
metaSVG: A Portable Exchange Format for Adaptable Laser Cutting Plans
Nur Yildirim* Matthew Franklin Daniel Zeng John Zimmerman James McCann†

Carnegie Mellon University

Figure 1: A pencil holder exported as metaSVG (middle) from CAD (left) can be automatically adapted for laser cutting out of (a)
different materials, (b) material thicknesses, (c) scales, and (d) on different laser cutters.

ABSTRACT

2D cut paths for laser cutters are specific to material parameters
(type, thickness), design parameters (overall size, desired joint fit),
and laser settings. Changing any of these parameters – because, e.g.,
one wants to cut a design from a new material, or on a different
machine – requires by-hand adjustment of the cut path to compen-
sate. This adjustment is complicated by the fact that 2D path formats
lack information about how high-level parameters influenced the
design, leaving makers to infer the original author’s intent when
adjusting paths. We present metaSVG, an exchange format that
includes joint parameters as metadata when exporting cut plans from
parametric 3D CAD. This allows our software tool, metaSVG Print,
to automatically adapt metaSVG cut plans to new sizes, materials,
material thickness, and laser cutters. We demonstrate the effective-
ness of metaSVG by augmenting existing designs with metadata and
fabricating them with different materials and laser cutters.

Index Terms: Applied computing—Computer-aided
manufacturing——

1 INTRODUCTION

Digital fabrication promises shareable plans, plans that can be up-
loaded once by authors and downloaded and materialized effortlessly
by makers all over the world. However, to meet this promise, fab-
rication plans must be stored in a portable format – a format that
can be interpreted to produce the desired object by a wide range of
printing systems. This is already true for 3D printers (STL files)
and for 2D printers (PDF files), but it is not yet true for laser cutters.
The problem is that SVG files (the common distribution format for
laser cutting plans) do not contain enough information to adapt their
contents to new laser cutters, materials, and scales.

The non-portability of laser cutting plans impacts both authors
(people who create and share cut plans) and makers (people who
download and laser cut the plan). For makers, the need to tweak
every joint in a downloaded cut plan presents a major barrier [1,
13, 31]. Even for makers who possess the skills to manipulate cut
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plans, the design adaptation task is tedious, time consuming, and
error prone [31]. For authors who create and share designs, the
need to adapt every joint limits the impact of their design. This
leads to less recognition, one of the main motivations authors have
for freely sharing their plans [8, 13, 17]. As a workaround, authors
sometimes provide detailed documentation and print specifications,
which significantly increases the effort to create and share a plan
[17, 41].

To address these challenges, we developed a workflow (Figure 1)
around metaSVG: a file format that adds joint metadata into an SVG
file in a backwards-compatible way. This metadata includes every-
thing needed to recompute the cut plan for new materials, material
thicknesses, scales, and laser cutters. MetaSVG stores part shapes,
joint locations, joint types (i.e., box, tab-and-slot, slotted, t-slot
joints), joint fits (i.e., clearance, location, interference), and joint
angles. For authors, we created metaSVG Exporter, an extension
for the OnShape 3D CAD system, that allows authors to encode this
metadata when exporting SVG cut plans. For makers, we created
metaSVG Print, which works like a print dialog box, allowing mak-
ers to specify the scale of their model along with material, thickness,
and detailed calibration information for their specific laser cutter
(i.e., kerf, joint fit allowances, and path format settings for output).
These settings can be stored as presets (e.g., by a shop manager),
making cut plan adaptation as simple as 2D document printing. Our
workflow enables authors to share portable, reusable laser cut plans,
and it allows makers to adapt cut plans to materials and laser cutters
without having to make manual adjustments.

This paper documents our design and implementation of
metaSVG, metaSVG Exporter, and metaSVG Print. It also provides
an assessment of the current metaSVG workflow. We re-created and
adapted (to different materials, thicknesses, scales, and laser cutters)
a wide range of designs from Thingiverse. We also assessed the
applicability of the metaSVG concept to laser-cuttable models on
Thingiverse in general. Our research contributes:

• an accelerated workflow for authoring cut plans, adapting cut
plans, and sharing laser cutters calibration information;

• metaSVG, a portable exchange format that augments the SVG
format with material- and joint-specific metadata;

• metaSVG Exporter, an OnShape extension for authoring
metaSVG cut plans when exporting from 3D CAD;
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Figure 2: Journey maps of the current (left) and proposed (right) laser cutter workflows. Current workflows require manual material- and
laser-cutter-dependent adjustment of designs, leading to tedious edit/test cycles, frustration, and disappointment. With metaSVG, plans can be
adapted automatically by software, eliminating edit/test cycles and leading to – we hope – better outcomes.

