
Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

A GAME-THEORETIC APPROACH FOR IMPROVING GEN-
ERALIZATION ABILITY OF TSP SOLVERS

Chenguang Wang1,∗, Yaodong Yang2,∗, Oliver Slumbers4,
Congying Han†,1, Tiande Guo1, Haifeng Zhang3, Jun Wang4

1University of Chinese Academy of Sciences 2King’s College London
3Institute of Automation, Chinese Academy of Sciences 4University College London
wangchenguang19@mails.ucas.ac.cn
yaodong.yang@kcl.ac.uk
hancy@ucas.ac.cn

ABSTRACT

In this paper, we introduce a two-player zero-sum framework between a trainable
Solver and a Data Generator to improve the generalization ability of deep learning-
based solvers for Traveling Salesman Problem (TSP). Grounded in Policy Space
Response Oracle (PSRO) methods, our two-player framework outputs a population
of best-responding Solvers, over which we can mix and output a combined model
that achieves the least exploitability against the Generator, and thereby the most
generalizable performance on different TSP tasks. We conduct experiments on a
variety of TSP instances with different types and sizes. Results suggest that our
Solvers achieve the state-of-the-art performance even on tasks the Solver never
meets, whilst the performance of other deep learning-based Solvers drops sharply
due to over-fitting. To demonstrate the principle of our framework, we study
the learning outcome of the proposed two-player game and demonstrate that the
exploitability of the Solver population decreases during training, and it eventually
approximates the Nash equilibrium along with the Generator.

1 INTRODUCTION

Deep learning for solving combinatorial optimization problems has recently attracted enormous
attention due to its ability to capture complex improvement heuristics from training over millions of
problem instances (Khalil et al., 2017). Additionally, due to the efficiency of the forward computation
of neural networks, deep learning based techniques are particularly efficient in comparison to
traditional methods when performing inference on large-scale problems. As a consequence, it is
promising direction to study training deep learning-based solvers offline and later to implement
solvers online.

The generalization ability of a solver concerns its performance on a variety of different data distri-
butions. Most previous works only train their models on data from uniform distribution, however,
overfitting to the uniform distribution can cause poor generalization ability. As a direct intuition,
improvement on the generalization ability can be obtained by exploring the data distribution where
the model performs poorly. In this work, we tackle the generalization problem by introducing a
novel two-player game framework: player one, the trainable Solver, aims to train solvers to perform
well on distributions chosen by player two, and player two, the Data Generator, aims to generate
distributions in which Solver can be challenged. With regard to the policy space of Data Generator, it
is possible that Data Generator has an infinite-sized number of choices since there are an enormous
amount of candidate distributions. In this view, previous work focuses solely on adopting the uniform
distribution, which unfortunately is only one of the many policies available to player two.

We take the typical problem in combinatorial optimisation—Travelling Salesman Problem (TSP)—
which is widely used for many real-world applications. For our Solvers we utilise a standard deep
learning-based solver as our base solver. Our framework is solver agnostic, it can be applied to

∗Equal contributions. †Corresponding author.

1

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

improve the generalization performance of any existing solvers. For the Data Generator, we develop
a learning-to-attacking technique under the two-player framework by adding perturbations on top of
uniformly generated data where the induced task instance can challenge the current Solver and make
it perform poorly; as such, the generator can learn to find the weaknesses of the Solver 1.

Overall, our contributions are as follows:

• We study the generalization ability of TSP solvers from a game-theoretical perspective, and
propose a two-player game framework to train effective Solvers which can incorporate, with
minimal changes, any existing deep learning-based Solver.

• We propose a learning-to-attack method by adding learnable perturbations on the data
distribution of problem instance so that the solver can be exploited to perform poorly.

• We introduce a mixing-model by combining the population of Solvers so that we can make
full use of the obtained solver population to attain the state-of-the-art results.

• We study the exploitability of obtained strategies during training to offer insights about
how the solver population develop over time. Experimental results show that the obtained
strategies under our framework are asymptotically approximating the Nash Equilibrium.

2 RELATED WORK

Deep Learning for Combinatorial Optimization. Deep learning or reinforcement learning based
methods have achieved notable progress in various combinatorial optimization problems, such
as Traveling Salesman Problem (Lu et al., 2020; Kool et al., 2019; 2021), Capacitated Vehicle
Routing Problem (Hottung et al., 2021; Wu et al., 2021), graph matching problems (Yu et al., 2019;
2021). However, these works only focus on the data from uniform distribution, which ignore the
generalization ability to unseen instances.

Meta-Game Analysis. In meta-game analysis (Wellman, 2006; Yang & Wang, 2020), traditional
solution concepts (e.g., Nash equilibrium) can be computed in a more scalable manner. PSRO (Lanctot
et al., 2017) generalises Double Oracle (McMahan et al., 2003) by introducing RL to obtain an
approximate best response. In games with high degree of non-transitivity (Czarnecki et al., 2020)
such as Chess (Sanjaya et al., 2021), PSRO methods prove to be an efficient approach to prevent from
learning strategic cycles. PSROrN (Balduzzi et al., 2019) and Diverse-PSRO (Nieves et al., 2021;
Liu et al., 2021) incorporated diversity seeking into PSRO and Pipeline-PSRO (McAleer et al., 2020)
aims to improve training efficiency by training multiple best responses in parallel.

