Trident: A Universal Framework for Fine-Grained and Class-Incremental Unknown Traffic Detection

Anonymous Author(s)

ABSTRACT

To detect unknown attack traffic, anomaly-based network intrusion detection systems (NIDSs) are widely used in Internet infrastructure. However, the security communities realize some limitations when they put most existing proposals into practice. The challenges are mainly concerned with (i) fine-grained emerging attack detection and (ii) incremental updates/adaptations. To tackle these problems, we propose to decouple the need for model capabilities by transforming known/new class identification issues into multiple independent one-class learning tasks. Based on the above core ideas, we develop Trident, a universal framework for fine-grained unknown encrypted traffic detection. It consists of three main modules, i.e., tSieve, tScissors, and tMagnifier are used for profiling traffic, determining outlier thresholds, and clustering respectively, each of which supports custom configuration. Using four popular datasets of network traces, we show that Trident significantly outperforms 16 state-of-the-art (SOTA) methods. Furthermore, a series of experiments (concept drift, overhead/parameter evaluation) demonstrate the stability, scalability, and practicality for Trident.

CCS CONCEPTS

• Security and privacy \rightarrow Network security; • Information systems \rightarrow Traffic analysis.

KEYWORDS

Fine-grained unknown traffic detection, class-incremental learning

1 INTRODUCTION

Traffic analysis is an important mechanism for security investigation, such as network intrusion detection systems (NIDSs), malware identification, etc. With encrypted traffic transmission becoming ubiquitous in practice, the proposed approaches gradually evolve from signature-based [13, 29] to machine-learningbased (ML-based) detection in the traffic analysis landscape [18]. These ML-based schemes aim to characterize traffic patterns with packet fields or sequence features since the transmission content is encrypted, and they are able to detect unknown attacks. For instance, anomaly-based solutions construct profiles of benign traffic to discover unforeseen attacks that deviate from legitimate samples [13, 14, 31, 38, 41, 65]. Thus, anomaly detection becomes an indispensable step for security in the real world. However, academic communities and industrial practitioners reveal a series of limitations when they put most existing anomaly-based proposals into practice [10, 23, 31, 52]. By summarizing those issues, we recognize the following two main challenges.

(i) *Fine-grained unknown attack detection.* The anomaly-based methods can identify unknown attacks, while previous proposals are usually binary classification models¹ [7, 38, 41]. That is to say,

Figure 1: The workflow of Trident and three components.

they could only infer whether the sample is "benign" or "abnormal", but cannot recognize that the anomaly is "unknown attack 1", "unknown attack 2", or "unknown attack 3", *etc.* Yet these fine-grained labels are the key for defenders to deploy effective countermeasures against the attacks [10, 31]. For example, the victims can count the per-flow protocol flag to mitigate flood-based DDoS [37, 69]. Also, they can defend the reflection-based attacks by source verification [46]. Therefore, the binary classification anomaly detection leads to a *semantic gap* between the model identification results and the actionable reports for network operators [52]. If the proposed scheme can automatically distinguish different unknown attack classes based on the network traffic characterization, it could facilitate understanding attack details and implementing corresponding countermeasures. Consequently, the first challenge is to detect the unknown (and known as well) attack in a fine-grained manner.

(ii) *Incremental update*. Incremental update requirements include *sample increments* and *class increments*. The former means the known-class traffic that could be ever-changing (also known as the concept drift problem [3, 7, 17, 24, 66]). In most anomaly-based detection, they advocate only using benign traffic to train the classifier, *i.e.*, "zero-positive" learning [7, 18], then those samples deviating from legitimate traffic will be considered malicious. In this way, it could appear a large number of false positives when the legitimate traffic manifested as different from priori properties. Another requirement "class increments" refers to detected emerging classes that should be incrementally updated into the model to become known classes in the follow-up. Therefore, it is non-trivial to attach new classes to the model's knowledge base without affecting the previously known classes.

In this paper, we propose a universal framework, named as $Tri-dent^2$, aiming to enable process three abilities, *i.e.*, the known class

¹Some existing multi-class detection methods have strong assumptions, and we summarized them in baselines (§ 7.1).

²In ancient Greek mythology, Trident is the weapon of Poseidon, symbolizing great power. Our proposal is designed to perform powerful detection capabilities for known/unknown traffic.

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Figure 2: Illustration of coping with concept drift.

classification, fine-grained unknown class detection, and incremental model update (including *sample increments* and *class increments*). At the high level, Trident is designed with three tightly coupled components named tSieve, tScissors, and tMagnifier in Fig. 1 (notably, each component supports custom configuration to meet various users' requirements).

First, tSieve maintains a series of one-class learners for known classes. Each single-class learner is built upon only one class of data. Taking the AutoEncoder as an example, the well-trained tSieve will output a smaller reconstruction loss for the same class samples, while outputting a large loss for other classes. Then, tScissors is responsible for deploying the outlier detection algorithm to automatically determine the threshold for each one-class learner, which decides whether per-sample is accepted or rejected by tSieve. If a sample is accepted by at least one learner in tSieve, it is considered a known class and tagged with the most similar label. Otherwise, those samples rejected by all learners will enter the buffer pool to further assign fine-grained new class labels through the tMagnifier clustering process.

The main benefit of such a framework is that it decouples the requirements of model capabilities, and each learner only needs to focus on one class of samples. In this way, when an emerging class arrives, only a new learner needs to be added without changing the existing learner. Meanwhile, model capability decoupling can mitigate the impact of concept drift to some extent. As shown in Fig. 2 (a), typical zero-positive learning fits a wide variety of legitimate flows, forming a generalized sample center (marked as a grey triangle). This makes it difficult to distinguish drifts of benign samples from unknown attacks, since their similarity to the center is comparable. While the one-class learning of Trident is essentially a divide-and-conquer strategy, it has more distinguishable³ for drift samples and unknown classes in Fig. 2 (b). Furthermore, if there is concept drift in any class, just incrementally update its learner and outlier threshold based on drift samples to complete the adaptation, i.e., completing sample increments.

In summary, this paper makes three key contributions.

- We carefully examine the problems of current anomalybased NIDSs in the real world and summarize them as two key challenges. To facilitate addressing the above issues, we propose Trident, a universal framework for fine-grained traffic detection.
- We design three tightly coupled components (tSieve, tScissors, tMagnifier) for Trident, thereby realizing the known class classification, fine-grained unknown class detection,

173 174 175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and incremental model update simultaneously. Notably, they all support the customized configuration.

 Through experiments, we demonstrate that Trident significantly outperforms previous methods. Meanwhile, we conduct a series of additional experiments to show its superior stability, scalability, and practicality.

2 ASSUMPTIONS AND PROBLEM SPACE

2.1 Threat Model and Assumptions

Adversary Model. We consider unknown intrusions such as zeroday attacks that exist in real-world scenarios. In other words, strong adversaries will adopt the emerging attack strategies that are previously unseen by victims, including variants of the existing attacks or brand new ones. Therefore, it is hard to have any prior data about these unforeseen attacks. Moreover, the traffic of known types is not set in stone. Therefore, the problem of concept drift is within the scope of consideration. In addition, we mainly focus on *encrypted traffic analysis* in this paper, since the transmission content is increasingly being encrypted in existing networks, such as SSL/TLS and SSH. Concretely, we tend to characterize traffic behavior by portraying packet field distribution rather than analyzing transmission content, *e.g.*, TCP Payload.

Assumptions. We assume there is no prior knowledge when suffering unprecedented attacks in practice. We are also not aware of how many types of unknown attacks exist in the collected traffic samples in advance. Meanwhile, we do not assume additional collaborations from other Internet entities, such as IP blacklists provided by security vendors. In addition, multiple unknown attacks may be launched at the same time or may appear alternately. That is to say, we do not make assumptions about the distribution of attacks.

2.2 **Problem Formulation**

We provide precise definitions of two critical challenges.

