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Abstract
In (Beckers, 2025) I introduced nondeterministic causal models as a generalization of Pearl’s stan-
dard deterministic causal models. I here take advantage of the increased expressivity offered by
these models to offer a novel definition of actual causation (that also applies to deterministic mod-
els). Instead of motivating the definition by way of (often subjective) intuitions about examples, I
proceed by developing it based entirely on the unique function that it can fulfil in communicating
and learning a causal model. First I generalize the more basic notion of counterfactual dependence,
second I show how this notion has a vital role to play in the logic of causal discovery, third I in-
troduce the notion of a structural simplification of a causal model, and lastly I bring both notions
together in my definition of actual causation. Although novel, the resulting definition arrives at
verdicts that are almost identical to those of my previous definition (Beckers, 2021, 2022).
Keywords: nondeterminism; counterfactuals; actual causation; counterfactual dependence

1. Introduction

In (Beckers, 2025) I introduced Nondeterministic Structural Causal Models (NSCMs) as a gener-
alization of Pearl (2009)’s influential Deterministic Structural Causal Models (DSCMs). DSCMs
form the mathematical bedrock of Pearl’s widely influential causal modeling framework. These
causal models are deterministic in the sense that they assume the values of causal parents uniquely
determine the values of their children, both actually and counterfactually. As I argue in (Beckers,
2025), both assumptions are unnecessarily restrictive, and nondeterministic causal models are the
result of dropping them.

I here take advantage of the increased expressivity offered by NSCMs to offer a novel definition
of actual causation (that applies to both NSCMs and DSCMs), which is the causal relation that
obtains between specific instances of events, such as when a specific patient’s taking aspirin causes
their headache to disappear. Not only has this concept been notoriously hard to define (in compar-
ison to other causal relations, such as the average causal effect, for example), it has also proven
difficult to objectively evaluate the quality of different proposed definitions (Glymour et al., 2010;
Halpern, 2016; Beckers, 2021). Instead of starting from paradigmatic test cases that a definition
should “get right”, I here develop a definition by focussing exclusively on the vital function that
statements of actual causation fulfil in efficiently communicating and learning a causal model.

The paper proceeds as follows. The next section formally introduces NSCMs (Sec. 2), followed
by an informal summary and motivation for the main idea behind my definition of actual causation
(Sec. 3). This sets the stage for taking all the necessary steps towards formally developing this
idea, starting with an investigation of the more basic concept of counterfactual dependence in the
context of NSCMs (Sec. 4). This reveals a hitherto ignored notion of interventional dependence
(Sec. 4.1) that can play a crucial role in the causal discovery of causal models from an idealized
logical perspective (Sec. 5). I then introduce the idea of structurally simplifying a causal model
(Sec. 5.1), to arrive at a definition of actual causation as the presence of counterfactual dependence
in some structural simplification of a causal model (Sec. 6).
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2. Nondeterministic Structural Causal Models1

Definition 1 A signature S is a tuple (U ,V,R), where U is a set of exogenous variables, V is a
set of endogenous variables, and R a function that associates with every variable Y ∈ U ∪ V
a nonempty set R(Y ) of possible values for Y (i.e., the set of values over which Y ranges). If
X = (X1, . . . , Xn),R(X) denotes the Cartesian productR(X1)× · · · × R(Xn).

Nondeterministic models generalize Halpern (2000, 2016)’s definition of deterministic causal mod-
els by using multi-valued functions. In addition to using multi-valued functions, we depart from
Halpern by explicitly including the causal graph as an element of the causal model.

Definition 2 A causal model (or a Nondeterministic Structural Causal Model – NSCM) M is a
triple (S,F ,G), where S is a signature, G is a directed acyclic graph – a DAG – such that there is
one node for each variable in S, and F associates with each endogenous variable X a structural
equation FX that takes on the form X = fX(PaX), where PaX ⊆ (U ∪ V) are the parents of X
in G, and fX : R(PaX) → P(R(X))∅. (Here P(R(X))∅ is the powerset of R(X): the set that
contains as its elements all subsets ofR(X), except for ∅.)

It will prove useful to adopt Halpern’s – by now standard – graphical convention that for any deter-
ministic equation Y = fY (PaY ), Y functionally depends on each of its parents X ∈ PaY , where
functional dependence means that there exists some setting z of all the other parents and values
x, x′ such that fY (z, x) 6= fY (z, x

′).
The exogenous variables U are taken to represent the background conditions that are simply

given. We call u ∈ R(U) a context, v ∈ R(V) a state, a (u,v) ∈ R(U ∪ V) is a world, and
(M,u,v) a causal setting. In deterministic causal models all the functions fX are standard as
opposed to multi-valued, and thus each equation has a unique solution x for each choice of values
paX . In nondeterministic models, a solution of the equation X = fX(PaX) is a tuple (x,paX)
such that x ∈ fX(paX). A solution of M is a world (u,v) that is a solution of all equations in F .

2.1. The Causal Language and Semantics

Given a signature S = (U ,V,R), an atomic formula is a formula of the form X = x, for X ∈ V
and x ∈ R(X). A basic formula (over S) ϕ is a Boolean combination of atomic formulas. An
intervention has the form Y ← y, where Y1, . . . , Yk are distinct variables in V , and yi ∈ R(Yi) for
each 1 ≤ i ≤ k. A basic causal formula has the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a basic
formula and Y1, . . . , Yk are distinct variables in V . Such a formula is abbreviated as [Y ← y]ϕ. The
special case where k = 0 is abbreviated as ϕ.2 Finally, a causal formula is a Boolean combination
of basic causal formulas. The language L(S) that we consider consists of all causal formulas.

A causal formula ψ is true or false in a causal setting. We write (M,u,v) |= ψ if the causal
formula ψ is true in causal model M given world (u,v).

We first define the |= relation for basic formulas. (M,u,v) |= X = x if x is the restriction of
v to X . We extend |= to basic formulas ϕ in the standard way. Note that the truth of basic formulas
is determined solely by the state v, and thus we often also write v |= ϕ.

In order to define the |= relation for causal formulas, we introduce two operations on a causal
model, the actualized refinement that is the result of integrating the actual behavior of the equations

1. This section is based almost ad verbatim on (Beckers, 2025).
2. This is warranted because ϕ and []ϕ turn out to be equivalent, just as was the case for Halpern (2000, 2016).
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as observed in a world (u,v) into the equations of a model M , and the intervened model that is the
result of performing an intervention on the equations of a model M . Given X and Y , we let XY

denote the restriction of X to X ∩ Y , and thus xY ∈ R(X ∩ Y ).

Definition 3 Given a solution (u,v) of a model M = (S,F ,G), we define the actualized refine-
ment M (u,v) as the model in which F is replaced by F (u,v), as follows: for each variable X ∈ V ,
its function fX is replaced by f (paX ,x)

X that behaves identically to fX for all inputs except for paX .
Instead, f (paX ,x)

X (paX) = x. Here x = (u,v)X and paX = (u,v)PaX .

Setting the value of some variables Y to y in a causal model M = (S,F ,G) results in a new
causal model, denoted MY←y, which is identical to M , except that F is replaced by FY←y: for
each variable X /∈ Y , FY←y

X = FX (i.e., the equation for X is unchanged), while for each Y ′ in
Y , the equation FY ′ for Y ′ is replaced by Y ′ = yY ′ . Similarly, G is replaced with GY←y.

With these operations in place, we can define the |= relation for basic causal formulas, relative
to settings (M,u,v) such that (u,v) is a solution of M . (M,u,v) |= [Y ← y]ϕ iff v′ |= ϕ for
all states v′ such that (u,v′) is a solution of (M (u,v))Y←y. We inductively extend the semantics to
causal formulas in the standard way, that is, (M,u,v) |= [Y ← y]ϕ1∧ [Z ← z]ϕ2 iff (M,u,v) |=
[Y ← y]ϕ1 and (M,u,v) |= [Z ← z]ϕ2, and similarly for ¬ and ∨.

