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ABSTRACT

Recent architectural developments have enabled recurrent neural networks
(RNNs) to reach and even surpass the performance of Transformers on certain se-
quence modeling tasks. These modern RNNs feature a prominent design pattern:
linear recurrent layers interconnected by feedforward paths with multiplicative
gating. Here, we show how RNNs equipped with these two design elements can
exactly implement (linear) self-attention, the main building block of Transform-
ers. By reverse-engineering a set of trained RNNs, we find that gradient descent
in practice discovers our construction. In particular, we examine RNNs trained
to solve simple in-context learning tasks on which Transformers are known to ex-
cel and find that gradient descent instills in our RNNs the same attention-based
in-context learning algorithm used by Transformers. Our findings highlight the
importance of multiplicative interactions in neural networks and suggest that cer-
tain RNNs might be unexpectedly implementing attention under the hood.

1 INTRODUCTION

Attention-based neural networks, most notably Transformers (Vaswani et al., 2017), have rapidly
become the state-of-the-art deep learning architecture, replacing traditional models such as multi-
layer perceptrons, convolutional neural networks, and recurrent neural networks (RNNs). This is
particularly true in the realm of sequence modeling, where once-dominating RNNs such as the long
short-term memory (LSTM; Hochreiter & Schmidhuber, 1997) model and the related gated recurrent
unit (GRU; Cho et al., 2014) have been mostly replaced by Transformers.

Nevertheless, RNNs remain actively researched for various reasons, such as their value as models in
neuroscience (Dayan & Abbott, 2001), or simply out of genuine interest in their rich properties as a
dynamical system and unconventional computer (Jaeger et al., 2023). Perhaps most importantly for
applications, RNNs are able to perform inference for arbitrarily long sequences at a constant memory
cost, unlike models based on conventional softmax-attention layers (Bahdanau et al., 2015). This
ongoing research has led to a wave of recent developments. On the one hand, new deep linear RNN
architectures (Gu et al., 2022; Orvieto et al., 2023b) have been shown to significantly outperform
Transformers on challenging long-sequence tasks (e.g., Tay et al., 2020). On the other hand, efficient
linearized attention models have been developed, whose forward pass can be executed in an RNN-
like fashion at a constant inference memory cost (Tsai et al., 2019; Katharopoulos et al., 2020;
Choromanski et al., 2021; Schlag et al., 2021; Fu et al., 2023).

We present a unifying perspective on these two seemingly unrelated lines of work by providing a set
of parameters under which gated RNNs become equivalent to any linearized self-attention, without
requiring infinite number of neurons or invoking a universality argument. Crucially, our construction
makes use of gated linear units (GLUs; Dauphin et al., 2017), which are ostensibly featured in recent
deep linear RNN models. Turning to LSTMs and GRUs, which also include multiplicative gating
interactions, we find somewhat surprisingly that our results extend only to LSTMs. Moreover, the
LSTM construction we provide requires a very specific configuration, which hints that the inductive
bias towards attention-compatible configurations might be weaker for this architecture than for deep
gated linear RNNs.

We then demonstrate that GLU-equipped RNNs, but not LSTMs and GRUs, can effectively imple-
ment our construction once trained, thus behaving as attention layers. Moreover, we find that such
GLU-equipped RNNs trained to solve linear regression tasks acquire an attention-based in-context
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learning algorithm. Incidentally, it has been shown that the very same algorithm is typically used
by Transformers trained on this problem class (von Oswald et al., 2023; Mahankali et al., 2023;
Ahn et al., 2023; Zhang et al., 2023). Our results thus challenge the standard view of RNNs and
Transformers as two mutually exclusive model classes and suggest that, through learning, RNNs
with multiplicative interactions may end up encoding attention-based algorithms disguised in their
weights.

2 BACKGROUND

2.1 LINEAR SELF-ATTENTION

We study causally-masked linear self-attention layers that process input sequences (xt)t with xt ∈
Rd as follows:

yt =

∑
t′≤t

(WV xt′)(WKxt′)
⊤

 (WQxt) (1)

In the previous equation, WV ∈ Rd×d is the value matrix, WK ∈ Rd×d the key matrix and WQ ∈
Rd×d the query matrix. We use square matrices throughout the paper for simplicity, but our findings
extend to rectangular ones. As usually done, we call vt := WV xt, kt := WKxt and qt := WQxt

the values, keys and queries. The output vector yt has the same dimension as the input, that is d.
Such linear self-attention layers can be understood as a linearized version of the softmax attention
mechanism (Bahdanau et al., 2015) in use within Transformers (Vaswani et al., 2017). Yet, they
operate in a very different regime than softmax layers, which have unbounded memory. Attention
layers commonly combine different attention heads; we focus on a single one here for simplicity.

In a linear self-attention layer, information about the past is stored in an effective weight matrix
Wff

t :=
∑

t′ vt′k
⊤
t′ that will later be used to process the current query qt through yt = Wff

t qt.
At every timestep, Wff

t is updated through the rule Wff
t = Wff

t−1 + vtk
⊤
t , which is reminiscent

of Hebbian learning (Schmidhuber, 1992; Schlag et al., 2021) and leads to faster inference time
(Katharopoulos et al., 2020; Choromanski et al., 2021; Shen et al., 2021; Peng et al., 2021) than
softmax self-attention.

2.2 GATED RECURRENT NEURAL NETWORKS

In this paper, we focus our analysis on a simplified class of gated diagonal linear recurrent neural net-
works. They implement bilinear input gin and output gating gout that multiplies a linear transforma-
tion W

in/out
x xt of the input with a linear gate W in/out

m xt: gin/out(xt) = (W
in/out
m xt)⊙(W

in/out
x xt).

Here, ⊙ is the element-wise product. The class of gated networks we consider satisfies

ht+1 = λ⊙ ht + gin(xt), yt = Dgout(ht). (2)

In the previous equation, λ is a real vector, xt is the input to the recurrent layer, ht the hidden state,
and D a linear readout. This simplified class makes connecting to attention easier while employing
similar computational mechanisms as standard gated RNNs architectures.

