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Abstract

Time series experiments are a family of experimental designs on a time series. One1

experimental unit is sequentially exposed to some version of treatment, stays in the2

version of treatment for a duration of time, and gets exposed to another version of3

treatment. While this type of experimental designs could handle population inter-4

ference between units, it typically still needs to account for temporal interference,5

i.e., a treatment at an earlier period persists in impacting the outcomes of the later6

periods. Practitioners have widely recognized the applicability of the time series7

experiments, yet prior work typically requires a long duration to gain enough power.8

In this paper, we propose a novel randomized design that significantly increases9

the power of such experiment. We prove the theoretical performance of the novel10

design, and verify its superior performance by conducting an extensive simulation11

study.12

1 Introduction13

Time series experiments — where we expose one aggregated unit to random treatments, measure the14

responses, and repeat the procedure for some time periods — have rapidly grown in popularity [5].15

This growth has been partly propelled by marketplace companies, such as DoorDash [29], Lyft [7],16

and Uber [9], wishing to run experiments in the presence of population interference (the setting where17

one unit’s treatment assignments impact another’s outcomes). To overcome population interference,18

companies aggregate multiple units together across zip codes, cities, or even states to form a single19

grouped unit [6, 12, 16, 18]. The aggregation alleviates the population interference, as it ensures that20

each unit within the aggregated unit receives the same treatment, but it does not remove the temporal21

interference (where past treatment assignments impact current outcomes). Unfortunately, such a22

drastic aggregation significantly reduces the sample size as we only collect one data point at each23

period, leading to much lower statistical power for estimating causal effects. Therefore, it is vital24

that the design of time series experiments has a high data-efficiency – not too many time periods are25

required to increase the power of estimating the causal effect of interests.26

In this work, we present a new, more powerful, randomized design for time series experiments subject27

to temporal interference. Our proposed design incorporates a randomization mechanism inspired by28

the classical completely randomized design to achieve the balancing between treatment and control29

observations. We analyze the theoretical property of our balanced design, develop efficient inferential30

methods and evaluate the performance using simulation study.31

2 Setups and notations32

2.1 The assignment path and the potential outcomes33

Consider an experimenter running time series experiments over one large aggregated unit. Let there34

be a total of T ∈ N periods in the experiment. As suggested by earlier works [6, 29], each period is35
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typically selected to be the same length as the carryover effect, i.e., the length of time a treatment36

persists in impacting the outcome. For on-demand service platforms, one period typically ranges from37

about 30 minutes to several hours [7, 29]. At each time period t ∈ [T ], the experimenter randomly38

exposes the unit to either treatment Wt = 1 or control Wt = 0. The assignment path is the collection39

of treatment assignments over all time periods, W1:T ∈ {0, 1}T . We denote a realization of W1:T40

by w1:T .41

Once the assignment path w1:T is realized, the experimenter will observe some outcomes of interests.42

Under the potential outcomes framework [25, 14, 17], we model the observed outcomes to be related43

to their respective potential outcomes. We denote Yt(w1:T ) to be the outcome at time period t ∈ [T ]44

under the assignment path w1:T . As a short-hand notation, denote Y = {Yt(w1:T )}t,w1:T
to be the45

collection of all potential outcomes. We adopt a design-based perspective [23, 11, 19, 26, 17, 1] and46

treat the potential outcomes as fixed quantities.47

The potential outcome Yt(w1:T ) is very general in the sense that it depends on the complete assign-48

ment path. If experimenter directly observes the outcome Yt(w1:T ) under one assignment path w1:T ,49

it becomes impossible to observe the potential outcomes under other assignment paths. In other words,50

all the remaining data are missing. Since we do not assume any structural models for characterizing51

the outcomes, it is impossible to achieve valid inference with such missing data. Therefore, we need52

to introduce some assumptions that restrict the dependence of the potential outcomes.53

2.2 Temporal interference54

In this section we introduce the assumption about the temporal interference, which lays the founda-55

tions for our design of time series experiments. We consider a form of temporal interference between56

time periods, which is also known as the carryover effects. We assume that the potential outcome at57

any time period depends only on the treatment assignments at this time period and the preceding time58

period, but not the earlier periods.59

Assumption 1 (Limited carryover effects). For any t ∈ [T ] and any two assignment paths60

w1:T ,w
′
1:T ∈ {0, 1}T , we have61

Yt (w1:T ) = Yt (w
′
1:T ) whenever wt−1:t = w′

t−1:t.

This assumption is both widely adopted in the literature [20, 27, 2, 5, 6] and viable in many ap-62

plications. We can relax this assumption by considering general lengths of carryover effects, i.e.,63

the potential outcomes at one time period could depend on the treatment assignments up to m > 164

periods ago. The structure of the main results remains the same. In this paper, we focus on the case65

of m = 1 to de-emphasize the importance of the length of carryover effects to our main results, as the66

existing literature [6, 29] recommends selecting the length of one time period to be the same as the67

length of the carryover effect. In a ride-sharing platform, the effect of a surge pricing policy quickly68

vanishes and for instance, the carryover effect lasts 30 - 60 minutes. We would set the length of a69

period to be one hour so that the length of the carryover effect is one period. We also refer to [? ] for70

more discussions about the identification of the length of carryover effects as well as a data driven71

strategy to select a plausible carryover effect.72

In the remaining of this paper, we use the short-hand notation Yt (wt−1:t) = Yt (w1:T ) to focus on73

the dependence of the potential outcomes at two consecutive periods. Using this short-hand notation,74

the observed outcomes are related to their respective potential outcomes as follows,75

Yt = Yt(wt−1:t), if Wt−1:t = wt−1:t.

2.3 The causal effect76

The primary focus of this paper is to understand the time-averaged Total Treatment Effect, i.e., the77

difference between the average outcomes when the aggregated unit is exposed to treatment at all78

time periods, relative to when it is exposed to control at all time periods [6]. Mathematically, this is79

defined as80

τ(Y) =
1

T − 1

T∑
t=2

[Yt (1)− Yt (0)] , (1)
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where 1 and 0 are two assignment paths with all treatments w1:T = 11:T and controls w1:T = 01:T ,81

respectively. Based on Assumption 1, they can be simplified as wt−1:t = 1t−1:t and wt−1:t = 0t−1:t82

accordingly.83

The causal effect as defined in (1) captures the effect of permanently deploying a new policy. In the84

Lyft example [7], this could reflect the change in average ride-making rates if the company rolls out a85

new subsidy policy across all local regions in a market. Such a causal estimands directly helps data86

scientists evaluate the benefits of permanently deploying such a policy. Since the causal effect τ(Y)87

is never directly observable, our goal is to estimate the casual effect using observations from the time88

series experiments efficiently, which requires a careful design of experiments.89

3 Problem formulation90

As introduced in Section 2.1, in this paper we focus on a design-based perspective of experimental91

design, and rely on variations introduced by the random assignment path for doing inference. In this92

section we study, as a decision-making problem, the design of time series experiments that governs93

the selection of the random assignment path to gain high statistical power for inference.94

Formally, the design of an experiment is a discrete probability distribution η(·) : {0, 1}T → [0, 1]95

over the assignment paths, such that,96 ∑
w1:T

η (w1:T ) = 1, η (w1:T ) ≥ 0, ∀ w1:T ∈ {0, 1}T .