3 NOTATIONS AND PRELIMINARIES

Normal Form Game (NFG) - A tuple (Π, UΠ, n) where n is the number of players, Π =
(Π1,Π2, ...,Πn) is the joint policy set and UΠ = (UΠ

1 , UΠ
2 , ...UΠ

n) : Π → Rn is the utility matrix
for each joint policy. A game is symmetric if all players have the same policy set (Πi = Πj , i ̸= j)
and same payoff structures, such that players are interchangeable.

Best Response - The strategy which attains the best expected performance against a fixed opponent
strategy. σ∗

i = br(Π−i, σ−i) is the best response to σ−i if:

UΠ
i (σ∗

i , σ−i) ≥ UΠ
i (σi, σ−i),∀i, σi ̸= σ∗

i

Nash Equilibrium (NE) - A strategy profile σ∗ = (σ∗
1 , σ

∗
2 , ..., σ

∗
n) such that:

UΠ
i (σ∗

i , σ
∗
−i) ≥ UΠ

i (σi, σ
∗
−i),∀i, σi ̸= σ∗

i

Intuitively, no player has an incentive to deviate from their current strategy if all players are playing
their respective Nash equilibrium strategy.

Exploitability - In a two-player zero-sum game, the average exploitability of a strategy profile
σ = (σ1, σ2) is defined as follows (Davis et al., 2014):

exploitability(σ) =
1

2

(
UΠ
1 (br(σ2), σ2

)
+ UΠ

2

(
σ1, br(σ1)

)
(1)

1See how easily the current TSP solvers can be exploited in Appendix A.6.

2

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Instance - An individual sample of a combinatorial optimization problem. Hereafter, we denote an
instance by I which comes from some distribution PI . Specifically for TSP, instances represent a set
of coordinates {(xi, yi) ∈ Rn|i = 1, 2, ..., n} sampling repeatedly from some distribution.

Optimality gap - Measures the quality of a Solver compared to an optimal Oracle. Given an Instance
I and a Solver S : {I} → R, the optimality gap is defined as:

g(S, I,Oracle) =
S(I)− Oracle(I)

Oracle(I)
(2)

where Oracle(I) gives the true optimal value of the Instance. Furthermore, the expected optimality
gap of an Instance distribution PI and an Oracle is defined as:

G(S,PI ,Oracle) = EI∼PIg(S, I,Oracle). (3)

4 OUR METHOD

In this section, we present our method for solving the Traveling Salesman Problem (TSP) at the
meta-level. Let there be two players in the meta-game, one is the Solver Selector (SS) and the other
is the Data Generator (DG). ΠSS = {Si|i = 1, 2, ...} is the policy set of candidate Solvers for the
Solver Selector, and ΠDG = ΠN ×ΠC = {PI,i = (PN,i,PC,i)|i = 1, 2, ...} is the policy set for the
Data Generator, where ΠN is the policy set of the problem scale (i.e. the number of nodes that need
to be generated) and ΠC is the policy set used to generate two-dimensional coordinates. Therefore,
an Instance distribution PI ∈ ΠDG comprises of two parts: PI = (PN ,PC) where PN is the
distribution for the number of nodes N contained in each Instance, and PC is a two-dimensional
distribution for coordinate positioning.

Formally, we have a two player zero-sum asymmetric NFG (Π,UΠ, 2) where Π = (ΠSS,ΠDG),
UΠ : Π → R|ΠSS|×|ΠDG|, UΠSS(π) = G(π,Oracle) is the expected optimality gap under the joint
policy π = (S,PI) ∈ Π as defined in Eq. 3 and UΠDG(π) = −UΠSS(π). Given UΠ, we can
determine a Nash Equilibrium σ∗ = (σ∗

SS, σ
∗
DG) as the meta-strategy which satisfies:

min
σSS∈∆(ΠSS)

max
σDG∈∆(ΠDG)

Eπ∼(σSS,σDG)G
(
π,Oracle

)
. (4)

We follow the PSRO framework as follows: at each iteration given the policy sets ΠSS and ΠDG and
the meta-strategy σ = (σSS, σDG) we train two Oracles:

• S
′

represents the Solver Selector, a best response to the Data Generator’s meta strategy σDG.

• P
′

I is the Data Generator which learns a data distribution where σSS performs poorly.

Given these oracles, we update the joint policy set Π
′
= Π ∪ (S

′
,P

′

I) and the meta-game UΠ
′

according to Π
′
. This expansion of the joint policy set has a dual purpose in that it aids in finding

the difficult to find Instance distributions whilst also improving the ability of the Solver Selector to
solve said distributions. In line with our objective, this process leads to a population of powerful
Solvers which have diverse abilities on various distributions, and how we successfully combine these
individual Solvers is discussed in Sec. 4.4. The general algorithm framework can be seen in Alg. 1.

The formulation above leaves us with four algorithm components to address: 1) How to obtain the
meta-strategy σ; 2) How to train Oracles for both players; 3) How to evaluate the utilities UΠ; 4)
How to combine the the population of Solvers. In the following parts, we will describe the flow of
the algorithm as visualised in Fig. 1, where each section shown in purple represents the answer to the
above four questions.

4.1 META-STRATEGY SOLVERS

In this paper, we use the NE of the meta game as the meta-strategy solver as we believe for a two
player zero-sum game the NE is sufficient, but various meta-strategy solvers can be used w.r.t the
corresponding meta-game constructed by the specific combinatorial optimization problem.

3

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Figure 1: Pipeline of solving combinatorial optimization problems in meta-level. At PSRO loop t,
we first use meta-Solver to compute the meta-strategy σt given the meta-table UΠt and then training
best response (St+1,Pt+1

I) based on current policy set and meta-strategy (Πt, σt). Finally we get
a new meta-table UΠt+1 according to the new obtained policy and algorithm process iterates to the
next loop.