We define 〈Y ← y〉ϕ as an abbreviation of ¬[Y ← y]¬ϕ. So (M,u,v) |= 〈Y ← y〉ϕ iff
v′ |= ϕ for some solution (u,v′) of (M (u,v))Y←y.

We can also evaluate formulas with respect to a partial causal setting (M,u), or with respect to a
modelM . For basic causal formulas, (M,u) |= [Y ← y]ϕ iff (M,u,v) |= [Y ← y]ϕ holds for all
states v such that (u,v) is a solution of M . In a similar fasion, we define that M |= [Y ← y]ϕ iff
(M,u,v) |= [Y ← y]ϕ holds for all solutions (u,v) of M . We again inductively extend to causal
formulas in the standard way: (M,u) |= [Y ← y]ϕ1 ∧ [Z ← z]ϕ2 iff (M,u) |= [Y ← y]ϕ1 and
(M,u) |= [Z ← z]ϕ2, and similarly for ¬ and ∨. Likewise for M |= ψ.

We have now defined three different semantics for L(S): the first with respect to full causal set-
tings (M,u,v), the second with respect to partial causal settings (M,u), and the third with respect
to M . I refer the reader to (Beckers, 2025) for a discussion and comparison of these semantics.

3. Informal Summary and Motivation

In order to get a sense of where we are heading, I here present the informal idea behind the new
definition of actual causation that will be developed. Say we observe two events X = x and Y = y.
The most popular approach to defining what it means for X = x to be an actual cause of Y = y
relative to a causal setting (M,u,v) is to construct it as a more nuanced version of counterfactual
dependence: if X had been x′ instead of x, then Y might have been y′ instead of y, for some
x′ 6= x and y′ 6= y. The reason that we need to add nuance is that there exist compelling examples
illustrating that counterfactual dependence is not necessary for actual causation (despite it arguably
being sufficient). Preemption cases are by far the most famous such examples, and therefore I use a
preemption classic that is discussed by Halpern (2016) at length to illustrate the problem.

Example 1 (Late Preemption) Suzy and Billy both throw a rock at a bottle. Suzy’s rock gets there
first, shattering the bottle. However Billy’s throw was also accurate, and would have shattered the
bottle had it not been preempted by Suzy’s throw. (See Figure 1.)
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ST

BT

SH

BH

BS

F :
ST = 1
BT = 1
SH = ST
BH = BT ∧ ¬SH
BS = SH ∨BH .

S:
ST : Suzy Throwing
BT : Billy Throwing
SH: Suzy Hitting
BH: Billy Hitting
BS: Bottle Shattering.

Figure 1: M for Example 1 (Removing the red edges results in structural simplifications of Mv.)

Intuitively, Suzy’s throw caused the bottle to shatter and Billy’s throw did not. Yet if Suzy
had not thrown, the bottle would have shattered nonetheless, and thus there is no counterfactual
dependence. Note that Billy’s throw serves as a backup process here, and if it weren’t for that
backup process, then there would be counterfactual dependence. So a natural idea to pursue for
defining actual causation is to consider whether there would be counterfactual dependence if the
backup process were somehow ignored. To implement this idea requires answering two questions:
what exactly does it mean to “ignore” the backup process, and why should we be at all interested
in considering counterfactual dependence in such a hypothetical situation of ignorance, given that
the causal model is as it is? So far the debate on defining actual causation has centered exclusively
around the various technical answers to the first question, and almost no attention has been paid
to the second question. (Two notable exceptions are (Hitchcock, 2017; Beckers, 2022).) Instead,
I propose that answering the second question is what should guide us towards answering the first,
for it is only by understanding what function the notion of actual causation fulfils that we can get a
handle on formally defining it. In fact, as we will see, addressing the second question offers insights
into the logic of causal discovery that are of interest quite aside from the issue of actual causation.

Coming back to our example, what if we are not fully confident about all details of the causal
model, but rather, the model as we outlined it is merely the simplest model that is consistent with
all the available observational and experimental data? Erring on the side of caution, in that case we
should consider the possibility that the real model allows for a richer set of data. In particular, as
it turns out, we can systematically increase the set of data consistent with the model by simplifying
the structure of the model, and thus any such simplification represents a model that we still consider
plausible. It’s just that the more we simplify the structure the less plausible the model becomes.

More specifically, given a causal setting (M,u,v), we should extend our interest from relations
of counterfactual dependence relative to (M,u,v) to such relations relative to any (M simp,u,v),
where M simp is an appropriate simplification of M . (As we will see in Section 4, that relations
of counterfactual dependence are themselves of interest is not hard to show.) I claim that actual
causation consists precisely of all relations of counterfactual dependence in such simplifications.

Informally, these simplifications are the result of removing edges from GM in such a way that (1)
each edge removal is also a removal of an ancestor-descendant pair; (2) no cases of counterfactual
dependence w.r.t. (u,v) are removed; and (3) the increase in cases of counterfactual dependence
w.r.t. (u,v) is minimal with respect to the resulting graph.

As it turns out, in Example 1 the only edges that can be so removed are those in red. In this
case, ignoring the backup process coincides with removing the edge BH → BS, which results in
the equation for BS taking on the nondeterministic form: BS = 1 if SH = 1 else BS ∈ {0, 1}.
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(Roughly: BH’s role in the equation is replaced with nondeterminism.) According to that equation,
we get that if Suzy had not thrown, then the bottle might have not shattered, and hence Suzy’s throw
counts as an actual cause of the shattering. We revisit this example in detail in Section 6.

4. Counterfactual Dependence

At the heart of the interventionist approach to causation that was mathematically developed by Pearl
(2009) and philosophically developed by Woodward (2003) lies the general idea that for X to be a
cause of Y means for X to be a tool that allows one a certain amount of control over Y : in some
situation, interventions on X from one value to another possibly result in changes to the value of
Y . In other words, X is a cause of Y if in some situation Y depends on X , where dependence
is to be understood in terms of interventions. Counterfactual dependence amounts to making this
idea precise when considering a particular, actual, situation, in which the causal mechanisms have
run their course and produced particular values for all the variables. Within the context of causal
models, counterfactual dependence is thus a statement about what is the case in an actual world
(u,v) that is governed by a causal model M , i.e., it is relative to a causal setting (M,u,v).

I first present the standard definition of counterfactual dependence as it appears in Halpern
(2016), where it was defined for deterministic causal models, meaning that we are in a situation
of full control: intervening to change X from its actual value to a specific other value results in
certainly changing the value of Y . In the deterministic case a partial causal setting (M,u) has only
one solution (u,v), and therefore it can be identified with the full causal setting (M,u,v). We label
this notion dependence* to indicate its preliminary nature. (We assume throughout that X 6= Y .)

Definition 4 Y = y depends* on X = x in (M,u) if there exists x′ ∈ R(X) s.t.:
[CD1.] (M,u) |= 〈〉(X = x ∧ Y = y) and [CD2.] (M,u) |= [X ← x′]Y 6= y.

In the deterministic case, Def. 4 states informally that: (CD1) X = x and Y = y are the values of
X and Y in the actual world, and (CD2) if X had been x′, then Y would certainly have taken on a
non-actual value. In the nondeterministic case, Def. 4 states that possibly, there is dependence, in
the sense just described. Indeed, we have the following trivial proposition.

Proposition 5 If Y = y depends* on X = x in (M,u) then there exists some v ∈ R(V) and
x′ ∈ R(X) s.t. (M,u,v) |= (X = x ∧ Y = y) and (M,u,v) |= [X ← x′]Y 6= y.