In practice, the experimenter would sample an assignment path W1:T = w1:T from the distribution97

η(·), and then implements this assignment path to conduct an experiment. Once the experiment98

has been conducted, the experimenter collects the observed outcomes {Yt}t∈[T ], and uses both the99

realized assignment path and the observed outcomes to estimate the causal effect.100

A commonly used estimator is the Inverse Propensity Weighted (IPW) estimator, which is also101

referred to as the Horvitz-Thompson estimator [15], as follows,102

τ̂ (Y, η,w) =
1

T − 1

T∑
t=2

{
Yt

1 {wt−1:t = 1}
Pr (Wt−1:t = 1)

− Yt
1 {wt−1:t = 0}
Pr (Wt−1:t = 0)

}
. (2)

It is a well-known result that the IPW estimator is unbiased [5], i.e., Eη[τ̂ (Y, η,w)] = τ (Y).103

To evaluate the quality of a specific η(·), we adopt the decision-theoretic framework [3, 4] and104

focus on the variance of the IPW estimator, Varη(τ̂(Y, η,w)) = Eη[(τ̂ (Y, η,w)− τ(Y))2]. Since105

the IPW estimator is unbiased, the variance of the estimator is equivalent to the risk function, or106

the mean squared error of the estimator. Since the variance of the IPW estimator depends on the107

potential outcomes Y, there may not exist one design of experiment that uniformly achieves a small108

variance in all scenarios. To determine the design of experiment, we adopt the minimax decision rule109

[3, 30, 21, 6] and find the design of experiment that minimizes the worst-case variance against an110

adversarial selection of potential outcomes, i.e.,111

min
η

max
Y∈Y

Varη(τ̂(Y, η,w)) = min
η

max
Y∈Y

Eη

[
(τ̂ (Y, η,W )− τ(Y))2

]
. (3)

One compelling reason of adopting the minimax decision rule is that we do not impose any parametric112

or structural models on the potential outcomes. Yet to make the decision making problem feasible,113

and to lay the foundation for inference, we impose a bounded support assumption of the potential114

outcomes.115

Assumption 2 (Bounded potential outcomes). There exists B > 0, such that for any t ∈ [T ],w1:T ∈116

{0, 1}T , Yt(w1:t) ∈ [0, B]. Equivalently, Y = [0, B]T .117

Assumption 2 is typically satisfied in practice as it assumes that the set of potential outcomes is118

non-negative and upper bounded by some possibly large constant. Note that this assumption is119

satisfied even if the potential outcomes arise from a stochastic process, as long as the process does120

not have a point mass at infinity. As we will show in the next section, our experimental design does121

not require the knowledge of the upper bound B, just its existence.122
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4 The design of time series experiments123

4.1 A balanced design124

In this section, we study the design of time series experiments. Solving the optimization problem125

defined by (3) is typically challenging, as the inner problem is a maximization over a convex function126

whose optimal solution lies on the exponentially many extreme points of the polyhedron Y , and127

the outer problem is hindered by the challenges of evaluating the inverse probabilities in the IPW128

estimator. Even if the optimization problem can be numerically solved, inference and testing typically129

require a clear understanding of the randomization mechanism of the design, which a numerical130

solution fails to provide. Furthermore, from a practical perspective, the randomization mechanism131

needs to be easy to implement when the design of the experiment is brought to a company.132

Instead of finding the exact optimal solution, we propose a balanced design that has a sub-optimal133

theoretical performance and is easy to implement in practice. Suppose T is odd. Consider the134

following balanced design η† of the time series experiments:135

1. During the first T − 1 periods, conduct a complete randomization with a equal number of136

treatments and controls. That is,
T−1∑
t=1

1{Wt = 1} =
T−1∑
t=1

1{Wt = 0} = T−1
2 .137

2. Set the treatment assignment of the last period to be the same as that of the first period, i.e.,138

WT = W1.139

The first step reflects the key idea of balancing inspired by the classical completely randomized140

design. The second step simply deals with the boundary conditions of the design. Because WT = W1,141

we could specify the precedent period of t = T to be t = 2, i.e., WT+1 = W2. This simplifies the142

analysis later a lot without making the design significantly different.143

We illustrate in Figure 1 the example of two assignment path realizations with T = 9. This design

Figure 1: An example of assignment path realizations from the balanced design η† with T = 9.

extends the classical completely randomized experiment to the temporal interference setup. A
classical completely randomized experiment [10, 22] fixes the number of treatments and controls
in advance before randomization is applied, ensuring that the number of valid observations under
treatment and control is equal to the number of units who receive treatment and control, respectively.
However, under the temporal interference setup that we consider, whether Yt(wt−1:t) is a valid
observation at period t depends on the treatment assignments during both periods t− 1 and t (e.g., Y6

under the assignment path 1 in Figure 1 is not a valid observation). This suggests a careful analysis
for the underlying dependence of the design. To this end, we first introduce some statistics of interest
which are involved in our analysis. Define

Y (1) =
1

T − 1

T∑
t=2

Yt(1), Y (0) =
1

T − 1

T∑
t=2

Yt(0)

to be the average outcomes of treatment and control, respectively. Given these, we further define

St =
1

T − 2

T∑
t=2

(
Yt(1) + Yt+1(1)

2
− Y (1)

)2

, Sc =
1

T − 2

T∑
t=2

(
Yt(0) + Yt+1(0)

2
− Y (0)

)2

to be the variance of the average outcomes at two consecutive periods. Similarly, we can also measure
the variance of the treatment effect using

Sτ =
1

T − 2

T∑
t=2

(
Yt(1)− Yt(0) + Yt+1(1)− Yt+1(0)

2
− (Y (1)− Y (0))

)2

.
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These three statistics help extend the analysis of classical complete randomization by bridging the144

outcomes at two consecutive periods explicitly. We have the following theorem that characterizes the145

variance of our balanced design.146

Theorem 1. For any potential outcomes Y, the variance of the balanced design η† can be decom-147

posed as148

Varη†(τ̂ |Y) = 8(T − 2)2

(T − 3)2(T − 1)

(
St + Sc

)
− (4T − 10)(T − 2)

(T − 3)(T − 4)(T − 1)
Sτ

+
1

(T − 1)(T − 4)

T∑
t=2

(Yt(1)− Yt(0))
2

− 1

(T − 1)(T − 4)(T − 3)

T∑
t=2

(Yt(1)− Yt(0))(Yt+1(1)− Yt+1(0)). (4)

We prove Theorem 1 in Appendix A.1. Later in Section 5, we will further develop a variance upper149

bound and a corresponding estimate for doing inference.150

4.2 Performance analysis151

Let Varη∗(τ̂) denote the worst-case variance of an optimal design η∗ which solves (3) exactly. In152

this section, we analyze the performance of the balanced design η† by first comparing its worst-case153

variance Varη†(τ̂) to Varη∗(τ̂), the worst-case variance of the optimal design.154

The following result shows that the worst-case outcomes against the balanced design η† can be155

characterized explicitly, as can the worst-case variance.156

Theorem 2. The worst-case outcomes against the balanced design η† can be written as157

Yt(1) = Yt(0) =

{
B 2 ≤ t ≤ T+1

2 ,

0 t > T+1
2 .

(5)

This leads to the worst-case variance158

Varη†(τ̂) =
4(T − 2)

(T − 1)(T − 3)
B2. (6)

We prove Theorem 2 in Appendix A.2 and outline here the key ideas of the proof. The proof shows159

that, given any other potential outcomes, one can always transform the outcomes to the ones that160

match the above structure, obtaining no smaller variance.161

Since solving (3) for obtaining the worst-case variance of the optimal design Varη∗(τ̂) is difficult,162

we then construct its lower bound as follows.163

Theorem 3. The worst-case variance of the optimal design Varη∗(τ̂) has a lower bound

Varη∗(τ̂) ≥ V LB =
2

T − 3
B2.