This class is tightly linked to recent deep linear RNN architectures and shares most of its compu-
tational mechanisms with them. While linear diagonal recurrence might be seen as a very strong
inductive bias, many of the recent powerful deep linear RNN models adopt a similar bias (Gupta
et al., 2022; Smith et al., 2023), and it has been shown to facilitate gradient-based learning (Orvieto
et al., 2023b; Zucchet et al., 2023b). Those architectures use complex-valued hidden states in the
recurrence; we only use its real part here. Some of those works employ a GLU (Dauphin et al.,
2017) after each recurrent layer, with GLU(x) = σ(Wmxt) ⊙ Wxxt with σ the sigmoid function.
The gating mechanism we consider can thus be interpreted as a linearized GLU. Finally, we can
recover (2) by stacking two layers: the GLU in the first layer acts as our input gating, and the one in
the second as output gating. We include a more detailed comparison in Appendix A. In the rest of
the paper, we will use the LRU layer (Orvieto et al., 2023b) as the representative of the deep linear
RNN architectures because of its proximity with (2).

LSTMs can operate in the regime of Equation 2, but this requires more adaptation. First, the recur-
rent processing of these units is nonlinear and is more involved than a simple matrix multiplication
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1. Input gating: compute the outer
product corresponding to current 
key-values and the current query

2. Recurrent neurons: accumulate
key-values over time (          )
and store current query (          ) 

3. Output gating and readout: 
matrix (key-values) - vector (query)
multiplication sum matrix

Figure 1: An example of a diagonal linear gated recurrent neural network that implements the same
function as a linear self-attention layer with parameters (WV ,WK ,WQ) and input dimension d,
as described in Section 3. Inputs are processed from top to the bottom. We do not use biases so
we append 1 to the input vector xt to be able to send queries to the recurrent neurons. We use
repeat(A,n) to denote that the matrix A is repeated n times on the row axis and WV,i is the i-th
row of the WV matrix. The bars within the matrices separate the different kinds of inputs/outputs.
Digits in matrices denote column vectors appropriately sized. The readout matrix D appropriately
sums the element-wise products between key-values and queries computed after the output gating
gout.

followed by a nonlinearity. Second, gating occurs in different parts of the computation and depends
on additional variables. We compare in more details this architecture and the one of Equation 2 in
Appendix A, showing that LSTMs can implement (2) when stacking two layers on top of each other.
We additionally show that GRUs cannot do so.

3 THEORETICAL CONSTRUCTION

As highlighted in the previous section, our class of gated RNNs and linear self-attention have dif-
ferent ways of storing past information and using it to modify the feedforward processing of the
current input. The previous state ht acts through a bias term λ⊙ht that is added to the current input
gin(xt) in gated RNNs, whereas the linear self-attention recurrent state Wff

t modifies the weights of
the feedforward pathway. We reconcile these two mismatched views of neural computation in the
following by showing that gated RNNs can implement linear self-attention.

In this section, we demonstrate how a gated recurrent layer followed by a linear readout as in Equa-
tion 2 can implement any linear self-attention layer through a constructive proof. In particular, our
construction only requires a finite number of neurons to exactly match the desired function, there-
fore providing a much stronger equivalence result than more general universality of linear recurrent
networks theorems (Boyd & Chua, 1985; Orvieto et al., 2023a), which hold in the limit of infinitely
many recurrent neurons.

3.1 KEY IDEAS

Our construction comprises three main components: Firstly, the input gating gin is responsible for
generating the element-wise products between the keys and values, as well as the queries. Then, re-
current units associated with key-values accumulate their inputs with λ = 1, whereas those receiving
queries as inputs return the current value of the query, hence λ = 0. Lastly, the output gating gout

and the final readout layer D are in charge of multiplying the flattened key-value matrix with the
query vector. We illustrate our construction and provide a set of weights for which the functional
equivalence holds in Figure 1. Crucially, the key-values in a linear self-attention layer are the sum of
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degree two polynomials of each previous input. Input gating mechanism and perfect memory units
(λ = 1) are needed to replicate this behavior within a gated recurrent layer. Similarly, output gating
is required to multiply key-values with the queries.

3.2 ON THE NUMBER OF NEURONS REQUIRED BY THE CONSTRUCTION

The construction of Figure 1 requires d2 + d hidden neurons to store all the entries of the d× d key-
value matrix and of the query vector of size d. While this construction is arguably the most intuitive,
it is not optimal in terms of number of neurons used. Knowing the exact minimal number of neurons
is fundamental for understanding which solution the network learns. Therefore, we explain in the
following how to modify our construction accordingly. We leverage two additional insights: First,
any combination of key and query matrices for which (W⊤

KWQ) is fixed leads to the same function
in the linear self-attention layer. We can thus assume that the key and value matrices are equal, as
taking the key matrix to be equal to WV and changing the query matrix to be W−⊤

V W⊤
KWQ does not

change the behavior of the attention layer. Second, when the key and value matrices are equal, the
key-value matrix is symmetric and, therefore, only requires d(d+ 1)/2 elements to be represented.
This implies that, when the value matrix is invertible, the minimal number of hidden neurons our
gated RNN needs to store key-values is in fact d(d + 1)/2 + d. In Section 4, we show that learned
RNNs find this solution.

Overall, the output gating requires O(d2) input and output entries for the gated RNN to match a
linear self-attention layer. The RNN thus requires O(d4) parameters in total, with a lot of redun-
dancy, significantly more than the 3d2 parameters of the linear self-attention layer. It comes as
no surprise that numerous equivalent configurations exist within the gated RNN we study. For in-
stance, linear gating is invariant under permutations of rows between its two matrices and under
multiplication-division of these two rows by a constant. Left-multiplying WQ in the input gating
by any invertible matrix P , and subsequently reading out the hidden neurons with λ = 0 through
repeat(P−1, d), also does not alter the network’s output. Several other invariances exist, making
exact weight retrieval nearly impossible.