The idea of dependence that we started out with above, however, merely requires the possibility of
changing the value of Y . Therefore the generalization of counterfactual dependence to nondeter-
ministic models is as follows.

Definition 6 Y = y counterfactually depends* on X = x in (M,u,v) if there exists x′ ∈ R(X)
s.t.:

[CD1.] (M,u,v) |= (X = x ∧ Y = y) and [CD2.] (M,u,v) |= 〈X ← x′〉Y 6= y.

In the acyclic deterministic case, Definitions 4 and 6 are easily seen to be equivalent, whereas in the
acyclic nondeterministic case, Definition 4 implies Definition 6 (for some v) but not the reverse.

Both of these definitions can be understood as capturing observational dependence, in the sense
that they consist of dependence relative to an observed causal model M . Put differently, the actual
world (u,v) belongs to the observational rung of Pearl’s three-fold causal hierarchy (Bareinboim
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et al., 2022). We can also consider dependence in a world that is brought about after M has been
intervened upon, so that the causal model takes on the form MZ←z. (For example, we can imagine
that the actual world takes place in an experimental set-up in which some variables are being held
fixed.) Except for the fact that some of its equations are constant equations, a causal model MZ←z

is just that, a causal model. Hence we can generalize our definitions to include them.

4.1. Interventional Dependence

Definition 7 Y = y depends on X = x in (MZ←z,u) if X 6∈ Z and there exists x′ ∈ R(X) s.t.:
[CD1.] (MZ←z,u) |= 〈〉(X = x ∧ Y = y) and [CD2.] (MZ←z,u) |= [X ← x′]Y 6= y.

Definition 8 Y = y counterfactually depends on X = x in (MZ←z,u,v) if X 6∈ Z and there
exists x′ ∈ R(X) s.t.:

[CD1.] (MZ←z,u,v) |= (X = x ∧ Y = y) and [CD2.] (MZ←z,u,v) |= 〈X ← x′〉Y 6= y.

We say that Y depends on X if there exists some setting (MZ←z,u,v) and some values such
that Y = y counterfactually depends on X = x.

We say that Y directly depends on X if Y depends on X for Z = V − {X,Y }.

In Definitions 7 and 8 the actual world (u,v) belongs to the interventional rung of Pearl’s causal
hierarchy: it represents a world that is observed after an intervention took place. For all variants of
dependence, the formula in CD2 belongs to the counterfactual rung, in the sense that it is a statement
about worlds that are counterfactual relative to (u,v). As with our original notions of dependence,
it easily follows that Definition 7 implies the existence of some v such that Definition 8 holds, and
thus also that if Y = y depends on X = x for some (MZ←z,u) then Y depends on X .

Statements of dependence matter because they are highly informative for learning the graph GM
of a causal model.

Theorem 9 Given a causal model M and X,Y ∈ V , if Y depends on X then X is an ancestor of
Y in GM .

Proof: Proofs of all Theorems are to be found in the Appendix.

The reverse direction does not hold because the ancestor relation is transitive (per definition),
whereas dependence is not. (Here is a simple counterexample. Y = abs(X), X = A if Z = 1
and X = −A if Z = 0. Then Z is an ancestor of Y , but Y does not depend on Z.) If we restrict
ourselves to the direct case, the two notions do coincide.

Theorem 10 Given a causal model M and X,Y ∈ V , X → Y ∈ GM iff Y directly depends on X .

These results help to shed light on the importance of statements of counterfactual dependence
in both scientific practice and in everyday life: they offer a concise and efficient means of commu-
nicating the causal structure of a model. We explore this insight further in Sections 5 and 6, leading
to my proposal for defining actual causation.

Interventional dependence opens up an interesting conceptual distinction that – as far as I am
aware – has been overlooked so far, namely the distinction between (MZ←z,u,v) |= 〈W ← w〉ϕ
and (M,u,v′) |= 〈W ← w,Z ← z〉ϕ. (Throughout the following we assume that Z ∩W = ∅.)
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The reason that it has been overlooked is simple: it cannot be made visible using deterministic
models, for there it holds that

(MZ←z,u,v) |= 〈W ← w〉ϕ iff (M,u,v′) |= 〈Z ← z,W ← w〉ϕ. (1)

And yet conceptually these two types of statements are quite different. For sake of simplicity, for
now let us assume that W = ∅. Then the LHS of (1) states that if the causal model is such that
it contains the equations FZ←z and if this has produced the actual world (u,v), then it might be
the case that ϕ. Simply put: intervention first, observation second. The RHS, on the other hand,
states that if the causal model is such that it contains the equations F and if this has produced the
actual world (u,v′), then if Z were z it might have been the case that ϕ. Simply put: observation
first, intervention second. So the former is a statement about what is the case in the actual world
(that just happens to have been brought about after an intervention took place) and the latter is a
statement about what is the case in a counterfactual world. The equivalence (1) breaks down in the
nondeterministic case, as it should. Here is a very simple example.

Example 2 Imagine two situations sharing identical background conditions u that involve the
possible recovery Y of a patient who can undergo one of two possible treatments X , each of which
is sometimes effective. Assume that one treatment (X = 1) is the default in such situations. In
situation 1, the patient is given the deviant treatment (X ← 0), and we observe that the patient does
not recover (Y = 0). In this situation, it plainly holds that the patient certainly does not recover. In
situation 2, we observe that the patient receives the default treatment (X = 1) and does not recover,
and we then consider whether they would have recovered if they had received the deviant treatment
instead. In this situation, the patient might have recovered. Formally this translates into a model in
which the equation for Y is Y ∈ {0, 1} for both of the parent values X = 1 and X = 0, and the
equation for X is X = 1. Then – situation 1 – (MX←0,u, X = 0, Y = 0) |= Y = 0 but also –
situation 2 – (M,u, X = 1, Y = 0) |= 〈X ← 0〉Y = 1.

Nonetheless, equivalence (1) remains also for the nondeterministic case when considering par-
tial settings (which is the case in Definition 7). Intuitively, the explanation for this goes as follows.
Recall from Section 2.1 that causal formulas (relative to the original model M ) are evaluated af-
ter two operations on M have taken place, first refinement and then intervention, expressed by
(M (u,v))Z←z. The refinement operation updates the equations in line with the observation V = v,
and thus this ordering aligns with the “observation first, intervention second” motto. That the equiv-
alence breaks down for full causal settings is because the refinement and intervention operations do
not commute: (M (u,v))Z←z 6= (MZ←z)

(u,v). Moreover, as a partial causal setting (M,u) does
not contain an observation, we evaluate formulas by considering all possible observations, which
effectively neutralizes the refinement operation and thus the issue does not arise.

Theorem 11 Given a causal model M , for any basic causal formula ϕ and for any choice of
Z,W ⊆ V , z ∈ R(Z), w ∈ R(W ), and u ∈ R(U), we have that

(MZ←z,u) |= 〈W ← w〉ϕ iff (M,u) |= 〈Z ← z,W ← w〉ϕ.