We prove Theorem 3 in Appendix A.3. This lower bound directly implies a 2-approximation ratio for164

the balanced design.165

Proposition 4. The balanced design η† has an approximation ratio
Varη†(τ̂)

Varη∗(τ̂)
≤ 2(T − 2)

T − 1
≤ 2.

We further compare the balanced design η† to another Bernoulli design studied in [? ]. The optimal166

Bernoulli design η# of time series experiments was developed, where the experimenter can only167

draw i.i.d. Bernoulli trials at some time periods to determine the random assignments. Theorem 2 in168

[6] shows that the optimal Bernoulli design η# has the worst-case variance Varη#(τ̂) = 16T−56
(T−1)2 B

2.169

Proposition 5. The relative performance of the worst-case variances between the balanced design170

η† and the optimal Bernoulli design η# is given by171

lim
T→∞

Varη†(τ̂)

Varη#(τ̂)
= lim

T→∞

(T − 2)(T − 1)

(4T − 14)(T − 3)
=

1

4
.

5



4.3 Simulation study172

In this section, we conduct a simulation study to investigate the general performance of our balanced173

design η†. First of all, we set the outcomes Y to follow the worst-case structure in (2). For each174

numerical experiment, we randomly sample an assignment path, compute the Horvitz-Thompson175

estimator (2), and repeat the procedure 10000 times to estimate the performance of the design. In176

Figure 2, the variance of the balanced design is significantly lower than that of the optimal Bernoulli177

design. Note that both designs are evaluated under the outcomes in (2), which correspond to the178

worst-case scenario for the balanced design, but do not correspond to the worst-case scenario for the179

Bernoulli design. This further justifies the robustness of the balanced design.180
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Figure 2: The estimated variance for differ-
ent experimental duration under the outcomes
given in (2) with B = 3.
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Figure 3: The estimated variance for dif-
ferent experimental duration under the out-
comes given in (7) with αt = log(t), β0 =
0.5, β1 = 0.5, ϵt ∼ N (0, 1).

Next, we consider the following outcome model that is studied in [6]:181

Yt(wt−1:t) = αt + β0wt + β1wt−1 + ϵt (7)

where ϵt ∼ N (0, 1). Here αt depicts the base structure of the time series, β0 governs the direct182

causal effect of the treatment, and β1 governs the carryover effect of the treatment. The causal effect183

of interests is τ = β0 + β1. We first let αt = log(t), β0 = 0.5, β1 = 0.5. In Figure 3, the balanced184

design dominates the Bernoulli design. Our new design is an order of magnitude better than the185

previous Bernoulli style design; for example, the balanced design with T = 21 has a lower variance186

than the Bernoulli design with T = 201. This implies that the benefit of the balanced design could be187

more significant beyond the worst-case scenario. Moreover, we test different outcome models by188

changing the parameters in (7) and layout the corresponding variances in Table 1.189

Table 1: Variances under different outcome models

αt β0 β1 Bernoulli design Balanced design

log(t) 1 1 3.706 0.264(-92.8%)
1 0 2.970 0.233(-92.1%)
1 -1 2.334 0.223(-90.5%)

1 + sin(πt/4) 1 1 0.852 0.182(-78.6%)
1 0 0.533 0.152(-71.5%)
1 -1 0.314 0.143(-54.4%)

To summarize, in this section, we propose a balanced design of time series experiments and study190

the performance of its variance both in the worse-case perspective analytically, and in a general191

perspective numerically. This type of design is simple in nature, easy to implement in practice, and192

more importantly, effective for making inference. To see this, in the next section, we will investigate193

how the variance reduction is translated to the value for the inference.194
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5 Inference and testing195

After running an experiment, we want to test whether the estimate treatment effect is systematic or196

due to change. To do that, we consider the following null hypothesis for the time-averaged total197

treatment effect and the alternative:198

H0 :
1

T − 1

T∑
t=2

[Yt (1)− Yt (0)] = 0, H1 :
1

T − 1

T∑
t=2

[Yt (1)− Yt (0)] ̸= 0. (8)

To test this null hypothesis, we first derive a finite population central limit theorem to approximate199

the distribution of the Horvitz-Thompson estimator under our design, together with a conservative200

variance estimation. We then conduct simulations to examine the effectiveness of inference using201

different designs.202

5.1 Central limit theorem203

Before stating our central limit theorem, we must make an assumptions that guarantees that the204

variance is not dominated by a small number of time periods.205

Assumption 3 (Non-negligible variance).206

Varη†(τ̂ |Y) = Ω

(
1

T

)
.

This assumption often holds in practice and is regularly made by researchers [6].207

Theorem 6. Under Assumptions 1 - 3, the limiting distribution of the Horvitz-Thompson estimator208

has an asymptotic normal distribution. That is, as T → +∞,209

τ̂ − τ√
Varη†(τ̂ |Y)

D→ N (0, 1) (9)

We prove Theorem 6 in Appendix A.4. The balanced design studied in this paper is inspired by210

the classical complete randomization, where the number of valid observations for treatment and211

control is fixed and known before the randomization. A generalized central limit theorem has212

been developed [22] to handle multiple treatments and multi-dimension outcomes. However, the213

number of valid observations for treatment and control becomes random under temporal interference,214

which requires more complex and careful analysis. We adopt the framework of the permutation215

statistics [8, 13, 31] to analyze the fundamental behavior of the random permutation in the balanced216

design.217

Whenever we adopt design-based inference, the variance of the Horvitz-Thompson estimator depends218

on the potential outcomes of both treatment Yt(1) and control Yt(0) at all periods t ∈ [T ], as shown219

in (4). Therefore, to use the normal approximation for testing, we need to replace the unknown true220

variance Varη†(τ̂) by some variance estimate. Although one can always resort to the worst-case221

variance (2) as a conservative estimate, the observations from the experiment are not well leveraged.222

We aim to develop a more informative variance estimate σ̂2
U. To this end, we introduce several sample223

estimates. First we define224

Y
obs

(1) =

T∑
t=2

Yt · 1{wt−1:t = 1}

T∑
t=2

1{wt−1:t = 1}
, Y

obs
(0) =

T∑
t=2

Yt · 1{wt−1:t = 0}

T∑
t=2

1{wt−1:t = 0}

to be the sample estimate for Y (1) and Y (0). Next we define225

Ŝt =

T∑
t=2

(
Yt−1+Yt

2
− Y

obs
(1)

)2

· 1{wt−2:t = 1}

T∑
t=2

1{wt−2:t = 1} − 1

, Ŝc =

T∑
t=2

(
Yt−1+Yt

2
− Y

obs
(0)

)2

· 1{wt−2:t = 0}

T∑
t=2

1{wt−2:t = 0} − 1

to be the sample estimate for St and Sc.226
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Proposition 7. There exists an upper bound for the variance of the balanced design. That is,227

Varη†(τ̂ |Y) ≤ VarUη†(τ̂ |Y) =
8(T − 2)2

(T − 1)(T − 3)2
(St + Sc)

+
T − 2

(T − 1)(T − 3)(T − 4)

T∑
t=2

(
Y 2
t (1) + Y 2

t (0)
)
. (10)

This upper bound has an unbiased estimate228

σ̂2
U =

8(T − 2)2

(T − 1)(T − 3)2
(Ŝt + Ŝc) +

4(T − 2)2

(T − 1)(T − 3)2(T − 4)