Fine-Grained Unknown Attack Detection. Given a prior dataset Stra, consisting of samples from benign traffic B and known cyber attacks $\{A_k^1, A_k^2 \cdots A_k^n\}$, where *n* refers to the number of known classes. And we use S_{tra} as the training set to fit the model M. When deploying M in practice, it will encounter the open-world tests et include: (i) samples ${\cal S}_k$ with the ground-truth labels from $\{B, A_k^1, A_k^2 \cdots A_k^n\};$ (ii) instances of emerging classes $\{A_u^1, A_u^2 \cdots A_u^m\},$ where m denotes the number of unknown classes, and m is unknown to us in advance. The fine-grained unknown attack detection refers to: M can identify the specific-attack labels of test samples, *i.e.*, the sample prediction result is $B, A_k^1, A_k^2, A_u^1, A_u^2$, or others⁴. Incremental Update. The requirements of incremental updates include two parts: sample increments and class increments. For sample increments, it refers to the model adapting to new instances without retraining the whole architecture. This capability stems from two considerations, for one thing, the business scenario changes will cause different manifestations of legitimate traffic (e.g., the traffic of

³It refers to that for a one-class learner, the unknown-class instances tend further away from the single-class sample center than the drift sample.

⁴Note that the model marks the attack with a series of fine-grained codenames (*e.g.*, "new attack 1", "new attack 2"), rather than naming each attack (*e.g.*, "Heartbleed"). We aim to automatically detect unknown attacks and distinguish their types from each other in this work, which benefits network operators to analyze and further deploy countermeasures. The specific attack names can be given by the security communities, just like we could also call "Heartbleed" as "Buffer over-read".

streaming media and chatting would be very different). For another, sample increments could also be used to adapt to the concept drift of attack (such as some attacks changing over time, making the previous attack traffic somewhat outdated).

Regarding class increments, it is actually an inevitable problem for fine-grained detection, and it is also a major difference between us and existing work. When a new type of attack A_u^* is detected, we hope to add it to the knowledge base to strengthen the model's capability. In other words, the updated model can detect A_u^* just like supervised classification in the future. This is a challenging task that cannot be achieved by most existing works.

3 TRIDENT FRAMEWORK OVERVIEW

In this section, we depict a high-level workflow of Trident, including the key building blocks of each component. Most typical schemes are either supervised learning for multi-class classification or binary classification anomaly detection. We architecture Trident as a novel framework to decouple the requirements of model capabilities. The overall process includes three parts: one-class learning, outlier determination, and fine-grained label assignment.

One-Class Learning. First, unlike typical models, Trident main-tains a collection of one-class learners, each of which corresponds to a traffic type one-to-one. Each learner is only responsible for reconstructing the corresponding type of traffic data, and the learn-ers are independent of each other. Therefore, when a test sample arrives, each learner outputs its reconstruction loss and decides to accept or reject this instance. The instance that cannot be accepted by any learner is considered the new class, otherwise, it will be assigned as the most similar class among all accepted learners.

Outlier Determination. Then, determining the outlier threshold is to help the learner decide whether to accept or reject an instance. In particular, each one-class learner has its own outlier threshold, independent of each other. The determination method is mainly based on the analysis of previous data, and the specific threshold is manually preset or obtained by probability and statistics.

Fine-Grained Label Assignment. The need for fine-grained labels includes both known and unknown classes. For known classes, the labels will be jointly derived from the results of multiple learners, as described above. Those samples that are not accepted by any learner refer to unknown classes and will enter the buffer. In the buffer, all unknown classes are assigned labels through a series of unsupervised strategies. Finally, samples are labeled as specific known types or fine-grained unknown classes. Noteworthy, these detected unknown classes can be used to build new one-class learners, given that Trident supports class increments.

4 TSIEVE: ONE-CLASS LEARNING

In this section, we provide three model architectures to perform the one-class learning task. Each model architecture corresponds to its unique feature vector extraction, but all are based on the traffic session with the 5-tuple index, *i.e.*, {*Source IP*, *Source Port*, *Destination IP*, *Destination Port*, *Protocol*}.

4.1 AutoEncoder

Feature Extraction. For AutoEncoder, Table 4 shows the feature generated for each bi-directional flow. It characterizes the traffic in

Figure 3: The AutoEncoder architecture in Trident.

terms of temporal, volumetric, and header-field distributions. Specifically, including (i) the protocol coding with one dimension. (ii) The count of a series of flags from layers 1-4 (such as IP Fragment, TCP Flags) in three situations (forward, backward, and bidirectional), which is 33 dimensions. (iii) The 72-dimensional statistical results (*i.e., max, min, mean,* and *std*) for several transport-functional fields (*i.e.,* TTL, window size) in three situations about direction. In general, all features are either *int* or *float* types.

Model Architecture. A vanilla design is directly using the typical AutoEncoder (AE) as the one-class learner. However, deep layers in this typical architecture may lose some feature information. To this end, we add the tensor from the encoder to the corresponding layer in the decoder, so as to preserve more semantic information in different tiers. The model architecture is shown in Fig. 3, which is somewhat similar to U-Net [45] (a convolutional network). It contains an encoder and a decoder, which are symmetrical to each other. For example, in the encoder, the *d*-dimension input is concatenated with four fully connected layers (with the ReLU activation), in which the corresponding feature vectors are $F_v \rightarrow E_1 \rightarrow E_2 \rightarrow E_3 \rightarrow E_4$ and the dimensions refer $d \rightarrow 256 \rightarrow 128 \rightarrow 64 \rightarrow 32$. Notably, the decoder part will cascade the intermediate output of the encoder for addition operation (denote as the blue arrow in Fig. 3). For instance, D_2 can be calculated by $D_2 = ReLU(Linear(D_3 + E_3))$. Such an addition operation preserves richer features at each level to alleviate information loss during reconstruction. Meanwhile, we employ mean squared error (MSE) as the loss function since the per-learner is essentially performing the data reconstruction. Empirically, a well-trained learner will output a smaller MSE loss for same-class samples, while data of different classes will lead to a larger loss.

4.2 Recurrent Neural Network

Features Extraction. For input to the Recurrent Neural Network (RNN) model, we extract the packet field from the raw traffic and expand the feature according to time to form sequences. Subsequently, all feature vectors are pruned or padded to *T* time steps. Per-packet feature vector consists of packet length, direction, the interval of arrival time, and values of fields in the packet header, *e.g.*, TTL (Time To Live), TCP flags, TCP window size, and SSL/TLS

Figure 5: The bipartite graph representation.

fields. Therefore, a sample can be denoted as $x = [L_1, L_2, ..., L_T]$, where *T* is the time steps and $L_i \in \mathbb{R}^d$ is the *d*-dimensional packet feature at time step *i*. Such feature extraction is similar to most sequence-based methods, except that we focus on more fields (such as SSL/TLS) than just packet length and timestamp [34, 70].

Model Architecture. To accomplish data reconstruction as a oneclass learner, we consider a representative Seq2Seq model [55]. The model architecture (more details in § A.2) is shown in Fig. 4, it consists of an encoder and a decoder of equal length. We cascade an *embedding layer* between the input and the RNN unit to reduce the impact of feature values, given different feature fields may have different value ranges. Formulaically, the x_i in each time step will go through the embedding layer to obtain e_i and then be fed to the encoder's RNN unit U_{RNN}^E . The hidden state output of the RNN unit is passed at different time steps. Afterward, the hidden state for the last time step of the encoder will be fed to the decoder as the initial state. The input to the decoder is the output of the previous time step (except for the first time step), with the hidden state passed. We collect the outputs e_i^* of decoder units U_{RNN}^D at all time steps. The reconstruction loss is still calculated with MSE, *i.e.*,

$$\mathcal{L} = \sum_{i=1}^{n} \sqrt{(e_i^2) - (e_i^*)^2}$$
(1)

4.3 Graph Model

Features Extraction. The third model is a graph-based approach. To this end, we develop a novel session graph construction to ex-tract features. As Fig. 5 displays, it considers the bidirectional traffic interaction between the client and server. We aggregate those adja-cent packets in the same direction, forming an edge that includes the aggregated bytes. Based on such a process, the nodes are dis-tributed on either the client or server. In the end, a bipartite graph can be obtained, which is characterized in that the points of the client and the client will not be connected, and the same applies to the server. An example of packet aggregation can be found at the bottom of Fig. 5, two TCP payload packets with a length of 1,398 are aggregated to form an edge with 2,796 bytes. Thus, the feature vector of a node includes three elements, i.e., [received bytes, sent bytes, duration]. The advantage of such data representation is that it has robustness, e.g., it can alleviate the influence of changes from the Content Delivery Network (CDN) and Maximum Transmission Unit (MTU) on traffic analysis.

