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Abstract

Recent years have seen the proliferation of
disinformation and fake news online. Tradi-
tional approaches to mitigate these issues is to
use manual or automatic fact-checking. Re-
cently, another approach has emerged: check-
ing whether the input claim has previously been
fact-checked, which can be done automatically,
and thus fast, while also offering credibility
and explainability, thanks to the human fact-
checking and explanations in the associated
fact-checking article. Here, we focus on claims
made in a political debate and we study the im-
pact of modeling the context of the claim: both
on the source side, i.e., in the debate, as well
as on the target side, i.e., in the fact-checking
explanation document. We do this by modeling
the local context, the global context, as well as
by means of co-reference resolution, and multi-
hop reasoning over the sentences of the docu-
ment describing the fact-checked claim. The
experimental results show that each of these
represents a valuable information source, but
that modeling the source-side context is most
important, and can yield 10+ points of absolute
improvement over a state-of-the-art model.

1 Introduction

The fight against dis/mis-information has become
an urgent social and political matter. Online
media have been widely used not only for so-
cial good, but also to mislead entire communi-
ties. Many fact-checking organizations, such as
FactCheck.org,1 Snopes,2 PolitiFact,3 and Full-
Fact,4 as well as some broader international ini-
tiatives such as the Credibility Coalition5 and Eu-
factcheck,6 have emerged to address the problem
(Stencel, 2019).

1http://www.factcheck.org/
2http://www.snopes.com/fact-check/
3http://www.politifact.com/
4http://fullfact.org/
5https://credibilitycoalition.org/
6https://eufactcheck.eu/

There have also been efforts to develop auto-
matic systems to detect such content (Vo and Lee,
2018; Shu et al., 2017; Thorne and Vlachos, 2018;
Li et al., 2016; Lazer et al., 2018; Vosoughi et al.,
2018a; Nguyen et al., 2020), including the develop-
ment of datasets (Augenstein et al., 2019), systems
(Chernyavskiy et al., 2021b), and evaluation cam-
paigns (Barrón-Cedeño et al., 2020; Nakov et al.,
2021b,c; Shaar et al., 2021a; Nakov et al., 2022b).

An important issue with automatic systems is
that journalists and fact-checkers often question
their credibility for reasons such as (perceived) in-
sufficient accuracy given the state of present tech-
nology, but also due to the lack of explanation about
how the system has made its decision. On the other
hand, manual fact-checking is time-consuming and
does not scale. Yet, time is precious: it has been re-
ported in the literature that fake news travels faster
than real news (Vosoughi et al., 2018b), and that
50% of the spread of some very viral false claims
has happened within the first ten minutes after they
got published (Zaman et al., 2014). Such findings
show the importance of real-time fake news detec-
tion, which can enable a timely intervention.

As both manual and automatic systems have
their limitations, there have been proposals for
human-in-the-loop settings, aiming to bring the
best of both worlds. In order to enable such an ap-
proach, one question that arises is how to facilitate
fact-checkers and journalists with automated sys-
tems (Nakov et al., 2021a). An immediate problem
is to know whether a given input claim has been pre-
viously fact-checked by a reputable fact-checking
organization. This would give the journalist a credi-
ble reference and could save her significant amount
of time, as manually fact-checking a single non-
trivial claim may take from 1-2 days to 1-2 weeks.
While earlier studies have suggested that such a
mechanism should be part of an end-to-end auto-
mated system, there has been limited work in this
direction (Shaar et al., 2020a; Vo and Lee, 2020).

http://www.factcheck.org/
http://www.snopes.com/fact-check/
http://www.politifact.com/
http://fullfact.org/
https://credibilitycoalition.org/
https://eufactcheck.eu/


Figure 1: A pipeline of retrieving and ranking previously
fact-checked claims. Si is the claim (source), T t is the
title of the target, Tj is a sentence from the target.

At the time of COVID-19, there are a number
of false claims and conspiracy theories spreading
online, e.g., about Bill Gates and his chips in the
COVID-19 vaccine, about garlic water as a cure,
etc. Many such claims have already been debunked,
but this does not stop them, as they keep being re-
peated, potentially in a slightly different form but
with the same meaning. Thus, it is important to
recognize such variations quickly, and possibly to
post a reply in social media with a link to a fact-
checking article. Similarly, in a scenario where a
politician is being interviewed or is taking part in a
debate, a quick check against a collection of previ-
ously fact-checked claims would make it possible
to put him/her on the spot in real time.

