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Trident: A Universal Framework for Fine-Grained and
Class-Incremental Unknown Traffic Detection
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ABSTRACT
To detect unknown attack traffic, anomaly-based network intrusion
detection systems (NIDSs) are widely used in Internet infrastruc-
ture. However, the security communities realize some limitations
when they put most existing proposals into practice. The chal-
lenges are mainly concerned with (i) fine-grained emerging attack
detection and (ii) incremental updates/adaptations. To tackle these
problems, we propose to decouple the need for model capabilities
by transforming known/new class identification issues into multi-
ple independent one-class learning tasks. Based on the above core
ideas, we develop Trident, a universal framework for fine-grained
unknown encrypted traffic detection. It consists of three main mod-
ules, i.e., tSieve, tScissors, and tMagnifier are used for profiling
traffic, determining outlier thresholds, and clustering respectively,
each of which supports custom configuration. Using four popu-
lar datasets of network traces, we show that Trident significantly
outperforms 16 state-of-the-art (SOTA) methods. Furthermore, a se-
ries of experiments (concept drift, overhead/parameter evaluation)
demonstrate the stability, scalability, and practicality for Trident.

CCS CONCEPTS
• Security and privacy→ Network security; • Information
systems→ Traffic analysis.

KEYWORDS
Fine-grained unknown traffic detection, class-incremental learning

1 INTRODUCTION
Traffic analysis is an important mechanism for security inves-
tigation, such as network intrusion detection systems (NIDSs),
malware identification, etc. With encrypted traffic transmission
becoming ubiquitous in practice, the proposed approaches grad-
ually evolve from signature-based [13, 29] to machine-learning-
based (ML-based) detection in the traffic analysis landscape [18].
These ML-based schemes aim to characterize traffic patterns with
packet fields or sequence features since the transmission content
is encrypted, and they are able to detect unknown attacks. For in-
stance, anomaly-based solutions construct profiles of benign traffic
to discover unforeseen attacks that deviate from legitimate sam-
ples [13, 14, 31, 38, 41, 65]. Thus, anomaly detection becomes an
indispensable step for security in the real world. However, academic
communities and industrial practitioners reveal a series of limita-
tions when they put most existing anomaly-based proposals into
practice [10, 23, 31, 52]. By summarizing those issues, we recognize
the following two main challenges.

(i) Fine-grained unknown attack detection. The anomaly-based
methods can identify unknown attacks, while previous proposals
are usually binary classification models1 [7, 38, 41]. That is to say,

1Some existing multi-class detection methods have strong assumptions, and we sum-
marized them in baselines (§ 7.1).
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Figure 1: The workflow of Trident and three components.

they could only infer whether the sample is “benign” or “abnormal”,
but cannot recognize that the anomaly is “unknown attack 1”, “un-
known attack 2”, or “unknown attack 3”, etc. Yet these fine-grained
labels are the key for defenders to deploy effective countermeasures
against the attacks [10, 31]. For example, the victims can count the
per-flow protocol flag to mitigate flood-based DDoS [37, 69]. Also,
they can defend the reflection-based attacks by source verifica-
tion [46]. Therefore, the binary classification anomaly detection
leads to a semantic gap between the model identification results and
the actionable reports for network operators [52]. If the proposed
scheme can automatically distinguish different unknown attack
classes based on the network traffic characterization, it could facili-
tate understanding attack details and implementing corresponding
countermeasures. Consequently, the first challenge is to detect the
unknown (and known as well) attack in a fine-grained manner.

(ii) Incremental update. Incremental update requirements include
sample increments and class increments. The former means the
known-class traffic that could be ever-changing (also known as the
concept drift problem [3, 7, 17, 24, 66]). In most anomaly-based de-
tection, they advocate only using benign traffic to train the classifier,
i.e., “zero-positive” learning [7, 18], then those samples deviating
from legitimate traffic will be considered malicious. In this way, it
could appear a large number of false positives when the legitimate
traffic manifested as different from priori properties. Another re-
quirement “class increments” refers to detected emerging classes
that should be incrementally updated into the model to become
known classes in the follow-up. Therefore, it is non-trivial to attach
new classes to the model’s knowledge base without affecting the
previously known classes.

In this paper, we propose a universal framework, named as Tri-
dent2, aiming to enable process three abilities, i.e., the known class
2In ancient Greek mythology, Trident is the weapon of Poseidon, symbolizing great
power. Our proposal is designed to perform powerful detection capabilities for
known/unknown traffic.
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Figure 2: Illustration of coping with concept drift.

classification, fine-grained unknown class detection, and incremen-
tal model update (including sample increments and class increments).
At the high level, Trident is designedwith three tightly coupled com-
ponents named tSieve, tScissors, and tMagnifier in Fig. 1 (notably,
each component supports custom configuration to meet various
users’ requirements).

First, tSieve maintains a series of one-class learners for known
classes. Each single-class learner is built upon only one class of data.
Taking the AutoEncoder as an example, the well-trained tSieve will
output a smaller reconstruction loss for the same class samples,
while outputting a large loss for other classes. Then, tScissors is
responsible for deploying the outlier detection algorithm to auto-
matically determine the threshold for each one-class learner, which
decides whether per-sample is accepted or rejected by tSieve. If a
sample is accepted by at least one learner in tSieve, it is considered
a known class and tagged with the most similar label. Otherwise,
those samples rejected by all learners will enter the buffer pool to
further assign fine-grained new class labels through the tMagnifier
clustering process.

The main benefit of such a framework is that it decouples the
requirements of model capabilities, and each learner only needs to
focus on one class of samples. In this way, when an emerging class
arrives, only a new learner needs to be added without changing
the existing learner. Meanwhile, model capability decoupling can
mitigate the impact of concept drift to some extent. As shown
in Fig. 2 (a), typical zero-positive learning fits a wide variety of
legitimate flows, forming a generalized sample center (marked as a
grey triangle). This makes it difficult to distinguish drifts of benign
samples from unknown attacks, since their similarity to the center
is comparable. While the one-class learning of Trident is essentially
a divide-and-conquer strategy, it has more distinguishable3 for drift
samples and unknown classes in Fig. 2 (b). Furthermore, if there is
concept drift in any class, just incrementally update its learner and
outlier threshold based on drift samples to complete the adaptation,
i.e., completing sample increments.

In summary, this paper makes three key contributions.

• We carefully examine the problems of current anomaly-
based NIDSs in the real world and summarize them as two
key challenges. To facilitate addressing the above issues,
we propose Trident, a universal framework for fine-grained
traffic detection.

• We design three tightly coupled components (tSieve, tScis-
sors, tMagnifier) for Trident, thereby realizing the known
class classification, fine-grained unknown class detection,

3It refers to that for a one-class learner, the unknown-class instances tend further
away from the single-class sample center than the drift sample.

and incremental model update simultaneously. Notably,
they all support the customized configuration.

• Through experiments, we demonstrate that Trident signifi-
cantly outperforms previous methods. Meanwhile, we con-
duct a series of additional experiments to show its superior
stability, scalability, and practicality.