T∑
t=2

Y 2
t 1{wt−1 = wt}. (11)

We prove Proposition 7 in Appendix A.5. Compared to the true variance (4), the upper bound is not229

tight in general. Nevertheless, we will show that it admits a great inference power for testing the null230

hypothesis.231

5.2 Simulation study232

We do the simulation study using the same outcome model in (7) with αt = log(t). We aim to233

justify the normal approximation and test the effectiveness of the inference. Following the simulation234

procedure in Section 4.3, we not only calculate the Horvitz-Thompson estimator (2) based on the235

observed outcomes, but also calculate the conservative variance estimate (11).236

5.2.1 Asymptotic normality237

We first justify the normal approximation using the samples generated from the outcome model with238

β0 = β1 = 1 and T = 401. More specifically, we generate 100000 samples of the estimator τ̂239

and conduct a Kolmogorov–Smirnov test [28] for the null hypothesis that the samples come from240

a normal distribution. The test returns an estimated p-value 0.57, which implies a good normal241

approximation. Figure 4 shows the histogram and the Q-Q plot that correspond to the distribution242

induced by τ̂−τ√
Var

η‡ (τ̂ |Y)
, for which we numerically compute Varη‡(τ̂ |Y) using samples from the243

simulation.244
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Figure 4: Normal approximation of τ̂ − τ using 100000 samples under the outcomes given in (7)
with αt = log(t), β0 = β1 = 1 and T = 401.

5.2.2 Rejection rate245

We test the null hypothesis (8) using the normal approximation. We plug in the conservative variance246

estimate to obtain the estimated p-value p̂. We reject the null hypothesis if p̂ < 0.05. By repeating247

this procedure 10000 times, we summarize the frequency of a null hypothesis being rejected(i.e.248

rejection rate).249

We present the rejection rates as the number of periods T grows under three outcome models in Figure250

5. The balanced design leads to the right decision more efficiently than the optimal Bernoulli design251
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in all scenarios. In particular, when there exists some degree of the casual effect τ = β0+β1 > 0, the252

balanced design only needs 20% as much time periods as in the optimal Bernoulli design to achieve253

the same rejection rate.254

Furthermore, we plot the average point estimates and the average confidence intervals in Figure 6. We255

can observe that all the estimates are indeed unbiased and the balanced design consistently achieves256

much narrower confidence intervals. Specifically, for getting the average confidence interval above 0,257

the balanced design only needs 350 periods when τ = 1 and less than 100 periods when τ = 2. In258

contrast, the optimal Bernoulli needs more than 500 periods in both scenarios. This further justifies259

that the balanced design is more data-efficient.260
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Figure 5: Rejection rates for testing the null hypothesis (8)
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Figure 6: Point estimates and confidence intervals for testing the null hypothesis (8)

6 Concluding remarks261

This paper studied the design of time series experiments in the presence of interference. The proposed262

balanced design improves the casual estimator’s variance leading to better inference and testing263

efficiency. The main results could also be extended to the design of panel experiments, where we264

conduct time series experiments on multiple units simultaneously.265
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A Proof of main results335

A.1 Proof of Theorem 1336

Proof. Proof of Theorem 1. We first compute several joint probabilities that will be used later. The337

propensity score338

Pr(Wt−1:t = 1) = Pr(Wt−1:t = 0) =

(
T−3

(T−1)/2

)(
T−1

(T−1)/2

) =
T − 3

4T − 8
,

where
(
n
k

)
stands for the combinatorial number of choosing k items from a total of n items. Similarly,339

the probabilities that we can observe three and four consecutive treatment/control are340

Pr(Wt−1:t+1 = 1) = Pr(Wt−1:t+1 = 0) =

(
T−4

(T−1)/2

)(
T−1

(T−1)/2

) =
(T − 3)(T − 5)

(4T − 8)(2T − 6)
,

and341

Pr(Wt−1:t+2 = 1) = Pr(Wt−1:t+2 = 0) =

(
T−5

(T−1)/2

)(
T−1

(T−1)/2

) =
(T − 3)(T − 5)(T − 7)

(4T − 8)(2T − 6)(2T − 8)
.

Furthermore, we have342

Pr(Wt−1:t = 1,Wt+1:t+2 = 0) = Pr(Wt−1:t = 0,Wt+1:t+2 = 1) =

(
T−5

(T−5)/2

)(
T−1

(T−1)/2

) =
(T − 3)(T − 1)(T − 3)

(4T − 8)(2T − 6)(2T − 8)
.
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Now we are ready to analyze the variance. We first write the estimator as follows,343

τ̂ =
1

T − 1

T∑
t=2

[
Yt(1)

1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

− Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

]
.

The variance of the estimator can be decomposed as344

Var(τ̂) =Var

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)
+Var

(
1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

+ 2Cov

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

,− 1

T − 1

T∑
t=2

−Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)
.

We first examine the first part:345

Var

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)
=

1

(T − 1)2

T∑
t=2

T∑
t′=2

Cov (1{Wt−1:t = 1},1{Wt′−1:t′ = 1})
Pr(Wt−1:t = 1) Pr(Wt′−1:t′ = 1)

Yt(1)Yt′(1)

Let us define δt,t′ to be the distance between two periods. Using the joint probabilities we have346

derived, we can specify the covariance in three scenarios:347

Cov (1{Wt−1:t = 1},1{Wt′−1:t′ = 1})
Pr(Wt−1:t = 1) Pr(Wt′−1:t′ = 1)

=



4T − 8

T − 3
− 1, δt,t′ = 0

(T − 5)(4T − 8)

(2T − 6)(T − 3)
− 1, δt,t′ = 1

(T − 5)(T − 7)(4T − 8)

(2T − 6)(2T − 8)(T − 3)
− 1, δt,t′ ≥ 2

Therefore, we can calculate the variance as follows,348

(T − 1)2 Var

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)
=

T∑
t=2

(
4T − 8

T − 3
− 1

)
Y 2
t (1)

+ 2

T∑
t=2

(
(T − 5)(4T − 8)

(2T − 6)(T − 3)
− 1

)
Yt(1)Yt+1(1)

+

T∑
t=2

∑
δt,t′≥2

(
(T − 5)(T − 7)(4T − 8)

(2T − 6)(2T − 8)(T − 3)
− 1

)
Yt(1)Yt′(1).

Because of349

T∑
t=2

(Yt(1)− Y (1))2 =

T∑
t=2

Y 2
t (1)−

1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(1),

T∑
t=2

(Yt(1)− Y (1))(Yt+1(1)− Y (1)) =

T∑
t=2

Yt(1)Yt+1(1)−
1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(1)

the variance is equivalent to350

Var

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)
=

2T 2 − 13T + 17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(1)− Y (1))2

+
2T 2 − 13T + 17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(1)− Y (1))(Yt+1(1)− Y (1))

+
1

(T − 1)(T − 4)

T∑
t=2

Y 2
t (1)−

1

(T − 1)(T − 4)(T − 3)

T∑
t=2

Yt(1)Yt+1(1).

(12)
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Similarly, we can characterize the variance for outcomes of control:351

Var

(
1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)
=

2T 2 − 13T + 17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(0)− Y (0))2

+
2T 2 − 13T + 17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(0)− Y (0))(Yt+1(0)− Y (0))

+
1

(T − 1)(T − 4)

T∑
t=2

Y 2
t (0)−

1

(T − 1)(T − 4)(T − 3)

T∑
t=2

Yt(0)Yt+1(0)

(13)

Next, we examine the covariance between the outcomes of treatment and control:352

Cov

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

,− 1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

= E

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)
E

(
1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

− 1

(T − 1)2
E

(
T∑

t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)
.