3.3 IMPLICATIONS FOR OTHER CLASSES OF GATED RNNS

We conclude this section by commenting on whether similar insights hold for other gated RNNs
architectures. The LRU architecture is close to (2) but only has output gating. Stacking two LRU
layers on top of each other enables the output gating of the first layer to act as the input gating for the
second layer and, therefore, implement the mechanism we highlighted in the previous sections to
mimick attention. As noted in Section 2.2, LSTMs and GRUs are further away from our simplified
gated RNN model. However, one single LSTM layer can implement linear self-attention, but stacked
GRU layers cannot. Let us briefly summarize the argument behind these results. The LSTM layer
has a sophisticated input gating mechanism that gates a candidate cell state based on the current
input and previous state. The gate and the candidate cell state depend, among other things, on the
current input. This mechanism can thus play a similar role to gin and implement the key-value outer
product. The recurrence of the cell state can be set to perfectly integrate key-values, by setting the
forgetting gate accordingly. Finally, the output gate modulates the current cell state, which contains
the accumulated key-values. Setting the output gate to encode the query enables computing the
desired result. We note that the output gating differs from gout: it multiplies transformations of
the cell state and the input instead of the input only. This property makes it possible to implement
attention within one layers, where as two layers are required for our gated RNN model (2). While the
GRU layer takes many of the computational elements from the LSTM, it cannot implement attention
as it has no mechanism to compute multiply keys and values. We refer the reader to Appendix A for
more details.

4 GATED RNNS LEARN TO MIMIC ATTENTION

We now demonstrate that gated RNNs learn to implement linear self-attention and comprehend
how they do so. In this section, a student RNN is tasked to reproduce the output of a linear self-
attention layer. Appendix B contains detailed descriptions of all experiments performed in this
section. Importantly, each sequence is only presented once to the network.
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A B

Figure 2: In our teacher-student experiment of Section 4.1 (d = 4), the structure of the weights
of the RNN after learning matches the one of our compact construction, c.f. Section 3. (A) Only
recurrent neurons with perfect memory (λ = 1, dark blue) or no memory at all (λ = 0, light grey)
influence the output, consistently with the theory. The block structure almost perfectly match the
one of our construction, c.f. Figure 1 (B) For each output coordinate i of the network, the kernels
generated by the last 3 lines (11, 12 and 13) of the output gating are linearly combined through the
decoding matrix D are all proportional to the same kernel, which can be generated in a way that
is coherent with the structure of our construction. This way, the weights have effectively the exact
block structure our construction has. In all the matrices displayed here, zero entries are shown in
light grey, blue denotes positive entries, and red negative ones.

Loss Score KV Score Q Polynomial distance

4.97× 10−8 4.52× 10−8 2.06× 10−10 3.73× 10−4

Table 1: Gated RNNs implement the same function as a linear self-attention layer in our teacher-
student experiment (Section 4.1). The KV and Q scores are equal to one minus the R2 score of
the linear regression that predicts key-values and queries from resp. the perfect memory neurons
(those whose λ = 1) and perfect forget neurons (λ = 0). The polynomial distance is the L2 distance
between the coefficients of the degree-4 polynomial that describes the instantaneous processing of
the (optimal) linear self-attention layer and the trained RNN. Overall, this analysis reveals that the
student RNN is functionally equal to the teacher attention layer both inside (training loss close to 0)
and outside (the coefficients of the polynomials match) training distribution.

4.1 TEACHER IDENTIFICATION

In our first experiment, we train a student RNN (|x| = 4, |h| = 100 and |y| = 4) to emulate the
behavior of a linear self-attention layer with weights sampled from a normal distribution and inputs
xt sampled i.i.d. from a normal distribution. The low training loss, reported in Table 1, highlights
that the student’s in-distribution behavior aligns with the teacher’s. However, this is insufficient to
establish that the student implements the same function as the teacher. The strategy we adopt to show
functional equivalence is as follows: First, we observe that only perfect memory neurons (λ = 1)
and perfect forget neurons (λ = 0) influence the network output. Additionally, each of these groups
of neurons receives all the information needed to linearly reconstruct resp. the key-values and the
queries from the input. Finally, we show that the output gating and the decoder matrix accurately
multiply accumulated key-values with current queries.
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After the learning process, a significant proportion of the weights in the input and output gating and
the readout becomes zeros. Consequently, we can eliminate neurons with input or output weights
that are entirely zeros, thereby preserving the network’s function. By doing so, we can remove 86
out of the 100 hidden neurons and 87 out of the 100 pre-readout neurons. After having permuted
rows in the two gating mechanisms and reordered hidden neurons, we plot the resulting weights
on Figure 2.A. Consistently with our construction, only recurrent neurons with λ = 0 or λ = 1
contribute to the network’s output. The key-values neurons receive a polynomial of degree 2, as
gin is a bilinear form, without any term of degree 1 as the last column of W in

m and W in
x is equal to

zero for those units. Similarly, the query neurons receive a polynomial of degree 1. The learning
process discovers that it can only use d(d + 1)/2 = 10 neurons to store key-values, similar to our
optimal construction. We show in Table 1 that it is possible to linearly reconstruct the key-values
from those 10 neurons perfectly, as well as the queries from the 4 query neurons. By combining this
information with the fact that the λs are zeros and ones, we deduce that the cumulative key-values∑

t′≤t vt′k
⊤
t′ can be obtained linearly from the key-values’ hidden neurons, and the instantaneous

queries qt from the query neurons.

