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Abstract

Data augmentations (DA) are the cores to
achieving robust sequence-to-sequence learn-
ing on various NLP tasks. However, most of
the DA approaches force the decoder to make
predictions conditioned on the perturbed in-
put representation, which we argue may make
the sequence-to-sequence learning sub-optimal.
In response to this problem, we propose a
framework-level robust sequence-to-sequence
learning approach, namely BLISS, via self-
supervised input representation, which has the
great potential to complement the data-level
augmentation approaches. The core idea is to
supervise the sequence-to-sequence framework
with both the supervised (“input—output”) and
self-supervised (“perturbed input—input”) in-
formation. Experimental results show that our
BLISS outperforms the vanilla Transformer
and five contrastive baselines on several NLP
benchmarks, including machine translation,
grammatical error correction and text summa-
rization. Extensive analyses reveal that BLISS
learns robust representations and rich linguistic
knowledge, confirming our claim. Source code
will be released upon publication.

1 Introduction

Sequence-to-sequence learning (Sutskever et al.,
2014) has advanced the state-of-the-art in various
natural language procecssing (NLP) tasks, such
as machine translation (Bahdanau et al., 2015a;
Wu et al., 2016; Vaswani et al., 2017), grammati-
cal error correction (Kiyono et al., 2019; Kaneko
et al., 2020) and text summarization (Wang et al.,
2019; Zhang et al., 2020a). Sequence-to-sequence
learning models are generally implemented with
an encoder-decoder framework, in which the en-
coder receives the input sentence and predictions
of the decoder are correspondingly supervised by
matching the cross-entropy of ground-truth. That is,
the existing sequence-to-sequence learning frame-
works are supervised by the direct correlation be-
tween the input and the output.

To achieve robust sequence-to-sequence learn-
ing, many data augmentation methods (Kobayashi,
2018; Wu et al., 2019; Gao et al., 2019; Cheng
et al., 2020; Chen et al., 2021; Morris et al., 2020)
are proposed to enrich the training dataset by auto-
matically or manually creating the perturbed input.
For example, Wei and Zou (2019) show that sim-
ple data augmentation strategies, e.g. insert, swap
and deletion, works well for the low-resource set-
tings. Kobayashi (2018); Wu et al. (2019); Gao
et al. (2019) employ the language models to gener-
ate the substitutions for the subset of the input sen-
tence. Cheng et al. (2020); Chen et al. (2021); Mor-
ris et al. (2020) adopt the adversarial techniques
to generate the adversarial samples to enhance the
model generalization. Although those data-level
approaches are straightforward and easy to use, all
the above methods force the decoder to make lex-
ical choices conditioned on the perturbed input
representation, which we argue are sub-optimal for
sequence-to-sequence learning.

In response to this problem, we propose a
framework-level robust approach to making the
most of the perturbed input in sequence-to-
sequence learning via self-supervised input rep-
resentation. The core idea is supervising the
sequence-to-sequence framework with both the
correlation between input and output, and self-
supervisions between perturbed input and origi-
nal input. In particular, we employ two extremely
simple and effective data augmentation techniques,
i.e. shuffle and replacement, as the input per-
turbing function. Then, we propose a smooth-
ness controller to harness the perturbing degree.
Based on the perturbed input, we correspond-
ingly design a self-supervision mechanism upon
the top of the encoder, where we choose the to-
ken prediction and position prediction as two self-
supervised objectives to restore the perturbed sub-
set. By doing so, we can achieve robust sequence-
to-sequence learning by fully exploiting the super-



vised (“input—output”) and self-supervised (“per-
turbed input—input”) information.

