4] (a), the mean squared error (MSE) exhibits an overall upward trend as k
gradually increases on the ETTh1 dataset. On the Solar dataset, this increase is more pronounced
when predicting 192, 336, or 720 steps ahead, because future sequences are more weakly correlated
with early variable relationships. Moreover, the MSE curves show some fluctuations, indicating that
different values of k£ may lead to more significant differences in prediction performance. In contrast,
across all four prediction horizons, using £k = 1 yields more stable performance compared with
larger k. This is because the nearest patch is typically more closely aligned with the target sequence
to be predicted, making it more beneficial for accurate modeling.

Patch Size. Different patch sizes lead to varying degrees of distinction among patches. To investi-
gate this, we evaluate multiple patch sizes {8, 16, 24,48, 72,120} on the ETTh2 and ECL datasets.
As shown in Figure [4] (b), both overly small and overly large patch sizes fail to deliver optimal
performance. This is because excessively small patches provide insufficient shape information to
distinguish similarity, making it difficult for the attention mechanism to capture underlying tem-
poral dependencies or genuine variable correlations. Conversely, overly large patches reduce the
number of tokens, thereby limiting the model’s ability to capture long-range dependencies. Based
on these observations, we find that moderate patch sizes, particularly within {24, 48, 72}, achieve a
better trade-off and yield more robust performance.

5 CONCLUSION

In this paper, we tackle challenges in long-term time series forecasting by emphasizing true shape
similarities hidden by scale variations in non-stationary data. Our patch-mean decoupling (PMD)
separates trends from residual shapes while preserving amplitudes, enabling shape-focused atten-
tion across patches and variables. Integrated with proximal variable attention (PVA) for recent inter-
variable dependencies and trend restoration attention (TRA) for global trend reintegration, PMD-
former excels in capturing temporal patterns. Experiments on LTSF benchmarks show PMDformer
surpasses state-of-the-art baselines in accuracy and stability, underscoring the value of shape-centric
Transformer designs. Future directions include scaling to higher-dimensional multivariate data and
multimodal integrations for applications in energy, finance, and traffic.
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A APPENDIX

A.1 EFFICIENCY ANALYSIS

To evaluate the efficiency of our model in handling complex tasks, we conduct experiments under
two settings: varying the number of variables and varying the input length. In the first setting, we fix
the input length at 720 and change the number of variables; in the second setting, we fix the number
of variables at 100 and test PMDformer with different input lengths. The batch size is set to 1 in all
experiments. The results are shown in Figureﬂ Under both settings, compared with recent popular
models such as PatchTST (Nie et all[2023), iTransformer (Liu et al} [2024a), and ModernTCN (Luo]
gl [2024), PMDformer requires s1gn1ﬁcantly less GPU memory, thereby reducing the overall
computatlonal cost.
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Figure 5: (a) Comparison of memory usage with varying number of variables C'. (b) Comparison of
memory usage with varying input sequence length L. PMDformer consistently requires the lowest
memory.
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Figure 6: Comparison on synthetic data. The ground truth alternates between pulse and sine shapes
with varying scales. The w/o PMD’ yields smoothed outputs and struggles to recognize the shape
similarity, while "w/ PMD’ effectively fits the shapes and trends.

A.2 COMPARISON ON SYNTHETIC DATA

To further validate the effectiveness of our PMD module, we conduct an experiment on a synthetic
dataset. This dataset consists of patches alternating between two different shapes: a sharp pulse wave
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with large amplitude and a smooth sine wave with small amplitude. To simulate non-stationary time
series, the patches exhibit varying scales and are augmented with moderate noise. We compare a
standard patch-based Transformer (w/o PMD) against our model incorporating the patch-mean de-
coupling module (w/ PMD). As illustrated in Figure[§] the *w/o PMD’ model struggles to recognize
true shape similarities due to scale differences between patches, leading to predictions that resemble
mostly smooth curves with inadequate trend fitting. In contrast, our "'w/ PMD’ model, by removing
scale factors, enables attention to focus more effectively on intrinsic shapes, resulting in predictions
that better capture both the underlying patterns and long-range trends.

B ON THE USE OF LARGE LANGUAGE MODELS

The authors used large language models (LLMs) exclusively for language polishing and minor
rephrasing during the final writing stage. All scientific content, ideas, and initial drafts were created
entirely by the authors without any text improved by LLMs was carefully checked and edited by the
authors. LLMs played no role in developing research questions, designing experiments, analyzing
results, or any other aspect of the research itself.
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