4.2 ORACLE TRAINING

We now provide the higher-level details for training a best-response Oracle in the TSP setting, with
more detailed derivations presented in Appendix A.1. Here we represent the trainable Solvers in
ΠSS as Sθ and the trainable Instance distributions in ΠDG as PI,γ = (PN,γN

,PC,γC
) where θ and γ

are the trainable parameters. Sθ can be any DL-based methods parameterized by θ so we can take
derivation w.r.t. it to get the oracle for a given distribution.

Solver Oracle. Given the Data Generator meta-strategy σDG, the Oracle training objective for the
Solver is:

min
θ

LSS(θ) = EPI∼σDGG(Sθ,PI ,Oracle). (5)

The gradient of this objective is:

∇θLSS(θ) = EPI∼σDGEN∼PN
Ex1,...,xN∼

∏N
i=1 PC

∇θSθ(x1, ..., xN)

Oracle(x1, ..., xN)
. (6)

Data Generator Oracle. Given the Solver Selector meta-strategy σSS, the Oracle training objective
for the Data Generator is:

max
γ

LDG(γ) = ES∼σSSG(S,PI,γ ,Oracle). (7)

To derive the gradient for the Data Generator Oracle, we first note the following: For ΠN , we fix the
problem scaleN = {N1, N2, ...}, and let PN,γN

∈ ΠN be a parameterized discrete distribution over
N . Here we directly use a learnable probability vector γN (implement by a softmax function) to
represent PN,γN

.

As the goal of the Data Generator is to find a suitable distribution that the current Solver finds
difficult to solve, we design an approach that directly attacks the Solver by adding noise to given
instances2. We achieve this by utilising an attacked distribution where Instances sampled from a
uniform distribution are perturbed by Gaussian noise. Formally, we start by sampling I ∼ U(0, 1),
then we use a neural network parameterised attack generator fγC

to generate the variance of a
Gaussian distribution:

Σ = fγC
(I) (8)

where the shape of Σ is the same as I, that is, if I contains N two dimension coordinates then the
variance matrix will be Σ ∈ RN×2, and we attack an Instance I additively via Ĩi,j = Ii,j + ϵ where
ϵ ∼ N(0,Σi,j). We denote the final attacked distribution by PC,γC

, and our objective therefore is to
find the optimal parameters γ∗ = (γ∗

C , γ
∗
N).

2Demonstrations of these attacks are shown in Appendix A.6

4

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

The gradient w.r.t. γC is:

∇γC
LDG(γ) = ES∼σSSEN∼PN,γN

Ex1,..,xN∼
∏N

i=1 PC,γC[
∇γC

(N∑
i=1

logPC,γC
(xi)

)
g
(
S, (x1, ...xN),Oracle

)]
.

(9)

Details relating to the extra computation required for the log-probability in Eq. 9 is left to Ap-
pendix A.2.

The gradient w.r.t. γN is:

∇γN
LDG(γ) = ES∼σSSEN∼PN,γN

∇γN
(logPN,γN

(N))·
Ex1,..,xN∼

∏N
i=1 PC,γC

g
(
S, (x1, ...xN

)
,Oracle).

(10)

Overall, we have that the gradient of the Data Generator Oracle is:

∇γLDG(γ) =

(
∇γC

LDG(γ)
∇γN

LDG(γ)

)
(11)

Remark: We omit the calling of ’Oracle’ in Eq. 6 and Eq. 10 during implementation because the
goals remain approximately same.

4.3 EVALUATION

Given the joint policy set Π, we can compute the elements in matrix UΠ by approximating the
expected optimality gap defined in Eq. 3:

uS,PI = G(S,PI ,Oracle) = EI∼PIg(S, I,Oracle) ≈ 1

M

M∑
i=1

g(S, Ii,Oracle).

where S ∈ ΠSS ,PI ∈ ΠDG.

4.4 COMBINING THE SOLVER POPULATION

At the end of training we are left with a diverse population of Solvers designed for different distribu-
tions, which we suspect may be combined to generate a powerful general Solver. There already exist
several works on how to mix policies, such as Q-Mixing (Smith et al., 2020; 2021), however we
instead choose to combine the Solvers based on the meta-strategy. As we use the Nash equilibrium
as our meta-solver, we can guarantee that our combined Solver has a given conservative level of
performance under the assumption that these Instance distributions can be generated by the Data Gen-
erator’s policy set. To some extent, we suggest that the conservative nature of the Nash equilibrium is
itself in accordance with the meaning of generalization ability. Additionally, in contrast to Q-mixing
which only supports value-based methods, our mixing-method makes no prior assumptions on the
type of RL algorithm in use, and can be used for both value-based and policy-based methods.

Formally, for value-based RL methods, we can weight the corresponding Q values to get the mixed
Q-value of the combined model:

Qmix(s, a) =
∑

π∈ΠSS

σ∗
SS(π)Qπ(s, a) (12)

For policy-based RL methods, we directly obtain the mixed policy probability by:

πmix(a|s) =
∑

π∈ΠSS

σ∗
SS(π)π(a|s) (13)

5 EXPERIMENTS

In the following section, we present our results on TSP Instances of size n = 20, 50, 100. In contrast
to previous work which fail to show generalization ability due to training and testing on the same
distribution (uniform), we demonstrate performance on distributions that are unseen during training.
We detail the basic settings below, with specific training settings listed in Appendix A.4.