We validated our approach on several sequence-
to-sequence NLP tasks in §4.4, including machine
translation (Bahdanau et al., 2015b; Vaswani et al.,
2017), grammatical error correction (Wang et al.,
2019; Zhang et al., 2020b) and text summariza-
tion (Kiyono et al., 2019; Kaneko et al., 2020),
across five datasets. We show that our BLISS
consistently outperforms the strong baseline Trans-
former and five competitive data augmentation ap-
proaches. Experiments on translation show that our
proposed BLISS yields consistent improvements,
ranging from 0.5 upto 2.1 BLEU points. As for
correction and summarization tasks, we achieve
+2.0 Fy 5 and +0.4 Rouge-L improvements against
strong Transformer, demonstrating the effective-
ness and universality of our approach. We con-
duct comprehensive analyses in §4.5 to understand
when and why our BLISS works. We show that
our framework-level self-supervised BLISS can be
combined with existing augmentation approach,
e.g. SwitchOut (Wang et al., 2018), to achieve fur-
ther improvement. Also, our BLISS is robust to
inference noises and hyper-parameters compared to
baselines. Importantly, through probing task (Con-
neau and Kiela, 2018), we found that our model
could preserve significantly rich linguistic knowl-
edge against vanilla Transformer. Our main contri-
butions can be summarized as:

* We introduce a robust sequence-to-sequence
learning framework via self-supervised in-
put representation, which has the potential
to complement existing data augmentation ap-
proaches.

* Our approach provide a unified framework to
make the most of existing supervised signals,
i.e. correlation between input and output, and
self-supervised signals, i.e. self-supervisions
between perturbed input and original input.

* We empirically validate the the effectiveness
and universality on extensive experiments
across tasks and datasets.

2 Related Work

Our work is inspired by two lines of research: 1)
designing self-supervisions and ii) data augmenta-
tion.

Designing Self-Supervisions Self-supervision
signals have been widely investigated in language
model pretraining and unsupervised learning. De-
vlin et al. (2019) propose the mask language model,
where they substitute a subset of tokens in the input
sentence by a special symbol [MASK], and then
predicts the missing tokens by the residual ones.
MASS (Song et al., 2019) presents a sequence-
to-sequence pre-training framework, which takes
non-mask tokens as the encoder input and leverages
masked tokens as the decoder input as well as the to-
be-predicted target. STRUCTBERT (Wang et al.,
2020) extends BERT by leveraging the structural in-
formation: word-level ordering and sentence level
ordering. SpanBERT (Joshi et al., 2020) masks
random contiguous spans rather than individual
tokens and additionally introduces span-boundary
objective. Different from these works that apply
self-supervisions to the cost pre-train stage and fine-
tune them on the down-stream tasks, we design the
self-supervision objectives for input sentence to
complement the existing MLE generation objec-
tives to achieve further improvement.

Similar to our work, there exists several works
that combine self-supervisions with from-scratch
sequence-to-sequence model training. Guo et al.
(2020b) introduce mask task to non-autoregressive
translation model to fully exploit the undertrained
encoder. Siddhant et al. (2020) propose to make use
of monolingual data by self-supervisions in mul-
tilingual translation. Cheng et al. (2021) combine
self-supervised and supervised learning to optimize
the machine translation models especially for the
rich-resource settings. Different from these works,
we propose a plug-and-play self-supervised input
representation approach for general sequence-to-
sequence tasks, which could be used to comple-
ment any data augmentation approaches and con-
sistently enhance the model performance.

Data Augmentation Artetxe et al. (2018); Lam-
ple et al. (2018) randomly shuffle the words within
a fixed window size to construct the perturbed sen-
tence. Iyyer et al. (2015) drop some words ran-
domly in the source sentence for learning an auto-
encoder to help train the unsupervised NMT model.
Xie et al. (2017) replace the word with a place-
holder token or a word sampled from the frequency
distribution of vocabulary. Wang et al. (2018) intro-
duce SwitchOut, which replace words in the source/
target sentences with other words form the source/
target vocabulary. Guo et al. (2020a) introduce
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Figure 1: Illustration of the proposed smooth augmented data generator in §3.2, which consists of two components,
i.e. perturbing functions and smoothness controller, represented by dashed rounded rectangles, respectively. The

block represent tokens been shuffled while the

SeqMix to mix up pairs of source sentences or de-
coder input sentences. Wei and Zou (2019) exper-
iments with easy data augmentation methods like
randomly insert, swap and delete, but they found
these simple methods take little effect with full
datasets. Our work significantly differs from these
work. We do not predict the target lexicons condi-
tioned on these perturbed input directly. Rather, we
propose to recover the noised input with encoder,
thus the conditional representation for decoder pre-
serve much linguistic knowledge (See §4.5).