Although overlooked within the context of DSCMs, the distinction between the two types of
statement is in fact a very important one within the context of Pearl’s probabilistic treatment of cau-
sation. The probabilistic counterpart of the “intervention-first” statement is the subject of Pearl’s
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well-known do-calculus, which offers us rules that allow us to reduce interventional probabilities
to probabilities with fewer interventions. Concretely, it is concerned with statements of the form
PZ←z(Y = y|X = x), where the subscript Z ← z indicates that P is the probability distribution
over V after the intervention Z ← z. (As a consequence, the observed condition X = x is an
observation after the intervention, and thus PZ←z(X = x|X = x) = 1.) The probabilistic coun-
terpart of the “observation-first” statement is the subject of Pearl’s probabilities of counterfactuals,
which are statements of the form P (YZ←z = y|X = x). Here the appearance of the subscript
Z ← z next to Y (instead of P ) indicates that P is the distribution after first having observed
X = x, and then applying the intervention Z ← z. (As a consequence, in general we do not have
that P (XZ←z = x|X = x) = 1.) More generally,

PZ←z(Y = y|X = x) 6= P (YZ←z = y|X = x). (2)

So why does a distinction that is fundamental to Pearl’s probabilistic framework for causation not
have a counterpart in his (and Halpern’s) logical framework for causation? Because the former is
concerned with the setting in which there is uncertainty over the context u, whereas the latter is
formulated relative to a known u, and for DSCMs the distinction is visible only in the first of these.
It suffices to condition the above probabilities on a known context u and then invoke our earlier
equivalence to make this clear (under the assumption that M is deterministic):3

PZ←z(Y = y|U = u,V = v) = 1{(MZ←z ,u,v)|=Y=y} = 1{(M,u,v′)|=[Z←z]Y=y} = P (YZ←z = y|U = u,V = v′).

Since the equivalence breaks down in the nondeterministic case, so do these equalities, and therefore
the probabilistic and logical treatments of causation are more closely aligned in the nondeterministic
case than they are in the standard deterministic case.

Still, even in the deterministic case interventional dependence opens up a novel subject of in-
vestigation, namely the probabilistic counterpart to interventional dependence that we arrive at
when we drop our earlier assumption that W = ∅. In that case, the LHS of (1) represents a
situation in which we have “intervention first, observation second, intervention third”, which is
a counterfactual statement relative to an actual world that was brought about after an interven-
tion. Sticking to the notation used above, the probabilistic counterpart of such statements would
be PZ←z(YW←w = y|X = x). So although such statements are perfectly sensible within Pearl’s
existing framework, Pearl does not discuss them.

I can only speculate, but I suspect the reason for this oversight lies in Pearl’s inconsistent use
of notation throughout his book (Pearl, 2009). Within the context of the do-calculus (p. 67), he
equates the following notation: PZ←z(Y = y) = P (Y = y|Ẑ = ẑ) = P (Y = y|do(Z =
z)). This seems to imply that P (.|do(.)) is his notation for the “intervention-first, observation-
second” type of statement. Yet within the context of counterfactuals (p. 221 and p. 232), he equates
P (Y = y|do(Z = z)) with P (YZ←z = y), implying instead that P (.|do(.)) is his notation for
the “observation-first, intervention-second” type of statement. This ambiguity is harmless in two
extreme cases: the case in which we do not condition on any observation, or the case in which we
condition on a complete context u (in the deterministic case, that is). Outside of these extremes,
however, inequality (2) shows that this ambiguity results in a contradiction.4

3. Here 1{condition} denotes the indicator function that returns 1 if the condition is true and 0 otherwise.
4. Interestingly, in the last chapter Pearl replies to comments by readers. In one comment (p. 354) a reader points out

that Pearl lacks the notation to distinguish between an observation that occurs before, and one that occurs after, an
intervention. In his reply, Pearl claims that he does make such a distinction in the chapter on counterfactuals. Yet
such a distinction is nowhere to be found, further confirming that Pearl was overlooking the nuances here discussed.
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5. The Logic of Causal Discovery

We now take advantage of Theorems 9, 10, and 11, to move on to considering the process of causal
discovery of an NSCM M from an idealized logical perspective. Although obviously extremely
important, we here set aside entirely all statistical issues justifying the inductive leap from a finite
sample to a general theory, as well as all issues regarding the impracticality of performing perfect
interventions, and criteria for inferring that two observations occurred under identical conditions.
Instead, we start from the idealized assumption that through rigorous experimentation and well-
justified assumptions about the background conditions that make up a context u, we have learned
a set of “interventionist statements of possibility” that hold in the ground truth model M , i.e., we
have learned a set of statements S of the form (MX←x,u) |= 〈〉V = v, or equivalently (Thm. 11),
(M,u) |= 〈X ← x〉V = v, as well as the maximal set of consequences that can be derived from
such statements (through the axiomatization given in (Beckers, 2025)). Furthermore, assume that
S contains at least one element for each combination of a context u and an intervention X ← x,
so that we can imagine having performed each possible experiment in each possible context at least
once. Per assumption, if (M,u) |= 〈X ← x〉ϕ ∈ S, then (M,u) |= 〈X ← x〉ϕ. In order
to fully identify M , we need at least the further assumption that our sample of experiments was
sufficiently large for S to contain all possibilities, so that if (M,u) |= 〈X ← x〉ϕ 6∈ S then
(M,u) |= [X ← x]¬ϕ. Let us call this the exhaustivity assumption.

Under the exhaustivity assumption such a set S gets us quite a way towards identifying GM : S
contains all statements of dependence relative to partial settings (Def. 7), both direct and not direct,
so using Theorem 10 this allows us to identify a partial graph GS ⊆ GM . However, completely
identifying GM requires knowledge of all statements of counterfactual dependence (Def. 8), and
those are not exhausted by dependence relative to partial settings. Example 2 offers an illustration:
we cannot identify the edge X → Y ∈ GM from statements of dependence relative to partial
settings alone, for those are equally compatible with the equation for Y simply being Y ∈ {0, 1},
so that X 6→ Y ∈ GM . Only upon learning a counterfactual statement such as (M,u, X = 1, Y =
0) |= 〈X ← 0〉Y = 1 can we rule out the latter. In fact, GS ⊆ GM is exactly what we learn about
the graph from S and exhaustivity, in the sense that we cannot rule out any acyclic supergraph of
GS as the complete graph GM . Concretely, as the following result shows, the problem of identifying
the model M reduces to the problem of identifying those edges in GM that go beyond GS .

Theorem 12 Given a set of interventionist statements S as described above and an acyclic graph
GM ⊇ GS over the same signature S, the following construction uniquely defines a causal model
M = (S,F ,GM ) such that for each u ∈ R(U), X ⊆ V , x ∈ R(X), and basic formula ϕ ∈ L(S):

(M,u) |= 〈X ← x〉ϕ ∈ S iff (M,u) |= 〈X ← x〉ϕ.

For all X ∈ V , x ∈ R(X), a ∈ R(PaX ∩ V) and b ∈ R(PaX ∩ U), we have that x ∈ fX(a, b)
iff (M,u) |= 〈A← a〉X = x ∈ S for some u ∈ R(U) such that uB = b.

We let MS denote the model corresponding to GS , and call it the default model for S.

We do get unique identifiability of M just from a set S if we assume that it is a deterministic
SCM, since in that case dependence and counterfactual dependence coincide and thus GS = GM .
This allows us to reconceptualize the assumption of determinism as simply a more extreme version
of the exhaustivity assumption: it amounts to the assumption that exhaustivity is reached after
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doing each experiment in each context only once, because it is assumed that each context and inter-
vention results in a unique solution. As a consequence, under the assumption of determinism, just
a single instance of observing two solutions for the same experiment in the same context forces us
to conclude that we must have somehow made a mistake in our experimental setup or our observa-
tions. NSCMs allow us to avoid that conclusion. (Indeed, it was the restrictiveness of the uniqueness
property that motivated me in (Beckers, 2025) to develop NSCMs in the first place.)