Additionally, the output gating combined with the linear readout can multiply the key-values with
the queries. Since we have already confirmed that the temporal processing correctly accumulates
key-values, our focus shifts to proving that the instantaneous processing of the gated RNN matches
the one of the attention layer across the entire input domain. Given that both architectures solely
employ linear combinations and multiplications, their instantaneous processing can be expressed as
a polynomial of their input. The one of linear self-attention, (WV x)(WKx)⊤(WQx), corresponds
to a polynomial of degree 3, whereas the one of the gated RNN, gout(gin(x)), corresponds to one of
degree 4. By comparing these two polynomials, we can compare their functions beyond the training
domain. For every one of the four network outputs, we compute the coefficients of terms of degree
4 or lower of their respective polynomials and store this information into a vector. We then calculate
the normalized Euclidean distance between these coefficient vectors of the linear self-attention layer
and the gated RNN, and report the average over all 4 output units in Table 1. The evidence presented
so far enables us to conclude that the student network has correctly identified the function of the
teacher.

While the majority of the weights depicted in Figure 2.A conform to the block structure characteris-
tic of our construction, the final three rows within the output gating matrices deviate from this trend.
As shown in Figure 2.B, these three rows can be combined into a single row matching the desired
structure. More details about this manipulation can be found in Appendix B.2.

4.2 IDENTIFICATION REQUIRES MILD OVERPARAMETRIZATION

The previous experiment shows that only a few neurons in a network of 100 hidden neurons are
needed to replicate the behavior of a self-attention layer whose input size is d. We therefore won-
der if identification remains possible when decreasing the number of hidden and pre-output gating
neurons the student has. We observe that mild overparametrization, around twice as many neurons
as the actual number of neurons required, is needed to reach identification. We report the results in
Figure 3.A.

4.3 NONLINEARITY MAKES IDENTIFICATION HARDER

We now move away from our simplified class of gated RNNs and seek to understand how our
findings apply to LSTMs, GRUs, and LRUs. We use the following architecture for those three layers:
a linear embedding layer projects the input to a latent representation, we then repeat the recurrent
layer once or twice, and finally apply a linear readout. While those layers are often combined with
layer normalization, dropout, or skip connections in modern deep learning experiments, we do not
include any of those here to stay as close as possible to the teacher’s specifications. In an LRU
layer, the input/output dimension differs from the number of different neurons; we here set all those
dimensions to the same value for a fair comparison with LSTMs and GRUs. We compare these
methods to the performance of our simplified gated RNNs, with both diagonal (as in Equation 2)
and dense linear recurrent connectivity.

We report the results in Figure 4.A for inputs of dimension d = 6. While diagonal connectivity pro-
vides a useful inductive bias to learn how to mimic linear self-attention, it is not absolutely needed
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A B

Figure 3: Gated RNNs learn compressed representation. (A) In the teacher-student experiment of
Section 4 in which there is no clear structure within the attention mechanism that the RNN can
extract, slight overparametrization is needed in order to identify the teacher. (B) In the linear regres-
sion task of Section 5, the linear attention mechanism needed to solve the task optimally has a sparse
structure that the RNN leverages. Identification is thus possible with much smaller networks. The
quantity reported in B is the difference between the prediction loss of the RNN and the loss obtained
after one optimal step of gradient descent. We use the same input dimension d = 6 to make the two
plots comparable.

A B

Figure 4: Comparison of the validation loss obtained by different gated recurrent networks archi-
tectures in (A) the teacher-student task of Section 4 and (B) the in-context linear regression task of
Section 5. The construction baseline corresponds to the gated RNN of Eq. 2, with diagonal or dense
connectivity. We use the default implementation of LSTMs and GRUs, and slightly modify the LRU
architecture to reflect our construction better. Non-linearity improves the in-context learning perfor-
mance but deteriorates the ability to mimic attention.

as changing the recurrence connectivity to be dense does not significantly affect performance. It is
theoretically possible to identify the teacher with one LSTM layer. However, gradient descent does
not find such a solution and the performance of LSTMs is close to that of GRUs that cannot imple-
ment attention. Motivated by the construction of Section 3, we slightly modify the LRU architecture
(LRU+) and add a nonlinear input gating to the already existing output gating. We find that this
modification significantly improves the ability of a LRU layer to mimic attention. Additionally, we
confirm that multiplicative interactions are fundamental for mimicking attention: replacing gating
with a 1-hidden layer MLP with the same number of parameters significantly deteriorates perfor-
mance. Appendix B contains experiments that extensively compare different LRU architectures, as
well as comparisons that take into account the number of parameters of the different architectures.

5 ATTENTION-BASED IN-CONTEXT LEARNING EMERGES IN TRAINED RNNS

The previous section shows that gated RNNs learn to replicate a given linear self-attention teacher.
We now demonstrate that they can find the same solution as linear self-attention when both are
learned. To that end, we study an in-context regression task in which the network is shown a few
input-output pairs and later has to predict the output value corresponding to an unseen input. Linear
self-attention is a particularly beneficial inductive bias for solving this task. When the input-output
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Term RNN GD

x2
1y1 6.81× 10−2 ± 8.52× 10−5 6.76× 10−2

x2
2y1 6.82× 10−2 ± 6.40× 10−5 6.76× 10−2

x2
3y1 6.82× 10−2 ± 5.56× 10−5 6.76× 10−2

residual norm 1.35× 10−3 ± 1.97× 10−4 0

Table 2: Gated RNNs implement gradient descent in the in-context linear regression task of Section 5
The coefficients of the instantaneous polynomial implemented by the first output unit of a trained
RNN on the in-context linear regression task match one optimal step of gradient descent, averaged
over 4 seeds. The residual norm measures the norm of the polynomial coefficients, excluding the
ones appearing in the table. Those coefficients are all vanishingly small. The optimal GD learning
rate is obtained analytically (η∗ = (T + dx − 1/5)−1), c.f. Appendix C.2.

mapping is linear, von Oswald et al. (2023) have shown that linear self-attention implement one step
of gradient descent.