3 Self-Supervised Input Representation

In this section, we first review the sequence-to-
sequence learning in §3.1. Then we introduce the
smoothed data augmentation technique, namely
SMOOTH AUGMENTED DATA GENERATOR in
§3.2. Finally §3.3 elaborates our proposed SELF-
SUPERVISED INPUT REPRESENTATION approach.

3.1 Preliminaries

Sequence-to-Sequence Learning Given the tar-
get sequence y = {y1,¥2, ..., y¢ } conditioned on
a source sequence X = {x1,Z2...,Zs}, the ob-
jective of Seq2Seq model can be formulated as
¥y = argmaz logP(y|x). Up to now, Transformer
advanced the state of art results compared to other
architectures. Thus, we employ Transformer as the
strong baseline and test bed. Transformer consists
of an encoder equipped with several identical lay-
ers to map the source sequence x into intermediate
representation h and a decoder equipped with sev-
eral identical layers take h as input and generates

block represent tokens been replaced.

y target sequences autoregressively:

h = enc(x + pos_emb(x))
V<t = dec(§<¢ + pos_emb(§¢), h)

Encoder and decoder composed of position-wise
feed-forward network, multi-head dot-product at-
tention network and so on, you can refer to Vaswani
et al. (2017) for more details. Noticeable, tokens
as well as its position embedding calculated by
pos_emb(-) are token as the input of encoder or
decoder, which prove the existence and necessity
of position information, we design position aux-
iliary task to restore position information in en-
coder representation. Decoder generate target sen-
tence autoregressively until meeting special symbol
< eos >. Finally, the output of the decoder y is
projected into the probability P(y|x), and the opti-
mization objective can be formulated as:

argmaxglog P(y[x; Oenc, Oec) (D

where 0., and 4. denote the parameters of the
encoder and decoder respectively.

3.2 Smooth Augmented Data Generator

As Seen in Figure 1, our Smooth Augmented data
Generator compose of two parts, perturbing func-
tions and smoothness controller.

Perturbing Functions As shown in Figure 1, we
feed the source sentences into two perturbing func-
tions, shuffle function and replace function sequen-
tially. For each function, we randomly select
percentage of source sentences for generating aug-
mented data. Specifically, we randomly shuffle
tokens within a [, sized window in the shuffle
function, and randomly replace [, tokens in the
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Figure 2: The illustration of our proposed self-supervised input representation (§3.3) in sequence-to-sequence
learning framework. We add two classifier to predict the token and position of perturbed tokens synthesized by the

smooth augmented data generator in §3.2. The meaning of
rectangles represent disturbed tokens’ intermediate representation produced by the top layer of

Figure 1. The
encoder.

source sentences with other words form the source
vocabulary in replace function.

Smoothness Controller We set oy, rep 1O
control the maximum number of shuffled and re-
placed tokens respectively. Without smoothness
controller, models can only see augmented data
with ap,, L shuffle tokens of o, L replaced to-
kens, where L is the length of sequence. To balance
the diversity and similarity of augmented data, we
design a smoothness controller to get a smooth dis-
tribution of augmented data with different perturb-
ing tokens. Specifically, we hypothesis sampling
the number of perturbed tokens ! from geometric
distribution l|;«—,, ~ Geometric(p), where p
is between 0 and 1'. Then, since [ is limited by
a upper bound, we normalize the distribution of
sampling 1. Finally we sample [ according to the
probability distribution expressed as in Equation 2.
For shuffle function and replacement function, we
repeat the above procedures individually and obtain
lshy and l,.¢;, for perturbing operations.

p(l—p)~?
Simp(l - p)it

d1-1,, (1) equal 1 when [ is equal or greater than
0 and equal or smaller than L,,, otherwise O.

P(l) =

o1-1, () (2

3.3 Self-Supervised Input Representation

Inspired by mask language model (Devlin et al.,
2019), which mask tokens in source sentences and
predict masked tokens on the output, we take simi-
lar procedure but two differences distinguish us be-

lafter preliminary studies, we set p=0.2 for all tasks

rectangle and rectangle is the same as in

tween them. First, our method is used in the down-
stream tasks with labeled datasets while mask lan-
guage model take effects in pre-training tasks with
unlabeled datasets, so our method works in parallel
with mask language models and is complementary
with them. Second, prior studies only take token
as ground truth label to supervised output. To our
knowledge, we are the first to take positions as
supervised labels.