Still, even without assuming determinism, exhaustivity is a strong assumption, and learning
just a single novel interventionist possibility results in its violation. If we just drop it, we are unable
to even rule out the extreme model M that allows for all possibilities, meaning the completely
disconnected model in which each variable X ∈ V takes on the equation X ∈ R(X). Nor are
we able to rule out any edge X → Y ∈ GM . Therefore it would be good to replace it with an
assumption that takes exhaustivity as the default, but is compatible with it being violated. To
do so, consider that the underlying motivation for exhaustivity is in fact an appeal to a certain
kind of simplicity assumption, namely the assumption that the best explanation for the data is the
simplest model that is able to explain it. Such appeals to the best explanation are standard within
scientific methodology, as is the view that simplicity is one of the most important indicators of
good explanations. (Philosophers of science call this “inference to the best explanation”, but among
scientists it is more often referred to as “abduction” (Douven, 2021).)

Simplicity in this sense corresponds to the set-inclusion partial order for sets of interventionist
possibilities: all else being equal, A is simpler than B iff A ⊆ B. Let us call this int-set simplicity.
However, the complexity of causal models is also characterized by their causal structure, which is
encoded in the graph GM . There exist many measures of relative graph complexity, but within the
context of causal models we require a measure that focuses on the relations of causal dependence.
In light of Theorem 9, I suggest using the ancestor-descendant relation as a measure of simplicity:
all else being equal, GA is simpler than GB iff GA is constructed out of GB by removing ancestor-
descendant pairs. (I explain such constructions in Definition 13 below.) Let us call this structural
simplicity. Since both measures of simplicity pull in different directions, the most conservative ap-
proach is to only rule out those models that are dominated along the combination of both measures,
meaning that there exists an alternative model explaining S which is strictly simpler along one mea-
sure and is at least as simple along the other. Furthermore, in line with – but much weaker than –
exhaustivity, we assume a preference for int-set simplicity, so that models which are structurally
simpler but less int-set simple become evermore abnormal as edges are removed. Let us call all of
this the simplicity assumption.

Under simplicity the most normal models are the structurally simplest, int-set minimal, models.
All the models identified in Theorem 12 are int-set minimal, but MS is the only one that does not
contain any redundant edges, and that is why I take it to be the default model. There do, however,
also exist less normal models consistent with simplicity, and those will be structurally simpler than
MS . Concretely, for any graph GT constructed out of GS , such a corresponding model MT has to
contain a minimal set of interventionist possibilities extending S. We work our way up to identifying
these models as the structural simplifications of the model MS .

5.1. Structural Simplifications

Structurally simplifying a graph comes down to removing edges in order to remove some ancestor-
descendant pairs. Although very similar to removing edges simpliciter, things are complicated

10



ACTUAL CAUSATION AND NONDETERMINISTIC CAUSAL MODELS

slightly by the fact that the removal of an edge X → Y does not necessarily result in the removal
of an ancestor-descendant pair, for there might remain an indirect path from X to Y . (Consider
the edge SH → BS in Figure 1 for an illustration.) As the removal of an edge from GS comes at
the valuable expense of increasing the int-set complexity, we only consider subgraphs in which the
removal of edges was worth the price (i.e., it bought us the removal of ancestor-descendant pairs).

Definition 13 Given graphs G1 and G2, we say that G2 is a structural simplification of G1 if G2 ⊆
G1, Anc(G2) ⊆ Anc(G1), and for any X → Y ∈ (G1 − G2): (X,Y ) 6∈ Anc(G2).

Int-set simplicity is assessed by considering whether one model interventionally extends another.

Definition 14 Given models M1 and M2 over a signature S = (U ,V,R), we say that M2 is an
interventional extension of M1 if for all u ∈ R(U), X ⊆ V , x ∈ R(X), and basic formulas
ϕ ∈ L(S), if (M1,u) |= 〈X ← x〉ϕ then (M2,u) |= 〈X ← x〉ϕ.

Definition 15 Given a function f : R(X)→ P(R(Y )), we define the generalized function fZ for
any Z as fZ : R(Z)→ P(R(Y )) and fZ(z) :=

⋃
{x|xZ=zX}

f(x).

Since Z can be deduced from the argument z, we overload notation and write f(z) instead of
fZ(z). Thus we are effectively interpreting f as a family of multi-valued functions with co-domain
P(R(Y )) and different domains. This idea comes in handy when comparing functions whose do-
mains consist of different parents, which is what is required to construct structural simplifications.

Definition 16 Given models M1 and M2 over a signature S = (U ,V,R), we say that M2 is a
structural simplification of M1 if GM2 is a structural simplification of GM1 and for each X ∈ V we
have that: fX(Pa2

X) = gX(Pa2
X), where fX and gX respectively denote X’s function in M2 and

M1, and Pa2
X are X’s parents in M2.

Informally, structurally simplifying a model by removing an edge Z → X means to re-interpret
fX so that for any given input of the remaining parents of X , we return all values of X that the
original fX could have given for each value of Z. (Alternatively, one could implement the same
idea by replacing Z → X with Z ′ → X for some novel exogenous variable Z ′ that takes over the
role of Z but is independent of it. That is in fact the definition of edge removal used by Janzing
et al. (2013) – Def 4. – within the context of measuring causal influence.)

Structural simplifications satisfy our requirement of adding a minimal set of interventionist
possibilities to the original model in order to account for the removal of ancestor-descendant pairs:

Theorem 17 Given models M1,M2,M3 over a signature S such that M2 is a structural simplifi-
cation of M1 and GM3 = GM2 , we have that M2 is an interventional extension of M1, and either
M3 is not an interventional extension of M1 or M3 is an interventional extension of M2.

Hence we conclude that, for a given set of interventionist possibilities S, under simplicity the
possible causal models are identified as all structural simplifications of the default model MS . Note
that the extreme, completely disconnected, model mentioned earlier is a structural simplification
of any model, and thus we cannot rule it out entirely. Still, as mentioned the degree of structural
simplification is also a degree of abnormality, making the extreme model maximally abnormal.
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6. Actual Causation

This is as far as we can get with just knowledge of interventionist possibilities. But what if we were
to learn just a single counterfactual possibility? Contrary to the interventionist case, just a single
instance can offer vital novel information without requiring any further assumption. For example,
learning that Y counterfactually depends on X in some setting (M,u,v) offers us a way of using
Theorem 9 to establish that X is an ancestor of Y . Doing so allows us to discard all structural
simplifications of MS in which X is not an ancestor of Y , or if we like, the generally larger set of
simplifications in which Y does not counterfactually depend on X .

Note that if X is not ancestor of Y in GS , this means discarding all of our possible models.
In that case, the counterfactual statement was incompatible with the weakest hypothesis that the
above discovery process resulted in, namely that the ground truth M is a structural simplification
of MS , and thus we have to re-evaluate. I propose that statements of actual causation between
X and Y correspond to the weakest statement regarding the counterfactual dependence of Y on
X in (M,u,v) such that it can falsify our weakest hypothesis, and that is the statement that Y
counterfactually depends on X in some structural simplification of the ground truth (M,u,v).

To make this precise, we first define structural simplifications relative to a specific full causal
setting (M,u,v), as opposed to an entire model M or to a specific partial setting (M,u).

Definition 18 Given models M1 and M2 over a signature S = (U ,V,R), we say that (M2,u,v)

is a structural simplification of (M1,u,v) if M (u,v)
2 is a structural simplification of M (u,v)

1 .

Obviously we would like that, in addition, M2 is a structural simplification of M1, and this is
not guaranteed to be the case. Simply consider the trivial one-variable model M1 with equation
Y ∈ {0, 1}. Then the model M2 with equation Y = 1 is not a structural simplification of M1, but
(M2, Y = 1) is a structural simplification of (M1, Y = 1). Still, Proposition 20 shows that this
technicality can be ignored when defining actual causation.

Definition 19 X = x is an actual cause of Y = y in (M1,u,v) if there exists a structural simpli-
fication (M2,u,v) of (M1,u,v) so that Y = y counterfactually depends on X = x in (M2,u,v).