The product of expectations is given by353

E

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)
= Y (1),E

(
1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)
= Y (0).

Using the jointly probabilities we have derived again, we can specify the expectation of the product354

in three scenarios:355

E (1{Wt−1:t = 1}1{Wt′−1:t′ = 0})
Pr(Wt−1:t = 1) Pr(Wt′−1:t′ = 0)

=


0, δt,t′ = 0

0, δt,t′ = 1

(T − 2)(T − 1)

(T − 3)(T − 4)
, δt,t′ ≥ 2.

Therefore, we can calculate the covariance as follows,356

Cov

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

,− 1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

= Y (1)Y (0)− (T − 2)(T − 1)

(T − 3)(T − 4)(T − 1)2

T∑
t=2

∑
δt,t′≥2

Yt(1)Yt′(0)

Because of357

T∑
t=2

(Yt(1)− Y (1))(Yt(0)− Y (0)) =

T∑
t=2

Yt(1)Yt(0)−
1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(0),

T∑
t=2

(Yt(1)− Y (1))(Yt+1(0)− Y (0)) =

T∑
t=2

Yt(1)Yt+1(0)−
1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(0)
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the covariance is equivalent to358

2T − 5

(T − 4)(T − 3)(T − 1)

T∑
t=2

(Yt(1)− Y (1))(Yt(0)− Y (0))

+
2T − 5

2(T − 4)(T − 3)(T − 1)

T∑
t=2

(Yt(1)− Y (1))(Yt+1(0)− Y (0))

+
2T − 5

2(T − 4)(T − 3)(T − 1)

T∑
t=2

(Yt(0)− Y (0))(Yt+1(1)− Y (1))

− 1

(T − 4)(T − 1)

T∑
t=2

Yt(1)Yt(0)

+
1

2(T − 4)(T − 1)(T − 3)

T∑
t=2

Yt(1)Yt+1(0) + Yt(0)Yt+1(1)

Now we are going to reformulate the covariance using previous expressions. Since we have the359

following two equations360

T∑
t=2

(Yt(1)− Y (1))(Yt+1(0)− Y (0)) +

T∑
t=2

(Yt(0)− Y (0))(Yt+1(1)− Y (1))

=

T∑
t=2

(Yt(1)− Y (1))(Yt+1(1)− Y (1)) +

T∑
t=2

(Yt(0)− Y (0))(Yt+1(0)− Y (0))

−
T∑

t=2

(Yt(1)− Yt(0)− Y (1) + Y (0))(Yt+1(1)− Yt+1(0)− Y (1) + Y (0))

and361

2

T∑
t=2

(Yt(1)− Y (1))(Yt(0)− Y (0)) =

T∑
t=2

(Yt(1)− Y (1))2 +

T∑
t=2

(Yt(0)− Y (0))2

−
T∑

t=2

(Yt(1)− Yt(0)− Y (1) + Y (0))2,

we then rewrite the covariance as362

2T − 5

2(T − 4)(T − 3)(T − 1)

(
T∑

t=2

(Yt(1)− Y (1))2 +

T∑
t=2

(Yt(0)− Y (0))2 −
T∑

t=2

(Yt(1)− Yt(0)− Y (1) + Y (0))2

)

+
2T − 5

2(T − 4)(T − 3)(T − 1)

(
T∑

t=2

(Yt(1)− Y (1))(Yt+1(1)− Y (1)) +

T∑
t=2

(Yt(0)− Y (0))(Yt+1(0)− Y (0))

−
T∑

t=2

(Yt(1)− Yt(0)− Y (1) + Y (0))(Yt+1(1)− Yt+1(0)− Y (1) + Y (0))

)

− 1

(T − 4)(T − 1)

T∑
t=2

Yt(1)Yt(0) +
1

2(T − 4)(T − 1)(T − 3)

T∑
t=2

Yt(1)Yt+1(0) + Yt(0)Yt+1(1)

(14)
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Finally, putting all parts (12), (13), (14) together and using Sc, St, Sτ , we derive the variance of the363

estimator364

Var(τ̂) =
8(T − 2)2

(T − 3)2(T − 1)

(
St + Sc

)
− (4T − 10)(T − 2)

(T − 3)(T − 4)(T − 1)
Sτ

+
1

(T − 1)(T − 4)

T∑
t=2

(
Y 2
t (1) + Y 2

t (0)− 2Yt(1)Yt(0)
)

− 1

(T − 1)(T − 4)(T − 3)

T∑
t=2

(Yt(1)Yt+1(1) + Yt(0)Yt+1(0)− Yt(1)Yt+1(0)− Yt(0)Yt+1(1)) .

This can be further simplified as365

Var(τ̂) =
8(T − 2)2

(T − 3)2(T − 1)

(
St + Sc

)
− (4T − 10)(T − 2)

(T − 3)(T − 4)(T − 1)
Sτ

+
1

(T − 1)(T − 4)

T∑
t=2

(Yt(1)− Yt(0))
2

− 1

(T − 1)(T − 4)(T − 3)

T∑
t=2

(Yt(1)− Yt(0))(Yt+1(1)− Yt+1(0)). (15)

366

A.2 Proof of Theorem 2367

Lemma 8. The worst-case outcomes must satisfy the following structure:368

Yt(1) = Yt(0) =

{
B 2 ≤ t ≤ s,

0 t > s.
(16)

Proof. Proof of Lemma 8. We first expand the variance by definition and have the following:369

(T − 1)2 ·Varη†(τ̂ |Y) =
T∑

t=2

T∑
t′=2

(
Pr(Wt−1:t = 1,Wt′−1:t′ = 1)

Pr(Wt−1:t = 1) Pr(Wt′−1:t′ = 1)
− 1

)
Yt(1)Yt′(1)

+

(
Pr(Wt−1:t = 0,Wt′−1:t′ = 0)

Pr(Wt−1:t = 0) Pr(Wt′−1:t′ = 0)
− 1

)
Yt(0)Yt′(0)

+

(
1− Pr(Wt−1:t = 1,Wt′−1:t′ = 0)

Pr(Wt−1:t = 1) Pr(Wt′−1:t′ = 0)

)
Yt(1)Yt′(0)

+

(
1− Pr(Wt−1:t = 0,Wt′−1:t′ = 1)

Pr(Wt−1:t = 0) Pr(Wt′−1:t′ = 1)

)
Yt(0)Yt′(1)

This is a quadratic function with variables Yt(1), Yt(0),∀t ∈ {2, 3, . . . , T}. To show it is also convex,370

we can rewrite the summation as y′Σy, where y ∈ R2(T−1) is the vector of all variables and Σ is371

a symmetric matrix of coefficients. Because variance is non-negative, we know that y′Σy ≥ 0 for372

any y, which implies that Σ is PSD and the function is convex in y. Since the inner optimization is373

a minimization in a bounded feasible region, the worst-case solution can be attained at one of the374

extreme points. That is,375

Yt(1) ∈ {0, B}, Yt(0) ∈ {0, B},∀t.