However, the problem in a real-time scenario is
that, unlike written text, interviews, debates, and
speeches are more spontaneous, and the claims that
are being made are often not clearly formulated in
a single sentence. This is illustrated in Figure 1,
where we can see a fragment from a Democratic
debate as part of the 2016 US Presidential elec-
tion, where Hillary Clinton said: “I waited until it
had actually been negotiated because I did want to
give the benefit of the doubt to the administration.”
Understanding this claim requires pronominal co-
reference resolution (e.g., what does it refer to, is
it CAFTA or is it TPP, as both are mentioned in the
previous sentences?), more general co-reference
(e.g., that the administration being discussed is the
Obama administration), as well as general under-
standing of the conversation so far, and possibly
general world knowledge about US politics at the
time of the debate (e.g., that Hillary Clinton was
Secretary of State when TPP was being discussed).

Moreover, previous research has shown that it is
beneficial to match the input claim not only against
the canonical verified claim that fact-checkers
worked with, but against the entire article that they
wrote explaining why the claim was ultimately
judged to be true/false (Shaar et al., 2020a; Vo and
Lee, 2020). This is because, in the fact-checking ar-
ticle, the claim is likely to be paraphrased in differ-
ent ways, and there could also be background infor-
mation and related terms, which can facilitate claim
matching, and thus improve recall. This means
that we need to make use of the global contextual
information contained within the full text of the
fact-checking article or at least the sentences next
to the claim, i.e., the local context. Similarly, for
the FEVER fact-checking task, which asks to fact-
check against Wikipedia, it has been shown that
multi-hop reasoning (Transformer-XH) over the
sentences of the target article can help (Zhao et al.,
2019), an observation that was further confirmed
in the context of fact-checking political claims (Os-
trowski et al., 2021). Transformer-XH uses a novel
attention mechanism that naturally “hops” across
the connected text sequences in addition to attend-
ing over tokens within each sequence. As claims
and reasoning about them are manifested across
documents, this hop-based attention mechanism
constructs global contextualized representation to
provide better joint multi-evidence reasoning. In
the present work, we rely on Transformer-XH to
extract and use global contextual information.



Based on the above considerations, we pro-
pose a framework that focuses on modeling co-
reference, local context (representation from neigh-
boring sentences; see Section 4.2.2), and global
context (representation from Transformer-XH; see
Section 4.2.3), both on the source and on the target
side, while also using multi-hop reasoning over the
target side.

Our contributions can be summarized as follows:

• We perform careful manual analysis to under-
stand what makes detecting previously fact-
checked claims a hard problem, and we cat-
egorize the claims by type. We release these
annotations to enable further research.

• Unlike previous work, we focus on model-
ing the context both on the source side and
on the target side, both locally and globally,
using co-reference resolution and reasoning
with Transformer-XH, which yields sizable
improvements over state-of-the-art models of
over ten MAP points absolute.

• We propose a realistic and challenging, time-
sensitive and document-aware, data split com-
pared to previous work, which we also re-
lease.7

The rest of the paper is organized as follows.
Section 2 provides a brief overview of previous
work. Section 3 introduces the dataset develop-
ment process. Section 4 presents the experiments.
Section 5 discusses the evaluation results. Finally,
Section 6 concludes with lessons learned and points
to possible directions for future work.

2 Related Work

Below, we describe three relevant lines of research:
on detecting previously fact-checked claims, on
semantic matching and ranking, and on context
modeling for factuality.

2.1 Previously Fact-Checked Claims
While there is a surge in research on automatic
fact-checking, fully automatic systems suffer from
credibility issues, e.g., in the eyes of journalists,
and manual checking is still the norm. Thus, it is
important to reduce that manual effort by detecting
when a claim has already been fact-checked.

7https://github.com/firojalam/
Detecting-Previously-Fact-Checked-Claims.
git

A recent survey has identified the task of de-
tecting previously fact-checked claims as one of
the most important ways in which automation can
assist human fact-checkers (Nakov et al., 2021a).
The task was recognized as an important element
of the typical sequence of fact-checking steps (Vla-
chos and Riedel, 2014): (i) extracting statements
that are to be fact-checked, (ii) constructing ap-
propriate questions, (iii) obtaining the pieces of
evidence from relevant sources, and (iv) reaching
a verdict using that evidence. Hassan et al. (2017)
also mentioned the task as an important component
of their end-to-end fact-checking pipeline, but did
not evaluate it as a component on its own right.

