
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEMFREEZING: TOWARDS PRACTICAL ADVERSARIAL
ATTACKS ON TEMPORAL GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal graph neural networks (TGNN) have achieved significant momentum in
many real-world dynamic graph tasks, making it urgent to study their robustness
against adversarial attacks in real-world scenarios. Existing TGNN adversarial
attacks assume that attackers have complete knowledge of the input graphs. How-
ever, this is unrealistic in real-world scenarios, where attackers can, at best, access
information about existing nodes and edges but not future ones at the time of the
attack. Nevertheless, applying effective attacks with only up-to-attack knowledge is
particularly challenging due to the dynamic nature of TGNN input graphs. On the
one hand, graph changes after the attacks may diminish the impact of attacks on the
affected nodes. On the other hand, targeting nodes that are unseen at the attack time
introduces significant challenges. To address these challenges, we introduce a novel
adversarial attack framework, MemFreezing, to yield long-lasting and spreading
adversarial attacks on TGNNs without the necessity to know knowledge about the
post-attack changes in the dynamic graphs. MemFreezing strategically introduces
fake nodes or edges to induce nodes’ memories into similar and stable states, which
we call the ‘frozen state.’ In this state, nodes show limited responses to graph
changes and are compromised in their ability to convey meaningful information,
thereby disrupting predictions. In subsequent updates, these affected nodes main-
tain and propagate their frozen state with support from their neighboring nodes.
The experimental results demonstrate that MemFreezing can persistently decrease
the TGNN models’ performances in various tasks, delivering more effective attacks
under practical setups.

1 INTRODUCTION

Dynamic graphs are prevalent in real-world scenarios, spanning areas like social media (Kumar
et al., 2018), knowledge graphs (Leblay & Chekol, 2018), autonomous systems (Leskovec et al.,
2005), and traffic graphs (Pareja et al., 2020). Unlike static graphs, whose nodes and edges remain
constant, dynamic graphs evolve over time, introducing challenging tasks like link prediction and
node classification on dynamically changing nodes and edges. Driven by successes of Graph Neural
Networks (GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017; Veličković et al., 2017; Xu et al.,
2018), Temporal Graph Neural Networks (TGNNs) have emerged as state-of-the-art solutions in
many dynamic graph tasks (Trivedi et al., 2019; Kumar et al., 2019; Rossi et al., 2020; Zhang et al.,
2023; You et al., 2022). As such, there is a pressing need to study their robustness towards adversarial
attacks, especially since such attacks have shown significant efficacy against traditional GNNs (Wang
et al., 2018; Tao et al., 2021; Zügner et al., 2018; Zou et al., 2021; Ma et al., 2020; Zang et al., 2020;
Bojchevski & Günnemann, 2019; Sun et al., 2022; Li et al., 2022). By modifying the input graphs
with imperceptible and subtle perturbations, the adversarial attacks can inject noises into GNNs,
making the models yield incorrect or adversary-expected results. For instance, a social media such as
REDDIT Kumar et al. (2018) may employ TGNN to decide whether comments (as edges) from users
to posts (as nodes) should be banned based on his/her comment histories. With subtle adversarial
attacks, malicious messages can easily bypass this checking functionality.

While several studies have explored the effectiveness of adversarial attacks on dynamic graphs (Lee
et al., 2024; Sharma et al., 2022; 2023; Chen et al., 2021), they often assume that attackers have
complete knowledge of the input graphs at the time of the attack, which is impractical in many
real-world scenarios. Specifically, as dynamic graphs evolve, by the time attackers observe the entire

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

evolution (i.e., track all changing nodes and edges) and identify the optimal timestamps to inject
adversarial perturbations (e.g., adding fake nodes or edges), those key timestamps may have already
passed, making it impractical to inject noises timely. As the old saying goes, ‘It is easy to be wise
after the event.’ Therefore, in real-world cases, the adversarial may attack TGNN with only limited
knowledge up to the time of the attack. Nevertheless, studying TGNN adversarial attacks under
practical constraints is valuable, as real-world attacks with limited knowledge may exhibit unique
characteristics that uncover vulnerabilities in TGNNs, which are overlooked when focusing solely on
idealized scenarios.

However, attacking TGNNs with limited knowledge up to the attack time faces significant challenges
due to the evolving nature of dynamic graphs. First, the impact of adversarial noise can quickly decay
as the graph evolves and node information updates. Second, it is difficult to influence unseen nodes
or edges that appear after the attack, as their information is unknown. Thus, an effective strategy
must endure the graph’s evolution and affect both current and future nodes despite this uncertainty.

