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Abstract
Data augmentations (DA) are the cores to001
achieving robust sequence-to-sequence learn-002
ing on various NLP tasks. However, most of003
the DA approaches force the decoder to make004
predictions conditioned on the perturbed in-005
put representation, which we argue may make006
the sequence-to-sequence learning sub-optimal.007
In response to this problem, we propose a008
framework-level robust sequence-to-sequence009
learning approach, namely BLISS, via self-010
supervised input representation, which has the011
great potential to complement the data-level012
augmentation approaches. The core idea is to013
supervise the sequence-to-sequence framework014
with both the supervised (“input→output”) and015
self-supervised (“perturbed input→input”) in-016
formation. Experimental results show that our017
BLISS outperforms the vanilla Transformer018
and five contrastive baselines on several NLP019
benchmarks, including machine translation,020
grammatical error correction and text summa-021
rization. Extensive analyses reveal that BLISS022
learns robust representations and rich linguistic023
knowledge, confirming our claim. Source code024
will be released upon publication.025

1 Introduction026

Sequence-to-sequence learning (Sutskever et al.,027

2014) has advanced the state-of-the-art in various028

natural language procecssing (NLP) tasks, such029

as machine translation (Bahdanau et al., 2015a;030

Wu et al., 2016; Vaswani et al., 2017), grammati-031

cal error correction (Kiyono et al., 2019; Kaneko032

et al., 2020) and text summarization (Wang et al.,033

2019; Zhang et al., 2020a). Sequence-to-sequence034

learning models are generally implemented with035

an encoder-decoder framework, in which the en-036

coder receives the input sentence and predictions037

of the decoder are correspondingly supervised by038

matching the cross-entropy of ground-truth. That is,039

the existing sequence-to-sequence learning frame-040

works are supervised by the direct correlation be-041

tween the input and the output.042

To achieve robust sequence-to-sequence learn- 043

ing, many data augmentation methods (Kobayashi, 044

2018; Wu et al., 2019; Gao et al., 2019; Cheng 045

et al., 2020; Chen et al., 2021; Morris et al., 2020) 046

are proposed to enrich the training dataset by auto- 047

matically or manually creating the perturbed input. 048

For example, Wei and Zou (2019) show that sim- 049

ple data augmentation strategies, e.g. insert, swap 050

and deletion, works well for the low-resource set- 051

tings. Kobayashi (2018); Wu et al. (2019); Gao 052

et al. (2019) employ the language models to gener- 053

ate the substitutions for the subset of the input sen- 054

tence. Cheng et al. (2020); Chen et al. (2021); Mor- 055

ris et al. (2020) adopt the adversarial techniques 056

to generate the adversarial samples to enhance the 057

model generalization. Although those data-level 058

approaches are straightforward and easy to use, all 059

the above methods force the decoder to make lex- 060

ical choices conditioned on the perturbed input 061

representation, which we argue are sub-optimal for 062

sequence-to-sequence learning. 063

In response to this problem, we propose a 064

framework-level robust approach to making the 065

most of the perturbed input in sequence-to- 066

sequence learning via self-supervised input rep- 067

resentation. The core idea is supervising the 068

sequence-to-sequence framework with both the 069

correlation between input and output, and self- 070

supervisions between perturbed input and origi- 071

nal input. In particular, we employ two extremely 072

simple and effective data augmentation techniques, 073

i.e. shuffle and replacement, as the input per- 074

turbing function. Then, we propose a smooth- 075

ness controller to harness the perturbing degree. 076

Based on the perturbed input, we correspond- 077

ingly design a self-supervision mechanism upon 078

the top of the encoder, where we choose the to- 079

ken prediction and position prediction as two self- 080

supervised objectives to restore the perturbed sub- 081

set. By doing so, we can achieve robust sequence- 082

to-sequence learning by fully exploiting the super- 083
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vised (“input→output”) and self-supervised (“per-084