Proposition 20 If X = x is an actual cause of Y = y in (M1,u,v) then there exists a structural
simplification (M2,u,v) of (M1,u,v) so that M2 is a structural simplification of M1 and Y = y
counterfactually depends on X = x in (M2,u,v).

Note that (by applying Theorem 17 twice, once to M2 and M1 and once more to M (u,v)
2 and

M
(u,v)
1 ) this means such structural simplifications result in minimal increases – given GM2 – both

of interventionist possibilities in M1 and counterfactual dependence w.r.t. (M1,u,v).
I have here offered a novel definition of actual causation based entirely on the unique function

that it can fulfil in learning a causal model. Moreover, it is the first definition of actual causation
that applies equally to DSCMs and NSCMs. Still, for it to be a contender as a definition of ac-
tual causation, as opposed to some other interesting concept, it should offer defensible verdicts of
causation across the enormous variety of examples that are discussed in the literature. That this is
indeed the case follows from the fact that, when restricted to DSCMs, my definition behaves almost
identically to the one I first developed in (Beckers, 2021) and later reformulated in (Beckers, 2022).
Concretely, the new definition agrees with my previous one on all of the examples I discuss in the
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former, and therefore I refer the reader to that work for a comprehensive defense of the verdicts
reached by my definition. Here I simply illustrate the definition using Example 1 and a variant of it
that is a rare case where my new definition differs from – and improves upon – my old definition.

Applying Definition 19 to Example 1 (where U = ∅) we get that ST = 1 is an actual cause of
BS = 1 by considering the simplification M ′ that is the result of removing the edge BH → BS.
As mentioned, this results in the equation for BS becoming BS = 1 if SH = 1 else BS ∈ {0, 1}
(because in M we had {1}BS = 1SH ∨ {1, 0}BH and {0, 1}BS = 0SH ∨ {1, 0}BH ). Observe that
there is indeed counterfactual dependence in M ′, since (M ′,v) |= 〈ST ← 0〉BS = 0. Lastly,
we need to verify that M ′v is a structural simplification of Mv, which reduces to verifying that
fvBS(SH) = gvBS(SH), and that is a direct consequence of the fact that fvBS(SH) = fBS(SH),
gBS(SH) = gvBS(SH), and the first observation (where, as in Definition 16, fBS and gBS are the
respective functions in M and M ′). Now I show that BT = 1 is not an actual cause of BS = 1.
Clearly BS = 1 does not counterfactually depend on BT = 1 in the original model. I leave it to
the reader to verify that the only other structural simplifications of Mv are those in which either
BT → BH orBH → BS (or both) is removed. SinceBT is not an ancestor ofBS in any of those
models, there is no counterfactual dependence either.

Lastly, I discuss a problem for my previous definition that the new definition does not suffer
from. Imagine the same setup from Example 1, except that this time Suzy does not throw. Intuitively,
we would not want to consider her failure to throw (ST = 0) to be considered a cause of the bottle
shattering (BS = 1), and neither of the above definitions do so. Now imagine that Suzy is not
always accurate (SA) when throwing. All it takes for my old definition to change its verdict is to
make explicit the obvious fact that Suzy would only hit the bottle if she were accurate, so that the
equation for SH becomes SH = ST ∧ SA. That seems an undesirable result, and the current
definition does not suffer from it. (For sake of completeness I mention that the undesirable result
only shows up in case SA is modelled as an endogenous variable, which is arguably not the best
choice. Instead, I would of course recommend modelling the above using the nondeterministic
equation SH ∈ {0, 1} if ST = 1 and SH = 0 if ST = 0.)

It is worth pointing out that my definition can be interpreted as vindicating the intuitive but
relentlessly discredited idea that actual causation is counterfactual dependence after all, although
this requires a very broad interpretation of possibility. Given that we consider all structural simpli-
fications possible, actual causation amounts to stating that changing X = x possibly might have
resulted in changing Y = y. The latter statement is precisely how counterfactual dependence is
understood in the counterfactual tradition on actual causation, for it builds on the possible world se-
mantics to counterfactuals, both of which can be traced back to the seminal work of Lewis (1973a,b).

7. Conclusion

Taking advantage of the increased generality offered by nondeterministic causal models, I have de-
veloped a functional account of actual causation: statements of actual causation test the hypothesis
that the set of causal models we consider plausible contains the ground truth. This functional ap-
proach is a departure from the existing literature that instead focuses on ambiguous examples and
inconsistent intuitions, and owes its inspiration to Woodward (2021)’s longstanding project of of-
fering a functional account of causal reasoning more generally. In future work I aim to extend this
account to a probabilistic one by extending the idea of structural simplifications to the probabilistic
causal models I defined in (Beckers, 2025), including Causal Bayesian Networks.
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Proofs of Theorems

Theorem 9 Given a causal model M and X,Y ∈ V , if Y (deterministically) depends on X then
X is an ancestor of Y in GM .

Proof: Assume Y depends on X in M . Recall our assumption that X 6= Y . We show that either
X ∈ PaY , or there exists some P ∈ PaY such that P depends on X . The result then follows by
straightforward induction.

If X ∈ PaY then per definition X → Y ∈ GM . So let us assume X 6∈ PaY . We know that
for some (MZ←z,u,v), X 6∈ Z and values x, x′, y we have:

• (MZ←z,u,v) |= (X = x ∧ Y = y).

• (MZ←z,u,v) |= 〈X ← x′〉Y 6= y.

Since we have that both (MZ←z,u,v) |= Z = z and (MZ←z,u,v) |= [X ← x′]Z = z,
it follows that Y 6∈ Z. Therefore by the first condition, y ∈ f(paY ), where paY = (u,v)PaY .
Also, by the second condition, there exists some v′ such that v′

X = x′, v′
Y = y′ for some

y 6= y′, and y′ ∈ f (paY ,y)(pa′
Y ), where pa′

Y = (u,v′)PaY . Combining both claims, we get
that paY 6= pa′

Y , and thus there exists some P ∈ PaY such that p = paY P 6= pa′
Y P = p′.

Furthermore, P ∈ V , since U = u across both solutions. So p = vP and p′ = v′
P .

Therefore we have the following two conditions, which imply that P depends on X , as had to
be shown:

• (MZ←z,u,v) |= (X = x ∧ P = p).

• (MZ←z,u,v) |= 〈X ← x′〉P 6= p.

Theorem 10 Given a causal model M and X,Y ∈ V , X → Y ∈ GM iff Y directly depends on X .

Proof: We start with the implication from right to left. Assume Y directly depends on X . Then just
as in the proof of Theorem 9 we can conclude that eitherX ∈ PaY or there exists some P ∈ PaY

which changes value in the solutions used in the two conditions, and P ∈ V , P 6∈ Z. Given that we
have direct dependence, also Z = V − {X,Y }, and thus P = X .

Now the implication from left to right. First let us assume that fY is a deterministic function,
recalling our convention that in that case, if X ∈ PaY then there exists some setting w of all the
other parents and values x, x′, y, y′ such that y = fY (w, x) 6= fY (w, x

′) = y′. Let A = PaY V and
B = PaY U . Let u ∈ R(U) denote some setting such that uB = wB , and let z ∈ R(V−{X,Y })
denote some setting such that zA = wA.

Say (u,v) is a solution to the equations in MZ←z, and vX = x′′. If fY (w, x′′) = y =
fY (w, x), then we have the following two conditions, which is precisely what we had to show:

• (MZ←z,u,v) |= (X = x′′ ∧ Y = y).

• (MZ←z,u,v) |= [X ← x′]Y 6= y.

If y′′ = fY (w, x
′′) 6= y = fY (w, x), then the result follows from the following two conditions:
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• (MZ←z,u,v) |= (X = x′′ ∧ Y = y′′).

• (MZ←z,u,v) |= [X ← x]Y 6= y′′.