Next, given any outcomes at the extreme point, we will argue that transforming into the structure376

(16) leads to a larger variance. To see this, we need to carefully analyze the coefficients of Σ. We377

introduce some shorthand notations for future reference. Due to the symmetry of the design, we set378

q+(δt,t′) =
Pr(Wt−1:t = 1,Wt′−1:t′ = 1)

Pr(Wt−1:t = 1)Pr(Wt′−1:t′ = 1)
− 1 =

Pr(Wt−1:t = 0,Wt′−1:t′ = 0)

Pr(Wt−1:t = 0)Pr(Wt′−1:t′ = 0)
− 1,

q−(δt,t′) = 1− Pr(Wt−1:t = 1,Wt′−1:t′ = 0)

Pr(Wt−1:t = 1)Pr(Wt′−1:t′ = 0)
= 1− Pr(Wt−1:t = 0,Wt′−1:t′ = 1)

Pr(Wt−1:t = 0)Pr(Wt′−1:t′ = 1)
.
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Based on the joint probabilities we have derived in the proof of Theorem 1, the coefficients of Σ can379

be characterized according to δt,t′ :380

q+(δt,t′) =



4T − 8

T − 3
− 1, δt,t′ = 0

(T − 5)(4T − 8)

(2T − 6)(T − 3)
− 1, δt,t′ = 1

(T − 5)(T − 7)(4T − 8)

(2T − 6)(2T − 8)(T − 3)
− 1, δt,t′ ≥ 2

q−(δt,t′) =


1, δt,t′ = 0

1, δt,t′ = 1
−4T + 10

(T − 3)(T − 4)
, δt,t′ ≥ 2

It is easy to see that both q+(δt,t′) and q−(δt,t′) are decreasing in δt,t′ . Therefore, the closer two381

outcomes B, the more they contribute to the variance. Suppose we are given some outcomes at the382

extreme point and there are T1 periods whose outcome of treatment is B while T0 periods whose383

outcome of control is B. W.L.O.G., assuming T1 ≥ T0, let us consider the following alternative384

outcomes:385

Yt(1) =

{
B 2 ≤ t ≤ T1 + 1

0 otherwise
, Yt(0) =

{
B T1−T0

2 + 2 ≤ t ≤ T1+T0

2 + 1

0 otherwise
(17)

We check the variance of the alternative outcomes using the monotonicity of q+(δt,t′) and q−(δt,t′).386

Since the alternative outcomes group B together with the minimal distance, the variance from the387

outcomes of treatment(control) increases. Moreover, because the alternative outcomes synchronize388

the outcomes between treatment and control as much as possible, the covariance from the outcomes389

between treatment and control increases as well. Together, the alternative outcomes achieve a larger390

variance.391

Lastly, it remains to show that further transforming (17) into (16) gives us a larger variance. Essen-392

tially, the transformation is doing393

Yt(1) = B =⇒ Yt(1) = 0,
T1 + T0

2
+ 2 ≤ t ≤ T1 + 1

Yt(0) = 0 =⇒ Yt(0) = B, 2 ≤ t ≤ T1 − T0

2
+ 1.

This can be illustrated using the examples in Figure 7 with T = 9. To see that the variance increases,

Figure 7: Outcomes in (17)

394
due to the symmetry of the design, we need to show that the covariance between blue outcomes and395

red outcomes is getting larger. Precisely,396

(T1−T0)/2+1∑
t=2

(T1−T0)/2+1∑
t′=2

q−(δt,t′) ≥
T1+1∑

t=(T1+T0)/2+2

(T1−T0)/2+1∑
t′=2

q+(δt,t′).

It is sufficient to show that397

(T1−T0)/2+1∑
t′=2

q−(δt,t′) ≥
(T1−T0)/2+1∑

t′=2

q+(δt,t′),∀ 2 ≤ t ≤ T1 − T0

2
+ 1.
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Because of the monotonicity of q+(·) and q−(·), it suffices to show that398

(T1−T0)/2−1∑
δt,t′=0

q−(δt,t′) ≥
(T1−T0)/2∑
δt,t′=1

q+(δt,t′).

Plugging in the expressions, this is equivalent to399 (
T1 − T0

2
− 2

)(
q−(2)− q+(2)

)
+ q−(0) + q−(1)− q+(1)− q+(2) ≥ 0

⇐⇒−
(
T1 − T0

2
− 2

)
4(T − 1)

(T − 3)2(T − 4)
− (T − 7)(T − 5)(4T − 8)

(2T − 8)(2T − 6)(T − 3)
− (T − 5)(4T − 8)

(2T − 6)(T − 3)
+ 4 ≥ 0.

Since T1 − T0 is bounded above by T−1
2 , it suffices to show that400

− 2(T − 5)(T − 1)

(T − 3)2(T − 4)
− (T − 7)(T − 5)(4T − 8)

(2T − 8)(2T − 6)(T − 3)
− (T − 5)(4T − 8)

(2T − 6)(T − 3)
+ 4 ≥ 0

⇐⇒− (T − 5)(3T − 7)

(T − 3)2
+ 4 ≥ 0

⇐⇒ (T − 1)2

(T − 3)2
≥ 0.

Hence, the worst-case outcomes must obey the structure that:401

Yt(1) = Yt(0) =

{
B 2 ≤ t ≤ s,

0 t > s.

402

Proof. Proof of Theorem 2 From Lemma 8, we know that the worst-case outcomes obey the following403

structure404

Yt(1) = Yt(0) =

{
B 2 ≤ t ≤ s,

0 t > s.

We need to show that s = T+1
2 . We do it by contradiction.405

Suppose that s < T+1
2 , then we can set Ys+1(1) = Ys+1(0) = B. In this way, we have one more406

pair of outcomes B which contributes to the variance. To show that the variance increases, it is407

equivalent to prove that408

q+(0) + q−(0) + 2

s∑
δt,t′=1

(q+(δt,t′) + q−(δt,t′)) ≥ 0

Since q+(δt,t′) + q−(δt,t′) takes negative value when δt,t′ ≥ 2, it is sufficient to show that409

q+(0) + q−(0) + 2

(T−3)/2∑
δt,t′=1

(q+(δt,t′) + q−(δt,t′)) ≥ 0

Plugging in the expressions of q+ and q−, we have410

q+(0) + q−(0) + 2

(T−3)/2∑
δt,t′=1

(q+(δt,t′) + q−(δt,t′)) =
8(T − 2)

(T − 3)2
> 0.

In the other way around when s > T+1
2 , then we can set Ys−1(1) = Ys−1(0) = 0. Following the411

similar argument, it is sufficient to show that412

−q+(0)− q−(0)− 2

(T−1)/2∑
δt,t′=1

(q+(δt,t′) + q−(δt,t′)) ≥ 0
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Plugging in the expressions again, we have413

−q+(0)− q−(0)− 2

(T−1)/2∑
δt,t′=1

(q+(δt,t′) + q−(δt,t′)) =
8(T − 2)

(T − 3)2
> 0.

Hence, the variance reaches the maximum when s = T+1
2 .414

To further derive the worst-case variance, we can simply use the variance decomposition (15). Note415

that the last three parts are all zero, the worst-case variance can be calculated by416

Var(τ̂) =
8(T − 2)2

(T − 3)2(T − 1)

(
St + Sc

)
=

4(T − 2)

(T − 3)(T − 1)
B2.