Recently, Shaar et al. (2020a) gave a formula-
tion of the task of detecting previously fact-checked
claims, and proposed a learning-to-rank approach
combining BM25 retrieval with BERT-based se-
mantic matching. They further developed two
specialized datasets: (a) on political debates and
speeches, using fact-checked claims from Politi-
Fact, and (b) on tweets, using claims from Snopes.

The CLEF 2020-2022 CheckThat! lab (Barrón-
Cedeño et al., 2020; Hasanain et al., 2020; Shaar
et al., 2020b; Nakov et al., 2021b,c; Shaar et al.,
2021b; Nakov et al., 2022b,c,d) extended these
datasets with additional data in English and Ara-
bic, adding more data each year. The best sys-
tems (Pritzkau, 2021; Mihaylova et al., 2021;
Chernyavskiy et al., 2021a) used a combination
of BM25 retrieval, semantic similarity using sen-
tence embeddings (Reimers and Gurevych, 2019),
and reranking. Bouziane et al. (2020) further used
external data from fact-checking datasets (Wang,
2017; Thorne et al., 2018; Wadden et al., 2020).

Chernyavskiy et al. (2022) fine-tuning BERT us-
ing batch-softmax contrastive loss as an alternative
to mean squared error and triplet loss, and demon-
strated sizable performance gains for a number of
sentence scoring tasks, including detecting previ-
ously fact-checked claims.

Another recent work by Sheng et al. (2021) high-
lighted the importance of using lexical, semantic,
and pattern-based information and proposed a re-
ranker based on memory-enhanced transformers
for claim matching.

Vo and Lee (2020) proposed a multi-modal
text+image neural ranking model for detecting pre-
viously fact-checked claims about images.

However, none of the above work modeled the
context of the input claim, which is our focus here.

https://github.com/firojalam/Detecting-Previously-Fact-Checked-Claims.git
https://github.com/firojalam/Detecting-Previously-Fact-Checked-Claims.git
https://github.com/firojalam/Detecting-Previously-Fact-Checked-Claims.git


2.2 Semantic Matching and Ranking

Here, we focus on the textual formulation of the
problem, as defined by Shaar et al. (2020a): given
an input claim, we want to detect potentially match-
ing previously fact-checked claims and to rank
them accordingly. A related research area is se-
mantic matching and ranking, as matching some
InputClaim–VerClaim pairs might require sentence
embeddings, natural language inference, and coref-
erence resolution. An example of such a difficult
pair is shown in Table 1, line 607. Recent relevant
work has used neural approaches. Nie et al. (2019)
proposed a semantic matching method that com-
bines document retrieval, sentence selection, and
claim verification neural models to extract claims
and to verify them. Thorne et al. (2018) proposed
a simple model, where pieces of evidence are con-
catenated together and then fed into a Natural Lan-
guage Inference (NLI) model. Yoneda et al. (2018)
used a four-stage approach that combines docu-
ment and sentence retrieval with NLI. Hanselowski
et al. (2018) used a BiLSTM-based enhanced se-
quential inference model (Chen et al., 2017) to rank
candidate facts and to classify a new claim based
on the selected facts. Several studies used model
combination (i.e., document retrieval, sentence re-
trieval, and NLI to classify the retrieved sentences)
with joint learning (Yoneda et al., 2018; Hidey and
Diab, 2018; Luken et al., 2018).

2.3 Context Modeling for Factuality

Previous work has shown that modeling the con-
text can help for predicting the check-worthiness
of claims in political debates, e.g., the interaction
between the debaters, and the reaction of the mod-
erator and of the public to what was said (Gencheva
et al., 2017; Atanasova et al., 2019b; Vasileva et al.,
2019). The CLEF 2018-2022 CheckThat! lab had
a shared task on this (Atanasova et al., 2018, 2019a;
Shaar et al., 2020b, 2021c; Nakov et al., 2022a).

The CLEF-2018 CheckThat! lab featured a
shared task on fact-checking a claim in the con-
text of a political debate (Barrón-Cedeño et al.,
2018; Nakov et al., 2018), and SemEval-2019 had
a shared task on fact-checking in community ques-
tion answering forums (Mihaylova et al., 2019).

Liu et al. (2020) proposed a kernel graph at-
tention network to model evidence as a context
for fact verification. Similarly, Zhou et al. (2019)
used a fully connected evidence graph with multi-
evidence information sources for fact verification.