Specifically, we design two softmax classifier to
predict token and position by h respectively. To-
ken classifier are responsible to predict the origin
tokens of x while the position classifier predict the
position of perturbed tokens. And corresponding
loss function Lioken, Lpos 18 expressed as Equa-
tion 3 and Equation 4. where x;, p; denote the ori-
gin tokens and absolute position, Wiygen, € RV
and W, € R*P™ represents the parameters of
softmax classifier, and e, v, p,,, denote embedding
dimension, vocabulary size and maximum posi-
tion index. Following the preliminary trials, we set
Pm = 400.

£token - Z logp($z|}~%7 Wtokeny Henc) (3)
Epos = Z lOgP(Piﬁlu Wpos; eenc) (4)

L (ia Y) = 10gP(Y|iv 967),07 edec) (5)

By integrating the above two loss functions with
the traditional negative log-likelihood loss function
as Equation 5, the complete objective function of



our model is expressed as Equation 6:

arggnax E(l', y) = Enll + )\tokenﬁtoken + )\pos Epos

(6)
where 6 = {0cnc, Odec, Wioken Wpos}’ Atoken and
Apos are hyper-parameters that balance the weights
of different self-supervision objectives.

In conclusion, we add smooth augmented data
generator for source sentences, and restore it’s orig-
inal token and position information on the encoder
output. The basic intuition behind is that although
the augmented sequence information is distorted
locally, but the contextual information is preserved,
a robust encoder should has the ability to restore
correct information from distorted sentences. Be-
sides the token of sequence, the position of tokens
in the sequence play an importance role of the se-
quence information. So, we design the encoder
to predict the position of swapped tokens to help
encoder understanding the position information of
sequence.

4 Experiments

4.1 Tasks and Datasets

To validate the effectiveness of BLISS, we con-
ducted experiments on three representative tasks,
which vary from the distance between input and
output domains and the scale of training data:

Machine Translation takes a sentence in one
language as input, and outputs a semantically-
equivalent sentence in another language. We
evaluate our method on three widely-used bench-
marks: IWSLT14 German—English IWSLT14
De-En?, Nguyen et al. (2020)), WMTI16
English—Romanian (WMT16 En-Ro?, Gu et al.
(2018)), and WMT 14 English-German (WMT14
En-De*, Vaswani et al., 2017). We strictly follow
the dataset configurations of previous works for
a fair comparison. For the IWSLT14 De-En task,
we train the model on its training set with 160K
training samples,and evaluate on its test set. For
the WMT14 En-De task, we train the model on
the training set with 4.5M training samples, where
newstest2013 and newstest2014 are used as the
validation and test set respectively. As for the
WMT16 En-Ro task which has 610K training
pairs, we utilize newsdev2016 and newstest2016

Zhttps://wit3.fbk.eu/
3https://www.statmt.org/wmt16/translation-task
*new://www.statmt.org/wmt14/translation-task

as the validation and test set. For each dataset, we
tokenize the sentences by Moses (Koehn et al.,
2007) and segment each word into subwords using
Byte-Pair Encoding (BPE, Sennrich et al., 2016),
resulting in a 32K vocabulary shared by source
and target languages. All the translation tasks are
evaluated with tokenized BLEU (Papineni et al.,
2002) score.

Grammatical Error Correction takes a sen-
tence with grammatical errors as input and gener-
ates a corrected sentence. We evaluate our method
on CONLL14 dataset®, which has 1.4M training
samples. We closely follow Chollampatt and Ng
2018 to preprocess the data. The MaxMatch (M?)
scores (Dahlmeier and Ng, 2012) were used for
evaluation with Precision, Recall, and Fj 5 values.

Text Summarization takes a long-text document
as input, and generates a short and adequate sum-
mary in the same language. We evaluate our
method on the the most representative summariza-
tion benchmark CNN/Daily Mail corpus®, which
contains 300K training samples. We follow (Ott
et al., 2019) to preprocess the data. During testing,
the minimum length was set to 55 and the maxi-
mum length was set to 140, which were tuned on
the development data. We also follow Paulus et al.
2018 to disallow repeating the same trigram. We
evaluate the summarization performance with the
standard ROUGE metric (Lin, 2004), i.e. Rouge-1,
Rouge-2, and Rouge-L.