2 ASSUMPTIONS AND PROBLEM SPACE
2.1 Threat Model and Assumptions
Adversary Model. We consider unknown intrusions such as zero-
day attacks that exist in real-world scenarios. In other words, strong
adversaries will adopt the emerging attack strategies that are previ-
ously unseen by victims, including variants of the existing attacks
or brand new ones. Therefore, it is hard to have any prior data
about these unforeseen attacks. Moreover, the traffic of known
types is not set in stone. Therefore, the problem of concept drift
is within the scope of consideration. In addition, we mainly focus
on encrypted traffic analysis in this paper, since the transmission
content is increasingly being encrypted in existing networks, such
as SSL/TLS and SSH. Concretely, we tend to characterize traffic be-
havior by portraying packet field distribution rather than analyzing
transmission content, e.g., TCP Payload.
Assumptions. We assume there is no prior knowledge when suf-
fering unprecedented attacks in practice. We are also not aware of
how many types of unknown attacks exist in the collected traffic
samples in advance. Meanwhile, we do not assume additional collab-
orations from other Internet entities, such as IP blacklists provided
by security vendors. In addition, multiple unknown attacks may be
launched at the same time or may appear alternately. That is to say,
we do not make assumptions about the distribution of attacks.

2.2 Problem Formulation
We provide precise definitions of two critical challenges.
Fine-GrainedUnknownAttackDetection. Given a prior dataset
𝑆𝑡𝑟𝑎 , consisting of samples from benign traffic 𝐵 and known cyber
attacks {𝐴1

𝑘
, 𝐴2

𝑘
· · ·𝐴𝑛

𝑘
}, where 𝑛 refers to the number of known

classes. And we use 𝑆𝑡𝑟𝑎 as the training set to fit the model 𝑀 .
When deploying 𝑀 in practice, it will encounter the open-world
testset include: (i) samples 𝑆𝑘 with the ground-truth labels from
{𝐵,𝐴1

𝑘
, 𝐴2

𝑘
· · ·𝐴𝑛

𝑘
}; (ii) instances of emerging classes {𝐴1

𝑢 , 𝐴
2
𝑢 · · ·𝐴𝑚𝑢 },

where 𝑚 denotes the number of unknown classes, and 𝑚 is un-
known to us in advance. The fine-grained unknown attack detection
refers to:𝑀 can identify the specific-attack labels of test samples,
i.e., the sample prediction result is 𝐵, 𝐴1

𝑘
, 𝐴2

𝑘
, 𝐴1

𝑢 , 𝐴2
𝑢 , or others4.

Incremental Update. The requirements of incremental updates in-
clude two parts: sample increments and class increments. For sample
increments, it refers to the model adapting to new instances without
retraining the whole architecture. This capability stems from two
considerations, for one thing, the business scenario changes will
cause different manifestations of legitimate traffic (e.g., the traffic of

4Note that the model marks the attack with a series of fine-grained codenames (e.g.,
“new attack 1”, “new attack 2”), rather than naming each attack (e.g., “Heartbleed”). We
aim to automatically detect unknown attacks and distinguish their types from each
other in this work, which benefits network operators to analyze and further deploy
countermeasures. The specific attack names can be given by the security communities,
just like we could also call “Heartbleed” as “Buffer over-read”.
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streaming media and chatting would be very different). For another,
sample increments could also be used to adapt to the concept drift
of attack (such as some attacks changing over time, making the
previous attack traffic somewhat outdated).

Regarding class increments, it is actually an inevitable problem
for fine-grained detection, and it is also a major difference between
us and existing work. When a new type of attack 𝐴∗𝑢 is detected,
we hope to add it to the knowledge base to strengthen the model’s
capability. In other words, the updated model can detect 𝐴∗𝑢 just
like supervised classification in the future. This is a challenging
task that cannot be achieved by most existing works.

3 TRIDENT FRAMEWORK OVERVIEW
In this section, we depict a high-level workflow of Trident, in-
cluding the key building blocks of each component. Most typical
schemes are either supervised learning for multi-class classification
or binary classification anomaly detection. We architecture Trident
as a novel framework to decouple the requirements of model capa-
bilities. The overall process includes three parts: one-class learning,
outlier determination, and fine-grained label assignment.
One-Class Learning. First, unlike typical models, Trident main-
tains a collection of one-class learners, each of which corresponds
to a traffic type one-to-one. Each learner is only responsible for
reconstructing the corresponding type of traffic data, and the learn-
ers are independent of each other. Therefore, when a test sample
arrives, each learner outputs its reconstruction loss and decides to
accept or reject this instance. The instance that cannot be accepted
by any learner is considered the new class, otherwise, it will be
assigned as the most similar class among all accepted learners.
Outlier Determination. Then, determining the outlier threshold
is to help the learner decide whether to accept or reject an instance.
In particular, each one-class learner has its own outlier threshold,
independent of each other. The determination method is mainly
based on the analysis of previous data, and the specific threshold is
manually preset or obtained by probability and statistics.
Fine-Grained Label Assignment. The need for fine-grained la-
bels includes both known and unknown classes. For known classes,
the labels will be jointly derived from the results of multiple learn-
ers, as described above. Those samples that are not accepted by
any learner refer to unknown classes and will enter the buffer.
In the buffer, all unknown classes are assigned labels through a
series of unsupervised strategies. Finally, samples are labeled as
specific known types or fine-grained unknown classes. Noteworthy,
these detected unknown classes can be used to build new one-class
learners, given that Trident supports class increments.

4 TSIEVE: ONE-CLASS LEARNING
In this section, we provide three model architectures to perform
the one-class learning task. Each model architecture corresponds
to its unique feature vector extraction, but all are based on the
traffic session with the 5-tuple index, i.e., {𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑃, 𝑆𝑜𝑢𝑟𝑐𝑒 𝑃𝑜𝑟𝑡,
𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑟𝑡, 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙}.

4.1 AutoEncoder
Feature Extraction. For AutoEncoder, Table 4 shows the feature
generated for each bi-directional flow. It characterizes the traffic in

Label capsule
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Fully connected 
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Fully connected 
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D3

D2

D1

Fv Fr

Figure 3: The AutoEncoder architecture in Trident.

terms of temporal, volumetric, and header-field distributions. Specif-
ically, including (i) the protocol coding with one dimension. (ii) The
count of a series of flags from layers 1-4 (such as IP Fragment, TCP
Flags) in three situations (forward, backward, and bidirectional),
which is 33 dimensions. (iii) The 72-dimensional statistical results
(i.e.,𝑚𝑎𝑥 ,𝑚𝑖𝑛,𝑚𝑒𝑎𝑛, and 𝑠𝑡𝑑) for several transport-functional fields
(i.e., TTL, window size) in three situations about direction. In gen-
eral, all features are either 𝑖𝑛𝑡 or 𝑓 𝑙𝑜𝑎𝑡 types.
Model Architecture. A vanilla design is directly using the typical
AutoEncoder (AE) as the one-class learner. However, deep layers
in this typical architecture may lose some feature information. To
this end, we add the tensor from the encoder to the corresponding
layer in the decoder, so as to preserve more semantic information
in different tiers. The model architecture is shown in Fig. 3, which
is somewhat similar to U-Net [45] (a convolutional network). It con-
tains an encoder and a decoder, which are symmetrical to each other.
For example, in the encoder, the 𝑑-dimension input is concatenated
with four fully connected layers (with the ReLU activation), inwhich
the corresponding feature vectors are 𝐹𝑣 → 𝐸1 → 𝐸2 → 𝐸3 → 𝐸4
and the dimensions refer 𝑑 → 256→ 128→ 64→ 32. Notably, the
decoder part will cascade the intermediate output of the encoder for
addition operation (denote as the blue arrow in Fig. 3). For instance,
𝐷2 can be calculated by 𝐷2 = 𝑅𝑒𝐿𝑈 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝐷3 + 𝐸3)). Such an
addition operation preserves richer features at each level to allevi-
ate information loss during reconstruction. Meanwhile, we employ
mean squared error (MSE) as the loss function since the per-learner
is essentially performing the data reconstruction. Empirically, a
well-trained learner will output a smaller MSE loss for same-class
samples, while data of different classes will lead to a larger loss.