Model Architecture. For the above bipartite graph, we employ
the U-Net-like GNN architecture [45], which is depicted in Fig. 6
(more details in § A.3). Among the model input, the traffic graph

Figure 6: The GNN architecture in Trident.

G can be represented by the adjacency matrix $A \in \mathbb{R}^{N \times N}$ and the feature matrix $X \in \mathbb{R}^{N \times C}$, where *C* and *N* represent the nodes' feature dimension and number, respectively. Also, each row vector $X_i = [x_i^0, x_i^1, \dots, x_i^C]$ in the feature matrix *X* denotes the feature vector of node *i* in the graph. During the encoder stage, the node feature vectors are first transformed into low-dimensional representations using a GCN layer. After that, two encoder blocks are performed, each of which contains a gPool layer [15] and a GCN layer. Correspondingly, there are two decoder blocks in the decoder part, and each block consists of a gUnpool layer [15] and a GCN layer. For blocks at the same level, the encoder block uses a skip connection to fuse the low-level spatial features from the encoder block. Finally, the output feature vectors $X'_i \in X'$ of nodes in the last layer are network embedding, which can be used for computing the reconstruction loss \mathcal{L} .

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{j=1}^{C} \sqrt{(x'_{ij})^2 - (x_{ij})^2}$$
(2)

4.4 Incremental Update

Sample-Level Incremental Update. To adapt to new samples, we don't need to retrain the model, and only perform model generalization at the sample level. A strawman design might be to combine old data with new instances for model updates. The potential problem with this solution is that the scale of the data will continue to expand over time, resulting in inefficiency. Therefore, we could consider selecting some representative historical data. Recall the one-class learner reconstructs samples and computes an outlier threshold for the reconstruction loss. In order to keep the distribution of the reconstruction loss list as unchanged as possible before and after sampling, we sort the reconstruction loss list and sample them at intervals. For example, Fig. 7 (b)-(c) display the sampling strategy when setting sample rate r=0.5, 0.2 respectively, where red columns represent sampled instances. In practice, the sampling rate can be set according to user requirements. These sampled historical data are used together with new data to incrementally update one-class learner parameters.

Class-Level Incremental Update. Since each one-class learner is independent of each other, the update operation can be conveniently performed. Using each new class to build the corresponding one-class learner and populate the learner list and threshold list, as shown in lines 1~7 in Algorithm 2. After updating, the new class can then be viewed as the known class. Overall, due to learners corresponding to classes one by one, building learners for new classes

Anon

WWW '24, May 13-17, 2024, Singapore

Figure 7: Sampling according to reconstruction loss.

is incremental-manner. Meanwhile, the special advantage of this framework for model construction is that it can be run in parallel, easy to horizontal expansion, and reduce overhead, *e.g.*, distributed to deploy those one-class learners on different computing nodes.

5 TSCISSORS: OUTLIER IDENTIFICATION

In this section, we develop some outlier identification schemes such as preset method and extreme value theory method.

Preset Method. A vanilla design is to preset the outlier ratio based on expert experience/knowledge. Given the output list L_o by a learner of length N_o , first sort it in ascending order to get L'_o . Consider a preset ratio R_p , which refers to treating the last $int(N_o \times R_p)$ data in L'_o as outliers. In other words, the threshold is the outlier boundary, *i.e.*, $L'_o[int(N_o \times R_p)]$. Actually, some similar work involving outlier detection methods are preset methods. For example, in the adversarial example detection landscape, many works construct a series of metrics to score inputs and use preset outlier thresholds to distinguish normal instances and adversarial examples [39, 64, 67]. The advantage of the preset method is that it is convenient and prone to implement, but the limitation is that it needs to be manually set and sometimes lacks flexibility.

Extreme Value Theory Method. To solve this problem, we also leverage the Extreme Value Theory (EVT) [28] to estimate the outlier bounds. The original intention of this theory by statisticians is to study the possibility of extreme events. An elegant property of EVT is that the distribution of the extreme values is not dependent on the distribution of the data. In other words, these extreme events have the same kind of distribution, regardless of the original one, such as Frechet, Gamma, and Uniform distributions [51]. For specific details that utilize EVT to estimate thresholds, refer to § B.

TMAGNIFIER: LABEL ASSIGNMENT

We elaborate here on the process for fine-grained label assignment. **Known Class Classification.** Algorithm 1 describes the procedure for label assignment. Consider a trained one-class learner list L_p and its threshold list L_t , each test sample will traverse each learner to obtain reconstruction loss. If the reconstruction loss is less than the threshold, the class of this learner will be considered as a potential candidate (in line 8). Naturally, the instance that cannot match any of the learners is regarded as a new class (line 10). On the contrary, there is at least one learner that can cover the sample, *i.e.*, $len(M_c) \ge 1$, the class of the learner with the smallest reconstruction loss will be used as the prediction result (lines 12~13).

Unknown Class Identification. For new-class samples in the buffer pool \mathcal{B} , we leverage the clustering algorithm to perform finegrained identification. Since we cannot know in advance how many unknown classes there are, a scheme such as K-means [19] that

equire: The test dataset S , the known-class one-class learner list	L_p , and
corresponding threshold list L_t , buffer \mathcal{B}	
nsure: y - class label for each $x \in S$	
1: Initialize prediction list <i>Result</i> = [], temporary lists R_k and F_k	(u
2: for $x \in S$ do	
for $p \in L$ do	
F: Colculate reconstruction loss $L \leftarrow p_i(r)$	
$\Delta present l to l$	
7: end for	
Candidate $M_c = \operatorname{array}(L_r)[\operatorname{array}(L_r) < \operatorname{array}(L_t)]$	
$if len(M_c) == 0 then$	
$\beta \leftarrow \mathcal{B} \cup x$	
1: else	
2: Select $class_j$ s.t. $L_r[class_j] == min(M_c)$	
Apeend $class_j$ label to R_k	
4: end if	
5: end for	
5: Fine-grained new class results $R_u \leftarrow Clustering(\mathcal{B})$	
7: $Result = R_k \cup R_u$	
3: return Result	
$ \begin{array}{c} s_{0} \\ = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $) r 2

Algonithm 1 Label Assignment

Figure 8: Unknown class identification.

needs to set the number of clusters is not suitable. DBSCAN [9] is an optional solution. However, DBSCAN also needs to set parameters, such as eps or min_samples. Therefore, we intend to cluster with various parameters and integrate the results to achieve relatively stable results. The process of ensemble clustering (Num clustering models) is as follows. Considering the ${\mathcal B}$ sample set, we construct an adjacency matrix A_c to record the results of Num clustering algorithms. For example, if $A_c[i, j] = \Delta$, it refers to Δ clustering algorithms to cluster samples x_i and x_j into one cluster, where $x_i, x_j \in \mathcal{B}$ and $\Delta \leq Num$. As shown in Fig. 8, we need to generate the integrated results of the ensemble clustering according to A_c . The key is to determine a cut point to filter out the smaller values in the matrix, and thereby find the connected subcluster. Therefore, we can traverse the cut points from 0 to Num and calculate the silhouette coefficient [47], then select the cut point when the silhouette coefficient is the largest.

7 EVALUATION

We comprehensively evaluate Trident, with code available online (anonymous repository https://github.com/WWW-rep/Trident/).

7.1 Experiment Setup

Datasets. A series of public datasets are used for evaluation as follows. (i) **USTC-TFC2016** dataset [57] includes network traffic from two parts, *i.e.*, malware and benign. Among them, ten types of malware traffic from public websites are collected from real-world

Table 1: The supervised evaluation results.

Dataset	USTC		Tor		IDS		CrossNet	
Model	ACC	F1	ACC	F1	ACC	F1	ACC	F1
nPrint	95.68	89.75	99.50	93.37	99.86	99.62	93.89	91.58
FlowPic	76.88	73.57	94.82	89.62	99.22	99.24	74.38	72.45
FlowLens	86.91	84.34	98.76	91.38	98.55	91.09	83.22	81.41
ERNN	90.18	88.72	98.10	96.15	98.50	97.19	86.64	85.12
ET-BERT	94.51	90.26	95.69	92.70	99.93	99.63	91.22	88.45
Trident (AE)	95.65	91.20	94.13	89.01	99.70	99.29	92.30	90.61
Trident (RNN)	92.38	89.64	99.38	97.02	99.93	99.57	91.17	87.20
Trident (GNN)	94.32	90.07	97.30	94.51	99.62	99.34	94.51	92.36

connections. Also, benign traffic from 10 categories of applications, *e.g.*, Facetime, Skype, Weibo, was captured by the network traffic simulator called IXIA BPS. (ii) ISCXTor2016 dataset [27] consists of network traffic involving 8 classes, *i.e.*, Email, Chat, FTP, etc, was captured using tcpdump, including 22GB of data. (iii)
IDS2017&2018 datasets [11, 12] uses a proposed B-Profile system to profile the normal and intrusion behavior, including DoS/DDoS, Brute Force, Infiltration, etc. Also, they contain more than tens of millions of traffic instances based on a series of protocols, in which the packets are captured across several days involving various operating systems. (iv) CrossNet2021 dataset [30] contains traffic data from 20 categories of applications such as 360, Sougou, and CSDN in two practical scenarios, *i.e.*, stable and production networks. The traffic was captured using tcpdump, including 2.5GB of data.