The machine translation task has distant in-
put/output domains (i.e. in different languages),
while the other tasks has similar input/output do-
mains (i.e. in the same language). Details of the
datasets are listed in Appendix A.1.

4.2 Implementation

Our model is based on the Transformer (Vaswani
et al., 2017) architecture due to its state-of-the-art
performance and all the models are implemented
by the open-source toolkit fairseq’ (Ott et al.,
2019). For better reproduction, we employ the
base Transformer (d,;0der = dhidden = 512, Nygyer
= 6, Npeqq = 8) for all tasks in this paper. All mod-
els were trained on NVIDIA DGX A100 cluster.
The hyper-parameters of training of different tasks

Shttps://www.comp.nus.edu.sg/~nlp/
conlllé4st.html

*https://huggingface.co/datasets/cnn_
dailymail

"Thttps://github.com/pytorch/fairseq
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Translation Correction Summarization
De-En En-Ro En-De Prec. Recall Fg5 RG-1 RG-2 RG-L
VaNmea 351 347 273 587 338 512 401 176 368
DRoOPOUT 36.3 36.4 27.2 60.8 34.2 52.6 40.4 17.7 37.1
BLANK 36.5 36.7 27.6 593  32.7 51.0 40.0 17.5 36.8
SHUFFLE 35.8 354 27.0 52.5 339 473 40.1 17.3 36.8
SEQMIX 36.4 36.3 27.4 583 335 50.8 40.2 17.6 36.9
SwiTCcHOUT 36.5 36.4 27.5 60.3 34.1 52.3 40.6 17.9 37.1
BLISS (ours) 36.6"  36.77 279" 6027 363" 5321 40.6f 1797 37.2f

Table 1: Experimental results of the proposed BLISS method on the Seq2Seq tasks. Results marked with T are
statistically significant compared to vanilla transformer, with * are statistically significant compared to best baseline.

and datasets are listed in Appendix A.1. The hyper-
parameters of our methods, including 7y, vspy, Qreps
Atoken» Apos» P are also listed in Appendix A.2.

4.3 Baselines

To validate the effectiveness of our methods, we
compare our approach with following baselines:

* Vanilla (Vaswani et al., 2017): The original
sequence-to-sequence training strategy with-
out any data augmentation strategies.

* Dropout (Iyyer et al., 2015; Lample et al.,
2018): Randomly dropping tokens with their
best drop ratio 0.1.

* Blank (Xie et al., 2017): Randomly replacing
word tokens with a placeholder, we leave their
best setting ratio=0.1 as default.

* Shuffle (Artetxe et al., 2018; Lample et al.,
2018): Randomly swapping words in nearby
positions within a window size K=3.

* SeqMix (Guo et al., 2020a): Mixing sentence
pairs on both the source and target side. We
reimplement according to their public code®.

* SwithOut (Wang et al., 2018): Replacing to-
kens with other tokens in vocabulary on the
source side and target side. We reimplement
according to the Appendix A.5 of their paper.

4.4 Main Results

Table 1 lists the performances of our models
as well as strong baseline models on different

$https://github.com/dguo98/SeqMix/
tree/main

tasks. Clearly, the proposed self-supervised in-
put representation approach (“BLISS) signifi-
cantly outperforms the vanilla Transformer in all
cases, while there are still considerable differences
among model variations. Specifically, on transla-
tion task, our BLISS equipped models achieve the
best among all contrasted approaches, and encour-
agingly outperform the vanilla by averaged +1.3
BLEU points. As for the grammatical error correc-
tion task, we achieve the +2.0 Fj 5 scores improve-
ment against the vanilla model, and notably, our ro-
bust self-supervised input representation approach
recalls significantly more potential grammatical er-
rors, i.e. +2.5 percent. On the contrary, the existing
data augmentation approaches, e.g. Shuffle, Blank
and SeqMix, slightly undermine the GEC perfor-
mance. We conjecture that such performance degra-
dation for previous approaches is due to the lack of
generalization across tasks, i.e. they are proposed
for MT. As for summarization task, The results
also show a promising trend against all baseline
methods. All those findings demonstrate that our
proposed robust self-supervised input representa-
tion approach (“BLISS”) is effective and universal
across language pairs and tasks.