5.1 IN-CONTEXT LINEAR REGRESSION

Linear regression consists in estimating the parameters W ∗ ∈ Rdy×dx of a linear model y = W ∗x
from a set of observations {(xt, yt)}Tt=1 that satisfy yt = W ∗xt. The objective consists in finding a
parameter Ŵ which minimizes the squared error loss L(W ) = 1

2T

∑T
t=1 ∥yt − Wxt∥2. Given an

initial estimate of the parameter W0, one step of gradient descent on L with learning rate Tη yields
the weight change

∆W0 = η

T∑
t=1

(yt −W0xt)x
⊤
t . (3)

In the in-context version of the task, the observations (xt, yt)1≤t≤T are provided one after the other
to the network, and later, at time T+1, the network is queried with (xT+1, 0) and its output regressed
against yT+1. Under this setting, von Oswald et al. (2023) showed that if all bias terms are zero,
a linear self-attention layer learns to implement one step of gradient descent starting from W0 = 0
and predict through

ŷT+1 = (W0 +∆W0)xT+1 = η

T∑
t=1

ytx
⊤
t xT+1. (4)

In the following, we show that gated RNNs also learn to implement the same algorithm and leverage
the sparse structure of the different attention matrices corresponding to gradient descent to learn a
more compressed representation than the construction one.

5.2 GATED RNNS LEARN TO IMPLEMENT GRADIENT DESCENT

We now train gated RNNs as in Equation 2 to solve the in-context linear regression task, see Ap-
pendix C.1 for more details. We set the number of observations to T = 12 and set the input and
output dimensions to 3 so that d = 6. Once learned, the RNN implements one step of gradient de-
scent with optimal learning rate, which is also the optimal solution one layer of linear self-attention
can find (Mahankali et al., 2023). Several pieces of evidence back up this claim: the training loss
of RNN after training (0.0945) is almost equal to the one of an optimal step of gradient descent
(0.0947) and the trained RNN implements the same instantaneous function, as the polynomial anal-
ysis of Table 2 reveals.

Linear self-attention weights implementing gradient descent have a very specific sparse struc-
ture (von Oswald et al., 2023). In particular, many key-values entries are always 0, so the con-
struction contains many dead neurons. This leads us to wonder whether gated RNNs would pick up
this additional structure and learn compressed representations. To test that, we vary the gated RNN
size and report in Figure 3.B the difference between the final training loss and the loss obtained after
one optimal gradient descent step. We observe a similar phase transition than in the teacher-student
experiment, this time happening for a much smaller number of neurons than our construction spec-
ifies. Gated RNNs thus learn a more compressed representation than the one naively mimicking

8



Under review as a conference paper at ICLR 2024

self-attention. This result provides some hope regarding the poor O(d4) scaling underlying our con-
struction: in situations that require an attention mechanism with sparse (WV ,WK ,WQ) matrices,
gated RNNs can implement attention with far fewer neurons. A precise understanding of how much
compression is possible in practical scenarios requires further investigation.

5.3 NONLINEAR GATED RNNS ARE BETTER IN-CONTEXT LEARNERS THAN ONE STEP
GRADIENT DESCENT

Finally, as a side question, we compare the ability to learn in context of the nonlinear gated RNN
architectures that are LSTMs, GRUs and LRUs. Although not the main focus of our paper, this
allows us to put our previous results in perspective. In particular, we are interested in understanding
if similarity with attention correlates with in-context learning performance, as attention has been
hypothesized to be a key mechanism for in-context learning (Olsson et al., 2022; Garg et al., 2022;
von Oswald et al., 2023). We report our comparison results in Figure 4.B, measuring the loss on
weights W ∗ drawn from a distribution with double the variance of the one used to train the model.

Overall, we find that nonlinearity greatly helps and enables nonlinear gated RNN architectures to
outperform one gradient descent step when given enough parameters, suggesting that they imple-
ment a more sophisticated mechanism. Surprisingly, while the GRU is the architecture that is the
furthest away from attention, it performs the best in the task. Better understanding the mechanisms
underlying this ability requires future work. Within the different LRU layers we compare, we find
a high correlation between in-context learning abilities and closeness to attention, c.f. Figure 5 in
the Appendix. In particular, we observe a massive performance improvement from the vanilla LRU
architecture to the ones additionally including input gating to match our construction more closely.

6 DISCUSSION

Our study reveals a closer conceptual relationship between RNNs and Transformers than commonly
assumed. We demonstrate that gated RNNs can theoretically and practically implement linear self-
attention, bridging the gap between these two architectures. Moreover, while Transformers have
been shown to be powerful in-context learners (Brown et al., 2020; Chan et al., 2022), we find that
RNNs excel in toy in-context learning tasks and that this performance is partly uncorrelated with the
architecture inductive bias toward attention. This highlights the need for further investigations on
the differences between RNNs and Transformers in controlled settings, as also advocated by Garg
et al. (2022).

Our results partly serve as a negative result: implementation of attention is possible but requires
squaring the number of parameters attention has. We have shown that gated RNNs can leverage
possible compression, but understanding whether real-world attention mechanisms lie in this regime
remains an open question. Yet, our work is of current practical relevance as it provides a framework
that can guide future algorithmic developments, as we exemplify in Appendix A.4. Bridging the gap
between Transformers’ computational power and RNNs’ inference efficiency is a thriving research
area (Fournier et al., 2023), and the link we made facilitates interpolation between those two model
classes.