Baselines. We use 16 models involving supervised, unsupervised, and semi-supervised methods as baselines, covering state-of-the-art (SOTA) in the traffic analysis landscape. (i) Five supervised method: nPrint [20], FlowPic [49], FlowLens [4], and ET-BERT [32]. (ii) Five binary classification anomaly detection: Kitsune [41], Whisper [13], DeepLog [8], HyperVision [14], and Diff-RF [38]. (iii) Six multi-classification anomaly detection: K-means [19], DB-SCAN [9], FlowPrint [56], Cls-Anomaly [65], SENC [42], and FARE [31]. Details of these baselines can be found in Appendix C. Metrics. Two popular benchmarks are used to evaluate the performance for identifying emerging classes [31], including the clustering accuracy (ACC) and adjusted mutual information (AMI). Their upper bounds are all 1 and the larger values mean the better effect. For supervised evaluation and binary classification anomaly detection (AD) experiments, we additionally calculate the Precision (Pre), Recall (Rec), F1-score, and the Area Under Curve (AUC).

Hyperparameter Settings. The sampling rate r = 0.5 and we also evaluate r in § 7.4. For outlier threshold determination, we use the EVT method by default, and traverse settings of the preset method to produce Receiver Operating Characteristic (ROC) curve in § 7.3. For unknown class clustering, three algorithms (K-means [19], DB-SCAN [9], and DEC [60]) are used, by varying the hyper-parameters for each clustering algorithm to contribute Num = 20 models, and we vary Num to develop ablation experiments in § 7.4.

7.2 Supervised Evaluation

When all classes are known, Trident can directly construct per-class
learner. Therefore, we first compare supervised SOTA methods to
explore the known class classification effect of Trident. The classification results for the four datasets are summarized in Table 1,
including the accuracy and F1 score. In Tor and IDS datasets, Trident (RNN) presents the best performance. While Trident (AE) and

Anon.

Table 2: The binary classification anomaly detection results.

Dataset	1	US	тс			П)S	
Model	ACC	Pre	Rec	F1	ACC	Pre	Rec	F1
Kitsune	92.45	92.57	92.23	92.41	93.07	93.52	92.49	93.07
Whisper	94.32	94.83	93.77	94.30	91.20	91.12	91.28	91.21
DeepLog	92.80	92.72	92.88	92.80	91.12	91.26	90.93	91.09
HyperVision	96.67	97.28	96.04	96.66	95.32	95.85	94.76	95.31
Diff-RF	93.55	94.36	92.72	93.53	92.25	92.98	91.43	92.19
Trident (AE)	97.25	97.26	97.29	97.27	95.45	95.09	94.91	95.00
Trident (RNN)	94.95	94.81	95.08	94.94	96.02	96.09	95.94	96.01
Trident (GNN)	96.45	96.73	96.21	96.47	93.55	93.31	93.76	93.53
1.0 10.0 1			Itsune hisper eepLog yperVision iff:RF ident (AE) ident (RNN) ident (GNN)	1.0 - 0.0 -	V			 Kitsune Whisper DeepLog HyperVision Diff:RF Trident (AE) Trident (ANN) Trident (GNN)
0.0 0.1 Fa	0.2 Ise positive	0.3 rate	0.4	0.0	0 0.	1 0 False posit	.2 tive rate	0.3
(a) ROC	of detecting	USTC datas	et		(b) R(OC of detec	ting IDS da	taset

Figure 9: ROC of binary classification anomaly detection.

Trident (GNN) are prominent in USTC and CrossNet datasets, respectively. Sometimes nPrint has a slight advantage in accuracy, but the difference is only ~0.1%. Noteworthy, Trident achieves the superior F1 score, which indicates that Trident is hardly affected by data imbalance (in contrast, nPrint's F1 score drops a lot). Overall, the classification performance of Trident for known classes is competitive compared to supervised SOTA methods.

7.3 Binary Classification Anomaly Detection

Then, we evaluate the binary classification anomaly detection methods. Since these methods only distinguish between "benign" and "abnormal", we also change the output of Trident to "0" or "1" for a fair comparison, that is, not to distinguish the specific type of attack. Two attack-related datasets (USTC and IDS) are used to evaluate, only using their benign traffic to train for both the baseline and Trident. From Table 2, the detection results refer to Trident (AE) > HyperVision > Trident (GNN) > Trident (RNN) > Whisper > Diff-RF > DeepLog > Kitsune for USTC dataset and Trident (RNN) > Trident (AE) > HyperVision > Trident (GNN) > Kitsune > Diff-RF > Whisper > DeepLog for IDS dataset. This may be attributed to different attacks (datasets) corresponding to different optimal feature extraction and detection models. Nevertheless, Trident achieves the best binary anomaly detection performance in terms of accuracy, precision, recall, and F1 score. Moreover, we vary the detection threshold for each model to plot ROC curves in Fig. 9. According to Fig. 9 (a)-(b), we observe that Trident has fewer false positives while achieving a high true positive rate.

7.4 Multi-Classification Anomaly Detection

Class Increments. In this section, we evaluate the capability of Trident by varying $N_k:N_u$ (representing the number of known and unknown classes). We set $N_k:N_u = \{20:0, 16:4, 12:8, 8:12, 4:16, 0:20\}$ for USTC and CrossNet datasets and set $N_k:N_u = \{8:0, 6:2, 4:4, 2:6, 0:8\}$ for IDS and Tor datasets. The AMI results are shown in Fig. 10, it is clear that as the number of unknown classes increases, Trident significantly outperforms other baselines. For instance, to detect the USTC dataset in Fig. 10 (a), when all classes are known, the performance gap is not very big, *e.g.*, the AMI of Trident is slightly higher than FlowPrint by ~2%. However, with more unknown classes, the

WWW '24, May 13-17, 2024, Singapore

(c) AMI of detecting CrossNet dataset

(d) AMI of detecting Tor dataset

Figure 10: Evaluation in different known/unknown proportions.

Figure 11: Multi-classification detection results of varying different sampling rates when performing sample increments.

Table 3: The ACC (%) results with different Num settings.

Cluster model Num		5	10	20	50	100
s.	Trident (AE)	80.44	83.95	86.26	88.42	88.73
ros	Trident (RNN)	79.25	81.67	84.68	86.97	87.79
0	Trident (GNN)	81.52	85.02	87.42	89.35	89.98
	Trident (AE)	82.85	87.32	89.82	92.21	92.74
To	Trident (RNN)	86.02	89.74	92.53	94.15	94.52
	Trident (GNN)	84.02	88.74	91.20	93.28	93.45

advantage of Trident becomes more obvious. When all classes are unknown, Trident outperforms other methods by ~10%. Particularly, DBSCAN does not require training, and its detection results are similar in different known/unknown proportions, *i.e.*, always less than 60% of AMI.

Sample Increments. With $N_k = 0$, we vary the sampling rate r when performing sample-level incremental updates, the detection results for USTC and IDS datasets are summarized in Fig. 11. It is clear that as the sampling rate increases, the AMI results gradually increase. Therefore, if space overhead allows, we could tend to select more samples for updates.

Hyperparameter Evaluation. We also vary the cluster model *Num* to perform ablation experiments for $N_k = 0$. As Table 3 shown, from *Num* = 5 to *Num* = 50, the accuracy increases significantly. When *Num* = 100, the ACC change is relatively slight. Overall, Trident maintains solid performance with different parameter settings.