4.5 Analysis

In this section, we provide some insights into when
and why our BLISS works.

Effects of Each Component There are four care-
fully designed components: i) perturbing func-
tions “aug” that performs shuffling and replace-
ment to generate augmented data sequentially. ii)
Smoothness controller “smooth” to generate aug-
mented data with different noise degrees. iii) To-
ken auxiliary loss “token” to supervise the lexical
information of augmented input, which helps the
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Translation Correction Summarization

De-En En-Ro En-De Prec. Recall Fys; RG-1 RG-2 RG-L

Vanilla 35.1 34.7 273  58.7 33.8 51.2 40.1 17.6 36.8
CBLISS 366 367 279 602 363 532 406 179 372

-aug-smooth 36.4 36.5 27.5 60.8 323 523 404 17.6 36.9
-smooth 36.5 36.5 27.6  60.2 349 526 40.4 17.7 37.0
-token 36.4 36.2 274  60.5 32.0 513 40.4 17.7 37.0
-pos 36.4 36.5 27.5 603 35.0 527 40.5 17.8 37.1

Table 2: Effects of removing each component. The metrics and datasets are same as that of Table 1. Bold represents
the settings with the most performance degradation for each corresponding task.

WMT14 CoNLL14 CNN/DM

SwitchOut 26.0 523 37.1
BLISS w/ S. 26.3 529 371
Table 3: Complementary to other work, i.e.

SwitchOut (Wang et al., 2018). BLISS with SwitchOut-
style augmentation function is denoted as “BLISS w/
S.’. Translation, Correction and Summarization are
evaluated with BLEU, Fy 5 and RG-L, respectively.

encoder capture robust token representation. iv)
Position auxiliary loss “pos” to supervise the po-
sition information of augmented input. To verify
the reasonableness of those components, we re-
move different components in Table 2, e.g. “-aug-
smooth”, “~smooth”, “-token” and “-pos”, as the
ablation settings. Takeaway: Our proposed BLISS
performs worse when either component is removed,
demonstrating the effectiveness of four proposed
components.

Complementary to Related Works Our pro-
posed BLISS enables self-supervisions from the
structure-level, thus has the great potential to com-
plement existing strong data-level methods. Here
we choose SwitchOut (Wang et al., 2018) due to
its competitive performance in main experiments.
We replace the vanilla simple augmentation func-
tion in BLISS, i.e. shuffle and replacement, with
SwitchOut and conduct the experiments in Table 3.
Takeaway: Our proposed structure-level self-
supervised approach BLISS achieves further im-
provement across different sequence-to-sequence
tasks with advanced data augmentation functions,
e.g. SwitchOut, showing its appealing expandabil-

ity.
BLISS is Robust to the Inference Noises Our
self-supervised input representation is expected to
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Figure 3: The performance drop when inference on
noised testing data, where we test on WMT14 En-De
and report the scaled BLEU scores. The noise types
for the left and right figures are shuffling and replacing,
respectively.

tolerate the inputting noises to some extent. To
validate our hypothesis, we inject two types of ar-
tificial noise, e.g. shuffle and replacement, into
the test samples with different ratios ranging from
{2%, 4%, 8% and 16%}. For shuffle noise, we
select a span whose length is al (I is the length
of source sentence). Then we shuffle the order
of words within the span. As for the replacement
noise, we follow our replacement function but with-
out smoothness controller, where we randomly re-
place ol tokens with other tokens in the vocabulary.
Figure 3 lists the results when performing noisy in-
ference on WMT14 En-De task. Additionally, we
analysis how the auxiliary losses improve model
robustness in Appendix ?? Takeaway: Compared
with vanilla Transformer and existing contrastive
variants, as noise increases, our model “BLISS” is
significantly robust to both noise, demonstrating
the robustness of our approach.
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Figure 4: Fj 5 scores on CONLL14 dataset with differ-
ent hyper parameters. Left: ogpy, 0rep. Right: 7.