Zhong et al. (2020) used different pre-trained
Transformer models and a graph-based approach,
i.e., graph convolutional network and graph at-
tention network, for fact verification. Zhao et al.
(2019) introduced extra hop attention to incorpo-
rate contextual information, while maintaining the
Transformer capabilities, thus making it possible to
learn a global representation of the different pieces
of evidence and to jointly reason over the evidence
graph. One of the limitations of their approach
was the need for human-labeled evidence in rela-
tion to the input claims in existing fact-verification
datasets. Ostrowski et al. (2021) developing a
dataset of annotated pieces of evidence associated
with input claims and used multihop attention to
make a prediction about the factuality of a claim.

Unlike the above work, here we target a differ-
ent task: detecting previously fact-checked claims
as opposed to check-worthiness prediction or fact-
checking a claim. Moreover, while the above work
was limited to the target context, here we also
model the source context, which turns out to be
much more important.

3 Dataset

Here, we focus on the problem of detecting previ-
ously fact-checked claims, using the task formula-
tion and an adaptation of data from (Shaar et al.,
2020a). They had two datasets: one on matching
tweets against Snopes claims, and another one on
matching claims in the context of a political debate
to PolitiFact claims. Here, we focus on the latter,8

and we perform a close analysis of the claims and
what makes them easy/hard to match.

We experimented with their PolitiFact dataset,
which targets claims related to US politics. After
a US political debate, speech, or interview, fact-
checking journalists from PolitiFact would select
few claims made in the event and would verify
them either from scratch or by linking them to a
previously fact-checked claim. Each fact-checked
claim has an associated article stating its degree
of factuality along with an explanation of how the
fact-checkers arrived at their verdict. The dataset
has two parts: (i) verified claims {normalized Ver-
Claim, article title, and article text}, (ii) transcripts
of the political events (e.g., debates). Shaar et al.
(2020a) annotated the data by linking sentences
from the transcript (InputClaim) to one or more
verified claims (out of 16,636 claims in PolitiFact).

8github.com/sshaar/That-is-a-Known-Lie

github.com/sshaar/That-is-a-Known-Lie


Line No. Type Input Claim Verified Claim

255 clean D. Trump: Hillary Clinton wanted the wall. Says Hillary Clinton “wanted the
wall.”

695 part-of C. Wallas: And since then, as we all know, nine
women have come forward and have
said that you either groped them or
kissed them without their consent.

The stories from women saying he
groped or forced himself on them
“largely have been debunked.”

...
699 part-of D. Trump: Well, first of all, those stories have been

largely debunked.
The stories from women saying he
groped or forced himself on them
“largely have been debunked.”

688 clean-hard D. Trump: She gave us ISIS as sure as you are
sitting there.

Hillary Clinton invented ISIS with
her stupid policies. She is responsible
for ISIS.

605 D. Trump: Now she wants to sign TransPacific
Partnership.

...
607 context-dep D. Trump: She lied when she said she didn’t call it

the gold standard in one of the debates.
Says Hillary Clinton called the
TransPacific Partnership “the gold
standard. You called it the gold stan-
dard of trade deals. You said its the
finest deal youve ever seen.”

Table 1: Fragment from the 3rd US Presidential debate in 2016 showing the verified claims chosen by PolitiFact and
the fine-grained category of the pair. Most input sentences have no verified claim, e.g., see line 605.

To further analyze the dataset, we looked at the
InputClaim–VerClaim pairs, and we manually cate-
gorized them into one of the following categories:

1. clean : A clean pair is a self-contained Input-
Claim with a VerClaim that directly verifies it
(see line 255 in Table 1 as an example).

2. clean-hard: A clean-hard pair is a self-
contained InputClaim with a VerClaim that
indirectly verifies it (see line 688 in Table 1).

3. part-of : A part-of pair’s InputClaim is not
self-contained and requires the addition of
other sentences from the transcript to fully
form a single claim.

4. context-dep: A context-dep pair is similar to
clean and clean-hard, but the InputClaim is
not self-contained and needs co-reference.

The above categories include all types of pairs
we have seen. Moreover, since the dataset is con-
structed from speeches, debates, and interviews,
the structure of the InputClaim–VerClaim pairs dif-
fers. For example, in debates, we see more part-of
examples, as there are multiple question–answer
claim pairs, as well as back-and-forth arguments
splitting the claims into multiple sentences.