• metaSVG Print, a browser-based application that can adapt
metaSVG cut plans using design metadata and a laser cutter
calibration profile; and

• a technical evaluation that demonstrates the effectiveness of our
advance and reveals where it can be extended and improved.

2 MOTIVATION

The design, sharing, and fabrication of laser cutting plans typically
involves three roles. Authors (often working in 3D CAD) make
and share their designs as 2D cut plans. Makers download plans
and recreate a design by cutting material on a laser cutter. Shop
assistants care for laser cutters, and provide resources (e.g., cut
settings for specific materials) and assistance to makers in shops,
labs, and makerspaces [47]. A single person might enact all of these
roles or they might only enact one of them.

Figure 3: A laser cut napkin holder design (left), commonly used kerf
gauges for calibrating laser cut joints (center, right).

We illustrate the challenges posed by using a non-portable cut
plan format by considering the lifecycle of a napkin holder design
(Figure 3, left). A prolific laser cutting author enjoys creating new
designs to share via the internet. The author realizes that laser cutting
would be well-suited to creating an elegant napkin holder, and that
such a design might do well among makers because no other authors
have created such a design. They, therefore, model the napkin holder
in a 3D CAD tool, using existing parametric features (composite
CAD tools that produce complex geometry from simple user inputs)
to generate both box joints and tab-and-slot joints to connect the
parts [39]. Once the holder looks good in CAD, they export an
SVG, test on their laser cutter, and adjust the model until it works
well on their laser cutter and target material (5mm plywood). After
a few test-and-adjust cycles, the design fabricates cleanly on their
laser cutter. The author takes a few photos of the finished build and
uploads them along with the SVG cut plan to a model sharing web
page.

A maker looking for a small home decor project discovers the
napkin holder the next day when browsing for new models. She
decides to make a version of the model using 3mm acrylic and the
laser cutter at her local makerspace. The first thing the maker needs
to do is adapt the SVG cutting plan to the new material thickness.
She does this by opening the SVG file in Adobe Illustrator and
moving each tab and slot part 1mm inward to account for the thinner
acrylic as compared to the original plywood. This is especially
difficult for joints that aren’t perpendicular to the X or Y axis, but
the maker is a skilled Illustrator user and is able to use line snapping
and some additional paths to make the change.

Once the plan is adapted she walks to the makerspace to cut it,
but finds that the resulting pieces have a very tight fit that cracks the
material. Seeking the advice of the shop assistant, she learns that
the laser cutter in the makerspace has a kerf (cut width) which is
generally a bit smaller than most hobbyist cutters, so folks download-
ing plans from the internet often need to inset the paths slightly to
compensate. The assistant is able to provide the maker with a recent
kerf value measured on the shop’s cutter (Figure 3, center, right),
and the maker uses this value to inset the cut path before doing a
second run of the plan. This time, the joints fit together but are a bit
loose because plywood (the author’s test material) and acrylic (the
maker’s chosen material) have different friction and compression
behaviors. Not wanting to edit the plan further, the maker accepts
these sloppy joints and glues the napkin holder together.

This workflow (Figure 2, left) serves none of the roles – the
author has fewer successful builds of their plan, the maker uses extra
time and material, and the shop assistant spends time debugging
what should have been a straightforward build. With our new tools
and improved workflow (Figure 2, right), the author is able to export
a metaSVG file to share. This export works without any additional
author effort because it already understands the laser joint feature
scripts the author used when creating their CAD model. Further,
because metaSVG stores its additional information in a <metadata>
tag within a standards-compliant SVG, the author is able to upload
the file to a model sharing site just as if it were a plain SVG. Makers
that do not use metaSVG Print are able to use the file just as if it
were a plain SVG.

When the maker downloads the file, they use metaSVG Print
to automatically adapt the cut plan to their desired material and
thickness, and – after loading the current calibration file shared by
the shop assistant – the current kerf of the makerspace’s laser cutter.
They take the resulting adapted path to the laser cutter and create
pieces that fit well without any further iteration. This workflow
serves the author, maker, and shop assistant.



3 RELATED WORK

Our work builds on research into improving laser cutting workflows,
portability in fabrication, and encoding human expertise for reuse.