7.5 Concept Drift Evaluation

⁶ Concept drift is an unavoidable problem in anomaly detection systems, and we evaluate two scenarios *time bias* and *scenario bias*.
 ⁸ **Time Bias.** We conduct the time bias experiment by setting IDS2017
 ⁹ for training and using IDS2018 for testing, thereby exploring whether

the traffic drifts over time will cause the failure of model detection.
Fig. 12 (a)-(c) show the detection results for supervised, binary classification AD, and multi-classification AD models. In subfigure (a),
we can see that ERNN is the best performer in the baseline because

it considers network packet loss, retransmission, and out-of-order phenomena when building the model. Other supervised baselines are greatly affected by time bias. Nevertheless, our framework shows better robustness, *e.g.*, Trident (RNN) is still able to achieve 96.71% ACC. For binary classification AD in subfigure (b), the impact of concept drift is less severe, since these are trained with only benign traffic in this setting and the impact on the model training process is limited. Trident still maintains the best performance under the binary classification AD setting. As for multi-classification AD, most of the models fail, with FARE guaranteeing an AMI of ~70% and others below 60%. In this setting, Trident realizes ~90% ACC and AMI, demonstrating its strong stability.

Scenario Bias. To develop the scenario bias evaluation, the Scenario A traffic is used for training and to detect Scenario B traffic from the CrossNet dataset. The two scenarios of the CrossNet dataset are collected from different network quality-of-service (QoS), such as different bandwidths and channel disturbance. The results are summarized in Fig. 12 (d)-(e). Similar to temporal bias, both the supervised and the multi-class AD models suffer to varying degrees. Also, all three model configurations of Trident outperform the baselines. Overall, the divide-and-conquer idea of Trident can effectively alleviate the impact of concept drift. In practice, we can also combine Trident with existing technologies [17] to deal with the problem of concept drift.

7.6 Overhead Evaluation

We measure the update time overhead for baseline algorithms and Trident, and the results are summarized in Fig. 13. All models run on the Ubuntu 18.04.2 server with Intel i7-12700K CPU, NVIDIA TITAN GPU, and 64 GB memory. Overall, nPrint, Whisper, Diff-RF, DBSCAN, K-means, and Hypervision are on one level (<1*ms*) since there are machine learning based methods. The deep learning model does have more time overhead (generally greater than 1*ms*). For example, the time overhead of ERNN, DeepLog, and Trident (RNN) is relatively similar since they are all RNN-related models. The most time-consuming model is ET-BERT because it is essentially a large language model with massive parameters.

8 DISCUSSION AND LIMITATIONS

Model Selection. We designed Trident as a universal framework that could support various model architectures to characterize traffic. This paper mainly includes three types of models: AE, RNN,

and GNN. We discuss here some model selection recommendations. Based on the experimental results in § 7, we observe that RNN is superior when the number of classes is small (e.g., IDS and Tor), but the performance will significantly decrease when there are more classes (refer to USTC and CrossNet datasets). When the training set and test set are identical distributions, AE is a good choice to deal with multiple categories. Compared with AE, GNN has bet-ter robustness even when there are concept drifts, this could be attributed as GNN's aggregation process alleviates the impact of changes from CDN and MTU on traffic (echo back § 4.3). Over-all, users could choose desired model architectures or customize extensions/variants to cater to specific requirements.

Attack Category Recovery. When identifying fine-grained labels for unknown classes, it could occur to overestimate or un-derestimate the attack categories. A main reasons refer to he ex-tracted protocol features have different granularities. For example, some customers may need to distinguish between different HTTP flooding and some may not. Therefore, building a customized clas-sification scheme in the output layer according to different needs may be beneficial to promoting Trident to widespread use. We will investigate these to advance the practicality of Trident.

Limitations and Future Works. Our work has a few limitations. First, different customers may require various detection granularity, the future work may consider a customized scheme, e.g., change the output layer of tSieve in Trident. Second, applying the automated feature extraction and model parameters tuning into Trident will lead in a good direction. Third, to provide customers with more reliable protection, the powerful adversary using a combination of multiple attacks needs to be further studied. Finally, as part of future work, we would explore which components could run in parallel to maximize efficiency.

RELATED WORK

Besides SOTA baselines in § 7.1, we list briefly some related work. NIDS with Known Attacks Classification. To classify known attacks, some works [2, 35, 48, 49, 62, 63] design NIDSs based on statistical features by supervised learning methods [21, 43, 53, 68, 71], e.g., random forests, deep neural networks. Some other arts utilize Markov [26, 33, 50] or recurrent neural networks [6, 34] to portray sequential features (e.g., packet length sequence). While these methods are less suitable for detecting unknown attacks.

NIDS with Unknown Attacks Detection. These methods mainly involve three types of technologies: unsupervised, semisupervised, and zero-shot learning. (i) Unsupervised learning methods such as clustering algorithms (e.g., K-means [19], DBSCAN [9], and CSPA [54]) have been applied to identify outliers in network traffic. They are also known as "zero-positive" learning [7, 18] due to solely using benign samples for training. (ii) Semi-supervised learning methods such as Cls-Anomaly [65], FARE [31], and SENC [42] are usually composed of unsupervised and supervised learning. (iii) Zero-shot learning methods (ZSL) have been used to classify unknown classes in NIDS [44]. With the non-incremental learnability, and the need for rich "side information" to construct the feature mapping, ZSL methods are not suitable for our problem. Overall, their focus is different from ours, Trident devotes to fine-grained unknown class detection and ever-changing traffic adaption in an incremental manner.

Some Recent Advances for NIDS. Security communities propose a series of advanced research directions including: solutions based on programmable switches [4, 25, 37, 61, 69] to adapt to highspeed bandwidth. Leveraging formal verification to analyze the security of NIDS [58, 59, 72]. And some research devoted the automated characterization [20] and interpretability for NIDS [18, 40].

CONCLUSION

This paper presents Trident, a fine-grained traffic analysis framework towards identifying both known/unknown attack types, as well as adapting to variable traffic in an incremental manner. Based on our proposed framework, we implement three model architectures and extensively evaluate them on four public datasets. Moreover, we produce a series of experiments for Trident in terms of supervised, binary classification AD, and multi-classification AD. The results demonstrate the effectiveness and robustness of Trident outperforming existing SOTA methods.