The annotations were performed by three anno-
tators who are experts in fact-checking (and co-
authors of this paper), using the above definitions
for the categories. We consolidated their annota-
tions using majority voting, and they had a consoli-
dation discussion for cases with no majority. The
Fleiss Kappa inter-annotator agreement was 0.5,
which corresponds to moderate agreement, which
is reasonable for such a complex annotation task.

Table 1 shows examples of InputClaim–
VerClaim pairs that illustrate the four categories.
We can see that the task goes beyond simple textual
similarity and natural language inference, as the
examples in lines 607 and 695–699 show. More-
over, matching context-dep pairs (lines 605–607)
requires understanding the InputClaim’s local con-
text, while matching clean-hard pairs (line 688)
requires analysis of the overall global context of
the VerClaim.

Finally, we should note while annotating the data
into the above four categories, we found out that
a small number of InputClaim–VerClaim pairs in
(Shaar et al., 2020a) were false matches (which
happened, as they did the matching automatically,
without manually double-checking every single ex-
ample). We removed these pairs, and thus our re-
ported number of pairs is slightly lower than theirs.



InputClaim–VerClaim pairs 695

– clean 291 42%
– clean-hard 210 30%
– part-of 68 10%
– context-dep 126 18%

Total # of verified claims (to match against) 16,636

Table 2: Statistics about our dataset: total number of
InputClaim–VerClaim pairs and of VerClaims in Politi-
Fact to match an InputClaim against.

Table 2 shows statistics about the distribution of
the four categories of claims in our dataset. We can
see that clean and clean-hard are the most frequent
categories, while part-of is the least frequent one.

We further observed that Shaar et al. (2020a)
dealt with each InputClaim independently, i.e., at
the sentence level. This is problematic because
for part-of claims we could end up splitting them
and putting them in different sets: one in training,
and one in testing. Moreover, splitting the dataset
in this way means that the examples for a given
topic can split between training and test, and thus
information can leak, e.g., a claim can be repeated.
Therefore, we considered new splits for the data:

• Debate-Level Chrono: We split the data
chronologically. We use the first 50 debates
for training, and the last 20 for testing. Specif-
ically, we have 554 pairs for training, and 141
pairs for testing. This is a more realistic sce-
nario, where we would only have access to
earlier debates, and we can use them to make
decisions about claims made in future debates.
The complexity of this setting is also reflected
in the MAP score as shown in Table 3. We see
that this score is lower than the best model in
previous work (last row). This is because this
setting is complex as we use a model trained
on debates and speeches from 2012-2018, and
we test on debates from 2019. Across those
different time frames, different politicians dis-
cuss different topics.

• Debate-Level Semi-Chrono: We split the data
per year, e.g., for year 2018, we divide the
transcripts into train and test with 80/20 splits,
and then we train and evaluate using the same
reranking model. In Table 3, we can see an
improvement with this setting compared to
the Debate-Level Chrono setting. This might
be because the same politicians discuss the
same/similar issues throughout the same year.

Split MAP

Debate-Level – Chrono 0.429

Debate-Level – Semi-chrono 0.539
Debate-Level – Random 0.590
Sentence-Level – Random (Shaar et al., 2020a) 0.602

Table 3: MAP scores of the reranker models when using
four different splits representing different scenarios. We
use Debate-Level – Chrono for our experiments.

• Debate-Level Random: We randomly choose
80% of the debates for training and the re-
maining ones for testing. This is a compara-
tively easier setting as the data is randomly
distributed in training and testing. This is also
reflected in the results in Table 3. The reason
could be that politicians repeat themselves
a lot, especially in two consecutive political
events, and the random split can lead to having
two similar debates/speeches in two splits.

• Sentence Level Random: This is the setting in
(Shaar et al., 2020a), where sentences from
the debates are randomly divided into train
and test in a proportion of 80:20. This is the
most unrealistic split.

In our experiments, we chose to use the most
realistic, but also the hardest setup: Debate-Level
Chrono. As a result, our MAP score, when experi-
menting with the state-of-the-art model of (Shaar
et al., 2020a), decreases from 0.602 to 0.429.

4 Experimental Setup

Below, we first introduce the experimental setup
for our baseline, and then we describe our proposed
model that takes the context of the input claim into
account, both on the source and on the target side.

4.1 Baseline

From our analysis of the dataset (described in Sec-
tion 3), we conclude that (i) we need to resolve
the references in the InputClaim, (ii) to capture
the local context of the InputClaim, and (iii) to
encapsulate the global context of the VerClaim.