3.1 Improving Laser Cutting Workflows
Researchers explored several interaction concepts to improve the
laser cutting process and workflow, mainly to assist users in creating
designs, and in fabricating their designs. For creating designs, re-
searchers developed fabrication-aware design tools that support users
in designing models that can be fabricated out of 2D shapes, such as
modeling 3D objects from 2D parts (SketchChair [35], Platener [4],
LaserStacker [42], FlatFitFab [18]) or voxels (Kyub [3]). Other
design tools explored parametric joint generation that account for
material thickness to support users in creating designs with joints
and connected parts (CutCAD [9], Joinery [48], Designosaur [23],
Enclosed [44], Fresh Press Modeler [6]).

To help users fabricate their designs with laser cutters, researchers
created tools that facilitate the positioning of designs on materials
(Constructable [22], Sketch it Make it [14], MARCut [15], VAL
[45]), that enable easier cut setting assignment for specific materials
(VisiCut [26]), and that pack designs on material sheets for reducing
waste (PacCAM [34], Autodesk 123D [2]), even interactively in
design phase (Fabricaide [37]). Another line of research focused on
extending the capabilities of laser cutters to enable users to fabricate
sheets beyond 2D forms (LaserOrigami [21], LaserStacker [42],
Foldem [5]) or traditional materials (BlowFab [46], Layered Fabric
Printer [27], Platener [4], StackMold [43]). While these efforts
address several problems and limitations, fieldwork highlights many
opportunities for streamlining existing design-download-customize-
print workflows. In particular, there are opportunities for supporting
authors to provide richer metadata, clarifications, and expert tips to
help makers successfully customize, adapt, and fabricate the designs
they downloaded [1].

Our goal is to act on these opportunities. MetaSVG adds to
the work on fabrication-aware design tools; however, our focus is
on enabling authors to annotate metadata rather than facilitating
the design process. MetaSVG Print builds on the research that
facilitates the fabrication of laser cut designs; we aim to help makers
successfully adapt and fabricate 2D cut plans with joints using their
materials and laser cutters.

3.2 Portability in Fabrication
Recent HCI research raised the issue of portability in design and
fabrication processes. In laser cutting, researchers investigated the
machine-dependency problem due to differences in kerf. Spring-
Fit [32] introduced cantilever-based springs to replace press-fit joints
and mounts, and KerfCanceler [30] presented a tool to replace mov-
ing mechanisms with wedge elements, so that 2D cut plans work
across laser cutters. While replacing existing joints with kerf invari-
ant joints and mechanisms enable the portability of 2D cut plans,
it does not provide an option for different types of joint fits, and
it alters the design aesthetics. Kyub [3] introduced a voxel-based
3D modeling tool that performed kerf correction during 2D export,
however it was limited to creating objects with only box joints, and
it requires makers to have knowledge of kerf allowances. Likewise,
there are several online laser cut box generators with kerf correction
(MakerCase [11], Boxes.py [7]) that are subject to a similar set of
limitations.

Building on Kyub, Assembler [31] infers joint and assembly meta-
data that is lost in traditional SVG export, enabling both path adap-
tation and further editing, though at the price of some user hinting.
Other projects explored portability in 3D printing. Mix&Match [38]
and FitMaker [16] addressed adapting downloaded 3D models to
makers’ tools for models to print reliably. Our work extends this
line of research on portability in digital fabrication. Instead of tak-
ing a reverse engineering approach to make existing 2D cut plans

parametric and portable, we focus on creating a workflow where
material- and joint-specific information can be encoded in paramet-
ric cut plans at export time, and designs are adapted for laser cutters
using machine-specific profiles at print time.

3.3 Encoding Human Expertise for Reuse
Researchers explored how to capture and encode human expertise
and design intent in fabrication in a reusable way, mostly in 3D
printing. Several projects presented functional design templates
and hierarchies for non-experts, based on analyzing expert-created,
fabricable 3D models (PARTs [10], Design and Fabrication by Ex-
ample [36]). Similarly, Grafter [33] explored how mechanical parts
from different 3D models can be combined for reuse. Researchers
state that for makers to reuse functional 3D designs, more acces-
sible applications are needed to support modifying designs while
conveying authors’ design intent [10]. While inexperienced makers
seek help and troubleshooting from shop assistants and operators,
customizing designs is not an easy task for them, even when the
design is parametric [10, 13].

Encoding human expertise can benefit authors as well. Recently,
a study with fabrication professionals has shown that expert users
desire improved fabrication workflows that have awareness of design
and materials, and tools that document use settings in shared spaces
[47]. They also note that shop assistants want tools that help with
calibration and maintenance, as calibration of settings for specific
fabrication setups can be difficult due to machine wear. Our work
aligns with this vision. Our goal is to develop means for encoding
and operationalizing this material- and machine-specific knowledge
in a reusable way.