Task vanilla BLISS
Surface SeLen 93.1 94.0
" WC 427 419
TrDep 41.7 44.0

Syntactic ToCo 73.5 75.3
BShif 69.3 71.8

Tense 77.0 77.5

SubN 77.3 78.4

Semantic ObjN 75.0 75.2
SoMo 50.4 50.6

Coln 62.2 63.3

Table 4: Performance on 10 probing tasks to evaluate
the linguistic properties. Note that we train the model
on WMT14 En-De.

BLISS is Robust to the Hyper-Parameters
Data augmentation approaches are always sensi-
tive to hyper-parameters. To dispel the doubt, we
investigate whether our approach is robust to dif-
ferent hyper-parameters. We empirically study
the effect of hyper parameters ogpy, Qrep,y ON
GEC task. We can observe from Figure 4 that
with although the performance varies with hyper-
parameters, the extreme values of the results are
not significant, still outperforming the baseline ap-
proach. We give more analysis in Appendix A.5 to
validate BLISS is not sensitive to hyper-parameters.
Takeaway: Our proposed BLISS is not sensitive to
hyper-parameters, all hyper-parameters’ variants
outperform the baseline.

BLISS Captures Better Linguistic Representa-
tion Intuitively, our proposed self-supervisions
bring the capacity to correct artificial errors by
restoring the token and position information, may
help the encoder capture more linguistic knowl-
edge. To verify this hypothesis, we quantitatively

investigate it with probing tasks’ (Conneau and
Kiela, 2018) to study what linguistic properties are
captured by the encoders. A probing task is a clas-
sification problem that focuses on simple linguistic
properties of sentences. The 10 probing tasks are
categorized into three groups: (1) “Surface” fo-
cuses on the simple surface properties learned from
the sentence embedding; (2) “Syntactic” quantifies
the syntactic reservation ability; and (3) “Semantic”
assesses the deeper semantic representation abil-
ity. For each task, we trained the classifier on the
train set, and validated the classifier on the valida-
tion set. We followed Hao et al., 2019 and Wang
et al., 2019 to set the model configurations. We
present the details for each probing tasks in Ap-
pendix A.3. To evaluate the representation ability
of our BLISS, we compare the pretrained vanilla
Transformer (Vaswani et al., 2017) and BLISS
equipped machine translation model encoders, fol-
lowed by a MLP classifier. Sepcifically, the mean
of the top encoding layer, as sentence representa-
tion, will be passed to the classifier. Table 4 lists
the results. Takeaway: The proposed BLISS could
preserve significant better surface, syntactic and
semantic knowledge (Vanilla vs. BLISS = 65.1 vs.
66.2), confirming our hypothesis.

5 Conclusion

In this paper, we investigate how to achieve
robust sequence-to-sequence learning with self-
supervised input representation. To achieve it, we
propose to make the most of supervised signals and
self-supervised signals with our proposed BLISS,
where BLISS consists of a smooth augmented
data generator and corresponding self-supervised
objectives upon the top of the encoder. Experi-
ments show that BLISS consistently outperforms
the vanilla Transformer and other five data aug-
mentation approaches in several datasets. Analyses
show that BLISS indeed learns robust input rep-
resentation and better linguistic information, con-
firming our hypothesis.

Future directions include validating our find-
ings on more sequence-to-sequence tasks (e.g. dia-
logue and speech recognition) and model architec-
tures (e.g. DynamicConv, Wu et al., 2018). Also,
its worthy to explore our method to large scale
sequence-to-sequence language model pretraining
(e.g. BART, Lewis et al., 2020).

*https://github.com/facebookresearch/
SentEval/tree/master/data/probing


https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
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A Appendix

A.1 Detailed Description of Datasets and
Training Setting

Table 6 gives more details of the benchmarks.
It is noted that other unmentioned hyperparam-
eters keep the same with the original paper of
Transformer (Vaswani et al., 2017). All the mod-
els are implemented by the open-source toolkit
fairseq (Ott et al., 2019).

A.2 Hyper-Parameters

We set Aioken = Apos=0.005 and p = 0.2 for
all tasks, other hyper parameters vary in tasks as
shown in Table 5.