4.2 Recurrent Neural Network
Features Extraction. For input to the Recurrent Neural Network
(RNN) model, we extract the packet field from the raw traffic and
expand the feature according to time to form sequences. Subse-
quently, all feature vectors are pruned or padded to 𝑇 time steps.
Per-packet feature vector consists of packet length, direction, the
interval of arrival time, and values of fields in the packet header,
e.g., TTL (Time To Live), TCP flags, TCP window size, and SSL/TLS

Input
Sequence x1 x2

RNN Unit RNN Unit

xn

RNN Unit

RNN Unit RNN Unit RNN Unit

en* en-1* e1*

e1 e2 enEmbeding

Encoder

Decoder

Output

Hidden
statesReconstruction loss

…

…

Figure 4: The RNN architecture in Trident.
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fields. Therefore, a sample can be denoted as 𝑥 = [𝐿1, 𝐿2, ..., 𝐿𝑇 ],
where 𝑇 is the time steps and 𝐿𝑖 ∈ R𝑑 is the 𝑑-dimensional packet
feature at time step 𝑖 . Such feature extraction is similar to most
sequence-based methods, except that we focus on more fields (such
as SSL/TLS) than just packet length and timestamp [34, 70].
Model Architecture. To accomplish data reconstruction as a one-
class learner, we consider a representative Seq2Seq model [55]. The
model architecture (more details in § A.2) is shown in Fig. 4, it
consists of an encoder and a decoder of equal length. We cascade
an embedding layer between the input and the RNN unit to reduce
the impact of feature values, given different feature fields may have
different value ranges. Formulaically, the 𝑥𝑖 in each time step will
go through the embedding layer to obtain 𝑒𝑖 and then be fed to the
encoder’s RNN unit𝑈 𝐸

𝑅𝑁𝑁
. The hidden state output of the RNN unit

is passed at different time steps. Afterward, the hidden state for the
last time step of the encoder will be fed to the decoder as the initial
state. The input to the decoder is the output of the previous time
step (except for the first time step), with the hidden state passed.
We collect the outputs 𝑒∗

𝑖
of decoder units𝑈𝐷

𝑅𝑁𝑁
at all time steps.

The reconstruction loss is still calculated with MSE, i.e.,

L =

𝑛∑︁
𝑖=1

√︃
(𝑒𝑖2) − (𝑒𝑖∗)2 (1)

4.3 Graph Model
Features Extraction. The third model is a graph-based approach.
To this end, we develop a novel session graph construction to ex-
tract features. As Fig. 5 displays, it considers the bidirectional traffic
interaction between the client and server. We aggregate those adja-
cent packets in the same direction, forming an edge that includes
the aggregated bytes. Based on such a process, the nodes are dis-
tributed on either the client or server. In the end, a bipartite graph
can be obtained, which is characterized in that the points of the
client and the client will not be connected, and the same applies to
the server. An example of packet aggregation can be found at the
bottom of Fig. 5, two TCP payload packets with a length of 1,398
are aggregated to form an edge with 2,796 bytes. Thus, the feature
vector of a node includes three elements, i.e., [received bytes, sent
bytes, duration]. The advantage of such data representation is that
it has robustness, e.g., it can alleviate the influence of changes from
the Content Delivery Network (CDN) and Maximum Transmission
Unit (MTU) on traffic analysis.
Model Architecture. For the above bipartite graph, we employ
the U-Net-like GNN architecture [45], which is depicted in Fig. 6
(more details in § A.3). Among the model input, the traffic graph

GCN

gPool

GCN

gPool

GCN

GCN

gUnpool

GCN

gUnpool

Input Output

Reconstruction loss

Figure 6: The GNN architecture in Trident.

G can be represented by the adjacency matrix 𝐴 ∈ R𝑁×𝑁 and the
feature matrix 𝑋 ∈ R𝑁×𝐶 , where 𝐶 and 𝑁 represent the nodes’
feature dimension and number, respectively. Also, each row vector
𝑋𝑖 = [𝑥0𝑖 , 𝑥

1
𝑖
, · · · , 𝑥𝐶

𝑖
] in the feature matrix 𝑋 denotes the feature

vector of node 𝑖 in the graph. During the encoder stage, the node
feature vectors are first transformed into low-dimensional repre-
sentations using a GCN layer. After that, two encoder blocks are
performed, each of which contains a gPool layer [15] and a GCN
layer. Correspondingly, there are two decoder blocks in the decoder
part, and each block consists of a gUnpool layer [15] and a GCN
layer. For blocks at the same level, the encoder block uses a skip
connection to fuse the low-level spatial features from the encoder
block. Finally, the output feature vectors 𝑋 ′

𝑖
∈ 𝑋 ′ of nodes in the

last layer are network embedding, which can be used for computing
the reconstruction loss L.

L =

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

√︃
(𝑥 ′

𝑖 𝑗
)2 − (𝑥𝑖 𝑗 )2 (2)

4.4 Incremental Update
Sample-Level Incremental Update. To adapt to new samples, we
don’t need to retrain the model, and only perform model general-
ization at the sample level. A strawman design might be to combine
old data with new instances for model updates. The potential prob-
lem with this solution is that the scale of the data will continue
to expand over time, resulting in inefficiency. Therefore, we could
consider selecting some representative historical data. Recall the
one-class learner reconstructs samples and computes an outlier
threshold for the reconstruction loss. In order to keep the distribu-
tion of the reconstruction loss list as unchanged as possible before
and after sampling, we sort the reconstruction loss list and sample
them at intervals. For example, Fig. 7 (b)-(c) display the sampling
strategy when setting sample rate 𝑟=0.5, 0.2 respectively, where red
columns represent sampled instances. In practice, the sampling rate
can be set according to user requirements. These sampled histori-
cal data are used together with new data to incrementally update
one-class learner parameters.
Class-Level Incremental Update. Since each one-class learner
is independent of each other, the update operation can be conve-
niently performed. Using each new class to build the corresponding
one-class learner and populate the learner list and threshold list, as
shown in lines 1∼7 in Algorithm 2. After updating, the new class
can then be viewed as the known class. Overall, due to learners cor-
responding to classes one by one, building learners for new classes
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Figure 7: Sampling according to reconstruction loss.

is incremental-manner. Meanwhile, the special advantage of this
framework for model construction is that it can be run in parallel,
easy to horizontal expansion, and reduce overhead, e.g., distributed
to deploy those one-class learners on different computing nodes.