4 METASVG WORKFLOW

To address the challenge of portability and improve laser cutting
workflows, we developed (1) metaSVG, a standards-compliant SVG
file containing material- and machine-dependent annotations in 2D
cut plans, (2) metaSVG Exporter, an OnShape extension including
custom FeatureScripts for parametric joint generation and an export
script for exporting metaSVG cut plans from 3D CAD, and (3)
metaSVG Print, a browser-based application that takes a metaSVG
file as an input and adapts the cut plans to users’ materials, material
thickness, scale, and laser cutters.

This section describes the format and tools in more detail from a
user perspective, while the next section describes lower-level imple-
mentation details.

4.1 metaSVG Files Behave like SVG Files
Scalable Vector Graphics (SVG) is a graphics file format that de-
scribes elements such as lines, curves, and colors with XML text.
SVG is a common exchange format for sharing laser cut designs [32],
despite requiring by-hand manipulation to adapt to different materi-
als and cutters.

Our metaSVG format extends SVG by including parametric de-
sign information in the <metadata> block of the file (technical
details in Section 5.1). Since metadata is ignored by applications
that don’t understand it, users treating a metaSVG file like a regular
SVG will get the behavior they expect. Users that open the file
in metaSVG-aware applications will benefit from the adaptability
provided by the extra information.

4.2 Authors Create metaSVG Files With Parametric 3D
CAD

A typical authoring workflow for laser-cut items involves building
the object in 3D parametric CAD and then flattening and exporting
the file. One of the advantages of working in parametric CAD is that
custom features – subroutines that create complex geometry, e.g.,
for laser-cut joints [39,40] – can be used to ease the creation process.
When creating a metaSVG file, authors use this same CAD workflow



Figure 4: Authors use a parametric 3D CAD tool (OnShape) with existing laser joint features to author metaSVG files. Features are small programs
used in parametric CAD to automate repetitive tasks. The list of supported metaSVG laser joint features is shown to the right, and the parameters
for a box joint feature are shown to the left.

Table 1: Our metaSVG Print utility reads material, joint fit, and laser cutter settings from a “presets” table. These are the presets tables used for
examples in this paper. Joint fit is documented per joint and per fit (e.g. Box-Clearance). All dimensions are in millimeters.

Preset (ULS) Notes Thickness Width Height Style Kerf BoxC BoxL BoxI

plywood-3mm p:100 s:5 3 450 350 #FF0000;0.001pt; 0.05 0.05 -0.05 -0.075
plywood-6mm p:80 s:10 6 450 300 #FF0000;0.001pt; 0.05 0.1 0.05 0.0
acrylic-3mm p:100 s:3.5 3 450 300 #FF0000;0.001pt; 0.1 0.1 0.0 NA
mdf-default p:100 s:7 3 600 300 #FF0000;0.001pt; 0.1 0.1 0.0 -0.07

Preset (Epilog) Notes Thickness Width Height Style Kerf BoxC BoxL BoxI

plywood-3mm p:100 s:25 3 450 350 #FF0000;0.001pt; 0.1 0.05 -0.05 -0.075
plywood-6mm p:100 s:8 6 450 300 #FF0000;0.001pt; 0.1 0.1 0.04 0.0
acrylic-3mm p:100 s:12 3 450 300 #FF0000;0.001pt; 0.05 0.1 0.0 NA

(Figure 4), with the twist that they use slightly-modified versions of
existing laser joint features that can be interpreted by our metaSVG
Export script (details in Section 5.2) to produce a metaSVG file.

4.3 Makers Adapt metaSVG files with metaSVG Print
The process of adapting a metaSVG file to a new laser cutter, mate-
rial, or scale is accomplished by a maker by using metaSVG Print
(Figure 5). This dialog is modelled on a print dialog box and pro-
vides quick access to recall laser cutter and materials settings from
a list of “presets”. MetaSVG Print also allows makers to view and
modify joint-specific parameters by clicking on either edge of a joint
pair. While these adjustments are optional, they provide increased
control for advanced makers.

4.3.1 Shop Assistants Provide Calibration Information as
Presets

The metaSVG Print dialog provides quick access to a list of “presets”
– settings that the maker can select to automatically configure laser
cutter kerf, joint fit, and material thickness (e.g., Table 1 shows
the presets we used in producing examples for this paper). In the
context of a shared-use laser cutter in a shop, we envision that a shop
assistant could update these presets to reflect the shop’s current laser
cutter calibration and material types, allowing ”one-click” access
for makers.