Y Qshu Qrep
WMTI4En-De 03 0.1 0.1
WMTI6En-Ro 04 0.1 0.1
IWSLT14 De-En 0.3 0.12  0.15
CNN/DM 04 008 0.5
CONLL 03 012 0.1

Table 5: hyper parameters of our methods in tasks.

A.3 Probing Tasks

We conducted 10 probing tasks to study what lin-
guistic properties are captured by the encoder. ‘Se-
Len’ predicts the length of sentences in terms of
number of words. “WC’ tests whether it is possible
to recover information about the original words
given its sentence embedding. ‘TrDep’ checks
whether an encoder infers the hierarchical struc-
ture of sentences. In ‘“ToCo’ task, sentences should
be classified in terms of the sequence of top con-
stituents immediately below the sentence node.
‘BShif’ tests whether two consecutive tokens within
the sentence have been inverted. ‘Tense’ asks for
the tense of the mainclause verb. ‘SubN’ focuses
on the number of the main clause’s subject. ‘ObjN’
tests for the number of the direct object of the main
clause. In ‘SoMo’, some sentences are modified by
replacing a random noun or verb with another one
and the classifier should tell whether a sentence has
been modified. ‘Coln’ contains sentences made
of two coordinate clauses. Half of sentences are
inverted the order of the clauses and the task is to
tell whether a sentence is intact or modified. We
first extracted the sentence representations of input
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Figure 5: The performance drop when inference on
noised testing data, where we test on IWSLT 14 De-En
and report the scaled BLUE scores. The noise types
for the left and right figures are shuffling and replacing,
respectively. Green and orange line represent BLISS
models removing token loss and position loss individu-
ally.

sentences by take average or encoder output. The
classifier we used as the sentence as a Multi-Layer
Perceptron(MLP) with a hidden dimention of 256.
We optimized the model using the Adam optimizer
with a leaning rate of 0.001 in 70 epochs for ‘WC’
and ‘SoMo’ task and 10 epochs for other tasks.

A.4 How auxiliary loss improves model
rebustness

We added experiments on the IWSLT DE-EN task
and WMT En-Ro task as shown in Figure 5 and
Figure 5, both in which we compare BLISS with
variants removing token loss or position loss. From
which we can draw two conclusions: 1) Removing
token loss or position loss will damage the robust-
ness of the BLISS model. 2) Token loss makes
a more important difference in WMT 16 En-Ro
task and makes a nearly equal difference in the
IWSLT14 De-En task compared to position loss.

A.5 Hyper-Parameters Sensitivity Analysis

To validate that our model is not hyper-parameter
sensitive, we do experiments with different values
of hyper-parameters sampling from half of the op-
timal value to 1.5 times the optimal value and plot
the boxplot graph below. As shown in Figure 7,
the minimum values of each hyper-parameters are
higher than baseline, proving the insensitivity of
our hyper-parameters.



Vocab Sents Training Testing
Src/Tgt Train Dev  Test Batch Step DP Beam LP

WMT14 En-De 32768 4.5M 3K 3K 64K 300K 0.2 5 06

WMTI16 En-Ro 34976 0.6M 2K 2K 160K 15K 0.3 5 1.0
IWSLT14 De-En 10148 160215 7282 6750 32K 20K 0.3 5 1.0
CNN/DM 50264 03M 13K 11K 64K 70K 0.1 4 20
CONLL 33352 1.3M 5K IK 64K 85K 0.2 6 06

Table 6: Statistics of the datasets and hyperparameters for the experiments. “Batch” denotes the number of source
tokens and target tokens used in each training step. “DP” denotes the dropout value (Srivastava et al., 2014). “LP”
denotes the length penalty (Wu et al. 2016). For GEC and text summarization tasks, we chose the checkpoint with
best validation ppl for testing, for translation tasks, we choose the average of last five checkpoints for testing.
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Figure 6: The performance drop when inference on
noised testing data, where we test on WMT16 En-Ro
and report the scaled BLUE scores. The noise types
for the left and right figures are shuffling and replacing,
respectively. Green and orange line represent BLISS
models removing token loss and position loss individu-
ally.
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Figure 7: The box plot of three hyperparameters,
s Qshu, Qhep. The blue dot line correspond to Fy 5
score of vanilla transformer. The upper bound, lower
bound, middle line of each box behave the maximum,
minimum and median value respectively.
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