turbed input→input”) information.085

We validated our approach on several sequence-086

to-sequence NLP tasks in §4.4, including machine087

translation (Bahdanau et al., 2015b; Vaswani et al.,088

2017), grammatical error correction (Wang et al.,089

2019; Zhang et al., 2020b) and text summariza-090

tion (Kiyono et al., 2019; Kaneko et al., 2020),091

across five datasets. We show that our BLISS092

consistently outperforms the strong baseline Trans-093

former and five competitive data augmentation ap-094

proaches. Experiments on translation show that our095

proposed BLISS yields consistent improvements,096

ranging from 0.5 upto 2.1 BLEU points. As for097

correction and summarization tasks, we achieve098

+2.0 F0.5 and +0.4 Rouge-L improvements against099

strong Transformer, demonstrating the effective-100

ness and universality of our approach. We con-101

duct comprehensive analyses in §4.5 to understand102

when and why our BLISS works. We show that103

our framework-level self-supervised BLISS can be104

combined with existing augmentation approach,105

e.g. SwitchOut (Wang et al., 2018), to achieve fur-106

ther improvement. Also, our BLISS is robust to107

inference noises and hyper-parameters compared to108

baselines. Importantly, through probing task (Con-109

neau and Kiela, 2018), we found that our model110

could preserve significantly rich linguistic knowl-111

edge against vanilla Transformer. Our main contri-112

butions can be summarized as:113

• We introduce a robust sequence-to-sequence114

learning framework via self-supervised in-115

put representation, which has the potential116

to complement existing data augmentation ap-117

proaches.118

• Our approach provide a unified framework to119

make the most of existing supervised signals,120

i.e. correlation between input and output, and121

self-supervised signals, i.e. self-supervisions122

between perturbed input and original input.123

• We empirically validate the the effectiveness124

and universality on extensive experiments125

across tasks and datasets.126

2 Related Work127

Our work is inspired by two lines of research: i)128

designing self-supervisions and ii) data augmenta-129

tion.130

Designing Self-Supervisions Self-supervision 131

signals have been widely investigated in language 132

model pretraining and unsupervised learning. De- 133

vlin et al. (2019) propose the mask language model, 134

where they substitute a subset of tokens in the input 135

sentence by a special symbol [MASK], and then 136

predicts the missing tokens by the residual ones. 137

MASS (Song et al., 2019) presents a sequence- 138

to-sequence pre-training framework, which takes 139

non-mask tokens as the encoder input and leverages 140

masked tokens as the decoder input as well as the to- 141

be-predicted target. STRUCTBERT (Wang et al., 142

2020) extends BERT by leveraging the structural in- 143

formation: word-level ordering and sentence level 144

ordering. SpanBERT (Joshi et al., 2020) masks 145

random contiguous spans rather than individual 146

tokens and additionally introduces span-boundary 147

objective. Different from these works that apply 148

self-supervisions to the cost pre-train stage and fine- 149

tune them on the down-stream tasks, we design the 150

self-supervision objectives for input sentence to 151

complement the existing MLE generation objec- 152

tives to achieve further improvement. 153

Similar to our work, there exists several works 154

that combine self-supervisions with from-scratch 155

sequence-to-sequence model training. Guo et al. 156

(2020b) introduce mask task to non-autoregressive 157

translation model to fully exploit the undertrained 158

encoder. Siddhant et al. (2020) propose to make use 159

of monolingual data by self-supervisions in mul- 160

tilingual translation. Cheng et al. (2021) combine 161

self-supervised and supervised learning to optimize 162

the machine translation models especially for the 163

rich-resource settings. Different from these works, 164

we propose a plug-and-play self-supervised input 165

representation approach for general sequence-to- 166

sequence tasks, which could be used to comple- 167

ment any data augmentation approaches and con- 168

sistently enhance the model performance. 169

Data Augmentation Artetxe et al. (2018); Lam- 170

ple et al. (2018) randomly shuffle the words within 171

a fixed window size to construct the perturbed sen- 172

tence. Iyyer et al. (2015) drop some words ran- 173

domly in the source sentence for learning an auto- 174

encoder to help train the unsupervised NMT model. 175

Xie et al. (2017) replace the word with a place- 176

holder token or a word sampled from the frequency 177

distribution of vocabulary. Wang et al. (2018) intro- 178

duce SwitchOut, which replace words in the source/ 179

target sentences with other words form the source/ 180

target vocabulary. Guo et al. (2020a) introduce 181
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Smoothness  Controller
𝑙𝑚 = 𝛼 × 𝑠𝑒𝑞_𝑙𝑒𝑛

(𝛼𝑠ℎ𝑢, 𝛼𝑟𝑒𝑝)

Perturbing Functions

𝑙𝑠ℎ𝑢

Source sentences Augmented sentences

𝑙𝑟𝑒𝑝

𝑠𝑒𝑞_𝑙𝑒𝑛 = 6 shuffle replace

Figure 1: Illustration of the proposed smooth augmented data generator in §3.2, which consists of two components,
i.e. perturbing functions and smoothness controller, represented by dashed rounded rectangles, respectively. The
blue block represent tokens been shuffled while the green block represent tokens been replaced.