Anon

WWW '24, May 13-17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043 1044

929 **REFERENCES**

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

- August A. Balkema and Laurens De Haan. Residual life time at great age. The Annals of probability, pages 792–804, 1974.
- [2] Chadi Barakat, Patrick Thiran, Gianluca Iannaccone, Christophe Diot, and Philippe Owezarski. Modeling internet backbone traffic at the flow level. *IEEE Trans. Signal Process.*, 51(8):2111–2124, 2003.
- [3] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. Transcending TRANSCEND: revisiting malware classification in the presence of concept drift. In *IEEE Symposium on Security and Privacy*, pages 805–823. IEEE, 2022.
- [4] Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello, Fernando M. V. Ramos, and André Madeira. Flowlens: Enabling efficient flow classification for ml-based network security applications. In NDSS. The Internet Society, 2021.
- [5] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.
- [6] Florin Ciucu, Felix Poloczek, and Jens B. Schmitt. Sharp per-flow delay bounds for bursty arrivals: The case of fifo, sp, and EDF scheduling. In *INFOCOM*, pages 1896–1904. IEEE, 2014.
- [7] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. Lifelong anomaly detection through unlearning. In CCS, pages 1283–1297. ACM, 2019.
- [8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In CCS, pages 1285–1298. ACM, 2017.
- [9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226–231. AAAI Press, 1996.
- [10] FireEye. M-trends reports: Insights into today's breaches and cyber attacks. https://content.fireeye.com/m-trends/rpt-m-trends-2020, 2020.
- [11] Canadian Institute for Cybersecurity. Cse-cic-ids2018 on aws. [EB/OL], 2018. https://www.unb.ca/cic/datasets/ids-2018.html Accessed November 27, 2020.
- [12] Canadian Institute for Cybersecurity. Intrusion detection evaluation dataset (cicids2017). [EB/OL], 2018. https://www.unb.ca/cic/datasets/ids-2017.html Accessed November 27, 2020.
- [13] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime robust malicious traffic detection via frequency domain analysis. In CCS, pages 3431–3446. ACM, 2021.
- [14] Chuanpu Fu, Qi Li, and Ke Xu. Detecting unknown encrypted malicious traffic in real time via flow interaction graph analysis. In NDSS. The Internet Society, 2023.
- [15] Hongyang Gao and Shuiwang Ji. Graph u-nets. In ICML, volume 97 of Proceedings of Machine Learning Research, pages 2083–2092. PMLR, 2019.
- [16] Scott D Grimshaw. Computing maximum likelihood estimates for the generalized pareto distribution. *Technometrics*, pages 185–191, 1993.
- [17] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han Zhang, Zhihua Wang, Minghui Jin, Jiahai Yang, Xingang Shi, and Xia Yin. Anomaly detection in the open world: Normality shift detection, explanation, and adaptation. In NDSS. The Internet Society, 2023.
- [18] Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong, Su Wang, Han Zhang, Jiahai Yang, Xingang Shi, and Xia Yin. DeepAID: Interpreting and Improving Deep Learning-based Anomaly Detection in Security Applications. In CCS, pages 3197–3217. ACM, 2021.
- [19] John A Hartigan and Manchek A Wong. A k-means clustering algorithm. Journal of the royal statistical society. series c (applied statistics), 28(1):100-108, 1979.
- [20] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. New directions in automated traffic analysis. In CCS, pages 3366–3383. ACM, 2021.
- [21] Guodong Huang, Chuan Ma, Ming Ding, Yuwen Qian, Chunpeng Ge, Liming Fang, and Zhe Liu. Efficient and low overhead website fingerprinting attacks and defenses based on TCP/IP traffic. In WWW, pages 1991–1999. ACM, 2023.
- [22] James Pickands III. Statistical inference using extreme order statistics. The Annals of Statistics, pages 119–131, 1975.
- [23] Peipei Jiang, Qian Wang, Muqi Huang, Cong Wang, Qi Li, Chao Shen, and Kui Ren. Building in-the-cloud network functions: Security and privacy challenges. *Proc. IEEE*, 109(12):1888–1919, 2021.
- [24] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting concept drift in malware classification models. In USENIX Security Symposium, pages 625–642. USENIX Association, 2017.
- [25] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo. Programmable in-network security for context-aware BYOD policies. In USENIX Security Symposium, pages 595–612. USENIX Association, 2020.
- [26] Maciej Korczynski and Andrzej Duda. Markov chain fingerprinting to classify encrypted traffic. In INFOCOM, pages 781–789. IEEE, 2014.
- [27] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and Ali A. Ghorbani. Characterization of tor traffic using time based features. In ICISSP, pages 253–262. SciTePress, 2017.
- [28] Nicole A. Lazar. Statistics of extremes: Theory and applications. *Technometrics*, 47(3):376–377, 2005.

- [29] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon Ahn, and Fuqiang Zhang. vnids: Towards elastic security with safe and efficient virtualization of network intrusion detection systems. In CCS, pages 17–34. ACM, 2018.
- [30] Wenhao Li, Xiao-Yu Zhang, Huaifeng Bao, Haichao Shi, and Qiang Wang. Prograph: Robust network traffic identification with graph propagation. *IEEE/ACM Trans. Netw.*, pages 1–15, 2022.
- [31] Junjie Liang, Wenbo Guo, Tongbo Luo, Vasant Honavar, Gang Wang, and Xinyu Xing. FARE: enabling fine-grained attack categorization under low-quality labeled data. In NDSS. The Internet Society, 2021.
- [32] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. ET-BERT: A contextualized datagram representation with pre-training transformers for encrypted traffic classification. In WWW, pages 633–642. ACM, 2022.
- [33] Chang Liu, Zigang Cao, Gang Xiong, Gaopeng Gou, Siu-Ming Yiu, and Longtao He. MaMPF: Encrypted Traffic Classification Based on Multi-Attribute Markov Probability Fingerprints. In *IWQoS*, pages 1–10. IEEE, 2018.
- [34] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. Fs-net: A flow sequence network for encrypted traffic classification. In *INFOCOM*, pages 1171– 1179. IEEE, 2019.
- [35] Fangming Liu, Jian Guo, Xiaomeng Huang, and John C. S. Lui. eBA: Efficient Bandwidth Guarantee Under Traffic Variability in Datacenters. *IEEE/ACM Trans. Netw.*, 25(1):506–519, 2017.
- [36] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In *ICDM*, pages 413–422. IEEE Computer Society, 2008.
- [37] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A highperformance switch-native approach for detecting and mitigating volumetric dos attacks with programmable switches. In USENIX Security Symposium, pages 3829–3846. USENIX Association, 2021.
- [38] Pierre-Francois Marteau. Random partitioning forest for point-wise and collective anomaly detection - application to network intrusion detection. *IEEE Trans. Inf. Forensics Secur.*, 16:2157–2172, 2021.
- [39] Dongyu Meng and Hao Chen. Magnet: A two-pronged defense against adversarial examples. In CCS, pages 135–147. ACM, 2017.
- [40] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and Hongxin Hu. Interpreting deep learning-based networking systems. In SIGCOMM, pages 154–171. ACM, 2020.
- [41] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An ensemble of autoencoders for online network intrusion detection. In NDSS. The Internet Society, 2018.
- [42] Xin Mu, Kai Ming Ting, and Zhi-Hua Zhou. Classification under streaming emerging new classes: A solution using completely-random trees. *IEEE Trans. Knowl. Data Eng.*, 29(8):1605–1618, 2017.
- [43] Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick Kim. Appsniffer: Towards robust mobile app fingerprinting against VPN. In WWW, pages 2318–2328. ACM, 2023.
- [44] Jorge Luis Rivero Pérez, Bernardete Ribeiro, Ning Chen, and Fátima Silva Leite. A grassmannian approach to zero-shot learning for network intrusion detection. In ICONIP (1), volume 10634 of Lecture Notes in Computer Science, pages 565–575. Springer, 2017.
- [45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *MICCAI (3)*, volume 9351 of *Lecture Notes in Computer Science*, pages 234–241. Springer, 2015.
- [46] Christian Rossow. Amplification hell: Revisiting network protocols for ddos abuse. In NDSS. The Internet Society, 2014.
- [47] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal of computational and applied mathematics*, 20:53–65, 1987.
- [48] Avirup Saha, Niloy Ganguly, Sandip Chakraborty, and Abir De. Learning network traffic dynamics using temporal point process. In *INFOCOM*, pages 1927–1935. IEEE, 2019.
- [49] Tal Shapira and Yuval Shavitt. Flowpic: Encrypted internet traffic classification is as easy as image recognition. In *INFOCOM Workshops*, pages 680–687. IEEE, 2019.
- [50] Meng Shen, Mingwei Wei, Liehuang Zhu, and Mingzhong Wang. Classification of Encrypted Traffic With Second-Order Markov Chains and Application Attribute Bigrams. *IEEE Trans. Inf. Forensics Secur.*, 12(8):1830–1843, 2017.
- [51] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët. Anomaly detection in streams with extreme value theory. In KDD, pages 1067– 1075. ACM, 2017.
- [52] Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for network intrusion detection. In *IEEE Symposium on Security and Privacy*, pages 305–316. IEEE Computer Society, 2010.
- [53] Zhuoxue Song et al. I2rnn: An incremental and interpretable recurrent neural network for encrypted traffic classification. *IEEE Transactions on Dependable* and Secure Computing, 2023.
- [54] Alexander Strehl and Joydeep Ghosh. Cluster ensembles A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res., 3:583–617, 2002.