5

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Table 1: Our model vs baselines. The gap % is w.r.t. the best value across all methods.
n = 20 n = 50 n = 100

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

T
SP

Concorde 3.43 0.00% (6s) 4.99 0.00% (1m) 6.20 0.00% (3m)
LKH3 3.43 0.00% (2s) 4.99 0.00% (27s) 6.20 0.00% (3m)
Gurobi 3.43 0.00% (1s) 4.99 0.00% (19s) 6.20 0.00% (4m)

AM(gr.) 3.45 0.58% (2s) 5.12 2.61% (4s) 6.71 8.23% (8s)
LIH(T=1000) 3.69 7.72% (16s) 5.07 1.72% (33s) 6.72 8.48% (63s)
LIH(FS)(T=1000) 3.43 0.12% (18s) 5.06 1.68% (34s) 6.47 4.43% (67s)
LIH(FT)(T=1000) 3.43 0.04% (50s) 5.07 1.70% (64s) 6.45 4.00% (2m)

AM(sampling) 3.43 0.11% (6s) 5.03 0.95% (29s) 7.22 16.45% (2m)
LIH(T=3000) 3.62 5.54% (46s) 5.03 0.92% (95s) 6.58 6.24% (3m)
Att-GCRN+MCTS 3.43 0.00% (-) 5.09 2.16% (-) 6.65 7.32% (-)
DPDP(bs=10K) 3.43 0.00% (5s) 5.03 1.00% (3m) 6.86 10.66% (12m)
LIH(FS)(T=3000) 3.43 0.04% (54s) 5.03 0.88% (100s) 6.37 2.77% (3m)
LIH(FT)(T=3000) 3.43 0.00% (2m) 5.03 0.89% (3m) 6.36 2.50% (6m)

Table 2: Results on TSPlib Instances. The underlined and bold figures mean achieving the best results
among all methods (including OR-Tools) and all deep learning-based methods respectively.

Instance Opt. OR-Tools AM AM LIH LIH(FS) LIH(FT)
(N=1,280) (N=5,000) (T=3,000) (T=3,000) (T=3,000)

eil51 426 436 435 434 438 429 429
pr124 59,030 62,519 62,750 61,996 66,010 61,645 61,645
rd100 7,910 8,189 8,180 8,048 7,915 8,036 8,160
pr76 108,159 111,104 111,598 111,924 109,668 109,418 108,495
kroB150 26,130 27,572 28,894 28,864 31,407 27,418 27,418
u159 42,080 45,778 45,394 44,581 51,327 43,376 43,376
berlin52 7,542 7,945 9,759 9,831 8,020 7,653 7,544
eil101 629 664 656 656 658 642 656
kroC100 20,749 21,583 22,586 22,896 25,343 21,079 21,255
eil76 538 561 558 557 575 548 548
kroB100 22,141 23,006 24,340 23,987 26,563 22,855 23,677
kroE100 22,068 22,598 22,895 22,716 26,903 22,532 22,898
bier127 118,282 122,733 130,513 128,150 142,707 127,520 127,520

Avg. Gap (%) 0 3.46 42.96 36.86 17.12 5.13 5.49

5.1 EXPERIMENTAL SETTINGS

Data normalization. We only consider Instances within [0, 1] × [0, 1] which are normalised via
min-max normalization:

Inorm = Norm(I) = I −min{I}
max{I} −min{I}

(14)

where min{I} is the minimum scalar coordinate value in the TSP Instance and max{I} is the max
coordinate value.

Data generation. We generate data by randomly sampling x ∈ R2 from the unit square, and sampling
y ∈ R2 from N(0,Σ) where Σ ∈ R2×2 is a diagonal matrix whose elements are sampled from [0, λ]
and λ ∼ U(0, 1). Next, a two-dimensional coordinate is generated by z = x + y, and we can get
any scale n of TSP by performing this sampling n times. We sample 1000 normalised (via Eq. 14)
Instances which makes up 10 groups of data generated by different λ values, and report the relevant
results on the generated datasets in Table 1.

Baselines. In this work, our base RL model comes from (Wu et al., 2021) which we denote as LIH.
We compare our model with Gurobi (Gurobi Optimization, LLC, 2021), Concorde, LKH3 (Helsgaun,
2017) and the following deep learning-based methods: AM (Kool et al., 2019), (Wu et al., 2021),
Att-GCRN+MCTS (Fu et al., 2021) 3 and DPDP (Kool et al., 2021) on generated data. On the
real world instances from TSPLib (Reinelt, 1991), we compare the results with known best results,
Or-tools (Perron & Furnon), AM (Kool et al., 2019) and LIH (Wu et al., 2021). All experiments are
trained and executed with one single GPU (RTX3090) and CPU (i9-10900KF).

3We don’t report the time because the implementation is using C programming which is different from others

6

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

5.2 RESULTS

Results on Generated Data. We follow two different training paradigms based on LIH: training
from scratch LIH(FS) and fine-tuning LIH(FT), with specific settings available in Appendix A.4.
We first evaluate how LIH(FS) and LIH(FT) perform on the unseen test data. In Table 1, we can
see that the performance of deep-learning based methods trained on a uniform distribution degrades
when dealing with Instances from an unseen distribution. On the other hand, our model obtained
from the PSRO framework performs well out-of-distribution, and achieves state-of-the-art results
among the deep-learning methods. Notably, we do not tune any hyperparameters in the original
RL Solver, which suggests these improvements are based solely on the different training paradigm
introduced by our method. However, due to the use of a mixing-strategy, the time consumed grows
linearly compared with the base Solver due to the extra feed-forward computation, which can be seen
as a trade-off between solution quality and runtime.