5 IMPLEMENTATION

In our prototype implementation of the metaSVG workflow, we
chose to build on the OnShape [24] cloud-based CAD system for
authoring, with custom FeatureScripts [25] for joint description, and

a python script for exporting. For our metaSVG Print utility we used
a browser and javascript-based UI with a python backend. In this
section, we describe our system architecture (Figure 6), file format,
and implementation in more detail. The code and documentation are
available on the project website 1.

5.1 The metaSVG Format
MetaSVG files contain a model representation of a cut plan that anno-
tates material- and joint-specific metadata into a standard SVG with
a <metadata> tag (Figure 7). In this metadata section, metaSVG
stores a hierarchy of information rooted at faces and joints. Faces
represent an individual planar part to be cut. They are defined by an
outer perimeter path, and can have any number of cut paths within
this perimeter. Joints represent how these faces come together. Each
joint references two mating edges and a set of joint-specific parame-
ters (Figure 9). Together, the metadata in a metaSVG is sufficient to
completely re-compute the path information stored in the traditional
SVG part of the file.

5.2 The metaSVG Exporter
In our prototype implementation, the process of creating a metaSVG
file from a parametric 3D CAD model is carried out by a python
script that accesses OnShape’s REST API. This python script uses
the OnShape API to read data from modified FeatureScripts (On-
Shape’s name for code that implements custom features – in this
case, for laser joint generation), as well as to read general shape
information from the CAD model.

1http://graphics.cs.cmu.edu/projects/metasvg/



Figure 5: The metaSVG Print dialog allows makers to select model and laser cutter settings (with presets available for common cases). A “cut
preview” to the left shows the adapted plan. Advanced users can click on the cut preview to read and customize individual joint settings.
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5.2.1 metaSVG FeatureScripts

MetaSVG currently supports four commonly used laser cut joint
types (Figure 8): (a) box joints (aka finger joints), (b) tab-and-
slot joints (aka mortise and tenon joints), (c) slotted joints (aka
cross joints or interlocking joints), and T-slot joints (aka captive
nut and screw joints). All joints, except the slotted joint, build on
and extend two existing custom features: the Laser Joint [39] and
T-Slot [40] FeatureScripts. Our modifications to these scripts are
relatively minor, and include asking for joint fit information and
some additional metadata to assist our script in computing joint
locations. Joints are created between two planar parts, and the joint
location and angle are computed by using the largest face’s normal
from either part to define the plane of the parts. Figure 9 shows the
joint parameters stored by each joint.

5.2.2 metaSVG Export

Our metaSVG export script uses OnShape API to retrieve a list of
parts and a list of joints. It then matches the joints with edges to
create the metaSVG file. To do this, it tells OnShape to “suppress”
the various laser joint features (that is, to ignore them when comput-
ing the final shape of the object). This allows our script to retrieve
the shape of each part of the model without the extra serrations and
tabs from the joints. From each of these parts it selects one of the

<svg> 
<metadata><laserassistant model=" 
 
 
 
 
 
 
"></laserassistant></metadata> 
 
<g> 
<path d="M 0 0 L 10 0 ..." 
</g> 
 
</svg>

metaSVG model(JSON)

metaSVG file

default cutting plan

standards-compliant SVG file

{
 tree: {face1: { ... }, face2: { ... } },
 joint1:{edgeA:{ ... }, edgeB:{ ... } },
  ...
}

Figure 7: A metaSVG file contains both a regular cut plan stored in
SVG format (black) and embedded JSON metadata containing a para-
metric version of the plan (colorful highlights). This parametric data
allows the cut plan to be recomputed for new materials, thicknesses,
scales, and laser cutters.

largest faces (for a general planar part there will be two equal largest
faces) and uses this face’s normal to define the orientation of the part
and compute outer and inner 2D cut paths for the part. The script
then loops through each laser joint feature and associates the feature
with the parts by looking up the edge IDs stored in the feature’s
parameters; and, further, extracts various joint parameters required
for each joint type (Figure 9). Finally, the program un-suppresses
the joint features and flattens the model again in order to write out
the standard SVG portion of the file.

5.3 metaSVG Print
MetaSVG Print extracts the metadata from a metaSVG file and uses
it (along with a preset defining laser cutter and material parameters)
to generate a cut plan. MetaSVG Print consists of a browser interface
and a python backend.