Finally, our work carries implications beyond deep learning. Inspired by evidence from neuroscience
supporting the existence of synaptic plasticity at different timescales, previous work (Schmidhuber,
1992; Ba et al., 2016; Miconi et al., 2018) added a fast Hebbian learning rule, akin to linear self-
attention, to slow synaptic plasticity with RNNs. We show that, to some extent, this mechanism
already exists within the neural dynamics, provided that the response of neurons can be multiplica-
tively amplified or shut-off in an input-dependent manner. Interestingly, several single-neuron and
circuit level mechanisms have been experimentally identified which could support this operation in
biological neural networks (Silver, 2010). We speculate that such multiplicative mechanisms could
be involved in implementing self-attention-like computations in biological circuitry.
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A GATED RNNS AND LINEAR SELF-ATTENTION

In this section, we compare our simplified gated RNN model, linear self-attention, and nonlinear
gated RNN models (LSTMs, GRUs and LRUs). We recall that the key ingredients of our simplified
gated RNNs defined as

ht+1 = λ⊙ ht + gin(xt), yt = Dgout(ht), (5)
are the diagonal linear recurrence and the input and output gating. The input gating serves as a way
to generate the key-values of linear self-attention, which will then be accumulated in the hidden
recurrent units and combined with queries within the output gating.

Table 3 summarizes how many layers of LRUs, LSTMs and GRUs are needed to exactly implement
our simplified class of gated RNNs and linear self-attention. We provide more details below.

Simplified gated RNN Linear self-attention

LRU 2 2
LRU In-Out 1 1
LRU In-Out (MLP) – –
LSTM 2 1
GRU – –

Table 3: Number of layers needed for different RNN layers to exactly implement our simplified
class and linear self-attention.

A.1 LRU

An LRU layer (Orvieto et al., 2023b) consists of a recurrent state ht and some instantaneous post-
processing. Its recurrent state is updated as

ht+1 = λ⊙ ht + γ ⊙ (Bxt+1) (6)
and its output yt is computed with

ỹt+1 = Re[Cht] +Dxt+1 (7)
yt+1 = σ(Wmỹt+1)⊙ (Wxỹt+1). (8)

In the equations above, ht+1, B and C are complex-valued, Re denotes the real part of a complex
number, and σ is the sigmoid function. The transformation nonlinear transformation between yt+1

and ỹt+1 is called a gated linear unit (GLU) and was introduced in Dauphin et al. (2017). Addition-
ally, λ and γ are parametrized exponentially:

λ = exp(− exp(νlog) + i exp(θlog)) and γ = exp(γlog). (9)

The LRU layer detailed above comprises two central computational mechanisms: a linear recurrence
coupled with a GLU serving as nonlinear output gating. The recurrence is here complex-valued, but
we only need the real part of it for our purposes. Assuming that the sigmoid can be linearized,
our class of gated RNNs can be implemented using two layers by letting the output gating of the
first layer serve as input gating. We are now left with linearizing the sigmoid. To achieve this,
we double the number of output neurons of the GLU and require small weights in Wm, that can for
example, be compensated by large weights in Wm. Under this regime, we have σ(Wmx)⊙(Wxx) ≈
(1/2+Wmx)⊙ (Wxx). Half of the neurons require identical weights as the target linear gating (up
to a proportional factor), half should have Wm = 0 and the same Wx as target linear gating. The
1/2Wxx term that comes from the second half of the neurons can be subtracted from the first half
of the neurons in a subsequent linear transformation, thereby yielding the desired result.

In our experiments, we consider two additional variations of the LRU layer that can implement our
class of gated RNNs and/or linear self-attention using only one layer. The LRU In+Out variation
has an additional nonlinear input gating mechanism compared to the original version (LRU Out) that
modifies the input before the recurrent part of the layer. The LRU In+Out (MLP) replaces the GLU
in the LRU In-Out variation by a 1-hidden layer MLP, keeping the number of parameters fixed. The
LRU In-Out variation can implement both linear self-attention and our class of gated RNNs in one
layer, whereas LRU In-Out (MLP) cannot, as it does not have any multiplicative interactions.
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A.2 LSTM

An LSTM cell (Hochreiter & Schmidhuber, 1997) has two recurrent states: the hidden state ht and
the cell state ct. They are updated as follows.

ft+1 = σ(Ufxt+1 + Vfht + bf ) (10)
c̃t+1 = tanh(Ucxt+1 + Vcht + bc) (11)
gt+1 = σ(Ugxt+1 + Vght + bg) (12)
ct+1 = ft+1 ⊙ ct + gt+1 ⊙ c̃t+1 (13)
ot+1 = σ(Uoxt+1 + Voht + bo) (14)
ht+1 = ot+1 ⊙ tanh(ct+1). (15)

Here, ft is the cell state forget gate, c̃t the cell state update candidate, gt the cell state update
candidate gate, ot the output gate, and σ the sigmoid function applied element-wise.

First, we show that one single LSTM layer can implement linear self-attention, by using gt+1⊙ c̃t+1

as a way to compute key-values and c to aggregate them, ft+1 and use ot+1 for the query. We
provide the corresponding weights in the table below, ignoring all the nonlinearities except σ in
the f computation. Note that, compared to our simplified gated RNN class, we do not need to
include neurons that forget their last state (λ = 0) here as the output gate directly provides the
query to the output. Finally, linearizing the tanh function requires small Uc weights that can later
be compensated by large decoder weights, and ways to linearize the sigmoid were discussed in the
previous section.

Implementing a gated RNN as in Equation 2 can be done by using two layers: in the first layer
gt+1 ⊙ c̃t+1 serves as input gating, ft+1 corresponds to λ, and, in the second layer, gt+1 ⊙ c̃t+1

serves as output gating. Table 4 provides one set of such weights. This ignores the linearization
trick for the tanh in c̃ and the sigmoid in gt+1.

Layer 1

U V b

f 0 0 +∞
c̃ W̃K 0 0

g W̃V 0 0

o W̃Q 0 0

Layer 1 Layer 2

U V b U V b

f 0 0 σ−1(λ) 0 0 −∞
c W in

m 0 0 W out
m 0 0

g W in
x 0 0 W out

x 0 0
o 0 0 +∞ 0 0 +∞

Table 4: LSTM weight configuration that matches a linear self-attention layer (left) and a gated
RNN as in Equation 2 (right). This presumes that the activation functions in c̃, g and o are linear.
We use W̃ to denote the value, key and query matrices transformed in a similar way to what we did
in Figure 1.