Results on Real-World Problems. We also test our LIH variants on real TSP problems from
TSPLib (Reinelt, 1991), and report these results in Table 2. We maintain the settings from (Wu et al.,
2021) with T= 3000 representing the numbers of calling improvement heuristics, and the results
reported for OR-Tools (Perron & Furnon) and LIH are directly taken from (Wu et al., 2021).

From the results in Table 2, we show that our model has the best performance among deep-learning
based methods in the majority of Instances from TSPLib Reinelt (1991), and for the subsection: eil51,
pr124, rd100, pr76, kroB150, u159, eil101, kroC100, eil76, kroB100, kroE100, bier127, our method
is able to outperform OR-Tools.

6 DISCUSSIONS

In this section, we provide more insightful analysis into properties of the meta-games and the
population Solvers.

6.1 META GAME ANALYSIS

To demonstrate the Game-Theoretic rationality of our method, we provide an analysis of the ex-
ploitability (Eq. 1) of our learned populations. Specifically, we train for 15 PSRO iterations on TSP20,
TSP50, TSP100 and compute the exploitability of the obtained meta-strategy at each PSRO iteration.
Results are shown in Fig. 2, with the visible decrease in exploitability demonstrating the validity
of both our framework and the usage of the Nash equilibrium as the meta-solver. In particular, as
training goes on, we generate strategies which approximately monotonically improve towards the
Nash Equilibrium.

6.2 USAGE OF A POPULATION OF SOLVERS

In this section we discuss how restricting the number of Solvers available to be mixed-over, and
how the choice of mixing weights may impact the final results. All results are obtained by LIH(FS)
(T=1000), and we use Instances generated in the same manner as Section 5.

We first investigate the impact of the number of Solvers used in the combined-model. The Solvers
obtained by PSRO are ranked according to their corresponding density in the meta-strategy, and
we combine the top-k Solvers showing the performance in Fig. 3. Results show that our mixing
method improves the performance significantly over the single most powerful Solver. In practice,
it’s preferable to use fewer Solvers in the combined-Solver as this reduces the amount of resources
required. In this paper, we set the the probability threshold of 0.99 to choose solvers (1-3 solvers
usually) to balance the performance and computational cost.

Furthermore, we investigate the impacts of mixing-weight. Here we consider three scenarios:

• Original: the whole population of Solvers combined by the Nash equilibrium meta-strategy.
• Uniform: the whole population of Solvers combined by a uniform meta-strategy.
• Original-Partial: the two most powerful Solvers as judged by the meta-strategy (i.e. they

have the largest amount of density in the meta-strategy), combined by their respective
normalized meta-strategy probabilities.

7

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

5 10 15
PSRO Loop

0.0

0.2

0.4

0.6

0.8

Ex
pl

oi
ta

bi
lit

y

(a) Exploitability on TSP20

5 10 15
PSRO Loop

0

5

10

15

Ex
pl

oi
ta

bi
lit

y

(b) Exploitability on TSP50

5 10 15
PSRO Loop

0

5

10

15

20

25

Ex
pl

oi
ta

bi
lit

y

(c) Exploitability on TSP100

1 2 3 4 5 6 7 8 9 101112131415
PSRO Loop

0.0

0.5

1.0

1.5

Op
t.

Ga
p(

%
)

(d) Opt. gap of combining Solvers
trained on TSP20

1 2 3 4 5 6 7 8 9 101112131415
PSRO Loop

0

10

20

Op
t.

Ga
p(

%
)

(e) Opt. gap of combining Solvers
trained on TSP50

1 2 3 4 5 6 7 8 9 101112131415
PSRO Loop

0

20

40

60

Op
t.

Ga
p(

%
)

(f) Opt. gap of combining Solvers
trained on TSP100

Figure 2: Exploitability and performance of our model as the PSRO training goes on

1 2 3 4 5 6 7 8 9 101112131415
Num. of Solvers

0.00

0.01

0.02

0.03

Op
tim

al
ity

 G
ap

 (%
)

1 2 3 4 5 6 7 8 9 101112131415
Num. of Solvers

0.0

0.5

1.0

1.5

Op
tim

al
ity

 G
ap

 (%
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Num. of Solvers

0

2

4

6

8

Op
tim

al
ity

 G
ap

 (%
)

Figure 3: Optimality gap of mixing-Solver with different combined numbers on TSP20, 50, 100
(from left to right).

Original Uniform Original-Partial0.000

0.005

0.010

0.015

0.020

Op
tim

al
ity

 G
ap

 (%
)

Original Uniform Original-Partial0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Op
tim

al
ity

 G
ap

 (%
)

Original Uniform Original-Partial0

2

4

6

8

10

Op
tim

al
ity

 G
ap

 (%
)

Figure 4: Optimality gap of mixing-Solver with different combined numbers and weights on TSP20,
50, 100 (from left to right)

Fig. 4 shows the comparisons between the different cases listed above. We can see the ’Original’
setting achieves the best results, which shows the theoretical stability of the Nash equilibrium meta-
solver as described in Section. 4.4. In the case of the ’Uniform’ setting, the performance degenerates
as n increases, which we suspect is due to the equal importance given to all Solvers, even if some of
them are particularly weak. For the ’Original-Partial’ setting, the use of only 2 Solvers violates our
original framework, specifically leading to a reduction in Solver diversity and a poor ability to deal
with unseen problems.