For our baseline, we use the setup of the state-of-
the-art model of Shaar et al. (2020a). We use the
claim as a query against the full text of the docu-
ments using BM25. We then train a reranker on the
top-100 BM25 results using rankSVM (Herbrich
et al., 1999) with an RBF kernel.



The reranker uses nine similarity measures that
compare the InputClaim to the VerClaim, as well
as the respective reciprocal ranks. In particular,
we compute the BM25 score for InputClaim vs.
VerClaim, title, text, VerClaim+title+text. We also
compute the cosine using sentence-BERT embed-
dings for InputClaim vs. VerClaim, title, and the
top-4 sentences from text. Using these scores, we
create a vector representation of the InputClaim–
VerClaim pair with dimensionality R18. We then
scale the vectors of all InputClaim–VerClaim pairs
in [−1; 1] and we train a rankSVM with default val-
ues of the hyper-parameters: KernelDegree = 3,
γ = 1/num_features, and ϵ = 0.001.

4.2 Proposed Model

As shown in Figure 1, our model uses co-reference
resolution on the source and on the target side,
the local context (i.e., the neighboring sentences),
and the global context (using Transformer-XH) as
discussed below. It is still a pairwise reranker, but
with a richer context representation.

4.2.1 Co-reference Resolution

We manually inspected the training transcripts and
the associated verified claims, and we realized that
there were many co-reference dependencies, resolv-
ing which could potentially help to obtain more rep-
resentative textual and contextual similarity scores.
As for the verified claims, we noticed that not all
VerClaims were self-contained, and that some un-
derstanding of the context was needed9 of the ar-
ticle’s text that explains the verdict provided by
the PolitiFact journalists. Therefore, our hypoth-
esis was that resolving such co-references could
improve the downstream matching scores.

For the same reason, we also performed co-
reference resolution on the PolitiFact articles when
they were used to compute the BM25 scores.

We experimented with various co-reference reso-
lution tools including NeuralCoref,10 e2e-coref,11

and SpanBERT,12 and we found that NeuralCoref
was best on the input transcripts, while e2e-coref
was best on the articles about the target VerClaims.
Hence, in the rest of our experiments below, we
show results using NeuralCoref for the source side,
and using e2e-coref for the target side.

9For example, who is speaking or what is being discussed.
10github.com/huggingface/neuralcoref
11github.com/kentonl/e2e-coref
12github.com/facebookresearch/SpanBERT

We resolved the co-reference in the Input-
Claim by performing co-reference resolution on
the entire input transcript (as was suggested in the
literature); we will refer to this as src-coref. As
for the verified claims, we aimed to resolve the
co-references both in the VerClaim and in the text
of the PolitiFact articles. We also aimed to ensure
that the dependencies from the text can be used
for the VerClaim. Therefore, we concatenated both
the text and VerClaim (in the same order), and we
applied the co-reference model on the concatenated
text. We chose this order of concatenation because
the published text reserves the last paragraph to
rephrase the VerClaim and to provide a summary
of the justification; hence, there is a higher proba-
bility to resolve the co-references correctly.

4.2.2 Local Context

Resolving the pronominal co-references allows us
to obtain the correct objects and the names the In-
putClaim refers to. However, in the process of
analyzing the dataset, we noticed that different Ver-
Claims, although having similar structure, could
talk about different things, depending on the article
text and also on the surrounding context. Therefore,
it is important to understand the context of an Input-
Claim. In particular, we achieve this by performing
a feature-level concatenation of the neighboring
sentences in the transcript, i.e., we take the eighteen
features (R18, as discussed in Section 4.1 above)
for the neighboring sentences, and we concatenate
them to the similarity score for the InputClaim. We
then use the resulting representation as a feature
vector to be fed into our reranker. For example, if
we take three sentences before the InputClaim and
one sentence after it, we denote this as FC(3, 1).