We also developed a command-line version of metaSVG Print
which has the same functionality but doesn’t require any GUI in-
teraction. This version makes it easy to batch process metaSVG
files.
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5.3.1 Frontend

The frontend is a web interface made with Vue framework and uses
Axios to make calls to the backend via Flask. The frontend is a
relatively thin wrapper around the backend code, and provides only
basic display and parameter setting functionality. The frontend aids
in parameter setting by providing the user with a list of presets,
which it fetches from the backend to allow for easy setting of cutter-
and material- specific settings. Any edits to global parameters or
per-joint settings are sent to the backend via HTTP request, to which
the backend responds with an updated metaSVG whose SVG portion
has been replaced with the results of regenerating the parts with the
given parameters.

5.3.2 Backend

The backend processes the cut plans (Figure 10) using two main
libraries: SVG-Path-Tools [28] and PyClipper [29]. SVG-Path-Tools
is used to read the metaSVG metadata. Next, faces and cutouts are
regenerated as outer and inner loops using the PyClipper library.
Joints are regenerated as SVG path strings through straightforward
arithmetic and parsing of joint-specific parameters; specifically, each
joint defines both “positive” areas to be added to the model and a
“negative” areas to be cut from the model. These joint areas aligned
to edges using SVG-Path-Tools, and then merged with faces using
PyClipper. The resulting geometry represents the cut plan without
allowances and line formatting. Next, the cut plan is offset to account
for kerf based on the value given in the laser cutter profile. Finally,
using the standard python XML library ElementTree, the paths are
formatted into a standard SVG with the metaSVG data embedded
within a <metadata> tag.

5.3.3 Joint Thickness

When box joints don’t meet at a 90-degree angle, the size of tabs
need to be adjusted to account for this. Our code computes the
angle-adjusted joint width, t ′, from the material thickness, t, and the
joint angle, θ , as follows:

t ′ =
{

t tan(π/2−θ)+ t
cos(π/2−θ)

if θ < π

2
t sin(θ) otherwise

(Our code currently only performs this compensation for box joints,
though similar formulae could likely be derived for tab-and-slot
joints as well.)

Figure 9: Joint parameters used in metaSVG. All joints store their
type, alignment, fit, and angle. Individual joint types use additional
parameters as shown. Dimensions are shown before adjusting for
fit. Tab depth for box and tab-and-slot joints and slot width for slotted
joints are computed from material thickness and joint angle (see paper
text for details).

Joint Paths Basic Cut 
Geometry

Adjust Kerf & 
Fit

Line Format 
& Save

Figure 10: metaSVG Print processing steps to regenerate joints.

5.3.4 Joint Fit Compensation
Joint fit is the planned allowance between two mating parts in laser
cut joints. It is used to determine how loosely or tightly the parts
fit together. MetaSVG supports three kinds of joint fit based on an
engineering classification: clearance fit (aka loose fit), location fit
(aka friction fit), and interference fit (aka press or hammer fit) [20].
When modeling in OnShape, MetaSVG FeatureScripts contain a
joint fit drop-down, with location fit as the default choice.

The joint fit allowance is material-, joint-, and machine-dependent.
For this reason, expert users typically calibrate the joint fit by offset-
ting cut paths in small increments until an offset provides the desired
fit [19].

MetaSVG Print takes offsets for each of the fit types as part of
its parameters. MetaSVG Print uses these “fit offsets” to adjust the
joint features in a joint-specific fashion: for box joints, the fit offsets
adjust the size of tabs; for tab-and-slot joints, the adjust the size of
tabs and slots (in addition, the thickness of slots is always adjusted
by the clearance fit offset); and for slotted joints the fit offset is
applied to the slot thickness. The fit offset is not used for t-slot
joints, since the bolts serve to adjust fit tightness.

5.3.5 Presets
All of the parameters used by metaSVG Print (other than the design
scale) are specific to a given laser cutter, cut setting, and material
type. As such, we make it easy to select them in a batch by using
a “preset”. Presets are stored in a presets.csv (comma-separated
value) table, which is easy to update when laser cutter performance
changes over time, or when moving to a new lab with a different
laser cutter.
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added; “trinkets” (36.8%) are cut plans which derive no benefit from metaSVG (i.e., because they have no joints); and “not Supported” (6.9%)
models do not fit the assumptions of metaSVG.

Table 2: Models we recreated for evaluation. Numbers in parentheses denote the number of edges that could not be adapted successfully.