SeqMix to mix up pairs of source sentences or de-182

coder input sentences. Wei and Zou (2019) exper-183

iments with easy data augmentation methods like184

randomly insert, swap and delete, but they found185

these simple methods take little effect with full186

datasets. Our work significantly differs from these187

work. We do not predict the target lexicons condi-188

tioned on these perturbed input directly. Rather, we189

propose to recover the noised input with encoder,190

thus the conditional representation for decoder pre-191

serve much linguistic knowledge (See §4.5).192

3 Self-Supervised Input Representation193

In this section, we first review the sequence-to-194

sequence learning in §3.1. Then we introduce the195

smoothed data augmentation technique, namely196

SMOOTH AUGMENTED DATA GENERATOR in197

§3.2. Finally §3.3 elaborates our proposed SELF-198

SUPERVISED INPUT REPRESENTATION approach.199

3.1 Preliminaries200

Sequence-to-Sequence Learning Given the tar-201

get sequence y = {y1, y2, ..., yt} conditioned on202

a source sequence x = {x1, x2 ..., xs}, the ob-203

jective of Seq2Seq model can be formulated as204

ŷ = argmax logP (y|x). Up to now, Transformer205

advanced the state of art results compared to other206

architectures. Thus, we employ Transformer as the207

strong baseline and test bed. Transformer consists208

of an encoder equipped with several identical lay-209

ers to map the source sequence x into intermediate210

representation h and a decoder equipped with sev-211

eral identical layers take h as input and generates212

y target sequences autoregressively: 213

h = enc(x+ pos_emb(x)) 214

ŷ≤t = dec(ŷ<t + pos_emb(ŷ<t),h) 215

Encoder and decoder composed of position-wise 216

feed-forward network, multi-head dot-product at- 217

tention network and so on, you can refer to Vaswani 218

et al. (2017) for more details. Noticeable, tokens 219

as well as its position embedding calculated by 220

pos_emb(·) are token as the input of encoder or 221

decoder, which prove the existence and necessity 222

of position information, we design position aux- 223

iliary task to restore position information in en- 224

coder representation. Decoder generate target sen- 225

tence autoregressively until meeting special symbol 226

< eos >. Finally, the output of the decoder ŷ is 227

projected into the probability P (y|x), and the opti- 228

mization objective can be formulated as: 229

argmaxθlogP (y|x; θenc, θdec) (1) 230

where θenc and θdec denote the parameters of the 231

encoder and decoder respectively. 232

3.2 Smooth Augmented Data Generator 233

As Seen in Figure 1, our Smooth Augmented data 234

Generator compose of two parts, perturbing func- 235

tions and smoothness controller. 236

Perturbing Functions As shown in Figure 1, we 237

feed the source sentences into two perturbing func- 238

tions, shuffle function and replace function sequen- 239

tially. For each function, we randomly select γ 240

percentage of source sentences for generating aug- 241

mented data. Specifically, we randomly shuffle 242

tokens within a lshu sized window in the shuffle 243

function, and randomly replace lrep tokens in the 244
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෤𝑥1 𝑥2 ෤𝑥3 ෤𝑥4 ෤𝑥5 𝑥6

Encoder

ℎ3 ℎ5

𝑥7

Decoder

𝐿𝑛𝑙𝑙
ℎ4ℎ1

Token 

classifier

Position

classifier

𝐿𝑡𝑜𝑘𝑒𝑛 = − ෍

𝑖=1,3,4,5

𝑙𝑜𝑔𝑃(𝑥𝑖| ෨ℎ𝑖)

𝐿𝑝𝑜𝑠 = − ෍

𝑖=1,3,4,5

𝑙𝑜𝑔𝑃 𝑥𝑖 ෨ℎ𝑖)

𝐿𝑡𝑜𝑘𝑒𝑛 𝐿𝑝𝑜𝑠

𝑥0

Figure 2: The illustration of our proposed self-supervised input representation (§3.3) in sequence-to-sequence
learning framework. We add two classifier to predict the token and position of perturbed tokens synthesized by the
smooth augmented data generator in §3.2. The meaning of blue rectangle and green rectangle is the same as in
Figure 1. The red rectangles represent disturbed tokens’ intermediate representation produced by the top layer of
encoder.