- [55] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In NIPS, pages 3104–3112, 2014.
- with neural networks. In *NIPS*, pages 3104–3112, 2014.
 Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J. Dubois, Martina Lindorfer, David R. Choffnes, Maarten van Steen, and Andreas Peter. Flowprint: Semi-supervised mobile-app fingerprinting on encrypted network traffic. In *NDSS*. The Internet Society, 2020.
 - [57] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. Malware traffic classification using convolutional neural network for representation learning. In *ICOIN*, pages 712–717. IEEE, 2017.
- [58] Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian, Chengyu Song, Srikanth V. Krishnamurthy, Kevin S. Chan, and Tracy D. Braun. Symtcp: Eluding stateful deep packet inspection with automated discrepancy discovery. In NDSS. The Internet Society, 2020.
- [59] Zhongjie Wang, Shitong Zhu, Keyu Man, Pengxiong Zhu, Yu Hao, Zhiyun Qian, Srikanth V. Krishnamurthy, Tom La Porta, and Michael J. De Lucia. Themis: Ambiguity-aware network intrusion detection based on symbolic model comparison. In CCS, pages 3384–3399. ACM, 2021.
- [60] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep embedding
 for clustering analysis. In *ICML*, volume 48 of *JMLR Workshop and Conference Proceedings*, pages 478–487. JMLR.org, 2016.
 - [61] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple: A programmable, decentralized link-flooding defense against adaptive adversaries. In USENIX Security Symposium, pages 3865–3881. USENIX Association, 2021.
- [62] Congyuan Xu, Jizhong Shen, and Xin Du. A Method of Few-Shot Network Intrusion Detection Based on Meta-Learning Framework. *IEEE Trans. Inf. Forensics Secur.*, 15:3540–3552, 2020.
- [63] Fengli Xu, Yong Li, Huandong Wang, Pengyu Zhang, and Depeng Jin. Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment. *IEEE/ACM Trans. Netw.*, 25(2):1147–1161, 2017.
 [64] Weilin Yu, David Evane, and Vanim Oi Feature Scale region. Detecting adversarial
 - [64] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural networks. In NDSS. The Internet Society, 2018.
 - [65] Jian Yang, Xiang Chen, Shuangwu Chen, Xiaofeng Jiang, and Xiaobin Tan. Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection. IEEE Trans. Inf. Forensics Secur., 16:3538–3553, 2021.
 - [66] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh, Xinyu Xing, and Gang Wang. CADE: detecting and explaining concept drift samples for security applications. In USENIX Security Symposium, pages 2327– 2344. USENIX Association, 2021.
 - [67] Yijun Yang, Ruiyuan Gao, Yu Li, Qiuxia Lai, and Qiang Xu. What you see is not what the network infers: Detecting adversarial examples based on semantic contradiction. In NDSS. The Internet Society, 2022.
 - [68] Haozhen Zhang, Le Yu, Xi Xiao, Qing Li, Francesco Mercaldo, Xiapu Luo, and Qixu Liu. TFE-GNN: A temporal fusion encoder using graph neural networks for fine-grained encrypted traffic classification. In WWW, pages 2066–2075. ACM, 2023.
 - [69] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qi Li, Mingwei Xu, and Jianping Wu. Poseidon: Mitigating Volumetric DDoS Attacks with Programmable Switches. In NDSS. The Internet Society, 2020.
 - [70] Ziming Zhao et al. ERNN: error-resilient rnn for encrypted traffic detection towards network-induced phenomena. *IEEE Trans. Dependable Secur. Comput.*, 2023.
 - [71] Ziming Zhao, Zhaoxuan Li, Jiongchi Yu, Fan Zhang, Xiaofei Xie, Haitao Xu, and Binbin Chen. Cmd: Co-analyzed iot malware detection beyond the network traffic domain. *IEEE Transactions on Mobile Computing*, 2023.
 - [72] Shitong Zhu, Shasha Li, Zhongjie Wang, Xun Chen, Zhiyun Qian, Srikanth V. Krishnamurthy, Kevin S. Chan, and Ananthram Swami. You do (not) belong here: detecting DPI evasion attacks with context learning. In *CoNEXT*, pages 183–197. ACM, 2020.

Anon.

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

(9)

APPENDIX

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

ADDITIONAL DETAILS OF TSIEVE Α A.1 Additional Details for AutoEncoder Architecture

For AutoEncoder, the 106-d features are displayed in Table 4.

	Fea	nture		Dim		
	Pro	tocol		1		
Direction	Sum					
Direction	Frame	IP	TCP	1		
Forward	Dealset mum	Flags_df,	ACK, URG,	33		
Backward	Duration	Flags_mf,	PUSH,RESET,			
Bi-dir	Duration	Frag_offset	SYN, FIN			
Direction		Statistic				
Direction	Max	Min	Mean Std			
Forward	Total Length, Time_delta,					
Backward	Calculated Window Size,					
Bi-dir	Scale_factor, Window, TTL					

Table 4: The 106-d feature set. "TTL": "time to live".

A.2 Additional Details for RNN Architecture

The Recurrent Neural Network (RNN) is a natural generalization of feedforward neural networks to sequences. Given a sequence of inputs (x_1, x_2, \dots, x_T) , a standard RNN computes a sequence of outputs (y_1, y_2, \dots, y_T) by iterating the following equation:

$$h_t = \text{sigmoid}(W^{\text{hx}}x_t + W^{\text{hh}}h_{t-1}) \tag{3}$$

$$y_t = W^{\rm yh} h_t \tag{4}$$

where W^{hx} , W^{hh} , and W^{yh} are the weight matrices of input-hidden, hidden-hidden, and hidden-output, respectively. The goal of the LSTM is to estimate the conditional probability $p(y_1, y_2, \cdots, y_T)$ x_1, x_2, \dots, x_T), where (x_1, x_2, \dots, x_T) is an input sequence and (y_1, y_2, \cdots, y_T) is its corresponding output sequence with the same length. The LSTM computes this conditional probability by first obtaining the fixed dimensional representation v of the input sequence (x_1, x_2, \dots, x_T) given by the last hidden state of the LSTM, and then computing the probability of (y_1, y_2, \dots, y_T) with a standard LSTM-LM formulation whose initial hidden state is set to the representation v of (x_1, x_2, \cdots, x_T) :

$$p(y_1, y_2, \cdots, y_T | x_1, x_2, \cdots, x_T) = \prod_{t=1}^T p(y_t | v, y_1, y_2, \cdots, y_{t-1})$$
(5)

Notably, as detailed in Section A.2, different from the above LSTM model, we only use the structure of sequence-to-sequence RNN model to construct the hidden layer relationship of the inputs itself, that is, the correct outputs and inputs are consistent. In this way, we employ the MSE as the loss function of the training process.

A.3 Additional Details for GNN Architecture

As shown in Fig. 6 and detailed in Section 4.3, the GNN architecture 1213 contains Graph Pooling Layer, Graph Unpooling Layer, and GCN 1214 Layer. 1215

Graph Pooling Layer. The Graph Pooling (gPool) layer is used 1216 to enable down-sampling on graph data. In this layer, a subset of 1217 1218

nodes is adaptively selected to form a new but smaller graph. To this end, a trainable projection vector p is employed. By projecting all node features to 1D, k-max pooling for node selection can be performed. Since the selection is based on 1D footprint of each node, the connectivity in the new graph is consistent across nodes. Given a node *i* with its feature vector X_i , the scalar projection of X_i on p is $y_i = X_i p / ||p||$. Among them, y_i measures how much information of node *i* can be retained when projected onto the direction of p. Specifically, the graph can be represented by two matrices; those are the adjacency matrix $A \in \mathbb{R}^{N \times N}$ and the feature matrix $X \in \mathbb{R}^{N \times C}$. Each non-zero entry in the adjacency matrix A represents an edge between two nodes in the graph. Each row vector X_i in the feature matrix X denotes the feature vector of node *i* in the graph. The layer-wise propagation rule of the graph pooling layer ℓ is:

$$\mathbf{p} = X^{\ell} \mathbf{p}^{\ell} / \|\mathbf{p}\| \tag{6}$$

$$idx = rank(y, k)$$
(7)
$$\tilde{u} = v(idx)$$
(8)

$$\tilde{y} = y(\mathbf{n}\mathbf{x}) \tag{6}$$

$$X^{*} = X^{*}(\mathrm{id} \mathbf{x}, :) \tag{9}$$

$$A^{i+1} = A^{i} (idx, idx)$$
 (10) 1239

$$X^{\ell+1} = \tilde{X}^{\ell} \odot (\tilde{y} \mathbf{1}_C^I) \tag{11}$$

where k is the number of nodes selected in the new graph. rank(y, k)is the operation of node ranking, which returns indices of the klargest values in y. The idx returned by rank(y, k) contains the indices of nodes selected for the new graph. $A^{\ell}(idx, idx)$ and $X^{\ell}(idx, :)$ perform the row and/or column extraction to form the adjacency matrix and the feature matrix for the new graph. y(idx) extracts values in y with indices idx followed by a sigmoid operation. $1_C \in \mathbb{R}^C$ is a vector of size C with all components being 1, and \odot represents the element-wise matrix multiplication.