Model Category Thing ID Adaptation Box Tab-Slot Slotted T-slot

3D Printer Frame Fabrication Devices 8563 Laser cutter - 6 - 12
VR Goggles Wearables 638605 Laser cutter 4 - 6 (4) -
Candle Holder Lighting 2729105 Thickness 24 - - -
Raspberry Pi Case Enclosures 101946 Material, Thickness 4 4 - 4
Arcade Cabinet Enclosures 1428410 Material, Thickness 12 (1) - - 8
Laptop Stand Object Stands 3199311 Material, Thickness 2 2 - 2
Tray Storage Boxes 2735730 Laser cutter 8 - 10 (4) -
House Scale Models 916049 Scale 5 - - -
Dice Tower Toys and Games 3954998 Material 17 - 8 (6) -
Windmill Decorative Objects 2287464 Thickness 56 - 8 -
Chair Other 12037 Scale 9 - - -
Bird House Other 1691891 Scale 7 - - -

In order to make it easier to dial in new settings, metaSVG Print
does allow settings to be edited after a preset is loaded, though these
edits are not preserved unless the user manually adds them to the
presets file.

6 TECHNICAL EVALUATION

To assess the performance of our system, we tested it with 12 models.
We selected these models based on an analysis of laser cut plans in
Thingiverse. First, we searched for “lasercut” models, and filtered
models that have “makes” by other users to ensure they could be
successfully fabricated. Our survey returned 1107 results. Next,
we eliminated non-laser cuttable models (174), and we conducted
affinity diagramming [12] to group cut plans. Our analysis revealed
14 categories (Figure 11).

To better understand the coverage, we assessed whether the mod-
els in each group could be fabricated using the metaSVG file format
and workflow. We reviewed the photographs and cut plans for each
model to identify the types of joints used. This resulted in a mapping
of the design space into four groups: (1) Current metaSVG, the mod-
els that our system should be able to support, (2) Future metaSVG,
the models that could be supported by extending the current joint
library (e.g., living hinges, stacked planes, models with varying
material thicknesses, joints connecting to more than a single other
joint), (3) Trinkets, models where precision might not be critical,
and (4) models that cannot be supported (Figure 11). We targeted
models in current metaSVG group (23.2% of all models, 36.8% if

trinkets excluded) for our technical evaluation, while our system can
potentially address all groups except the last (6.9% in total, 10.8% if
trinkets excluded).

From current metaSVG models of each category, we selected one
or two models that were representative of the category (Table 2).
We excluded the categories robots, mechanisms, tools and gauges,
and papercraft as they did not have any current metaSVG models.
To test our authoring workflow, we rebuilt the models in OnShape
using metaSVG FeatureScripts and exported them as metaSVGs. To
test our adaptation workflow, we adapted them for fabrication using
metaSVG Print. We tested adaptation across materials (3mm and
6mm plywood, and 3mm acrylic), laser cutters (a ULS 60 watt laser
cutter with 0.05mm kerf and an Epilog Mini 50 watt laser cutter
with 0.1mm kerf), and scales.

6.1 Results

Ten of the twelve models were readily adaptable. Of these ten mod-
els, Arcade Cabinet and Tray had some joints that did not adapt
due to implementation bugs and required manual adjustment. The
remaining two models (VR Goggles and Dice Tower) posed chal-
lenges due to having variations of tab-slot and slotted joints that
are not supported by our current system. However, the remaining
joints were adapted; all models were supported by our workflow.
Figure 12 shows some of the models we adapted and fabricated,
demonstrating material, thickness, scale, and laser cutter change.
For models adapted to be cut out of acrylic, thickness also had to

https://www.thingiverse.com/thing:8563
https://www.thingiverse.com/thing:638605
https://www.thingiverse.com/thing:2729105
https://www.thingiverse.com/thing:101946
https://www.thingiverse.com/thing:1428410
https://www.thingiverse.com/thing:3199311
https://www.thingiverse.com/thing:2735730
https://www.thingiverse.com/thing:916049
https://www.thingiverse.com/thing:3954998
https://www.thingiverse.com/thing:2287464
https://www.thingiverse.com/thing:12037
https://www.thingiverse.com/thing:1691891


Figure 12: Some of the fabricated models showing adaptations to different materials, material thicknesses, scales, and laser cutters.

Figure 13: Models including joint variations (tabs in the center of
faces, angled slots) that are not supported by our current metaSVG
implementation. We plan to add support for more joint types and
variations in the future.

be adapted to compensate for same-material variations (e.g., 3mm
nominal thickness often measured 2.7-2.9mm actual thickness). All
adapted models assembled successfully, except for Windmill, which
had a square shaft and shaft cutout that required manual adjustment
after thickness change.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We view metaSVG, and the workflow we have outlined above, as a
way to retrofit the current laser cutting plan ecosystem in a way that
benefits all involved roles – authors, makers, and shop assistants –
without requiring any additional work.