source sentences with other words form the source245

vocabulary in replace function.246

Smoothness Controller We set αshu, αrep to247

control the maximum number of shuffled and re-248

placed tokens respectively. Without smoothness249

controller, models can only see augmented data250

with αshuL shuffle tokens of αrepL replaced to-251

kens, where L is the length of sequence. To balance252

the diversity and similarity of augmented data, we253

design a smoothness controller to get a smooth dis-254

tribution of augmented data with different perturb-255

ing tokens. Specifically, we hypothesis sampling256

the number of perturbed tokens l from geometric257

distribution l|l<=αL ∼ Geometric(p), where p258

is between 0 and 11. Then, since l is limited by259

a upper bound, we normalize the distribution of260

sampling l. Finally we sample l according to the261

probability distribution expressed as in Equation 2.262

For shuffle function and replacement function, we263

repeat the above procedures individually and obtain264

lshu and lrep for perturbing operations.265

P (l) =
p(1− p)l−1∑Lm
i=1 p(1− p)i−1

δ1−Lm(l) (2)266

δ1−Lm(l) equal 1 when l is equal or greater than267

0 and equal or smaller than Lm otherwise 0.268

3.3 Self-Supervised Input Representation269

Inspired by mask language model (Devlin et al.,270

2019), which mask tokens in source sentences and271

predict masked tokens on the output, we take simi-272

lar procedure but two differences distinguish us be-273

1after preliminary studies, we set p=0.2 for all tasks

tween them. First, our method is used in the down- 274

stream tasks with labeled datasets while mask lan- 275

guage model take effects in pre-training tasks with 276

unlabeled datasets, so our method works in parallel 277

with mask language models and is complementary 278

with them. Second, prior studies only take token 279

as ground truth label to supervised output. To our 280

knowledge, we are the first to take positions as 281

supervised labels. 282

Specifically, we design two softmax classifier to 283

predict token and position by h̃ respectively. To- 284

ken classifier are responsible to predict the origin 285

tokens of x̃ while the position classifier predict the 286

position of perturbed tokens. And corresponding 287

loss function Ltoken, Lpos is expressed as Equa- 288

tion 3 and Equation 4. where xi, pi denote the ori- 289

gin tokens and absolute position, Wtoken ∈ Re×v 290

and Wpos ∈ Re×pm represents the parameters of 291

softmax classifier, and e, v, pm denote embedding 292

dimension, vocabulary size and maximum posi- 293

tion index. Following the preliminary trials, we set 294

pm = 400. 295

Ltoken =
∑
i

logP (xi|h̃i,Wtoken, θenc) (3) 296

Lpos =
∑
i

logP (pi|h̃i,Wpos, θenc) (4) 297

Lnll(x̃,y) = logP (y|x̃; θenc, θdec) (5) 298

By integrating the above two loss functions with 299

the traditional negative log-likelihood loss function 300

as Equation 5, the complete objective function of 301
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our model is expressed as Equation 6:302

argmax
θ

L(x, y) = Lnll+λtokenLtoken+λposLpos

(6)303

where θ = {θenc, θdec,Wtoken,Wpos}, λtoken and304

λpos are hyper-parameters that balance the weights305

of different self-supervision objectives.306

In conclusion, we add smooth augmented data307

generator for source sentences, and restore it’s orig-308

inal token and position information on the encoder309

output. The basic intuition behind is that although310

the augmented sequence information is distorted311

locally, but the contextual information is preserved,312

a robust encoder should has the ability to restore313

correct information from distorted sentences. Be-314

sides the token of sequence, the position of tokens315

in the sequence play an importance role of the se-316

quence information. So, we design the encoder317

to predict the position of swapped tokens to help318

encoder understanding the position information of319

sequence.320

4 Experiments321

4.1 Tasks and Datasets322

To validate the effectiveness of BLISS, we con-323

ducted experiments on three representative tasks,324

which vary from the distance between input and325

output domains and the scale of training data:326

Machine Translation takes a sentence in one327

language as input, and outputs a semantically-328

equivalent sentence in another language. We329

evaluate our method on three widely-used bench-330

marks: IWSLT14 German→English (IWSLT14331

De-En2, Nguyen et al. (2020)), WMT16332

English→Romanian (WMT16 En-Ro3, Gu et al.333

(2018)), and WMT14 English-German (WMT14334

En-De4, Vaswani et al., 2017). We strictly follow335

the dataset configurations of previous works for336

a fair comparison. For the IWSLT14 De-En task,337

we train the model on its training set with 160K338

training samples,and evaluate on its test set. For339

the WMT14 En-De task, we train the model on340

the training set with 4.5M training samples, where341

newstest2013 and newstest2014 are used as the342

validation and test set respectively. As for the343

WMT16 En-Ro task which has 610K training344

pairs, we utilize newsdev2016 and newstest2016345

2https://wit3.fbk.eu/
3https://www.statmt.org/wmt16/translation-task
4new://www.statmt.org/wmt14/translation-task