5 TSCISSORS: OUTLIER IDENTIFICATION
In this section, we develop some outlier identification schemes such
as preset method and extreme value theory method.
Preset Method. A vanilla design is to preset the outlier ratio
based on expert experience/knowledge. Given the output list 𝐿𝑜
by a learner of length 𝑁𝑜 , first sort it in ascending order to get
𝐿′𝑜 . Consider a preset ratio 𝑅𝑝 , which refers to treating the last
𝑖𝑛𝑡 (𝑁𝑜 × 𝑅𝑝 ) data in 𝐿′𝑜 as outliers. In other words, the threshold is
the outlier boundary, i.e., 𝐿′𝑜 [𝑖𝑛𝑡 (𝑁𝑜 × 𝑅𝑝 )]. Actually, some similar
work involving outlier detection methods are preset methods. For
example, in the adversarial example detection landscape, many
works construct a series of metrics to score inputs and use preset
outlier thresholds to distinguish normal instances and adversarial
examples [39, 64, 67]. The advantage of the preset method is that it
is convenient and prone to implement, but the limitation is that it
needs to be manually set and sometimes lacks flexibility.
Extreme Value Theory Method. To solve this problem, we also
leverage the Extreme Value Theory (EVT) [28] to estimate the out-
lier bounds. The original intention of this theory by statisticians
is to study the possibility of extreme events. An elegant property
of EVT is that the distribution of the extreme values is not depen-
dent on the distribution of the data. In other words, these extreme
events have the same kind of distribution, regardless of the original
one, such as Frechet, Gamma, and Uniform distributions [51]. For
specific details that utilize EVT to estimate thresholds, refer to § B.

6 TMAGNIFIER: LABEL ASSIGNMENT
We elaborate here on the process for fine-grained label assignment.
Known Class Classification. Algorithm 1 describes the proce-
dure for label assignment. Consider a trained one-class learner list
𝐿𝑝 and its threshold list 𝐿𝑡 , each test sample will traverse each
learner to obtain reconstruction loss. If the reconstruction loss is
less than the threshold, the class of this learner will be considered as
a potential candidate (in line 8). Naturally, the instance that cannot
match any of the learners is regarded as a new class (line 10). On the
contrary, there is at least one learner that can cover the sample, i.e.,
len(𝑀𝑐 ) ≥ 1, the class of the learner with the smallest reconstruction
loss will be used as the prediction result (lines 12∼13).
Unknown Class Identification. For new-class samples in the
buffer pool B, we leverage the clustering algorithm to perform fine-
grained identification. Since we cannot know in advance how many
unknown classes there are, a scheme such as K-means [19] that

Algorithm 1 Label Assignment
Require: The test dataset S, the known-class one-class learner list 𝐿𝑝 , and

corresponding threshold list 𝐿𝑡 , buffer B
Ensure: 𝑦 - class label for each 𝑥 ∈ S
1: Initialize prediction list 𝑅𝑒𝑠𝑢𝑙𝑡 = [ ], temporary lists 𝑅𝑘 and 𝑅𝑢
2: for 𝑥 ∈ S do
3: Initialize reconstruction loss list 𝐿𝑟 = [ ]
4: for 𝑝𝑖 ∈ 𝐿𝑝 do
5: Calculate reconstruction loss 𝑙 ← 𝑝𝑖 (𝑥 )
6: Apeend 𝑙 to 𝐿𝑟
7: end for
8: Candidate𝑀𝑐 = array(𝐿𝑟 ) [array(𝐿𝑟 ) < array(𝐿𝑡 ) ]
9: if len(𝑀𝑐 ) == 0 then
10: B ← B ∪ 𝑥
11: else
12: Select 𝑐𝑙𝑎𝑠𝑠 𝑗 s.t. 𝐿𝑟 [𝑐𝑙𝑎𝑠𝑠 𝑗 ] == min(𝑀𝑐 )
13: Apeend 𝑐𝑙𝑎𝑠𝑠 𝑗 label to 𝑅𝑘
14: end if
15: end for
16: Fine-grained new class results 𝑅𝑢 ← Clustering(B)
17: 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑅𝑘 ∪ 𝑅𝑢
18: return 𝑅𝑒𝑠𝑢𝑙𝑡
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Figure 8: Unknown class identification.

needs to set the number of clusters is not suitable. DBSCAN [9] is an
optional solution. However, DBSCAN also needs to set parameters,
such as eps or min_samples. Therefore, we intend to cluster with
various parameters and integrate the results to achieve relatively
stable results. The process of ensemble clustering (𝑁𝑢𝑚 clustering
models) is as follows. Considering the B sample set, we construct
an adjacency matrix 𝐴𝑐 to record the results of 𝑁𝑢𝑚 clustering
algorithms. For example, if 𝐴𝑐 [𝑖, 𝑗] = Δ, it refers to Δ clustering
algorithms to cluster samples 𝑥𝑖 and 𝑥 𝑗 into one cluster, where
𝑥𝑖 , 𝑥 𝑗 ∈ B and Δ ≤ 𝑁𝑢𝑚. As shown in Fig. 8, we need to generate
the integrated results of the ensemble clustering according to 𝐴𝑐 .
The key is to determine a cut point to filter out the smaller values
in the matrix, and thereby find the connected subcluster. There-
fore, we can traverse the cut points from 0 to 𝑁𝑢𝑚 and calculate
the silhouette coefficient [47], then select the cut point when the
silhouette coefficient is the largest.

7 EVALUATION
We comprehensively evaluate Trident, with code available online
(anonymous repository https://github.com/WWW-rep/Trident/).

7.1 Experiment Setup
Datasets. A series of public datasets are used for evaluation as
follows. (i) USTC-TFC2016 dataset [57] includes network traffic
from two parts, i.e.,malware and benign. Among them, ten types of
malware traffic from public websites are collected from real-world
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Table 1: The supervised evaluation results.
Dataset USTC Tor IDS CrossNet
Model ACC F1 ACC F1 ACC F1 ACC F1
nPrint 95.68 89.75 99.50 93.37 99.86 99.62 93.89 91.58
FlowPic 76.88 73.57 94.82 89.62 99.22 99.24 74.38 72.45
FlowLens 86.91 84.34 98.76 91.38 98.55 91.09 83.22 81.41
ERNN 90.18 88.72 98.10 96.15 98.50 97.19 86.64 85.12