7 CONCLUSIONS

Building on the framework of PSRO, in this paper, we propose the first game-theoretic solution
to improving the generalization ability for any neural TSP Solvers. On both randomly-generated
and real-world TSP instances, we show that the Solvers trained under our two-player framework
demonstrate the state-of-the-art generalization performance when compared to a series of strong TSP
solution baselines. In principle, our proposed two-player game enables to improve the generalization
of the Solver population by decreasing its exploitability against an adaptive data Generator, which gets
increasingly stronger during training. In future, we will apply such a game-theoretic framework on
other types of combinatorial optimization problems and explore the potentials on fine-tune techniques
on this framework.

8

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

ACKNOWLEDGEMENT

This paper is supported by National Key R&D Program of China (2021YFA1000403), the National
Natural Science Foundation of China (Nos. 11991022), the Strategic Priority Research Program of
Chinese Academy of Sciences (Grant No. XDA27000000) and the Fundamental Research Funds for
the Central Universities.

REFERENCES

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR, 2019.

Wojciech M. Czarnecki, Gauthier Gidel, Brendan D. Tracey, Karl Tuyls, Shayegan Omid-
shafiei, David Balduzzi, and Max Jaderberg. Real world games look like spinning tops. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
ca172e964907a97d5ebd876bfdd4adbd-Abstract.html.

Trevor Davis, Neil Burch, and Michael Bowling. Using response functions to measure strategy
strength. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pp. 7474–7482. AAAI Press, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16916.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=90JprVrJBO.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning com-
binatorial optimization algorithms over graphs. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
6348–6358, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
ByxBFsRqYm.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic program-
ming for vehicle routing problems. arXiv preprint arXiv:2102.11756, 2021.

9

https://proceedings.neurips.cc/paper/2020/hash/ca172e964907a97d5ebd876bfdd4adbd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ca172e964907a97d5ebd876bfdd4adbd-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/16916
https://ojs.aaai.org/index.php/AAAI/article/view/16916
https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=90JprVrJBO
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Marc Lanctot, Vinı́cius Flores Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls,
Julien Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to
multiagent reinforcement learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4190–4203, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3323fe11e9595c09af38fe67567a9394-Abstract.html.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yaodong Yang, Yujing Hu, Yingfeng Chen, Changjie Fan,
and Zhipeng Hu. Unifying behavioral and response diversity for open-ended learning in zero-sum
games. CoRR, abs/2106.04958, 2021. URL https://arxiv.org/abs/2106.04958.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=BJe1334YDH.

Stephen McAleer, John B. Lanier, Roy Fox, and Pierre Baldi. Pipeline PSRO: A
scalable approach for finding approximate nash equilibria in large games. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e9bcd1b063077573285ae1a41025f5dc-Abstract.html.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

Nicolas Perez Nieves, Yaodong Yang, Oliver Slumbers, David Henry Mguni, Ying Wen, and Jun
Wang. Modelling behavioural diversity for learning in open-ended games. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 8514–8524. PMLR, 2021. URL http://proceedings.mlr.press/v139/
perez-nieves21a.html.

Laurent Perron and Vincent Furnon. Or-tools. URL https://developers.google.com/
optimization/.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Ricky Sanjaya, Jun Wang, and Yaodong Yang. Measuring the non-transitivity in chess. CoRR,
abs/2110.11737, 2021. URL https://arxiv.org/abs/2110.11737.

Max Olan Smith, Thomas Anthony, Yongzhao Wang, and Michael P Wellman. Learning to play
against any mixture of opponents. arXiv preprint arXiv:2009.14180, 2020.

Max Olan Smith, Thomas Anthony, and Michael P. Wellman. Iterative empirical game solving
via single policy best response. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://
openreview.net/forum?id=R4aWTjmrEKM.

Michael P Wellman. Methods for empirical game-theoretic analysis. In AAAI, pp. 1552–1556, 2006.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems.. IEEE Transactions on Neural Networks and Learning Systems,
2021.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game
theoretical perspective. arXiv preprint arXiv:2011.00583, 2020.

10

https://proceedings.neurips.cc/paper/2017/hash/3323fe11e9595c09af38fe67567a9394-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3323fe11e9595c09af38fe67567a9394-Abstract.html
https://arxiv.org/abs/2106.04958
https://openreview.net/forum?id=BJe1334YDH
https://openreview.net/forum?id=BJe1334YDH
https://proceedings.neurips.cc/paper/2020/hash/e9bcd1b063077573285ae1a41025f5dc-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e9bcd1b063077573285ae1a41025f5dc-Abstract.html
http://proceedings.mlr.press/v139/perez-nieves21a.html
http://proceedings.mlr.press/v139/perez-nieves21a.html
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arxiv.org/abs/2110.11737
https://openreview.net/forum?id=R4aWTjmrEKM
https://openreview.net/forum?id=R4aWTjmrEKM

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In International conference on learning
representations, 2019.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Deep latent graph matching. In Interna-
tional Conference on Machine Learning, pp. 12187–12197. PMLR, 2021.

A APPENDIX

A.1 ORACLE TRAINING

We need train two oracles: S
′

and P
′

I as a new policy to be added to the corresponding policy set.
Here we will provide a specific derivation for training the oracle in our combinatorial optimization
problems setting.