as the validation and test set. For each dataset, we 346

tokenize the sentences by Moses (Koehn et al., 347

2007) and segment each word into subwords using 348

Byte-Pair Encoding (BPE, Sennrich et al., 2016), 349

resulting in a 32K vocabulary shared by source 350

and target languages. All the translation tasks are 351

evaluated with tokenized BLEU (Papineni et al., 352

2002) score. 353

Grammatical Error Correction takes a sen- 354

tence with grammatical errors as input and gener- 355

ates a corrected sentence. We evaluate our method 356

on CONLL14 dataset5, which has 1.4M training 357

samples. We closely follow Chollampatt and Ng 358

2018 to preprocess the data. The MaxMatch (M2) 359

scores (Dahlmeier and Ng, 2012) were used for 360

evaluation with Precision, Recall, and F0.5 values. 361

Text Summarization takes a long-text document 362

as input, and generates a short and adequate sum- 363

mary in the same language. We evaluate our 364

method on the the most representative summariza- 365

tion benchmark CNN/Daily Mail corpus6, which 366

contains 300K training samples. We follow (Ott 367

et al., 2019) to preprocess the data. During testing, 368

the minimum length was set to 55 and the maxi- 369

mum length was set to 140, which were tuned on 370

the development data. We also follow Paulus et al. 371

2018 to disallow repeating the same trigram. We 372

evaluate the summarization performance with the 373

standard ROUGE metric (Lin, 2004), i.e. Rouge-1, 374

Rouge-2, and Rouge-L. 375

The machine translation task has distant in- 376

put/output domains (i.e. in different languages), 377

while the other tasks has similar input/output do- 378

mains (i.e. in the same language). Details of the 379

datasets are listed in Appendix A.1. 380

4.2 Implementation 381

Our model is based on the Transformer (Vaswani 382

et al., 2017) architecture due to its state-of-the-art 383

performance and all the models are implemented 384

by the open-source toolkit fairseq7 (Ott et al., 385

2019). For better reproduction, we employ the 386

base Transformer (dmodel = dhidden = 512, nlayer 387

= 6, nhead = 8) for all tasks in this paper. All mod- 388

els were trained on NVIDIA DGX A100 cluster. 389

The hyper-parameters of training of different tasks 390

5https://www.comp.nus.edu.sg/~nlp/
conll14st.html

6https://huggingface.co/datasets/cnn_
dailymail

7https://github.com/pytorch/fairseq

5
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Translation Correction Summarization

De-En En-Ro En-De Prec. Recall F0.5 RG-1 RG-2 RG-L

VANILLA 35.1 34.7 27.3 58.7 33.8 51.2 40.1 17.6 36.8
DROPOUT 36.3 36.4 27.2 60.8 34.2 52.6 40.4 17.7 37.1
BLANK 36.5 36.7 27.6 59.3 32.7 51.0 40.0 17.5 36.8
SHUFFLE 35.8 35.4 27.0 52.5 33.9 47.3 40.1 17.3 36.8
SEQMIX 36.4 36.3 27.4 58.3 33.5 50.8 40.2 17.6 36.9
SWITCHOUT 36.5 36.4 27.5 60.3 34.1 52.3 40.6 17.9 37.1

BLISS (ours) 36.6† 36.7† 27.9†‡ 60.2† 36.3†‡ 53.2†‡ 40.6† 17.9† 37.2†

Table 1: Experimental results of the proposed BLISS method on the Seq2Seq tasks. Results marked with † are
statistically significant compared to vanilla transformer, with ‡ are statistically significant compared to best baseline.