A.3 GRU

A GRU cell (Cho et al., 2014) has a hidden state ht, updated through

rt+1 = σ(Urxt+1 + Vrht + br) (16)

h̃t+1 = tanh(Uhxt+1 + Vh(rt+1 ⊙ ht) + bh) (17)
zt+1 = σ(Uzxt+1 + Vzht + bz) (18)

ht+1 = (1− zt+1)⊙ ht + zt+1 ⊙ h̃t+1 (19)

where rt is the reset gate, zt is the update gate, h̃t the update candidate, and σ is the sigmoid
function.

Here, stacking multiple GRUs on top of each other does not enable the implementation of any
network from our class of gated RNNs nor linear self-attention layers. One layer can implement
diagonal linear recurrence by linearizing the tanh, having zt+1 = 1 and rt+1 = λ. However,
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implementing a gating mechanism of the form g(x) = (Wmx ⊙Wxx) is not possible1: we would
need to use zt+1 to implement one branch of the gating and h̃t+1 the other but, given that zt+1 ̸= 0,
the previous hidden state ht influence the result.

A.4 CAN LINEAR SELF-ATTENTION IMPLEMENT GATED RECURRENT NETWORKS?

Throughout the paper, we mainly focus on understanding whether diagonal gated RNNs implement
linear self-attention. In this section, we ask the opposite question: can linear self-attention layers can
implement gated recurrent networks. The answer is that attention layers as we defined in Section 2.1
cannot, because it can only perfectly integrate inputs or send the current one (thus λ = 0 or λ = 1).
However, adding a mechanism akin to weight decay bridges the gap. In particular, we will describe
how the output yt of a such a linear self-attention layer can satisfy a recurrence relationship of the
form yt+1 = λ⊙ yt + xt. To do so, we consider the following attention layer:

yt =

(
t∑

t′=1

Γt−t′ ⊙ (WV xt′ + bV )(WKxt′ + bK)⊤

)
(WQxt + bQ) (20)

where Γt−t′ is a matrix of size d×d in which all entries of the i-th row have value (1−γi)
t−t′ . The

γ term can be interpreted as a weight decay: if we note

Wff
t :=

(
t∑

t′=1

Γt′−t ⊙ (WV xt′)(WKxt′)
⊤

)
, (21)

we have
Wff

t+1 = Wff
t + (WV xt+1 + bV )(WKxt+1 + bK)⊤ − Γ1W

ff
t . (22)

Now, we set the value, key and query matrices and biases to WV = Id, bV = 0,WK = 0, bK =
1,WQ = 0, bQ = 1/d and 1− γ = λ. This way, we have

yt+1 =
1

d
Wff

t+11 (23)

=
1

d

(
Γ1 ⊙Wff

t + xt+11
⊤) 1 (24)

=
(
Γ1 ⊙Wff

t

)
1 + xt+1 (25)

= λ⊙ yt + xt+1 (26)

In the last line, we use the structure of Γ1 and the value of γ. Biases terms are crucial to make this
link: without them Wff

t would be a polynomial with only degree 2 coefficients and the equivalence
would not be possible. The gating mechanism within networks described in Equation 2 can also be
implemented by forgetting (1− γ = 0) and having the key-value taking care of the multiplication.

This analysis reveals the importance of weight decay to implement recurrent neural network like
computations with a wide range of timescales. Adding complex-valued weight decay to linear self-
attention layers makes them closer to state-of-the-art recurrent neural networks architecture (Orvieto
et al., 2023b; Smith et al., 2023) for capturing long-range dependencies. Therefore, such a modifi-
cation might boost the performance of attention layers on benchmarks testing these properties, such
as the Long Range Arena (Tay et al., 2020). Interestingly, this view can partly explain the great
empirical performance of the RWKV (Peng et al., 2023), which features a similar mechanism to
weight decay. Overall, the analysis we conducted in this section examplify how the connection be-
tween RNNs and attention layers we made in this paper can be used to guide development of future
architectures.

B TEACHER-STUDENT

B.1 EXPERIMENTAL DETAILS

For all experiments in Section 4, we train the student for almost one million training iterations on
sequences of length 32 and a batch size of 64 (50000 training examples per epoch, 1000 epochs).

1When the tanh is replaced by Id, it is possible to achieve so by having ht ≪ h̃t+1 and correcting for the
exponential growth in the next layer.
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Figure 5: Extensive comparison between the different architectures. Compared to Figure 4, we
consider different versions of the LRU here, plot the loss as the function of the number of parameters,
and include both training and validation losses. Those two losses are almost (up to some sampling
noise) for the teacher-student task but are different for the in-context linear regression task because
we change the W ∗ distribution in the validation set.

We use the AdamW (Loshchilov & Hutter, 2019) optimizer with a cosine annealing learning rate
scheduler. The initial learning rate is set at 10−3, scheduled to anneal down to 10−6 by the end
of training and a weight decay of 10−4 is applied to all parameters except the recurrent ones λ in
the experiment of Section 4.1. To ensure that the hidden states do not explode, we ensure that λ
stays within [0, 1] by employing the exponential parametrization described in Appendix A.1 (we
only keep the ν part as λ takes real values here).

In Figure 5, we add more results to the architecture comparison we did in Figure 4. In particular, we
compare the three different types of LRU we mentioned in Appendix A.1, and observe that adding
an input GLU improves LRUs ability to mimic linear self-attention within one layer, but also with
several layers.
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B.2 COMPRESSION OF THE LEARNED OUTPUT GATING WEIGHTS

In Figure 2, we show that the gating weight matrices have a structure that is close to the one of our
construction, except for three different rows (11, 12, and 13). We claim they can be reduced to a
single row; we now provide details justifying it.