ET-BERT 94.51 90.26 95.69 92.70 99.93 99.63 91.22 88.45
Trident (AE) 95.65 91.20 94.13 89.01 99.70 99.29 92.30 90.61
Trident (RNN) 92.38 89.64 99.38 97.02 99.93 99.57 91.17 87.20
Trident (GNN) 94.32 90.07 97.30 94.51 99.62 99.34 94.51 92.36

connections. Also, benign traffic from 10 categories of applica-
tions, e.g., Facetime, Skype, Weibo, was captured by the network
traffic simulator called IXIA BPS. (ii) ISCXTor2016 dataset [27]
consists of network traffic involving 8 classes, i.e., Email, Chat,
FTP, etc, was captured using tcpdump, including 22GB of data. (iii)
IDS2017&2018 datasets [11, 12] uses a proposed B-Profile system
to profile the normal and intrusion behavior, including DoS/DDoS,
Brute Force, Infiltration, etc. Also, they contain more than tens of
millions of traffic instances based on a series of protocols, in which
the packets are captured across several days involving various oper-
ating systems. (iv) CrossNet2021 dataset [30] contains traffic data
from 20 categories of applications such as 360, Sougou, and CSDN
in two practical scenarios, i.e., stable and production networks. The
traffic was captured using tcpdump, including 2.5GB of data.
Baselines. We use 16 models involving supervised, unsupervised,
and semi-supervised methods as baselines, covering state-of-the-art
(SOTA) in the traffic analysis landscape. (i) Five supervised method:
nPrint [20], FlowPic [49], FlowLens [4], and ET-BERT [32]. (ii)
Five binary classification anomaly detection: Kitsune [41], Whis-
per [13], DeepLog [8], HyperVision [14], and Diff-RF [38]. (iii)
Six multi-classification anomaly detection: K-means [19], DB-
SCAN [9], FlowPrint [56], Cls-Anomaly [65], SENC [42], and
FARE [31]. Details of these baselines can be found in Appendix C.
Metrics. Two popular benchmarks are used to evaluate the perfor-
mance for identifying emerging classes [31], including the cluster-
ing accuracy (𝐴𝐶𝐶) and adjusted mutual information (𝐴𝑀𝐼 ). Their
upper bounds are all 1 and the larger values mean the better ef-
fect. For supervised evaluation and binary classification anomaly
detection (AD) experiments, we additionally calculate the Precision
(𝑃𝑟𝑒), Recall (𝑅𝑒𝑐), F1-score, and the Area Under Curve (𝐴𝑈𝐶).
Hyperparameter Settings. The sampling rate 𝑟 = 0.5 and we also
evaluate 𝑟 in § 7.4. For outlier threshold determination, we use the
EVT method by default, and traverse settings of the preset method
to produce Receiver Operating Characteristic (ROC) curve in § 7.3.
For unknown class clustering, three algorithms (K-means [19], DB-
SCAN [9], and DEC [60]) are used, by varying the hyper-parameters
for each clustering algorithm to contribute 𝑁𝑢𝑚 = 20 models, and
we vary 𝑁𝑢𝑚 to develop ablation experiments in § 7.4.

7.2 Supervised Evaluation
When all classes are known, Trident can directly construct per-class
learner. Therefore, we first compare supervised SOTA methods to
explore the known class classification effect of Trident. The clas-
sification results for the four datasets are summarized in Table 1,
including the accuracy and F1 score. In Tor and IDS datasets, Tri-
dent (RNN) presents the best performance. While Trident (AE) and

Table 2: The binary classification anomaly detection results.
Dataset USTC IDS
Model ACC Pre Rec F1 ACC Pre Rec F1
Kitsune 92.45 92.57 92.23 92.41 93.07 93.52 92.49 93.07
Whisper 94.32 94.83 93.77 94.30 91.20 91.12 91.28 91.21
DeepLog 92.80 92.72 92.88 92.80 91.12 91.26 90.93 91.09

HyperVision 96.67 97.28 96.04 96.66 95.32 95.85 94.76 95.31
Diff-RF 93.55 94.36 92.72 93.53 92.25 92.98 91.43 92.19

Trident (AE) 97.25 97.26 97.29 97.27 95.45 95.09 94.91 95.00
Trident (RNN) 94.95 94.81 95.08 94.94 96.02 96.09 95.94 96.01
Trident (GNN) 96.45 96.73 96.21 96.47 93.55 93.31 93.76 93.53

(b) ROC of detecting IDS dataset(a) ROC of detecting USTC dataset

Figure 9: ROC of binary classification anomaly detection.

Trident (GNN) are prominent in USTC and CrossNet datasets, re-
spectively. Sometimes nPrint has a slight advantage in accuracy,
but the difference is only ∼0.1%. Noteworthy, Trident achieves the
superior F1 score, which indicates that Trident is hardly affected
by data imbalance (in contrast, nPrint’s F1 score drops a lot). Over-
all, the classification performance of Trident for known classes is
competitive compared to supervised SOTA methods.

7.3 Binary Classification Anomaly Detection
Then, we evaluate the binary classification anomaly detection meth-
ods. Since these methods only distinguish between “benign” and
“abnormal”, we also change the output of Trident to “0” or “1” for a
fair comparison, that is, not to distinguish the specific type of attack.
Two attack-related datasets (USTC and IDS) are used to evaluate,
only using their benign traffic to train for both the baseline and
Trident. From Table 2, the detection results refer to Trident (AE) >
HyperVision > Trident (GNN) > Trident (RNN) > Whisper > Diff-
RF > DeepLog > Kitsune for USTC dataset and Trident (RNN) >
Trident (AE) > HyperVision > Trident (GNN) > Kitsune > Diff-RF
>Whisper > DeepLog for IDS dataset. This may be attributed to dif-
ferent attacks (datasets) corresponding to different optimal feature
extraction and detection models. Nevertheless, Trident achieves the
best binary anomaly detection performance in terms of accuracy,
precision, recall, and F1 score. Moreover, we vary the detection
threshold for each model to plot ROC curves in Fig. 9. According
to Fig. 9 (a)-(b), we observe that Trident has fewer false positives
while achieving a high true positive rate.

7.4 Multi-Classification Anomaly Detection
Class Increments. In this section, we evaluate the capability of
Trident by varying 𝑁𝑘 :𝑁𝑢 (representing the number of known and
unknown classes). We set 𝑁𝑘 :𝑁𝑢 = {20:0, 16:4, 12:8, 8:12, 4:16, 0:20}
for USTC and CrossNet datasets and set 𝑁𝑘 :𝑁𝑢 = {8:0, 6:2, 4:4, 2:6,
0:8} for IDS and Tor datasets. The AMI results are shown in Fig. 10,
it is clear that as the number of unknown classes increases, Trident
significantly outperforms other baselines. For instance, to detect the
USTC dataset in Fig. 10 (a), when all classes are known, the perfor-
mance gap is not very big, e.g., the AMI of Trident is slightly higher
than FlowPrint by ∼2%. However, with more unknown classes, the
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Figure 10: Evaluation in different known/unknown proportions.

(a) Detecting USTC dataset with different sampling rates (b) Detecting IDS dataset with different sampling rates

Figure 11:Multi-classification detection results of varying dif-
ferent sampling rates when performing sample increments.
Table 3: The ACC (%) results with different 𝑁𝑢𝑚 settings.

Cluster model 𝑁𝑢𝑚 5 10 20 50 100

Cr
os
s. Trident (AE) 80.44 83.95 86.26 88.42 88.73

Trident (RNN) 79.25 81.67 84.68 86.97 87.79
Trident (GNN) 81.52 85.02 87.42 89.35 89.98

To
r Trident (AE) 82.85 87.32 89.82 92.21 92.74

Trident (RNN) 86.02 89.74 92.53 94.15 94.52
Trident (GNN) 84.02 88.74 91.20 93.28 93.45

advantage of Trident becomes more obvious. When all classes are
unknown, Trident outperforms other methods by ∼10%. Particu-
larly, DBSCAN does not require training, and its detection results
are similar in different known/unknown proportions, i.e., always
less than 60% of AMI.
Sample Increments. With 𝑁𝑘 = 0, we vary the sampling rate 𝑟
when performing sample-level incremental updates, the detection
results for USTC and IDS datasets are summarized in Fig. 11. It is
clear that as the sampling rate increases, the AMI results gradually
increase. Therefore, if space overhead allows, we could tend to
select more samples for updates.
Hyperparameter Evaluation. We also vary the cluster model
𝑁𝑢𝑚 to perform ablation experiments for 𝑁𝑘 = 0. As Table 3 shown,
from 𝑁𝑢𝑚 = 5 to 𝑁𝑢𝑚 = 50, the accuracy increases significantly.
When 𝑁𝑢𝑚 = 100, the ACC change is relatively slight. Overall, Tri-
dentmaintains solid performance with different parameter settings.