and datasets are listed in Appendix A.1. The hyper-391

parameters of our methods, including γ, αshu, αrep,392

λtoken, λpos, p are also listed in Appendix A.2.393

4.3 Baselines394

To validate the effectiveness of our methods, we395

compare our approach with following baselines:396

• Vanilla (Vaswani et al., 2017): The original397

sequence-to-sequence training strategy with-398

out any data augmentation strategies.399

• Dropout (Iyyer et al., 2015; Lample et al.,400

2018): Randomly dropping tokens with their401

best drop ratio 0.1.402

• Blank (Xie et al., 2017): Randomly replacing403

word tokens with a placeholder, we leave their404

best setting ratio=0.1 as default.405

• Shuffle (Artetxe et al., 2018; Lample et al.,406

2018): Randomly swapping words in nearby407

positions within a window size K=3.408

• SeqMix (Guo et al., 2020a): Mixing sentence409

pairs on both the source and target side. We410

reimplement according to their public code8.411

• SwithOut (Wang et al., 2018): Replacing to-412

kens with other tokens in vocabulary on the413

source side and target side. We reimplement414

according to the Appendix A.5 of their paper.415

4.4 Main Results416

Table 1 lists the performances of our models417

as well as strong baseline models on different418

8https://github.com/dguo98/SeqMix/
tree/main

tasks. Clearly, the proposed self-supervised in- 419

put representation approach (“BLISS”) signifi- 420

cantly outperforms the vanilla Transformer in all 421

cases, while there are still considerable differences 422

among model variations. Specifically, on transla- 423

tion task, our BLISS equipped models achieve the 424

best among all contrasted approaches, and encour- 425

agingly outperform the vanilla by averaged +1.3 426

BLEU points. As for the grammatical error correc- 427

tion task, we achieve the +2.0 F0.5 scores improve- 428

ment against the vanilla model, and notably, our ro- 429

bust self-supervised input representation approach 430

recalls significantly more potential grammatical er- 431

rors, i.e. +2.5 percent. On the contrary, the existing 432

data augmentation approaches, e.g. Shuffle, Blank 433

and SeqMix, slightly undermine the GEC perfor- 434

mance. We conjecture that such performance degra- 435

dation for previous approaches is due to the lack of 436

generalization across tasks, i.e. they are proposed 437

for MT. As for summarization task, The results 438

also show a promising trend against all baseline 439

methods. All those findings demonstrate that our 440

proposed robust self-supervised input representa- 441

tion approach (“BLISS”) is effective and universal 442

across language pairs and tasks. 443

4.5 Analysis 444

In this section, we provide some insights into when 445

and why our BLISS works. 446

Effects of Each Component There are four care- 447

fully designed components: i) perturbing func- 448

tions “aug” that performs shuffling and replace- 449

ment to generate augmented data sequentially. ii) 450

Smoothness controller “smooth” to generate aug- 451

mented data with different noise degrees. iii) To- 452

ken auxiliary loss “token” to supervise the lexical 453

information of augmented input, which helps the 454

6
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Translation Correction Summarization

De-En En-Ro En-De Prec. Recall F0.5 RG-1 RG-2 RG-L

Vanilla 35.1 34.7 27.3 58.7 33.8 51.2 40.1 17.6 36.8

BLISS 36.6 36.7 27.9 60.2 36.3 53.2 40.6 17.9 37.2
-aug-smooth 36.4 36.5 27.5 60.8 32.3 52.3 40.4 17.6 36.9
-smooth 36.5 36.5 27.6 60.2 34.9 52.6 40.4 17.7 37.0
-token 36.4 36.2 27.4 60.5 32.0 51.3 40.4 17.7 37.0
-pos 36.4 36.5 27.5 60.3 35.0 52.7 40.5 17.8 37.1

Table 2: Effects of removing each component. The metrics and datasets are same as that of Table 1. Bold represents
the settings with the most performance degradation for each corresponding task.

WMT14 CoNLL14 CNN/DM

SwitchOut 26.0 52.3 37.1
BLISS w/ S. 26.3 52.9 37.1

Table 3: Complementary to other work, i.e.
SwitchOut (Wang et al., 2018). BLISS with SwitchOut-
style augmentation function is denoted as “BLISS w/
S.”. Translation, Correction and Summarization are
evaluated with BLEU, F0.5 and RG-L, respectively.

encoder capture robust token representation. iv)455

Position auxiliary loss “pos” to supervise the po-456

sition information of augmented input. To verify457

the reasonableness of those components, we re-458

move different components in Table 2, e.g. “-aug-459

smooth”, “-smooth”, “-token” and “-pos”, as the460

ablation settings. Takeaway: Our proposed BLISS461

performs worse when either component is removed,462

demonstrating the effectiveness of four proposed463

components.464

Complementary to Related Works Our pro-465

posed BLISS enables self-supervisions from the466

structure-level, thus has the great potential to com-467

plement existing strong data-level methods. Here468

we choose SwitchOut (Wang et al., 2018) due to469

its competitive performance in main experiments.470

We replace the vanilla simple augmentation func-471

tion in BLISS, i.e. shuffle and replacement, with472

SwitchOut and conduct the experiments in Table 3.473

Takeaway: Our proposed structure-level self-474

supervised approach BLISS achieves further im-475

provement across different sequence-to-sequence476

tasks with advanced data augmentation functions,477

e.g. SwitchOut, showing its appealing expandabil-478

ity.479

BLISS is Robust to the Inference Noises Our480

self-supervised input representation is expected to481
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Figure 3: The performance drop when inference on
noised testing data, where we test on WMT14 En-De
and report the scaled BLEU scores. The noise types
for the left and right figures are shuffling and replacing,
respectively.

tolerate the inputting noises to some extent. To 482

validate our hypothesis, we inject two types of ar- 483

tificial noise, e.g. shuffle and replacement, into 484

the test samples with different ratios ranging from 485

{2%, 4%, 8% and 16%}. For shuffle noise, we 486

select a span whose length is αl (l is the length 487

of source sentence). Then we shuffle the order 488

of words within the span. As for the replacement 489

noise, we follow our replacement function but with- 490

out smoothness controller, where we randomly re- 491

place αl tokens with other tokens in the vocabulary. 492

Figure 3 lists the results when performing noisy in- 493

ference on WMT14 En-De task. Additionally, we 494

analysis how the auxiliary losses improve model 495

robustness in Appendix ?? Takeaway: Compared 496

with vanilla Transformer and existing contrastive 497

variants, as noise increases, our model “BLISS” is 498

significantly robust to both noise, demonstrating 499

the robustness of our approach. 500
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Figure 4: F0.5 scores on CONLL14 dataset with differ-
ent hyper parameters. Left: αshu, αrep. Right: γ.

