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Abstract

Deep learning has made major strides in medical imaging segmentation in the last several
years for its automated feature extraction. This model fitting process is susceptible to
over-fitting, and can benefit from sparsity. Here, we show theoretical and experimental
potential of using low-entropy images as sparse input to improve deep learning driven
tissue segmentation, using tumor and heart segmentation problems as exemplary cases.
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1. Introduction

Deep neural networks have taken center stage for their ability to take highly complex data
as input, learn their own feature representation, and successfully converge to a solution. Be-
cause of this, manual feature engineering techniques are largely ignored in contexts where
deep neural networks have proven successful. However, the convolutional layers often doing
the automated feature engineering remain high variance models [(Menart, 2020)]. Therefore
it stands to reason that in situations with few samples relative to a very large number of
modelling parameters (as is often the case in medical imaging) that more effective training
could be achieved with some manual feature engineering. Here, we propose reducing the
numeric range of the input as a way to have feature/signal ”sparsity” without hampering
the network’s automated feature engineering. We argue that sparsity is akin to entropy,
and that we can reduce image entropy by constraining the numerical input range of the
images. We study the effect of reducing input range with a couple of standard medical
imaging segmentation problems, firstly tumor segmentation, and afterwards, for compar-
ison, segmentation of the left atrium of the heart. We do not present these methods as
a catch-all for reducing the image entropy or improving all medical imaging/segmentation
problems, but as a proof-of-principal that when working with deep learning architectures
and small datasets, controlling the entropy of the input image will have an effect on model
performance and should be considered.

2. Theory

We define sparsity as the ability to concentrate the energy function of a signal or model in
as few coefficients as possible. Energy refers to a function in a Gibbs measure, E(x), which
moves the space of states to real numbers. As the space of states, or energy, is concentrated
in fewer coefficients the signal is considered to be more compressible and therefore inherently
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sparser. This is made clear with the following two examples adapted from (Pastor et al.,
2015). Consider the random variable Xϵ{x1, x2} with probability distribution p = (p1, p2).
First, assume p1 > p2, with p1, p2 >= 0 and ||p|| = 1. Then if p1 increases, it is obvious
then x1 is more likely to appear, so the compressiblity, or sparsity, of p increases, and the
uncertainty, or entropy, of X must decrease. Second, assume, p = (p1, p2) = (1, 0), so the
distribution represents a constant random variable. If p2 increases at all, then x1 is no longer
the unique possible outcome and the compressibility of p must decrease with the increase in
uncertainty in x. We can now conclude that reducing the image entropy results in a sparse
representation of the most predicable intensity values. Effectively a smaller input space will
help control model variability by placing a strong inductive bias over the data, namely that
a solution must be found in a low information environment, and to achieve this the input
data space should be low information with few possible states.

3. Material and methods

3.1. Data

Brain tumor tissue segmentation presents a particularly challenging problem, and a useful
testing ground for experimental methodologies. We used the 2021 BraTS publicly available
training dataset. All details regarding the dataset can be found in the latest BraTS summa-
rizing paper [(Bakas et al., 2018)]. Each data point was saved as one of three input types:
a reference 16-bit image, then a simple numeric reduction normalizing all values between
0-255 for an 8-bit image, and an extreme reduction to 3-bits of information, by z-scoring
the image and truncating to the nearest integer. For the second example, we used the heart
segmentation task from the Medical Imaging Decathlon. The target region of interest for
the task is the left atrium of the heart. The data was originally acquired as part of the 2013
Left Atrial Segmentation Challenge [(Tobon-Gomez et al., 2015)].

3.2. Experimental Procedure

As high variance models, deep neural networks are sensitive to the sampling variability
of the training set. To address this, we experiment with only simple 3D U-Net models
[(Çiçek et al., 2016)] since the model is small it allows efficient permutation testing of
experimental conditions. And while simple, the 3D U-Net is still the backbone of most
state-of-the-art medical segmentation techniques [(Siddique et al., 2021)], and should still
give insight on the effect of entropy on the input. We bootstrapped the dataset to give 10
permutations for the tumor segmentation, and 19 for the heart segmentation. For both,
the training objective function was a simple Dice co-efficient loss between the output and
the target. After building a confidence interval around the model estimates, we apply a
one-way ANOVA for each tissue type combined with non-parametric bootstrapping over the
dataset to test the mean differences between our experimental conditions while accounting
for sampling effects in the training set. The models were evaluated using the Dice co-efficient
scores between the predicted segmentation and the ground truth labels.
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4. Results

All tumor tissue ANOVAs showed significant differences between input data representations,
at p < 0.001. On average the lower the input information the better the model preformed.
This is visualized in figure 1. The ANOVA to asses the left atrium of the heart segmentation
resulted in a modestly significant difference between input types, with p = 0.037, again with
the most reduced input preforming the best, and displayed in figure 2.

5. Conclusion

We shows that reducing image entropy may help with complex segmentation tasks (tumor),
but is of less use when the task is already simple (heart). Despite the aforementioned
limitations, this is an exciting result that deserves further investigation as it could be low
hanging fruit to improve data-hungry segmentation methods in medical imaging.

Figure 1: Bootstrap generated tissue map segmentation estimates on the independent test
data. Lower input information greatly increased the corresponding model’s Dice
coefficient estimates.

Figure 2: Bootstrap generated left atrium segmentation estimates on the independent test
data. Lowering the input information mildly increased Dice coefficient estimates.
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