7.5 Concept Drift Evaluation
Concept drift is an unavoidable problem in anomaly detection sys-
tems, and we evaluate two scenarios time bias and scenario bias.
TimeBias. We conduct the time bias experiment by setting IDS2017
for training and using IDS2018 for testing, thereby exploringwhether
the traffic drifts over time will cause the failure of model detection.
Fig. 12 (a)-(c) show the detection results for supervised, binary clas-
sification AD, and multi-classification AD models. In subfigure (a),
we can see that ERNN is the best performer in the baseline because

it considers network packet loss, retransmission, and out-of-order
phenomena when building the model. Other supervised baselines
are greatly affected by time bias. Nevertheless, our framework
shows better robustness, e.g., Trident (RNN) is still able to achieve
96.71% ACC. For binary classification AD in subfigure (b), the im-
pact of concept drift is less severe, since these are trained with only
benign traffic in this setting and the impact on the model training
process is limited. Trident still maintains the best performance un-
der the binary classification AD setting. As for multi-classification
AD, most of the models fail, with FARE guaranteeing an AMI of
∼70% and others below 60%. In this setting, Trident realizes ∼90%
ACC and AMI, demonstrating its strong stability.
Scenario Bias. To develop the scenario bias evaluation, the Sce-
nario A traffic is used for training and to detect Scenario B traf-
fic from the CrossNet dataset. The two scenarios of the Cross-
Net dataset are collected from different network quality-of-service
(QoS), such as different bandwidths and channel disturbance. The
results are summarized in Fig. 12 (d)-(e). Similar to temporal bias,
both the supervised and the multi-class ADmodels suffer to varying
degrees. Also, all three model configurations of Trident outperform
the baselines. Overall, the divide-and-conquer idea of Trident can
effectively alleviate the impact of concept drift. In practice, we can
also combine Trident with existing technologies [17] to deal with
the problem of concept drift.

7.6 Overhead Evaluation
We measure the update time overhead for baseline algorithms and
Trident, and the results are summarized in Fig. 13. All models run
on the Ubuntu 18.04.2 server with Intel i7-12700K CPU, NVIDIA
TITAN GPU, and 64 GB memory. Overall, nPrint, Whisper, Diff-RF,
DBSCAN, K-means, and Hypervision are on one level (<1𝑚𝑠) since
there are machine learning basedmethods. The deep learningmodel
does have more time overhead (generally greater than 1𝑚𝑠). For
example, the time overhead of ERNN, DeepLog, and Trident (RNN)
is relatively similar since they are all RNN-related models. The most
time-consuming model is ET-BERT because it is essentially a large
language model with massive parameters.

8 DISCUSSION AND LIMITATIONS
Model Selection.We designed Trident as a universal framework
that could support various model architectures to characterize traf-
fic. This paper mainly includes three types of models: AE, RNN,
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Figure 12: The concept drift evaluation results.

Models

Figure 13: The time overhead.
and GNN. We discuss here some model selection recommendations.
Based on the experimental results in § 7, we observe that RNN is
superior when the number of classes is small (e.g., IDS and Tor), but
the performance will significantly decrease when there are more
classes (refer to USTC and CrossNet datasets). When the training
set and test set are identical distributions, AE is a good choice to
deal with multiple categories. Compared with AE, GNN has bet-
ter robustness even when there are concept drifts, this could be
attributed as GNN’s aggregation process alleviates the impact of
changes from CDN and MTU on traffic (echo back § 4.3). Over-
all, users could choose desired model architectures or customize
extensions/variants to cater to specific requirements.

Attack Category Recovery. When identifying fine-grained
labels for unknown classes, it could occur to overestimate or un-
derestimate the attack categories. A main reasons refer to he ex-
tracted protocol features have different granularities. For example,
some customers may need to distinguish between different HTTP
flooding and some may not. Therefore, building a customized clas-
sification scheme in the output layer according to different needs
may be beneficial to promoting Trident to widespread use. We will
investigate these to advance the practicality of Trident.

Limitations and Future Works. Our work has a few limi-
tations. First, different customers may require various detection
granularity, the future work may consider a customized scheme,
e.g., change the output layer of tSieve in Trident. Second, applying
the automated feature extraction and model parameters tuning into
Trident will lead in a good direction. Third, to provide customers
with more reliable protection, the powerful adversary using a com-
bination of multiple attacks needs to be further studied. Finally, as
part of future work, we would explore which components could
run in parallel to maximize efficiency.

9 RELATEDWORK
Besides SOTA baselines in § 7.1, we list briefly some related work.

NIDS with Known Attacks Classification. To classify known
attacks, some works [2, 35, 48, 49, 62, 63] design NIDSs based on
statistical features by supervised learning methods [21, 43, 53, 68,

71], e.g., random forests, deep neural networks. Some other arts
utilize Markov [26, 33, 50] or recurrent neural networks [6, 34] to
portray sequential features (e.g., packet length sequence). While
these methods are less suitable for detecting unknown attacks.

NIDS with Unknown Attacks Detection. These methods
mainly involve three types of technologies: unsupervised, semi-
supervised, and zero-shot learning. (i) Unsupervised learning meth-
ods such as clustering algorithms (e.g., K-means [19], DBSCAN [9],
and CSPA [54]) have been applied to identify outliers in network
traffic. They are also known as “zero-positive” learning [7, 18] due to
solely using benign samples for training. (ii) Semi-supervised learn-
ing methods such as Cls-Anomaly [65], FARE [31], and SENC [42]
are usually composed of unsupervised and supervised learning. (iii)
Zero-shot learning methods (ZSL) have been used to classify un-
known classes in NIDS [44]. With the non-incremental learnability,
and the need for rich “side information” to construct the feature
mapping, ZSL methods are not suitable for our problem. Overall,
their focus is different from ours, Trident devotes to fine-grained
unknown class detection and ever-changing traffic adaption in an
incremental manner.

Some Recent Advances for NIDS. Security communities pro-
pose a series of advanced research directions including: solutions
based on programmable switches [4, 25, 37, 61, 69] to adapt to high-
speed bandwidth. Leveraging formal verification to analyze the
security of NIDS [58, 59, 72]. And some research devoted the auto-
mated characterization [20] and interpretability for NIDS [18, 40].

10 CONCLUSION
This paper presents Trident, a fine-grained traffic analysis frame-
work towards identifying both known/unknown attack types, as
well as adapting to variable traffic in an incremental manner. Based
on our proposed framework, we implement three model architec-
tures and extensively evaluate them on four public datasets. More-
over, we produce a series of experiments for Trident in terms of
supervised, binary classification AD, and multi-classification AD.
The results demonstrate the effectiveness and robustness of Trident
outperforming existing SOTA methods.
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APPENDIX
A ADDITIONAL DETAILS OF TSIEVE
A.1 Additional Details for AutoEncoder

Architecture
For AutoEncoder, the 106-d features are displayed in Table 4.