Task vanilla BLISS

Surface SeLen 93.1 94.0
WC 42.7 41.9

Syntactic
TrDep 41.7 44.0
ToCo 73.5 75.3
BShif 69.3 71.8

Semantic

Tense 77.0 77.5
SubN 77.3 78.4
ObjN 75.0 75.2
SoMo 50.4 50.6
CoIn 62.2 63.3

Table 4: Performance on 10 probing tasks to evaluate
the linguistic properties. Note that we train the model
on WMT14 En-De.

BLISS is Robust to the Hyper-Parameters501

Data augmentation approaches are always sensi-502

tive to hyper-parameters. To dispel the doubt, we503

investigate whether our approach is robust to dif-504

ferent hyper-parameters. We empirically study505

the effect of hyper parameters αshu, αrep, γ on506

GEC task. We can observe from Figure 4 that507

with although the performance varies with hyper-508

parameters, the extreme values of the results are509

not significant, still outperforming the baseline ap-510

proach. We give more analysis in Appendix A.5 to511

validate BLISS is not sensitive to hyper-parameters.512

Takeaway: Our proposed BLISS is not sensitive to513

hyper-parameters, all hyper-parameters’ variants514

outperform the baseline.515

BLISS Captures Better Linguistic Representa-516

tion Intuitively, our proposed self-supervisions517

bring the capacity to correct artificial errors by518

restoring the token and position information, may519

help the encoder capture more linguistic knowl-520

edge. To verify this hypothesis, we quantitatively521

investigate it with probing tasks9 (Conneau and 522

Kiela, 2018) to study what linguistic properties are 523

captured by the encoders. A probing task is a clas- 524

sification problem that focuses on simple linguistic 525

properties of sentences. The 10 probing tasks are 526

categorized into three groups: (1) “Surface” fo- 527

cuses on the simple surface properties learned from 528

the sentence embedding; (2) “Syntactic” quantifies 529

the syntactic reservation ability; and (3) “Semantic” 530

assesses the deeper semantic representation abil- 531

ity. For each task, we trained the classifier on the 532

train set, and validated the classifier on the valida- 533

tion set. We followed Hao et al., 2019 and Wang 534

et al., 2019 to set the model configurations. We 535

present the details for each probing tasks in Ap- 536

pendix A.3. To evaluate the representation ability 537

of our BLISS, we compare the pretrained vanilla 538

Transformer (Vaswani et al., 2017) and BLISS 539

equipped machine translation model encoders, fol- 540

lowed by a MLP classifier. Sepcifically, the mean 541

of the top encoding layer, as sentence representa- 542

tion, will be passed to the classifier. Table 4 lists 543

the results. Takeaway: The proposed BLISS could 544

preserve significant better surface, syntactic and 545

semantic knowledge (Vanilla vs. BLISS = 65.1 vs. 546

66.2), confirming our hypothesis. 547

5 Conclusion 548

In this paper, we investigate how to achieve 549

robust sequence-to-sequence learning with self- 550

supervised input representation. To achieve it, we 551

propose to make the most of supervised signals and 552

self-supervised signals with our proposed BLISS, 553

where BLISS consists of a smooth augmented 554

data generator and corresponding self-supervised 555

objectives upon the top of the encoder. Experi- 556

ments show that BLISS consistently outperforms 557

the vanilla Transformer and other five data aug- 558

mentation approaches in several datasets. Analyses 559

show that BLISS indeed learns robust input rep- 560

resentation and better linguistic information, con- 561

firming our hypothesis. 562

Future directions include validating our find- 563

ings on more sequence-to-sequence tasks (e.g. dia- 564

logue and speech recognition) and model architec- 565

tures (e.g. DynamicConv, Wu et al., 2018). Also, 566

its worthy to explore our method to large scale 567

sequence-to-sequence language model pretraining 568

(e.g. BART, Lewis et al., 2020). 569

9https://github.com/facebookresearch/
SentEval/tree/master/data/probing
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A Appendix739

A.1 Detailed Description of Datasets and740

Training Setting741

Table 6 gives more details of the benchmarks.742

It is noted that other unmentioned hyperparam-743

eters keep the same with the original paper of744

Transformer (Vaswani et al., 2017). All the mod-745

els are implemented by the open-source toolkit746

fairseq (Ott et al., 2019).747

A.2 Hyper-Parameters748

We set λtoken = λpos=0.005 and p = 0.2 for749

all tasks, other hyper parameters vary in tasks as750

shown in Table 5.751

γ αshu αrep

WMT14 En-De 0.3 0.1 0.1

WMT16 En-Ro 0.4 0.1 0.1

IWSLT14 De-En 0.3 0.12 0.15

CNN/DM 0.4 0.08 0.15

CONLL 0.3 0.12 0.1

Table 5: hyper parameters of our methods in tasks.