The core idea of metaSVG is to capture the data that is required to
make a laser cutting plan adaptable by augmenting authoring tools.
A natural question to ask is whether metaSVG captures the right
amount of information. For example, one could imagine a “heavier”
metaSVG which holds the full CAD file or a “lighter” metaSVG
which contains a few variations of the cut plan and handles all param-
eter changes through interpolation. We would argue that metaSVG
contains just enough information to support the maker’s workflow.
Though we do think it is interesting to consider the ways in which
parametric CAD documents are – in essence – small geometric
programs for which one might want to construct alternative (more
limited) interfaces for specific users.

Our current system is a research prototype and requires a fair bit
of polishing before it can be considered end-user ready. Particularly,
while our system is already able to generate a wide range of results,
several refinements will need to be made to the system before it is
ready for wide release.

Extra parameters. Isolating the particular edge of a face along
which a joint should be created requires some tricky geometric
computations. Our prototype scripts avoid these computations by
requiring extra (redundant) selections of edge(s) and face(s) along
with parts. This can be seen in Figure 4. In the future, we plan to
revisit the computations to eliminate these redundant parameters.

Joint types and variations. Our system supports box, tab-and-
slot, t-slot, and slotted joint types; however, it does not support all
variations of these joints. In the future, we plan to expand the list
of supported joints and variations; of particular priority for us are
tab-and-slot joints that are not located near edges and slotted joints
with non-90-degree angles between the pieces – since these joint
types are used in many existing laser-cut objects.

OnShape quirks. The IDs that OnShape assigns to parts and
features change when FeatureScripts are enabled and disabled. This
means that occasionally it can be difficult for our processing script to
figure out where (on a “clean” model) each joint is located; requiring
the joints to be re-ordered in the CAD model before an export
succeeds. In the future, we plan to modify our metaSVG export
script to use geometric information (i.e., 3D positions and normals)
to make these correspondences, rather than IDs. Further, OnShape’s
notion of face and part orientation seems somewhat arbitrary, which
can also lead to processing quirks that must be resolved by selecting
the other side of an object. We plan to extend our script to compute
its own inside/outside orientations to avoid these quirks.

Laser Cutter quirks. In metaSVG, “kerf” [cut width] is the
interface between human preference (e.g., for tightness of joint
fit) and laser cutter behavior (e.g., the cut settings used). That is,
metaSVG processors (like many human laser cutter users) treat this
single number as capturing everything there is to know about the
mechanical behavior of a laser cut. Unfortunately, our experience
in setting up fit value tables reveals that this is an often-insufficient
approximation. (This is why metaSVG uses per-preset corrections
to its fit values, rather than per-material corrections.) In practice,
the mechanical behavior of cuts varies quite significantly depending



Figure 14: Detailed views of fabricated models.



on how they are formed; we conjecture that this is both because of
depth-dependent cut width variation and the level of combustion
products left at the edge. In the future, we think it would be exciting
to generalize kerf to a multidimensional quantity that actually does
capture the general mechanical behavior of cuts. This would allow
users to specify their preferred fit values once and avoid needing
to correct them, while a “smart” laser cutter could use its tracked
multi-dimensional kerf value to adapt users fit values to any material
and cut setting.

And, indeed, this is what we see as the core idea of metaSVG: it
brings together human knowledge with machine understanding.

8 CONCLUSION

We presented a portable file format and an accelerated workflow for
exchanging adaptable laser cutting plans. Our assessment demon-
strated that the metaSVG format is capable of representing typical
laser cut designs that are commonly shared online. We envision a
future where one can send a metaSVG file to a laser cutter icon with
at least as much confidence in the output fidelity as one has when
sending a postscript file to a 2D printer. This will, require further
integration of our system with laser cutting hardware and software to
prototype a seamless design, calibration, and fabrication workflow
enhanced with sensing.

More broadly, we observe that metaSVG is addressing the prob-
lems created when a workflow fails to capture relevant, expert-
provided knowledge. We observe that many fabrication workflows
beyond laser cutting suffer from this problem – from 3D models
“forgetting” that a certain hole is a bolt hole and thus shouldn’t be
scaled, to 2D images “forgetting” layers and grouping behaviors that
make them more easily editable. Often, research effort is expended
trying to hallucinate and retrofit this missing knowledge into existing
files; we encourage researchers to also consider building tools that
avoid throwing out such information in the first place.
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