417

A.3 Proof of Theorem 3418

Lemma 9. Let us consider two consecutive time periods t and t+ 1. For any symmetric design, we419

have the following inequality:420

1

Pr(Wt−1:t = 1)
− 1 +

Pr(Wt−1:t = 1,Wt:t+1 = 1)

Pr(Wt−1:t = 1) Pr(Wt:t+1 = 1)
− 1+

1

Pr(Wt:t+1 = 1)
− 1 +

Pr(Wt−1:t = 1,Wt:t+1 = 1)

Pr(Wt−1:t = 1) Pr(Wt:t+1 = 1)
− 1 ≥ 4

(18)

Proof. Proof of Lemma 9. We first reformulate the inequality as421

Pr(Wt−1:t = 1) + 2Pr(Wt−1:t = 1,Wt:t+1 = 1) + Pr(Wt:t+1 = 1)

≥ 8Pr(Wt:t+1 = 1)Pr(Wt:t+1 = 1).
(19)

Now let us focus on three time periods: t− 1, t and t+ 1. There are 8 possible assignment paths. We
layout 4 of them and the remaining ones are just symmetric:

Wt−1:t+1 ∈ {(1, 1, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1)}.

with their probability mass denoted as a3, a2,1, a2,2, a2,3 respectively. Then we can characterize the422

probabilities in the inequality using these a:423

a3 + a2,1 + 2a3 + a3 + a2,2 ≥ 8(a3 + a2,1)(a3 + a2,2).

Since a3 + a2,1 + a2,2 + a2,3 = 0.5, it is equivalent to show424

2(a3 + a2,1 + a2,2 + a2,3)(4a3 + a2,1 + a2,2) ≥ 8(a3 + a2,1)(a3 + a2,2).

Notice that a2,3 only appears on the left-hand-side, so it is sufficient to show425

2(a3 + a2,1 + a2,2 + a2,3)(4a3 + a2,1 + a2,2) ≥ 8(a3 + a2,1)(a3 + a2,2).

which can be further simplified as426

(a2,1 − a2,2)
2 + a3(a2,1 + a2,2) ≥ 0.

This is true for any a.427

Proof. Proof of Theorem 3. In the proof of Lemma 8, we rewrite the variance by introducing428

y ∈ R2(T−1) to denote the vector of outcomes. Our original minimax problem is equivalent to429

(T − 1)2 ·Var(τ̂) = min
Σ

max
y∈[0,B]

yTΣy,

where Σ is some covariance matrix that can be mapped from a feasible design and the adversary430

finds an outcome vector to maximize the variance. To get a lower bound of the optimal worst-case431

variance, we consider a randomized feasible solution ỹ regardless of the covariance matrix in the432

outer optimization. We first combine every two time periods as a group, so we have overall n = T−1
2433

groups. We then randomly pick half of the groups and set their corresponding outcomes to B and434
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others to 0. Let h(i) denote the group of some outcome ỹi. In this way, for any two outcomes ỹi435

and ỹj from the same group(i.e. h(i) = h(j)), E[ỹiỹj ] = 1
2B

2; for any two outcomes from different436

groups, E[ỹiỹj ] = n−2
4(n−1)B

2. Now we can bound the inner optimization as follows:437

max
y∈[0,B]

yTΣy ≥ E
[
ỹTΣỹ

]
=

∑
h(i)=h(j)

Σi,j
1

2
B2 +

∑
h(i)̸=h(j)

Σi,j
n− 2

4(n− 1)
B2

=
∑

h(i)=h(j)

Σi,j
n

4(n− 1)
B2 +

∑
∀i,j

Σi,j
n− 2

4(n− 1)
B2

Note that the last term is non-negative, so it implies that

max
y∈[0,B]

yTΣy ≥
∑

h(i)=h(j)

Σi,j
n

4(n− 1)
B2.

Then it remains to investigate Σi,j when two outcomes ỹi and ỹj are from the same group(i.e. two
consecutive periods). Let us focus on what will happen in one group. First of all, it is easy to observe
that the following is true for any design:

1− Pr(Wt−1:t = 0,Wt:t+1 = 1)

Pr(Wt−1:t = 0) Pr(Wt:t+1 = 1)
= 1− Pr(Wt−1:t = 0,Wt−1:t = 1)

Pr(Wt−1:t = 0) Pr(Wt−1:t = 1)
= 1

We have 4 such pairs in one group, so they contribute 8n
4(n−1)B

2 to the variance. Next, if we set the
assignments in the above equation to be jointly 0 or 1, we are not able to know the exact values.
Fortunately, based on Lemma 9, we can still bound the variance to which they contribute by 8n

4(n−1)B
2.

Lastly, as we have n groups, we get the lower bound

max
y∈[0,B]

yTΣy ≥ n
(8 + 8)n

4(n− 1)
B2 =

4n2

n− 1
B2 =

2

T − 3
B2.

Together with the upper bound, the approximation ratio follows easily.438

A.4 Proof of Theorem 6439

Proof. Proof of Theorem 6. Let us first define440

ξT (t, t
′, s, s′) =


4T−8

(T−1)(T−3)Yt′(1) t′ = t+ 1, 2 ≤ s ̸= s′ ≤ T+1
2 ,

− 4T−8
(T−1)(T−3)Yt′(0) t′ = t+ 1, T+1

2 ≤ s ̸= s′ ≤ T,

0 otherwise.

(20)

Let π be a random permutation that shuffles the original indices:

{2, 3, . . . , T − 1, T} → {π(2), π(3), . . . , π(T − 1), π(T )}.

Given these, we can rewrite the estimator as441

τ̂ =

T∑
t ̸=t′

ξT (t, t
′, π(t), π(t′)). (21)

where
T∑

t ̸=t′
indicates

T∑
t=2

T∑
t′=2:t̸=t′

. To derive the normal approximation of this, we adopt Stein’s442

method of exchange pairs for double-index permutation statistics proposed in [24]. Specifically, they443

construct an exchangeable pair as follows. Let t and t′ be distributed uniformly over 1, . . . , T − 1444

conditioned that t ̸= t′. Define the permutation π′ = (π(t)π(t′)) ◦ π so that π′ is the permutation445

where π′(s) = π(s) for all k ̸= t, t′, and where π′(t) = π(t′) and π′(t′) = π(t). Let V1 = τ̂ , and446

we define the other two random variables for proof purposes:447

V2 =
1

T − 1

T∑
t=2

T∑
s,s′

ξT (t, s, π(t), s
′), V3 =

1

T − 1

T∑
t=2

T∑
s,s′

ξT (s, t, s
′, π(t)).
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Then we have V ′ = (V ′
1 , V

′
2 , V

′
3) = V (π′) to be the estimators with the exchange pair. For the448

random exchange pair (t, t′), we have the following equations:449

V ′
1 − V1 = ξT (t, t+ 1, π(t′), π(t+ 1)) + ξT (t

′, t′ + 1, π(t), π(t′ + 1))

+ ξT (t− 1, t, π(t− 1), π(t′)) + ξT (t
′ − 1, t′, π(t′ − 1), π(t))

− ξT (t, t+ 1, π(t), π(t+ 1))− ξT (t
′, t′ + 1, π(t′), π(t′ + 1))

− ξT (t− 1, t, π(t− 1), π(t))− ξT (t
′ − 1, t′, π(t′ − 1), π(t′),

V ′
2 − V2 =

1

T − 1

T∑
s=2

ξT (t, t+ 1, π(t′), s) +
1

T − 1

T∑
s=2

ξT (t
′, t′ + 1, π(t), s)

− 1

T − 1

T∑
s=2

ξT (t, t+ 1, π(t), s)− 1

T − 1

T∑
s=2

ξT (t
′, t′ + 1, π(t′), s),

V ′
3 − V3 =

1

T − 1

T∑
s=2

ξT (t− 1, t, s, π(t′)) +
1

T − 1

T∑
s=2

ξT (t
′ − 1, t′, s, π(t))

− 1

T − 1

T∑
s=2

ξT (t− 1, t, s, π(t))− 1

T − 1

T∑
s=2

ξT (t
′ − 1, t′, s, π(t′)).