A.3 Probing Tasks752

We conducted 10 probing tasks to study what lin-753

guistic properties are captured by the encoder. ‘Se-754

Len’ predicts the length of sentences in terms of755

number of words. ‘WC’ tests whether it is possible756

to recover information about the original words757

given its sentence embedding. ‘TrDep’ checks758

whether an encoder infers the hierarchical struc-759

ture of sentences. In ‘ToCo’ task, sentences should760

be classified in terms of the sequence of top con-761

stituents immediately below the sentence node.762

‘BShif’ tests whether two consecutive tokens within763

the sentence have been inverted. ‘Tense’ asks for764

the tense of the mainclause verb. ‘SubN’ focuses765

on the number of the main clause’s subject. ‘ObjN’766

tests for the number of the direct object of the main767

clause. In ‘SoMo’, some sentences are modified by768

replacing a random noun or verb with another one769

and the classifier should tell whether a sentence has770

been modified. ‘CoIn’ contains sentences made771

of two coordinate clauses. Half of sentences are772

inverted the order of the clauses and the task is to773

tell whether a sentence is intact or modified. We774

first extracted the sentence representations of input775
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Figure 5: The performance drop when inference on
noised testing data, where we test on IWSLT14 De-En
and report the scaled BLUE scores. The noise types
for the left and right figures are shuffling and replacing,
respectively. Green and orange line represent BLISS
models removing token loss and position loss individu-
ally.

sentences by take average or encoder output. The 776

classifier we used as the sentence as a Multi-Layer 777

Perceptron(MLP) with a hidden dimention of 256. 778

We optimized the model using the Adam optimizer 779

with a leaning rate of 0.001 in 70 epochs for ‘WC’ 780

and ‘SoMo’ task and 10 epochs for other tasks. 781

A.4 How auxiliary loss improves model 782

rebustness 783

We added experiments on the IWSLT DE-EN task 784

and WMT En-Ro task as shown in Figure 5 and 785

Figure 5, both in which we compare BLISS with 786

variants removing token loss or position loss. From 787

which we can draw two conclusions: 1) Removing 788

token loss or position loss will damage the robust- 789

ness of the BLISS model. 2) Token loss makes 790

a more important difference in WMT 16 En-Ro 791

task and makes a nearly equal difference in the 792

IWSLT14 De-En task compared to position loss. 793

A.5 Hyper-Parameters Sensitivity Analysis 794

To validate that our model is not hyper-parameter 795

sensitive, we do experiments with different values 796

of hyper-parameters sampling from half of the op- 797

timal value to 1.5 times the optimal value and plot 798

the boxplot graph below. As shown in Figure 7, 799

the minimum values of each hyper-parameters are 800

higher than baseline, proving the insensitivity of 801

our hyper-parameters. 802
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Vocab Sents Training Testing
Src/Tgt Train Dev Test Batch Step DP Beam LP

WMT14 En-De 32768 4.5M 3K 3K 64K 300K 0.2 5 0.6

WMT16 En-Ro 34976 0.6M 2K 2K 160K 15K 0.3 5 1.0

IWSLT14 De-En 10148 160215 7282 6750 32K 20K 0.3 5 1.0

CNN/DM 50264 0.3M 13K 11K 64K 70K 0.1 4 2.0

CONLL 33352 1.3M 5K 1K 64K 85K 0.2 6 0.6

Table 6: Statistics of the datasets and hyperparameters for the experiments. “Batch” denotes the number of source
tokens and target tokens used in each training step. “DP” denotes the dropout value (Srivastava et al., 2014). “LP”
denotes the length penalty (Wu et al. 2016). For GEC and text summarization tasks, we chose the checkpoint with
best validation ppl for testing, for translation tasks, we choose the average of last five checkpoints for testing.
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Figure 6: The performance drop when inference on
noised testing data, where we test on WMT16 En-Ro
and report the scaled BLUE scores. The noise types
for the left and right figures are shuffling and replacing,
respectively. Green and orange line represent BLISS
models removing token loss and position loss individu-
ally.
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Figure 7: The box plot of three hyperparameters,
γ, αshu, αhep. The blue dot line correspond to F0.5

score of vanilla transformer. The upper bound, lower
bound, middle line of each box behave the maximum,
minimum and median value respectively.
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