Graph Unpooling Layer. To enable up-sampling operations on graph data, the graph unpooling (gUnpool) layer, which performs the inverse operation of the gPool layer and restores the graph into its original structure. To achieve this, we record the locations of nodes selected in the corresponding gPool layer and use this information to place nodes back to their original positions in the graph. Formally, we propose the layer-wise propagation rule of graph unpooling layer as:

$$K^{\ell+1} = \text{distribute}(0_{N \times C}, X^{\ell}, \text{idx})$$
(12)

where $idx \in \mathbb{Z}^{*k}$ contains indices of selected nodes in the corresponding gPool layer that reduces the graph size from N nodes to k nodes. $X^{\ell} \in \mathbb{R}^{k \times C}$ are the feature matrix of the current graph, and $0_{N \times C}$ are the initially empty feature matrix for the new graph. distribute $(0_{N \times C}, X^{\ell}, idx)$ is the operation that distributes row vectors in X^{ℓ} into $0_{N \times C}$ feature matrix according to their corresponding indices stored in idx). In $X^{\ell+1}$, row vectors with indices in idx) are updated by row vectors in X^{ℓ} , while other row vectors remain zero.

GCN Layer. Notably, there is a GCN layer before each gPool layer, thereby enabling gPool layers to capture the topological information in graphs implicitly. Before the processing of the GCN layer, the *k*-th graph power \mathbb{G}^k to increase the graph connectivity. We employ k = 2 since there is a GCN layer before each gPool layer to aggregate information from its first-order neighboring nodes.

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Requ	ire: The learner list L_p , the threshold list L_t , the new class label set
J	\checkmark and the corresponding sample set X
Ensu	re: The updated learner list and the updated threshold list
1: f	or $y \in \mathcal{Y}$ do
2:	Select subset b_i s.t. $(x, y) \in b_i \in X$
3:	Construct learner p_i based on b_i
4:	$t_i \leftarrow Outlier Threshold(p_i, b_i)$
5:	Apeend t_i to L_t
6:	Apeend p_i to L_p
7: e	nd for
8: r	eturn L_p, L_t

Formally, the equation is delivered:

$$A^{2} = A^{\ell} A^{\ell}, \ A^{\ell+1} = A^{2}(\text{idx}, \text{idx})$$
(13)

where $A^2 \in \mathbb{R}^{N \times N}$ is the 2-th graph power. Now, the graph sampling is performed on the augmented graph with better connectivity. In the GCNs, the layer-wise forward-propagation operation is defined as:

$$X_{\ell+1} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{\frac{1}{2}}X_{\ell}W_{\ell})$$
(14)

where $\tilde{A} = \tilde{A} + 2I$ is used to add self-loops in the input adjacency matrix A, X_{ℓ} is the feature matrix of layer ℓ . The GCN layer uses the diagonal node degree matrix \hat{D} to normalize \hat{A} . W_{ℓ} is a trainable weight matrix that applies a linear transformation to feature vectors.

A.4 Additional Details of Class-Level **Incremental Update**

The pseudocode for class-level incremental update is described in Algorithm 2.

B **ADDITIONAL DETAILS OF TSCISSORS**

The Extreme Value Theory (EVT) [28] can be used to estimate the outlier bounds. Specifically, the form of Extreme Value Distributions (EVD) is presented as follows.

$$G_{\gamma}: x \mapsto \exp(-(1+\gamma x)^{-\frac{1}{\gamma}}), \gamma \in \mathbb{R}, 1+\gamma x > 0$$
(15)

where γ denotes the extreme value index. An elegant property of EVT is that the distribution of the extreme values is not dependent on the distribution of the data. In other words, these extreme events have the same kind of distribution, regardless of the original one, such as Frechet, Gamma, and Uniform distributions [51].

For a trained learner, we can obtain the reconstruction loss list for its corresponding data subset. The upper quantile of the list is used as the initialization threshold t. Then, according to Pickands-Balkema-de Haan theorem (also called second theorem in EVT) [1, 22], the extrema of cumulative distribution function F converge in distribution to G_{γ} , if and only if a function σ exists, *i.e.*,

$$\bar{F}_t(x) = \mathbb{P}(X - t > x | X > t) \underset{t \to \tau}{\sim} \left(1 + \frac{\gamma x}{\sigma(t)} \right)^{-\frac{1}{\gamma}}$$
(16)

It means that X - t (excess over threshold) tends to follow a Generalized Pareto Distribution (GPD)⁵ with parameters γ , σ . Once we

get estimates $\hat{\gamma}, \hat{\sigma}$, the Peaks-Over-Threshold (POT) approach could be used to calculate the threshold as follows

$$\mathcal{T} \simeq t + \frac{\widehat{\sigma}}{\widehat{\gamma}} \left(\left(\frac{qn}{N_p} \right)^{-\widehat{\gamma}} - 1 \right)$$
(17)

where q denotes the risk parameter, n refer to data size, and N_p represents the number of peaks.

In order to estimate $\hat{\gamma}, \hat{\sigma}$, the maximum likelihood estimation is considered an efficient method, and its goal is to maximizing (after logarithmic operation):

$$\log \mathcal{L}(\gamma, \sigma) = -N_p \log \sigma - \left(1 + \frac{1}{\gamma}\right) \sum_{i=1}^{N_p} \log \left(1 + \frac{\gamma}{\sigma} \mathcal{P}_i\right)$$
(18)

where $\mathcal{P} = \{l - t \text{ s.t. } l > t \text{ and } l \in L\}$ and *L* denotes the loss list. According to [16, 51], Grimshaw's proposal could be used to reduce the two variables optimization problem to a single variable equation. Specifically, if we get a solution (γ^*, σ^*) , the variable $x^* = \gamma^* / \sigma^*$ is solution of the scalar equation u(x)v(x) = 1 where:

$$u(x) = \frac{1}{N_p} \sum_{i=1}^{N_p} \frac{1}{1 + x\mathcal{P}_i} \qquad v(x) = 1 + \frac{1}{N_p} \sum_{i=1}^{N_p} \log(1 + x\mathcal{P}_i) \quad (19)$$

That is to say, by finding a solution x^* of this equation, we can retrieve $\gamma^* = v(x^*) - 1$ and $\sigma^* = \gamma^*/x^*$. Finally, the estimates γ^* and σ^* can be used to calculate the threshold reference Eq. (17).

ADDITIONAL DETAILS FOR EVALUATION С

We introduce and summarize the details for a series of baselines here (refer to \S 7.1).

(i) Supervised Method.

- nPrint [20] is a tool that generates a unified packet representation and then leverages AutoML to fit the tabular data.
- FlowPic [49] processes packet length and timestamp fields and converts them into pictures and uses Convolutional Neural Networks (CNNs) to identify traffic.
- FlowLens [4] calculates statistical histograms of packet size distribution and adopts machine learning models (e.g., XGBoost) to perform classification.
- ERNN [70] integrates the finite state automaton inside the RNN unit to cope with network-induced phenomena such as packet loss, retransmission, and out-of-order.
- ET-BERT [32] handles the raw packets in hexadecimal and deploys a pre-trained transformer to represent and learn the contextualized datagram-level information.

(ii) Binary Classification Anomaly Detection.

- Kitsune [41] calculates a series of statistical features and designs an ensemble of AutoEncoders to detection intrusions.
- Whisper [13] expresses traffic as frequency domain information through the fast Fourier transform and then performs robust identification.
- DeepLog [8] utilizes Long Short-Term Memory (LSTM) [5] to model the system log and detects the anomalies in sequences.
- HyperVision [14] is an unsupervised malicious traffic detection system that could capture flow interaction patterns represented by the graph's structural features.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

⁵The location μ , the third parameter of GPD, is null in our case.

• **Diff-RF** [38] takes into the frequencies of visits in the leaves on the isolated forest [36] basis to detect point-by-point and collective anomalies.

(iii) Multi-Classification Anomaly Detection. ¹³⁹⁷

- K-means [19] and DBSCAN [9] are typical density-based and distance-based unsupervised clustering algorithms respectively.
- FlowPrint [56] is a semi-supervised approach for fingerprinting mobile apps from encrypted network traffic.
- **Cls-Anomaly** [65] employs Conditioned Variational AutoEncoder and extreme value theory to devote multi-classification for known attacks.
- **SENC** [42] completes the semi-supervised classification based on isolation forest, yet it assumes only to emerge one unknown class at one time.
- FARE [31] is a semi-supervised clustering method for classification under low-quality labels. Note that it needs to specify the number of classes for FARE, we set it as ground truth.