Second we assume that fY is a multi-valued function, meaning that there exists at least one
setting (w, x) such that there exist y 6= y′ for which {y, y′} ⊆ fY (x,w). Let A, B, u, and z be as
before.

Say (u,v) is a solution to the equations inMZ←z, and vX = x′′, vY = y′′, so: (MZ←z,u,v) |=
(X = x′′ ∧ Y = y′′).

If x′′ 6= x, we get that (MZ←z,u,v) |= 〈X ← x〉Y = y ∧ 〈X ← x〉Y = y′. Since we cannot
have both y′′ = y and y′′ = y′, the result follows.

If x′′ = x, we consider two cases.
First, consider the case such that there exists x′ 6= x for which fY (x′,w) = fY (x,w). We have

that {y, y′} ⊆ fY (x
′,w). As before, since we cannot have both y′′ = y and y′′ = y′, the result

follows from (MZ←z,u,v) |= 〈X ← x′〉Y = y ∧ 〈X ← x′〉Y = y′.
Second, consider the case where there exists some x′ 6= x such that fY (x′,w) 6= fY (x,w). If

there exists some y∗ ∈ fY (x′,w) so that y∗ 6∈ fY (x,w), then (MZ←z,u,v) |= 〈X ← x′〉Y = y∗

and the result follows. If there exists some y∗ ∈ fY (x,w) so that y∗ 6∈ fY (x′,w), then there must
also exist some solution (u,v′) to the equations in MZ←z so that v′

X = x and vY = y∗. (Note
that v and v′ differ only on Y .) The result then follows from observing that (MZ←z,u,v

′) |=
[X ← x′]Y 6= y∗.

Theorem 11 Given a causal model M , for any basic causal formula ϕ and for any choice of
Z,W ⊆ V , z ∈ R(Z), w ∈ R(W ), and u ∈ R(U), we have that

(MZ←z,u) |= 〈W ← w〉ϕ iff (M,u) |= 〈Z ← z,W ← w〉ϕ.

Proof: This is a direct consequence of the following result from (Beckers, 2025).

Theorem Given a nondeterministic causal model M , we have that for all Y ⊆ V , for all y ∈
R(Y ), for all contexts u, and for all basic formulas ϕ:

(M,u) |= [Y ← y]ϕ iff v |= ϕ for all states v such that (u,v) is a solution of MY←y.

First note that under our assumption of W∩Z = ∅, it holds that (MZ←z)W←w =M(Z←z,W←w).
The result then follows from applying this theorem to both sides of the equivalence in Theorem

11, giving:
For the left part, we get that (MZ←z,u) |= 〈W ← w〉ϕ iff there exists a state v such that

v |= ϕ and (u,v) is a solution to M(Z←z,W←w).
For the right part, we get that (M,u) |= 〈W ← w,Z ← z〉ϕ iff there exists a state v such that

v |= ϕ and (u,v) is a solution to M(Z←z,W←w).

Theorem 12 Given a set of interventionist statements S as described above and an acyclic graph
GM ⊇ GS over the same signature S, the following construction uniquely defines a causal model
M = (S,F ,GM ) such that for each u ∈ R(U), X ⊆ V , x ∈ R(X), and basic formula ϕ ∈ L(S):

(M,u) |= 〈X ← x〉ϕ ∈ S iff (M,u) |= 〈X ← x〉ϕ.
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For all X ∈ V , x ∈ R(X), a ∈ R(PaX ∩ V) and b ∈ R(PaX ∩ U), we have that x ∈ fX(a, b)
iff (M,u) |= 〈A← a〉X = x ∈ S for some u ∈ R(U) such that uB = b.

We let MS denote the model corresponding to GS , and call it the default model for S.

Proof: Assume we have some M = (S,F ,GM ) and a set S as described. Concretely, for each
u ∈ R(U), X ⊆ V , x ∈ R(X), there exists at least one V = v such that (M,u) |= 〈X ←
x〉V = v ∈ S. Furthermore, S contains all consequences derived from such statements using the
axiomatization AXscc

non of the single context counterfactual logic from (Beckers, 2025), which is
the logic of NSCMs relative to partial settings (M,u).

Since, per assumption about S, for all X ∈ V , a ∈ R(PaX ∩V) and b ∈ R(PaX ∩U), there
exists at least one statement of the form (M,u) |= 〈A ← a〉V = v ∈ S with b = uB , we have
by axiom D7 that (M,u) |= 〈A ← a〉X = vX ∈ S and thus there exists at least one value x so
that x ∈ fX(a, b), and thus the above construction results in a total NSCM. The rest of the proof
proceeds very similarly to the completeness proof for AXscc

non as it appears in (Beckers, 2025).
⇒:
We start with the implication from left to right. Consider some (M,u) |= 〈X ← x〉ϕ ∈

S. Given the construction of S, this means that there exists some set of statements of the form
(M,u) |= 〈X ← x〉V = v ∈ S from which the former statement can be derived using AXscc

non.
Therefore the same holds for any NSCM for which that set of statements is true, and thus we can
assume without loss of generality that ϕ is of the form V = v.

We need to show that (M,u) |= 〈X ← x〉V = v, which by the theorem from (Beckers, 2025)
that we stated in the proof of Theorem 11 reduces to showing that (u,v) is a solution of MX←x.
By axiom D4, vX = x. This means we need to show that for each Y ∈ V −X , y ∈ fY (paY ),
where y = vY and paY = (u,v)paY . Using the notation from the theorem, let paY = (a, b).

Per construction of M , we need to show that (M,u) |= 〈A← a〉Y = y ∈ S.
By D3(a), we know that (M,u) |= 〈C ← c,A← a〉V = v ∈ S, where C = V − ({Y } ∪A)

and c = vC . By D7, we get that (M,u) |= 〈C ← c,A← a〉Y = y ∈ S.
Let us consider some c′ ∈ R(C) such that (M,u) |= 〈A ← a, Y ← y〉C = c′ ∈ S. (Per

assumption about S, such c′ must exist.) If also (M,u) |= 〈A← a,C ← c′〉Y = y ∈ S, then by
D5 and D7 we get that (M,u) |= 〈A← a〉Y = y ∈ S, as required.

Remains to consider the case where (M,u) |= 〈A ← a,C ← c′〉Y = y 6∈ S. We know that
for each C ∈ C, C → Y 6∈ GS . We show by induction that this results in a contradiction.

Consider some C ∈ C. C → Y 6∈ GS implies that for all c, c′ ∈ R(C), all y ∈ R(Y ),
z ∈ R(Z) with Z = V − {C, Y }, if (M,u) |= 〈Z ← z〉(C = c ∧ Y = y) ∈ S then (M,u) |=
〈Z ← z, C ← c′〉Y = y ∈ S. (To see why, note that due to D3(a) otherwise it must be that c 6= c′

and thus Y directly deterministically depends on C, and so by Theorem 10 and per construction of
GS , C → Y ∈ GS .) As a consequence, if (M,u) |= 〈Z ← z〉Y = y ∈ S then for all c′ ∈ R(C),
(M,u) |= 〈Z ← z, C ← c′〉Y = y ∈ S. Taking D = C − {C}, d = cD, and c = cC ,
from the above we know that (M,u) |= 〈A ← a,D ← d, C ← c〉Y = y ∈ S. Therefore also
(M,u) |= 〈A← a,D ← d, C ← c′〉Y = y ∈ S, where c′ = c′C .

We can now apply the same reasoning we applied to C to some D ∈ D, so that by induction
we arrive at (M,u) |= 〈A← a,C ← c′〉Y = y ∈ S, contradicting our starting point for this case.
⇐:
We now move on to the implication from right to left. Consider some (M,u) |= 〈X ← x〉ϕ.