Taken the formula from Eq. 6, the gradient is apparent to get:
∇θLSS(θ) = ∇θEPI∼σDGEI∼PIg(Sθ, I,Oracle)

= EPI∼σDGEI∼PI∇θg(Sθ, I,Oracle)

= EPI∼σDGEI∼PI

∇θSθ(I)
Oracle(I)

= EPI∼σDGEN∼PN
Ex1,...,xN∼

∏N
i=1 PC

∇θSθ(x1, ..., xN)

Oracle(x1, ..., xN)
.

(15)

Also for Eq. 11, the computation of this gradient is:
∇γLDG(γ) = ES∼σSS∇γEI∼PI,γ

g(S, I,Oracle)

= ES∼σSS

∫
I
∇γPI,γ(I)g(S, I,Oracle)dI

= ES∼σSS

∫
I
PI,γ(I)

∇γPI,γ(I)
PI,γ(I)

g(S, I,Oracle)dI

= ES∼σSSEI∼PI,γ
∇γ logPI,γ(I)g(S, I,Oracle).

(16)

Furthermore, we can take a expansion on EI∼PI,γ
∇γ logPI,γ(I) in the last line w.r.t. γ =

(γC , γN):

EI∼PI,γ
∇γ logPI,γ(I) =

 EN∼PN,γN
Ex1,..,xN∼

∏N
i=1 PC,γC

∇γC
(
∑N

i=1 logPC,γC
(xi))

EN∼PN,γN
∇γN

Ex1,..,xN∼
∏N

i=1 PC,γC
logPN,γN

(N)

After taking the above formula into Eq. 16, we complete the derivation of gradients about the Data
Generator.

A.2 COMPUTATION OF LOG-PROBABILITY

An extra computation is needed for the log-probability in Eq. 9 and we do this in the following way:
Assuming it’s independent between each dimension in a two-dimension coordinate, we only show
the one-dimension case without loss of generality.

Formally, there are two random variables X ∼ U(0, 1) and Y ∼ N(0, σ2), and we are to compute
the probability density function of random variable Z = X + Y . We get:

P(Z ≤ z) = P(X + Y ≤ z) =

∫ 1

0

dx

∫ z−x

−∞

1√
2πσ

exp(− y2

2σ2
)dy

and we have:

p(z) =
dP(Z ≤ z)

dz
=

∫ 1

0

1√
2πσ

exp(− (z − x)2

2σ2
)dx.

All we need to do is to approximate this integration. Various methods can be used do so. In this work,
we handle this simple integration by Monte Carlo sampling by sampling 10000 samples within [0, 1]
to make a rough approximation. After obtaining the approximated probability, we can easily get the
log-probability due to the independent assumption.

11

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

A.3 ALGORITHM

We show the algorithm in Alg. 1.

Algorithm 1 Two-Player Framework for Combinatorial Optimization
Input: Initial joint policy sets for Solver Selector and Data Generator as Π. Compute utilities UΠ

for joint π ∈ Π. Initialize meta-strategies σi = UNIFORM(Πi)
while epoch e in {1, 2, ...} do

Construct mixing distribution πmix =
∑

i σ
i
DGπ

i
DG and train the oracle for Solver Selector S

′

with gradient in Eq. 6
for many episodes do

Sample S ∼ ΠSS according to σSS

Train Oracle P
′

I = br(S) with gradient in Eq. 11
end for
Update policy set:Π← Π ∪ {(S′

,P
′

I)}
Compute missing entries in UΠ from Π and the meta-strategy σ from UΠ

end while
Output meta-strategy σSS and policy set ΠSS to obtain mixing model by Eq. 12 or Eq. 13.

A.4 DETAILED EXPERIMENTAL SETTINGS

Hyperparameters. We don’t propose any specific RL Solver in this work since our method is a
unified framework to suit any previous models. So in this paper, we use LIH as our base model. All
settings about the RL Solver is same as the original paper.

For the settings of Data Generator, we initialize the γN randomly and use a simple three-layer neural
networks to represent the attack generator fγC

in Eq. 8. We also use a Sigmoid function as the
last layer to scale the variation within [0, 1] and an additional scalar λ ∈ [0, 1] to make a further
limit within [0, λ]. Here we set λ = 1

3 because of the ’68-95-99.7 rule’ which is a famous principle
in statistics. It not only guarantees each point within [0,1] can reach any other point after adding
a gaussian perturbation, but also makes few changes to the structure of original Instances after
normalization in Eq. 14.

All parameters in our framework except for those in the RL Solver are updated by Adam (Kingma &
Ba, 2014) optimizer with specific learning rate settings and the overall configuration of this neural
networks is shown in Table 3.Table 3: Configuration of Attack Neural Networks

Module DESCRIPTION

First Layer dim=2 with ReLU activation
Second Layer dim=128 with ReLU activation
Output Layer dim=2 with Sigmoid activation
Optimizer Adam with lr=0.05, lr decay=0.95
l2 norm weight decay=0.01
Epochs 40 for TSP20 TSP50 and TSP100

During the training at each PSRO loop, we choose the attack generator where the current Solver Se-
lector performs worst for the next PSRO loop. Similarly, we choose the Solver with best performance
on the mixing distribution constructed by the current Data Generator. Specifically, we generate a
validation set by sampling 1000 Instances from the distribution constructed by the Data Generator’s
policy set and its meta-strategy. We then test each epoch’s model on this dataset and select the best
one as the model to be trained in the next PSRO loop.