Therefore, our objective is to demonstrate that these three rows are functionally equivalent to a
single row with the expected structure and to gain insights into the invariances inherent to the gating
mechanism we study in this paper along the way. The initial step toward achieving this entails
examining the influence of these three rows on the i-th coordinate of the network’s output:

13∑
j=11

Di,jg
out(h)j =

13∑
j=11

Di,j(W
out
m,jx)(W

out
x,j x) = x⊤

 13∑
j=11

Di,jW
out
m,j W

out
x,j

⊤

x. (27)

This contribution can be interpreted as a quadratic form whose kernel is a weighted sum of rank-
1 kernels defined by the rows of the output gating matrices. In Figure 2.C, we plot the obtained
kernel for one of the output components. Crucially, the resulting kernel for the four output units
are all proportional to one another and is of rank-1. We can thus reduce the three neurons (11, 12
and 13) to one. Furthermore, the two vectors whose outer product yields the resulting kernel now
mirror the construction’s structure. One of these two vectors exclusively accesses query neurons
while the other reads key-value neurons, as seen in Figure 2.C. As usually occurs with this kind of
manipulation (Martinelli et al., 2023), merging the neurons slightly increases the loss, but original
loss levels can be recovered after fine-tuning.

C IN-CONTEXT LINEAR REGRESSION

C.1 EXPERIMENTAL DETAILS

In the in-context linear regression experiment, each sequence is a task characterized by a unique
W ∗. The weight matrix W ∗ entries are sampled i.i.d. from a normal distribution N (0, 1

3 ). Each
element of the sequence is of the form (xt,W

∗xt). The entries of the inputs (xt)
T+1
t=1 are sampled

i.i.d. from the uniform distribution U(−
√
3,
√
3). During the validation phase, we draw tasks from a

different distribution, W ∗
ij ∼ N (0, 2

3 ) to highlight the generalization abilities of the learned models.
We train the model with the same optimization scheme described in Appendix B.1, except that we
use a smaller number of training iterations, totaling 300, 000. By default, we use gated RNNs with
80 hidden neurons.

C.2 OPTIMAL LEARNING RATE FOR ONE-STEP GRADIENT DESCENT

Let X ∈ Rdx×n,W ∈ Rdy×dx random variables such that all entries of X are sampled i.i.d. from
a centered uniform distribution with variance σ2

x, and those of W i.i.d. from some centered distri-
bution with finite variance σ2

W . We set Y = WX . Let x ∈ Rdy a column vector, whose entries are
sampled from the same distribution as those of X , and y = Wx.

The goal of this section is to analytically derive the optimal learning rate for the in-context linear
regression task, that is to find η which minimizes

L(η) = 1

2
EX,W,Y,x,y

[
∥y − Ŵ (η,X, Y )x∥2

]
(28)

where Ŵ (X,Y ) is the result of one gradient descent step starting from 0 with learning rate η on the
loss W 7→ 1

2∥Y −WX∥2. The calculation is presented in a more general form in Mahankali et al.
(2023). We include it here as we additionally provide a simple formula for exact optimal learning
rate value.
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Plugging in the analytical expressions for y and Ŵ , we get

L(η) = 1

2
EX,W,Y,x,y

[
∥y − ηY X⊤x∥2

]
(29)

=
1

2
EX,W,x

[
∥Wx− ηWXX⊤x∥2

]
(30)

=
1

2
EX,W,x

[
∥W (I − ηXX⊤)x∥2

]
(31)

We want to minimize L, i.e. look for η∗ that satisfies ∂ηL(η∗) = 0. We have

∂ηL(η) = EX,W,x

[(
W (I − ηXX⊤)x

)⊤
WXX⊤x

]
(32)

= TrEX,W,x

[
(I − ηXX⊤)W⊤WXX⊤xx⊤] (33)

= σ2
x TrEX,W

[
(I − ηXX⊤)W⊤WXX⊤] (34)

= σ2
x TrEX,W

[
XX⊤(I − ηXX⊤)W⊤W

]
(35)

= σ2
xσ

2
W TrEX

[
XX⊤(I − ηXX⊤)

]
(36)

In the first equation, we use that E[a⊤b] = TrE[ba⊤]. Third and fifth ones make use of Ex[xx
⊤] =

σ2
xId and EW [WW⊤] = σ2

W Id. Having ∂ηL(η∗) = 0 is then equivalent to

η⋆ :=
TrEX [XX⊤]

TrEX [XX⊤XX⊤]
. (37)

This result shows that only the distribution of the learning data matters. Let us compute this quantity.
We have EX [XX⊤] = nσ2

xId so we are left with computing Ex[XX⊤XX⊤]. Using that entries of
X are i.i.d., we get

TrEX [XX⊤XX⊤] = dxEX

∑
i

(∑
t

xi,tx1,t

)2
 (38)

= dxEX

(∑
t

x2
1,t

)2
+ dx(dx − 1)EX

(∑
t

x1,tx2,t

)2
 (39)

= dxEX

∑
t

x4
1,t +

∑
t ̸=t′

x2
1,tx

2
1,t′

+ dx(dx − 1)EX

[∑
t

x2
2,tx

2
1,t

]
(40)

=
9

5
ndxσ

4
x + n(n− 1)dxσ

4
x + n(dx − 1)σ4

x (41)

= ndxσ
4
x

(
n+ dx − 1

5

)
(42)

because the fourth moment of a centered uniform distribution is 9
5σ

4
x. Putting everything together,

we finally have

η∗ =
1

σ2
x(n+ dx − 1

5 )
. (43)

D SOFTWARE

We run our experiments using the Jax (Bradbury et al., 2018) Python framework, using the Flax
(Heek et al., 2023) library for neural networks. We base our code base on the Minimal-LRU (Zucchet
et al., 2023a) repository. Data analysis and visualization were done using Numpy (Harris et al.,
2020), Scikit-learn (Pedregosa et al., 2011) and Matplotlib (Hunter, 2007).
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