They further satisfy that450

EV (V ′ − V ) = −ΛV +R (22)

where451

Λ =
2

T − 2

 2T−3
T−1 −1 −1
0 1 0
0 0 1

 , R =

− 2

(T − 1)(T − 2)

T∑
t,t′

ξT (t, t
′, π(t′), π(t)), 0, 0

 .

To be self-contained, we re-state the following theorem to show the asymptotic normality.452

Theorem 2 in [24]. Assume that (V ,V ′) is an exchangeable pair of random vectors such that453

E[V ] = 0, E[V V t] = Σ,

with Σ ∈ R3×3 symmetric and positive definite. If (22) holds and Z has a 3-dimensional standard454

normal distribution, we have for every three times differentiable function h,455 ∣∣∣Eh(V )− Eh
(
Σ1/2Z

)∣∣∣ ≤ |h|2
4

A+
|h|3
12

B +

(
|h|1 +

3

2
∥Σ∥1/2|h|2

)
where456

γ(i) =

3∑
m=1

∣∣∣(Λ−1
)
m,i

∣∣∣
A =

3∑
i,j=1

γ(i)
√

VarEV (V ′
i − Vi)

(
V ′
j − Vj

)
,

B =

3∑
i,j,k=1

γ(i)E
∣∣(V ′

i − Vi)
(
V ′
j − Vj

)
(V ′

k − Vk)
∣∣ ,

C =

3∑
i=1

γ(i)
√
VarRi.

To apply the theorem, we first note that E[V ] = 0 may not hold. Nevertheless, we can simply457

de-mean V by E[V ], and thus the condition is satisfied. Next, it is easy to see γ = O(T ) and we458

need to characterize A,B,C using (20):459
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• A: Let us use the analysis of VarEV (V ′
1 − V1)

2 as instance. First of all, we have460

EV (V ′
1 − V1)

2 =
1

(T − 1)(T − 2)

T∑
t ̸=t′

(V1(π
′)− V1))

2

=
1

(T − 1)(T − 2)

T∑
t ̸=t′

(ξT (t, t+ 1, π(t′), π(t+ 1)) + ξT (t
′, t′ + 1, π(t), π(t′ + 1))

+ ξT (t− 1, t, π(t− 1), π(t′)) + ξT (t
′ − 1, t′, π(t′ − 1), π(t))

− ξT (t, t+ 1, π(t), π(t+ 1))− ξT (t
′, t′ + 1, π(t′), π(t′ + 1))

− ξT (t− 1, t, π(t− 1), π(t))− ξT (t
′ − 1, t′, π(t′ − 1), π(t′)))2.

Let π′ be the permutation with the exchange pair t, t′ and π′′ be the permutation with the461

exchange pair s, s′. To analyze the variance of EV (V ′
1 − V1)

2, it suffices to see that462

Cov((V1(π
′)− V1))

2, (V1(π
′′)− V1))

2) = O

(
1

T 4

)
.

This further leads to463 √
VarEV (V ′

1 − V1)2 = O

(
1

T 2

)
Following the same procedure, we can obtain that464 √

VarEV (V ′
i − Vi)

(
V ′
j − Vj

)
= O

(
1

T 2

)
.

• B: Let us use the analysis of E[|(V ′
1 − V1)

3|] as instance. We take the conditioning on the465

exchange pair (t, t′), which gives466

E[|(V ′
1 − V1)

3|] = 1

(T − 1)(T − 2)

T∑
t ̸=t′

E[|(ξT (t, t+ 1, π(t′), π(t+ 1)) + ξT (t
′, t′ + 1, π(t), π(t′ + 1))

+ ξT (t− 1, t, π(t− 1), π(t′)) + ξT (t
′ − 1, t′, π(t′ − 1), π(t))

− ξT (t, t+ 1, π(t), π(t+ 1))− ξT (t
′, t′ + 1, π(t′), π(t′ + 1))

− ξT (t− 1, t, π(t− 1), π(t))− ξT (t
′ − 1, t′, π(t′ − 1), π(t′)))3|] ≤

(
8B

T

)3

= O

(
1

T 3

)
Following the same procedure, we can obtain that E

∣∣(V ′
i − Vi)

(
V ′
j − Vj

)
(V ′

k − Vk)
∣∣ =467

O

(
1

T 3

)
.468

• C: Since R2 = R3 = 0, we simply need to consider R1.469

√
VarR1 =

2

(T − 1)(T − 2)

√√√√√Var

 T∑
t ̸=t′

ξT (t, t′, π(t′), π(t))


=

2

(T − 1)(T − 2)

√
Var (V1) = O

(
1

T 2.5

)
Putting A,B,C together, we have470 ∣∣∣Eh(V )− Eh

(
Σ1/2Z

)∣∣∣ = O

(
1

T

)
.

Note that Σ1/2
1,1 =

√
Varη†(τ̂) has an order of 1√

T
. If we normalize V1 by the standard deviation, this471

leads to the typical rate of convergence O
(

1√
T

)
for asymptotic normality.472
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A.5 Proof of Proposition 7473

Proof. Proof of Proposition 7 We write the original variance decomposition (4):474

Var(τ̂ |Y) = 8(T − 2)2

(T − 3)2(T − 1)

(
St + Sc

)
− (4T − 10)(T − 2)

(T − 3)(T − 4)(T − 1)
Sτ

+
1

(T − 1)(T − 4)

T∑
t=2

(Yt(1)− Yt(0))
2 − 1

(T − 1)(T − 3)(T − 4)

T∑
t=2

(Yt(1)− Yt(0))(Yt+1(1)− Yt+1(0)).

First, because of475

T∑
t=2

(Yt(1)− Yt(0))
2 + (Yt(1)− Yt(0))(Yt+1(1)− Yt+1(0)) =

1

2

T∑
t=2

(Yt(1) + Yt+1(1)− Yt(0)− Yt+1(0))
2,

we rewrite the variance as476

Var(τ̂ |Y) = 8(T − 2)2

(T − 3)2(T − 1)

(
St + Sc

)
− (4T − 10)(T − 2)

(T − 3)(T − 4)(T − 1)
Sτ

+
T − 2

(T − 1)(T − 3)(T − 4)

T∑
t=2

(Yt(1)− Yt(0))
2

− 1

2(T − 1)(T − 3)(T − 4)

T∑
t=2

(Yt(1) + Yt+1(1)− Yt(0)− Yt+1(0))
2.

Removing the non-positive parts gives477

Var(τ̂ |Y) ≤ 8(T − 2)2

(T − 3)2(T − 1)

(
St + Sc

)
+

T − 2

(T − 1)(T − 3)(T − 4)

T∑
t=2

(Yt(1)− Yt(0))
2
.

Next, because of the non-negative outcomes, we have478

(Yt(1)− Yt(0))
2 ≤ Y 2

t (1) + Y 2
t (0).

This finally leads to the upper bound479

Varη†(τ̂ |Y) ≤ 8(T − 2)2

(T − 1)(T − 3)2
(St + Sc) +

T − 2

(T − 1)(T − 3)(T − 4)

T∑
t=2

(
Y 2
t (1) + Y 2

t (0)
)
.

Following the similar argument in [17], we obtain an unbiased estimate for the upper bound480

σ̂2
U =

8(T − 2)2

(T − 1)(T − 3)2
(Ŝt + Ŝc) +

4(T − 2)2

(T − 1)(T − 3)2(T − 4)

T∑
t=2

Y 2
t 1{wt−1 = wt}.

where Ŝt, Ŝc are the sample estimates and Yt is the observed outcome.481
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