Fine-tune version. We also provide a fine-tune version under our training framework. Specifically,
we pick the model as a warm start which has pretrained on the uniform distribution and continue to
train them under the framework of PSRO, which can be seen as the fine-tune process to overcome the
weakness of the current model. We call this version of model LIH(FT) in the following. Respectively,
we denote the version of model that trains from scratch as LIH(FS). For practical use, we often
use the fine-tune model rather than the model train from scratch because of the limit of time and

12

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

computational resource, and in this work, we test the fine-tune model trained on TSP100 to solve the
Instances from TSPLIB (Reinelt, 1991)).

Setup in meta-level. Under the framework of PSRO, we train oracles for Solver Selector and Data
Generator at each PSRO loop. During training LIH(FS), we set the same training epochs for RL
Solver: 40 epochs (per PSRO loop) for TSP20, TSP50 and TSP100 and we train 7 PSRO loop in each
case.. When we train the fine-tune version, LIH(FT), we use the model in the last epoch of training
period in original paper as our pretrained model (for (Wu et al., 2021), we use the model trained after
200 epochs.) Then we train 10 epochs for TSP100 in each PSRO loop and train 8 PSRO loop. During
the training, the Solver inherit the parameters of last PSRO loop and continue to train in the new
PSRO loop. Noticing that we obtain a population of Solvers by 280 epochs of training, we train 280
epochs for LIH rather than 200 epochs in its original paper to guarantee the fair comparison.

Mixing-model. After getting a population of Solvers, we use the mixing policy obtained by Eq. 12 or
13 to combine these Solver. Considering we need to get each Solver’s policy during each decision step,
we need to execute forward propagation for each Solver so the running time will grow linearly if there
are no implementation-level tricks. As a consequence, we only use the Solvers whose probabilities
are accumulated no less than 0.99 because of Solver Selector’s sparse meta-strategy.

A.5 META STRATEGY IN DIFFERENT PSRO LOOPS

We visualize the meta strategy in every PSRO loops in Fig. 5. Results show that at each loop, there
exists the strongest Solver with a dominate meta strategy probability, leading to a quite sparse meta
strategy distribution.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PSRO Loop
16

(a) Meta-strategy of the pop-
ulation of Solvers trained on
TSP20.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PSRO Loop
16

(b) Meta-strategy of the pop-
ulation of Solvers trained on
TSP50.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PSRO Loop
16

(c) Meta-strategy of the pop-
ulation of Solvers trained on
TSP100.

Figure 5: Meta strategy of the model population.

A.6 WEAKNESS OF SOLVERS

Under our framework, it’s interesting to find some distributions where the Solvers (or methods) can
perform poorly, revealing the weakness of the solver. It can also provide a rough judgement on the
stability of a method. We are amazed to find that only using simple multi-layer neural networks, the
same as that during training oracles for Data Generator, the methods show diverse performance, as
shows in Appendix. 6 and 7. Therefore, it’s reasonable to take this criterion into consideration when
comparing different methods. However, there are few researches about the exploration about the
weakness but we think it’s quite important especially in realistic applications.

We demonstrate performance can be influenced a lot even by adding small gaussian perturbations in
Fig. 6 and 7. We use the model trained in corresponding paper: training 200 epochs for LIH (Wu
et al., 2021) and 100 epochs for AM (Kool et al., 2019) on TSP20, TSP50 and TSP100. Results show
that our attack generator can learn a distribution where the well-trained model performs bad, which
motivates us to employ such method to train oracles under the framework of PSRO.

13

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

0 10 20 30 40 50

Steps

0.06

0.08

0.10

0.12

O
pt

im
al

ity
 G

ap

TSP20

0 10 20 30 40 50

Steps

2.0

2.5

3.0

3.5

4.0

TSP50

0 10 20 30 40 50

Steps

4

6

8

10

12

14

TSP100

Figure 6: Training figure of attack generator for LIH (Wu et al., 2021).

0 10 20 30 40 50

Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
pt

im
al

ity
 G

ap

TSP20

0 10 20 30 40 50

Steps

2.0

2.5

3.0

3.5

4.0

4.5

TSP50

0 10 20 30 40 50

Steps

5

6

7

8

9

10

11

12

TSP100

Figure 7: Training figure of attack generator for AM (Kool et al., 2019)

A.7 DEMONSTRATION OF ATTACK DISTRIBUTION

We visualize the attack distribution obtained by each PSRO loop in Fig. 8. Specifically, Fig. 8(a), 8(c)
and 8(e) are points which comprises 1000 Instances. Fig. 8(b), 8(d) and 8(f) are corresponding kernel
density estimations.

14

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(a) Attack distribution generated by PSRO trained
on TSP20.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(b) Kernel density estimations of attack distribu-
tion generated by PSRO trained on TSP20.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(c) Attack distribution generated by PSRO trained
on TSP50.

0.0

0.5

1.0
y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(d) Kernel density estimations of attack distribu-
tion generated by PSRO trained on TSP50.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(e) Attack distribution generated by PSRO trained
on TSP100.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(f) Kernel density estimations of attack distribu-
tion generated by PSRO trained on TSP100.

Figure 8: Attack distribution generated by PSRO

15

	Introduction
	Related Work
	Notations and Preliminaries
	Our Method
	Meta-Strategy Solvers
	Oracle Training
	Evaluation
	Combining the Solver population

	Experiments
	Experimental Settings
	Results

	Discussions
	Meta game analysis
	Usage of a population of Solvers

	Conclusions
	Appendix
	Oracle Training
	Computation of Log-Probability
	Algorithm
	Detailed Experimental Settings
	Meta Strategy in Different PSRO Loops
	Weakness of Solvers
	Demonstration of Attack Distribution