This means there exists some v |= ϕ such that (u,v) is a solution of MX←x. So it suffices to show
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that (M,u) |= 〈X ← x〉V = v ∈ S, which reduces to showing that (M,u) |= 〈X ← x〉Y =
y ∈ S, with Y = V −X and y = vY .

Per construction of M , we have that for each Y ∈ Y , y ∈ fY (paY ), where y = vY and
paY = (u,v)paY . Let A = V ∩ PaY and B = U ∩ PaY . As a result, we have that (M,u) |=
〈A← vA〉Y = y ∈ S.

For each Y ∈ Y , we have that for any Z ⊆ V − (A ∪ {Y }): Zi → Y 6∈ GS for all
Zi ∈ Z. Therefore (by the same reasoning as above for C ∈ C) for any z we have that (M,u) |=
〈Z ← z,A ← vA〉Y = y ∈ S. Letting Y = {Y1, . . . , Yk}, we have in particular that for
each i ∈ {1, . . . , k}: (M,u) |= 〈X ← x,Y −i ← y−i〉Yi = vYi ∈ S, where Y −i :=
(Y1, . . . , Yi−1, Yi+1, . . . , Yk) and likewise for y−i.

Taking (M,u) |= 〈X ← x,Y −1 ← y−1〉Y1 = y1 ∈ S and (M,u) |= 〈X ← x,Y −2 ←
y−2〉Y2 = y2 ∈ S, we can apply D5 to derive that (M,u) |= 〈X ← x,Y −1,2 ← y−1,2〉(Y1 =
y1∧Y2 = y2) ∈ S. By the same reasoning, we get that (M,u) |= 〈X ← x,Y −2,3 ← y−2,3〉(Y2 =
y2 ∧ Y3 = y3) ∈ S. Again applying D5 to the last two statements, we get that (M,u) |= 〈X ←
x,Y −1,2,3 ← y−1,2,3〉(Y1 = y1 ∧ Y2 = y2 ∧ Y3 = y3) ∈ S. By straightforward induction, we get
that (M,u) |= 〈X ← x〉Y ← y ∈ S, which is what had to be shown. This concludes the proof.

Theorem 17 Given models M1,M2,M3 over a signature S such that M2 is a structural simplifi-
cation of M1 and GM3 = GM2 , we have that M2 is an interventional extension of M1, and either
M3 is not an interventional extension of M1 or M3 is an interventional extension of M2.

Proof: Assume we have M1,M2,M3 as described. First we prove that M2 is an interventional
extension of M1. Assume (M1,u) |= 〈X ← x〉ϕ. Just as with the proof of Theorem 12, we can
assume without loss of generality that ϕ is of the form V = v. We need to show that (M2,u) |=
〈X ← x〉V = v. By the theorem from (Beckers, 2025) that we stated in the proof of Theorem 11
this reduces to showing that if (u,v) is a solution of M1,X←x then (u,v) is a solution of M2,X←x.

Consider some Y ∈ V −X , y ∈ R(Y ), a ∈ R(Pa1
Y ), b ∈ R(Pa2

Y ), such that y = vY , a =
(u,v)A, b = (u,v)B , and let gY /fY denote the function for Y in M1/M2 respectively. We know
that y ∈ gY (a) and we need to show that y ∈ fY (b). Per definition of a structural simplification,
fY (b) = gY (b). Per definition of a generalized function, gY (b) =

⋃
{a′|a′

B=b}
gY (a

′) ⊇ gY (a) ⊇

{y}. Hence y ∈ fY (b). This concludes the first part of the proof.
Second we prove that either M3 is not an interventional extension of M1 or M3 is an interven-

tional extension of M2. We do so by a reductio: assume that M3 is an interventional extension of
M1 and M3 is not an interventional extension of M2.

The latter statement means that there is some (M2,u) |= 〈X ← x〉ϕ and (M3,u) |= [X ←
x]¬ϕ. This means there exists some solution (u,v) of M2,X←x that is not a solution of M3,X←x.

So there exists some Y ∈ V − X , y ∈ R(Y ), and b ∈ R(Pa2
Y ), such that y = vY , b =

(u,v)B , y ∈ fY (b) and y 6∈ hY (b). Here fY is Y ’s function in M2, and hY is Y ’s function in M3.
Letting gY denote Y ’s function in M1, since M2 is a structural simplification of M1, we also

have that fY (b) = gY (b) and thus y ∈ gY (b). Therefore there exists some a ∈ R(Pa1
Y ) such

that aB = b and y ∈ gY (a). This implies that for some u′ ∈ R(U) with u′
A = aU and some

z ∈ R(V − {Y }) with zA = aV , we have (M1,u
′) |= 〈Z ← z〉Y = y.

Per our first assumption, also (M3,u
′) |= 〈Z ← z〉Y = y. Given that B ⊆ A, it follows

that (u′, z, y)B = aB = b. Since (u′, z, y) is a solution of M3,Z←z, this implies that y ∈ hY (b),
contradicting our earlier statement. This concludes the proof.
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Proposition 20 If X = x is an actual cause of Y = y in (M1,u,v) then there exists a structural
simplification (M2,u,v) of (M1,u,v) so that M2 is a structural simplification of M1 and Y = y
counterfactually depends on X = x in (M2,u,v).

Proof: Assume Y = y counterfactually depends on X = x in (M2,u,v), where M (u,v)
2 is a

structural simplification of M (u,v)
1 , but M2 is not a structural simplification of M1. We need to

show that there exists some M3 over the same signature S such that:

1. M3 is a structural simplification of M1,

2. M (u,v)
3 is a structural simplification of M (u,v)

1 ,

3. (M3,u,v) |= (X = x ∧ Y = y),

4. (M3,u,v) |= 〈X ← x′〉Y 6= y.

Note that GM1 = G
M

(u,v)
1

and GM2 = G
M

(u,v)
2

, so GM2 is a structural simplification of GM1 .
Let M3 be the unique structural simplification of M1 such that GM3 = GM2 . We claim that M3

also satisfies the remaining three requirements.
Condition 3:
Given that (M2,u,v) is a structural simplification of (M1,u,v), (u,v) is a solution of M1.

The latter statement is equivalent to (M1,u) |= 〈〉V = v. By Theorem 17, M3 is an interventional
extension of M1, and thus (u,v) is also a solution of M3, which implies the result.

Condition 2:
Consider some Z ∈ V . We know that hZ(Pa2

Z) = gZ(Pa2
Z), where hZ /gZ is Z’s function

in M3/M1. We know that f (pa
2
Z ,z)

Z (Pa2
Z) = g

(pa1
Z ,z)

Z (Pa2
Z), where fZ is Z’s function in M2,

and pa2
Z = (u,v)Pa2

Z
, pa1

Z = (u,v)Pa1
Z

, z = vZ . We need to show that h(pa
2
Z ,z)

Z (Pa2
Z) =

g
(pa1

Z ,z)
Z (Pa2

Z).

First consider some pa2
Z
′ 6= pa2

Z . Then h(pa
2
Z ,z)

Z (pa2
Z
′
) = hZ(pa

2
Z
′
) and g(pa

1
Z ,z)

Z (pa2
Z
′
) =

gZ(pa
2
Z
′
), from which the result follows.

Second consider pa2
Z . We have that h(pa

2
Z ,z)

Z (pa2
Z) = {z} = f

(pa2
Z ,z)

Z (pa2
Z) = g

(pa1
Z ,z)

Z (pa2
Z).

Condition 4:
Since both M (u,v)

2 and M (u,v)
3 are structural simplifications of M (u,v)

1 , and G
M

(u,v)
2

= G
M

(u,v)
3

,

it follows that M (u,v)
2 =M

(u,v)
3 , implying the result.
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