Let Si be our InputClaim, which is the i’th sen-
tence in the transcript. We compute the similarity
measures and the reciprocal rank (as described in
Section 4.1) to obtain the vector representation Si,v

for Si. With k = 3 previous and l = 1 following
neighbouring sentences our final feature vector is

FC(k = 3, l = 1) = Si−3,v ++Si−2,v

++Si−1,v ++Si,v ++Si+1,v (1)

where ++ represents concatenation.
Note that after the concatenation, the resulting

dimensionality of the feature vector for FC(3, 1) is
18× (3 + 1 + 1) = 90.

github.com/huggingface/neuralcoref
github.com/kentonl/e2e-coref
github.com/facebookresearch/SpanBERT


Line No. Model Overall clean clean-hard part-of context-dep

1 Baseline 0.429 0.661 0.365 0.161 0.375

Source-Side Experiments: Co-reference Resolution, Local Context

2 FC(3, 1) 0.513 0.690 0.485 0.305 0.448
3 src-coref 0.479 0.667 0.408 0.286 0.429
4 src-coref + FC(3, 1) 0.532 0.695 0.452 0.385 0.485

Target-Side Experiments: Co-reference Resolution, Global Context

5 Transformer-XH 0.468 0.680 0.441 0.226 0.384
6 tgt-coref 0.443 0.673 0.422 0.182 0.339
7 tgt-coref + Transformer-XH 0.458 0.702 0.444 0.161 0.357

Source+Target-Side Experiments: Co-reference Resolution, Local Context, Global Context

8 src-coref + tgt-coref 0.487 0.672 0.440 0.291 0.411
9 All 0.517 0.749 0.389 0.321 0.464

Table 4: MAP scores of the reranker models on the test set using the Debate-Level Chrono split.

4.2.3 Global Context

The similarity scores that leverage the local context
in the textual content of the InputClaim and the Ver-
Claim are obtained using (i) BM25, and (ii) the co-
sine similarity between the Sentence-BERT embed-
dings of the InputClaim vs. the top-4 sentences of
the VerClaim. This might miss relevant information
further away from the InputClaim in the input doc-
ument and further away from the VerClaim in the
document accompanying the VerClaim. We refer
to such scattered information as the global context.
To capture it, we use Transformer-XH (Zhao et al.,
2019), which is pretrained on the FEVER (Fact
Extraction and VERification) dataset to predict
whether a given input claim is supported/refuted
by a set of target sentences (from Wikipedia), rep-
resented as a graph, or there is no enough infor-
mation. We used the model from (Zhao et al.,
2019). For a given InputClaim, we generate a graph
for each of the top-100 VerClaims retrieved using
BM25 and the normalized claim, the title, and the
top-3 sentences from the text as nodes. Using the
Transformer-XH model on the graph, we obtain
three additional scores that correspond to the pos-
terior probability that VerClaim supports or refutes
the InputClaim, or there is no enough information.

4.3 Hyper-Parameter Values

For the baseline, we use the best values of the hyper-
parameters as found in (Shaar et al., 2020a). For
our context-aware models, we select the values
of the hyper-parameters by splitting the training
dataset into train-train (debates from 2012-2017)
and train-dev (debates from 2018), then we train
on the former, and we test on the latter.

4.4 Evaluation Measures

As we have a ranking task, we use mean average
precision (MAP) for evaluation. It is a suitable
measure as some InputClaims are paired with more
than one VerClaim. This is why we opted for not
using mean reciprocal rank (MRR), which would
only pay attention to the highest-ranked match.

5 Results

Below, we described the results for our source-side
and target-side context modeling experiments.

5.1 Source-Side Experiments

For the source side experiments, we used co-
reference resolution on transcripts and variations
of the local context by varying k and l in Eq. 1.

When we inspected the transcripts, we found that
co-references tended to be resolved by a few sen-
tences before the InputClaim; therefore, we tried
FC(1, 1), FC(3, 1), FC(3, 3), and FC(5, 1). We
obtained the best results on cross-validation using
FC(3, 1), which we use below. As shown in Ta-
ble 4, the local context (line 2) improves over the
baseline (line 1) by eight MAP points absolute.

We experimented using co-reference resolution
with NeuralCoref. This yielded a sizable improve-
ment over the baseline as shown in line 3 in Table 4,
especially for part-of and context-dep pairs, as they
have many co-references, which can make it hard
for the model the understand the InputClaim. Af-
ter combining the two methods, i.e., src-coref and
FC(3,1) (see line 4), we achieved the highest MAP
score of 0.532. We always see an improvement for
the clean category as the resolved InputClaim can
match the article text better.



5.2 Target-Side Experiments
For the target-side experiments, we tried using co-
reference resolution (on the source and on the target
side) for the VerClaim and the fact-checking arti-
cle, as well as modeling the global context with
Transformer-XH. Compared to the baseline, we see
on line 5 of Table 4 a sizable improvement from
0.365 to 0.441 MAP points for clean-hard.