Table 4: The 106-d feature set. “TTL”: “time to live”.
Feature Dim
Protocol 1

Direction Sum

33
Frame IP TCP

Forward Packet_num,
Duration

Flags_df,
Flags_mf,
Frag_offset

ACK, URG,
PUSH,RESET,
SYN, FIN

Backward
Bi-dir

Direction Statistic

72
Max Min Mean Std

Forward Total Length, Time_delta,
Calculated Window Size,
Scale_factor, Window, TTL

Backward
Bi-dir

A.2 Additional Details for RNN Architecture
The Recurrent Neural Network (RNN) is a natural generalization
of feedforward neural networks to sequences. Given a sequence
of inputs (𝑥1, 𝑥2, · · · , 𝑥𝑇 ), a standard RNN computes a sequence of
outputs (𝑦1, 𝑦2, · · · , 𝑦𝑇 ) by iterating the following equation:

ℎ𝑡 = sigmoid(𝑊 hx𝑥𝑡 +𝑊 hhℎ𝑡−1) (3)

𝑦𝑡 =𝑊 yhℎ𝑡 (4)

where𝑊 hx,𝑊 hh, and𝑊 yh are the weight matrices of input-hidden,
hidden-hidden, and hidden-output, respectively. The goal of the
LSTM is to estimate the conditional probability 𝑝 (𝑦1, 𝑦2, · · · , 𝑦𝑇 |
𝑥1, 𝑥2, · · · , 𝑥𝑇 ), where (𝑥1, 𝑥2, · · · , 𝑥𝑇 ) is an input sequence and
(𝑦1, 𝑦2, · · · , 𝑦𝑇 ) is its corresponding output sequence with the same
length. The LSTM computes this conditional probability by first
obtaining the fixed dimensional representation 𝑣 of the input se-
quence (𝑥1, 𝑥2, · · · , 𝑥𝑇 ) given by the last hidden state of the LSTM,
and then computing the probability of (𝑦1, 𝑦2, · · · , 𝑦𝑇 ) with a stan-
dard LSTM-LM formulation whose initial hidden state is set to the
representation 𝑣 of (𝑥1, 𝑥2, · · · , 𝑥𝑇 ):

𝑝 (𝑦1, 𝑦2, · · · , 𝑦𝑇 |𝑥1, 𝑥2, · · · , 𝑥𝑇 ) =
𝑇∏
𝑡=1

𝑝 (𝑦𝑡 |𝑣,𝑦1, 𝑦2, · · · , 𝑦𝑡−1) (5)

Notably, as detailed in Section A.2, different from the above
LSTM model, we only use the structure of sequence-to-sequence
RNN model to construct the hidden layer relationship of the inputs
itself, that is, the correct outputs and inputs are consistent. In this
way, we employ the MSE as the loss function of the training process.

A.3 Additional Details for GNN Architecture
As shown in Fig. 6 and detailed in Section 4.3, the GNN architecture
contains Graph Pooling Layer, Graph Unpooling Layer, and GCN
Layer.
Graph Pooling Layer. The Graph Pooling (gPool) layer is used
to enable down-sampling on graph data. In this layer, a subset of

nodes is adaptively selected to form a new but smaller graph. To
this end, a trainable projection vector p is employed. By projecting
all node features to 1D, 𝑘-max pooling for node selection can be
performed. Since the selection is based on 1D footprint of each node,
the connectivity in the new graph is consistent across nodes. Given
a node 𝑖 with its feature vector 𝑋𝑖 , the scalar projection of 𝑋𝑖 on p
is 𝑦𝑖 = 𝑋𝑖p/∥p∥. Among them, 𝑦𝑖 measures how much information
of node 𝑖 can be retained when projected onto the direction of p.
Specifically, the graph can be represented by twomatrices; those are
the adjacency matrix𝐴 ∈ R𝑁×𝑁 and the feature matrix𝑋 ∈ R𝑁×𝐶 .
Each non-zero entry in the adjacency matrix 𝐴 represents an edge
between two nodes in the graph. Each row vector 𝑋𝑖 in the feature
matrix 𝑋 denotes the feature vector of node 𝑖 in the graph. The
layer-wise propagation rule of the graph pooling layer ℓ is:

𝑦 = 𝑋 ℓpℓ/∥p∥ (6)
idx = rank(𝑦, 𝑘) (7)
𝑦 = y(idx) (8)

�̃� ℓ = 𝑋 ℓ (idx, :) (9)

𝐴ℓ+1 = 𝐴ℓ (idx, idx) (10)

𝑋 ℓ+1 = �̃� ℓ ⊙ (𝑦1𝑇𝐶 ) (11)

where𝑘 is the number of nodes selected in the new graph. rank(𝑦, 𝑘)
is the operation of node ranking, which returns indices of the 𝑘-
largest values in 𝑦. The idx returned by rank(𝑦, 𝑘) contains the in-
dices of nodes selected for the new graph.𝐴ℓ (idx, idx) and𝑋 ℓ (idx, :)
perform the row and/or column extraction to form the adjacency
matrix and the feature matrix for the new graph.𝑦 (idx) extracts val-
ues in 𝑦 with indices idx followed by a sigmoid operation. 1𝐶 ∈ R𝐶
is a vector of size 𝐶 with all components being 1, and ⊙ represents
the element-wise matrix multiplication.
Graph Unpooling Layer. To enable up-sampling operations on
graph data, the graph unpooling (gUnpool) layer, which performs
the inverse operation of the gPool layer and restores the graph
into its original structure. To achieve this, we record the locations
of nodes selected in the corresponding gPool layer and use this
information to place nodes back to their original positions in the
graph. Formally, we propose the layer-wise propagation rule of
graph unpooling layer as:

𝑋 ℓ+1 = distribute(0𝑁×𝐶 , 𝑋 ℓ , idx) (12)

where idx ∈ Z∗𝑘 contains indices of selected nodes in the corre-
sponding gPool layer that reduces the graph size from 𝑁 nodes to
𝑘 nodes. 𝑋 ℓ ∈ R𝑘×𝐶 are the feature matrix of the current graph,
and 0𝑁×𝐶 are the initially empty feature matrix for the new graph.
distribute(0𝑁×𝐶 , 𝑋 ℓ , idx) is the operation that distributes row vec-
tors in 𝑋 ℓ into 0𝑁×𝐶 feature matrix according to their correspond-
ing indices stored in idx). In 𝑋 ℓ+1, row vectors with indices in idx)
are updated by row vectors in 𝑋 ℓ , while other row vectors remain
zero.
GCN Layer. Notably, there is a GCN layer before each gPool layer,
thereby enabling gPool layers to capture the topological informa-
tion in graphs implicitly. Before the processing of the GCN layer,
the 𝑘-th graph power G𝑘 to increase the graph connectivity. We
employ 𝑘 = 2 since there is a GCN layer before each gPool layer
to aggregate information from its first-order neighboring nodes.
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Algorithm 2 Incrementally Add Learner
Require: The learner list 𝐿𝑝 , the threshold list 𝐿𝑡 , the new class label set
Y and the corresponding sample set X