This is expected as the pair does not exhibit
much semantic similarity, and we need to build our
own understanding of the text of the VerClaim in
order to capture the contextual similarity in the pair.
We also experimented with co-reference resolution
on the VerClaim and the text of the VerClaim and
also see some improvement. Combining tgt-coref
and Transformer-XH (line 7) improved the perfor-
mance over tgt-coref alone, but it is worse than
Transformer-XH alone. The combination outper-
forms other target-side experiments for clean.

5.3 Source-Side & Target-Side Experiments
Eventually, we experimented with modeling the
context both on the source and on the target side.
Line 8 in Table 4 shows the evaluation results when
we use co-reference resolution both on the source
and on the target side. We can see that this yields
a higher overall MAP score of 0.487, compared
to using source-side (MAP of 0.479; line 3) or
target-side context only (MAP of 0.443; line 6).
Moreover, co-reference resolution on both sides
helps for clean-hard and part-of (compared to using
co-reference on one side only) as they require better
local and global context, respectively.

We further tried putting it all together, and the
result is shown in line 9.13 While this yielded better
results for clean, it was slightly worse compared
to the source-side context modeling combination
in line 4. This is probably due to the source-side
context models being generally stronger than the
target-side ones (compare lines 2–3 to lines 5–6).

We can conclude that modeling the context on
the source side is much more important than on the
target side. This is expected for political debates,
which are conversational in nature. In contrast,
the target side is a well-written journalistic arti-
cle, where sentences are much more self-contained.
Thus, features from the source side (i.e., from the
debate) are more useful as can be seen in Table 4.

13Note that in this result we did not use target-side co-
reference, as adding it yielded somewhat worse results. It
seems to interact badly with Transformer-XH, which can also
be seen by comparing lines 5 and 7.

5.4 Discussion

As mentioned above, our baseline is a reimplemen-
tation of the best system of Shaar et al. (2020a),
and our context modeling extensions add additional
components on top of it. Note, however, that our
experimental results are not directly comparable
to their published ones, as we use a more realis-
tic and also a much harder setup, where the data
is split by entire debates and also chronologically,
following the Debate-Level Chrono data split, as
we discussed in Section 3, i.e., training on the data
from 2012 to 2018 and testing on 2019 (while they
split all debates into sentences and randomly dis-
tribute them to training/testing). However, we do
have comparison to their approach, as we ran their
model on our data split, which is our baseline, as
shown on line 1 of Table 4.

6 Conclusion and Future Work

We have presented our work on the important but
under-studied problem of detecting previously fact-
checked claims in political debates and speeches.
We studied the impact of modeling the context:
both on the source side, i.e., in the debate, as well
as on the target side, i.e., in the fact-checking docu-
ment that explains how human fact-checkers have
arrived at their decision about the factuality of the
claim. In particular, we modeled the local con-
text, the global context, and we further used co-
reference resolution and multi-hop reasoning over
the target text using Transformer-XH. The experi-
mental results have shown that each of these com-
ponents represents a valuable information source,
but modeling the source-side context is more impor-
tant, and can yield 10+ points of absolute improve-
ment over a context-free state-of-the-art baseline.

In future work, we want to try other multi-hop
reasoning frameworks for context modeling. We
also plan to experiment with other kinds of conver-
sations, e.g., in community forums and in social
media, including for other languages.
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Ethics and Broader Impact

Biases We note that there might be some biases
in the data we use, as well as in some manual judg-
ments for claim matching. There could be also
biases in the data selection and the fact-checking
process of the human fact-checkers, which are be-
yond our control. Finally, there are known biases
in the large-scale pre-trained transformer models
that we experiment with.

Intended Use and Misuse Potential Our models
can make it possible to put politicians on the spot
in real time, e.g., during an interview or a political
debate, by providing journalists with tools to do
trustable fact-checking in real time. They can also
save a lot of time to fact-checkers for unnecessary
double-checking something that was already fact-
checked. However, these models could also be
misused by malicious actors. We, therefore, ask
researchers to exercise caution.

Environmental Impact We would also like to
warn that the use of large-scale Transformers
requires a lot of computations and the use of
GPUs/TPUs for training, which contributes to
global warming (Strubell et al., 2019). This is a bit
less of an issue in our case, as we do not train such
models from scratch; rather, we fine-tune them on
relatively small datasets. Moreover, running on a
CPU for inference, once the model has been fine-
tuned, is perfectly feasible, and CPUs contribute
much less to global warming.
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