Ensure: The updated learner list and the updated threshold list
1: for 𝑦 ∈ Y do
2: Select subset 𝑏𝑖 s.t. (𝑥, 𝑦) ∈ 𝑏𝑖 ∈ X
3: Construct learner 𝑝𝑖 based on 𝑏𝑖
4: 𝑡𝑖 ← Outlier Threshold(𝑝𝑖 , 𝑏𝑖 )
5: Apeend 𝑡𝑖 to 𝐿𝑡
6: Apeend 𝑝𝑖 to 𝐿𝑝
7: end for
8: return 𝐿𝑝 , 𝐿𝑡

Formally, the equation is delivered:

𝐴2 = 𝐴ℓ𝐴ℓ , 𝐴ℓ+1 = 𝐴2 (idx, idx) (13)

where 𝐴2 ∈ R𝑁×𝑁 is the 2-th graph power. Now, the graph sam-
pling is performed on the augmented graphwith better connectivity.
In the GCNs, the layer-wise forward-propagation operation is de-
fined as:

𝑋ℓ+1 = 𝜎 (�̃�−
1
2 �̃��̃�

1
2𝑋ℓ𝑊ℓ ) (14)

where �̃� = �̃� + 2𝐼 is used to add self-loops in the input adjacency
matrix 𝐴, 𝑋ℓ is the feature matrix of layer ℓ . The GCN layer uses
the diagonal node degree matrix �̃� to normalize �̃�.𝑊ℓ is a trainable
weight matrix that applies a linear transformation to feature vectors.

A.4 Additional Details of Class-Level
Incremental Update

The pseudocode for class-level incremental update is described in
Algorithm 2.

B ADDITIONAL DETAILS OF TSCISSORS
The Extreme Value Theory (EVT) [28] can be used to estimate the
outlier bounds. Specifically, the form of Extreme Value Distributions
(EVD) is presented as follows.

𝐺𝛾 : 𝑥 ↦→ exp(−(1 + 𝛾𝑥)−
1
𝛾 ), 𝛾 ∈ R, 1 + 𝛾𝑥 > 0 (15)

where 𝛾 denotes the extreme value index. An elegant property of
EVT is that the distribution of the extreme values is not dependent
on the distribution of the data. In other words, these extreme events
have the same kind of distribution, regardless of the original one,
such as Frechet, Gamma, and Uniform distributions [51].

For a trained learner, we can obtain the reconstruction loss list
for its corresponding data subset. The upper quantile of the list is
used as the initialization threshold 𝑡 . Then, according to Pickands-
Balkema-de Haan theorem (also called second theorem in EVT) [1,
22], the extrema of cumulative distribution function 𝐹 converge in
distribution to 𝐺𝛾 , if and only if a function 𝜎 exists, i.e.,

−
𝐹 𝑡 (𝑥) = P(𝑋 − 𝑡 > 𝑥 |𝑋 > 𝑡) ∼

𝑡→𝜏

(
1 + 𝛾𝑥

𝜎 (𝑡)

)− 1
𝛾

(16)

It means that 𝑋 − 𝑡 (excess over threshold) tends to follow a Gener-
alized Pareto Distribution (GPD)5 with parameters 𝛾, 𝜎 . Once we

5The location 𝜇, the third parameter of GPD, is null in our case.

get estimates 𝛾, 𝜎 , the Peaks-Over-Threshold (POT) approach could
be used to calculate the threshold as follows

T ≃ 𝑡 + 𝜎

𝛾

((
𝑞𝑛

𝑁𝑝

)−𝛾
− 1

)
(17)

where 𝑞 denotes the risk parameter, 𝑛 refer to data size, and 𝑁𝑝

represents the number of peaks.
In order to estimate 𝛾, 𝜎 , the maximum likelihood estimation is

considered an efficient method, and its goal is to maximizing (after
logarithmic operation):

logL(𝛾, 𝜎) = −𝑁𝑝 log𝜎 −
(
1 + 1

𝛾

) 𝑁𝑝∑︁
𝑖=1

log
(
1 + 𝛾

𝜎
P𝑖

)
(18)

where P = {𝑙 − 𝑡 s.t. 𝑙 > 𝑡 and 𝑙 ∈ 𝐿} and 𝐿 denotes the loss list.
According to [16, 51], Grimshaw’s proposal could be used to reduce
the two variables optimization problem to a single variable equation.
Specifically, if we get a solution (𝛾∗, 𝜎∗), the variable 𝑥∗ = 𝛾∗/𝜎∗ is
solution of the scalar equation 𝑢 (𝑥)𝑣 (𝑥) = 1 where:

𝑢 (𝑥) = 1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

1
1 + 𝑥P𝑖

𝑣 (𝑥) = 1+ 1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

log(1 + 𝑥P𝑖 ) (19)

That is to say, by finding a solution 𝑥∗ of this equation, we can
retrieve 𝛾∗ = 𝑣 (𝑥∗) − 1 and 𝜎∗ = 𝛾∗/𝑥∗. Finally, the estimates 𝛾∗
and 𝜎∗ can be used to calculate the threshold reference Eq. (17).

C ADDITIONAL DETAILS FOR EVALUATION
We introduce and summarize the details for a series of baselines
here (refer to § 7.1).
(i) Supervised Method.
• nPrint [20] is a tool that generates a unified packet representa-

tion and then leverages AutoML to fit the tabular data.
• FlowPic [49] processes packet length and timestamp fields

and converts them into pictures and uses Convolutional Neural
Networks (CNNs) to identify traffic.

• FlowLens [4] calculates statistical histograms of packet size
distribution and adopts machine learning models (e.g., XGBoost)
to perform classification.

• ERNN [70] integrates the finite state automaton inside the RNN
unit to cope with network-induced phenomena such as packet
loss, retransmission, and out-of-order.

• ET-BERT [32] handles the raw packets in hexadecimal and
deploys a pre-trained transformer to represent and learn the
contextualized datagram-level information.

(ii) Binary Classification Anomaly Detection.
• Kitsune [41] calculates a series of statistical features and de-

signs an ensemble of AutoEncoders to detection intrusions.
• Whisper [13] expresses traffic as frequency domain information

through the fast Fourier transform and then performs robust
identification.

• DeepLog [8] utilizes Long Short-Term Memory (LSTM) [5] to
model the system log and detects the anomalies in sequences.

• HyperVision [14] is an unsupervisedmalicious traffic detection
system that could capture flow interaction patterns represented
by the graph’s structural features.
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• Diff-RF [38] takes into the frequencies of visits in the leaves
on the isolated forest [36] basis to detect point-by-point and
collective anomalies.

(iii) Multi-Classification Anomaly Detection.
• K-means [19] and DBSCAN [9] are typical density-based and

distance-based unsupervised clustering algorithms respectively.
• FlowPrint [56] is a semi-supervised approach for fingerprinting

mobile apps from encrypted network traffic.

• Cls-Anomaly [65] employs Conditioned Variational AutoEn-
coder and extreme value theory to devote multi-classification
for known attacks.

• SENC [42] completes the semi-supervised classification based
on isolation forest, yet it assumes only to emerge one unknown
class at one time.

• FARE [31] is a semi-supervised clustering method for classifi-
cation under low-quality labels. Note that it needs to specify
the number of classes for FARE, we set it as ground truth.
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