Interestingly, the node updating mechanism in Temporal Graph Neural Networks (TGNNs) offers
unique potentials for persisting and propagating adversarial noises in dynamic graphs. Generally,
TGNNs maintain and update node status vectors, often referred to as node memory by recent
studies (Rossi et al., 2020; Zhou et al., 2022; Wang & Mendis, 2024; Zhou et al., 2023; Wang &
Mendis, 2023), to capture temporal history, which is crucial for delivering accurate predictions in
dynamic graph tasks. Moreover, a node’s memory vector can potentially affect its neighbors. When
graph changes occur—such as the addition or deletion of nodes or edges—the memory vectors of
related nodes are updated based on their neighbors’ memories. This raises intriguing questions: Can
TGNN predictions be disrupted by disabling their memories, and can this effect persist and spread
through their memory updates?

To address this inquiry, we thoroughly investigated the memory update patterns of nodes within
TGNNs and made the following observations: (1) Although it is not possible to directly affect unseen
predictions, we can degrade TGNN prediction accuracy by pushing nodes—whether seen or un-
seen—into a relatively ‘frozen’ state, their memories remain stable and exhibit limited responsiveness
to surrounding changes, reducing their ability to convey updated or meaningful information. (2)
While a noisy node’s memory vector may struggle to maintain its noisy state over time on its own,
this state can persist for much longer if its neighboring nodes have similar memories.

We introduce MemFreezing, a novel adversarial attack designed to study the vulnerabilities of TGNNs
under realistic constraints. At a specific attack timestamp, MemFreezing strategically selects groups
of victim nodes that mutually reinforce each other’s noisy states during updates, leveraging a heuristic
we term ’cross-freezing’. By injecting carefully crafted fake messages, MemFreezing guides these
nodes into a stable frozen state, where their memory updates exhibit high similarity over time. This
stability reduces their responsiveness to graph changes and limits their ability to convey meaningful
information, thereby misleading predictions. Additionally, we simulate future nodes to induce the
propagation of adversarial noise. We summarize our contributions as follows:

• We recognize the limitations of existing adversarial attacks on dynamic graph models and iden-
tify the challenges of persisting and propagating adversarial noise in real-world threat models,
particularly in Temporal Graph Neural Networks.

• We propose MemFreezing, an adversarial attack that disables node memories in TGNNs by pushing
them into unnaturally stable states. To achieve this, we design a cross-freezing mechanism that
induces nodes to be stable despite future updates and encourages affected nodes to propagate stable
states by their simulating future neighbors.

• We compare our method with prior GNN adversarial attacks on various dynamic graphs. Experi-
mental results show that MemFreezing effectively and persistently misleads TGNN predictions
across diverse datasets and models, outperforming state-of-the-art GNN attacks, even in the
presence of defenses.

2 BACKGROUND AND RELATED WORK

Dynamic Graphs. Unlike a static graph, a dynamic graph consists of nodes and edges evolving over
time. Dynamic graphs can be represented in two ways: Discrete-Time Dynamic Graphs (DTDGs)
describe dynamic graphs as a series of static snapshots taken periodically, while Continuous-Time

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Time

Step 1: Message Generating Step 2: Memory Updating

Event at 𝒕𝟎
− : Adding Edge 𝒆𝟐𝟑

1

2
3

𝒎𝒔𝒈𝟐𝟑
𝒎𝒔𝒈𝟑𝟐

Step 3: Node

Embedding

1

2
3

𝒔𝟐 → 𝒔𝟐
+

𝒔𝟑 → 𝒔𝟑
+

𝒎𝒔𝒈𝟐𝟑

𝒎𝒔𝒈𝟑𝟐

𝒎𝒔𝒈𝟏𝟐 1

2
3

𝒉𝟐

𝒔𝟏

𝒔𝟑
Prediction

Prediction at 𝒕𝟎: 𝒚𝟐 =?

𝒚𝟐 = 𝒇𝑴𝑳𝑷(𝒉𝟐)

Figure 1: The three steps of TGNN computing assuming a new event at timestamp t−0 adds an edge
e23 to the dynamic graph: Firstly, messages msg23 are generated for the nodes involved in this event
nodes 2 and 3. Next, the nodes aggregate messages from their neighbors and update their memories
(e.g., s2 → s+2). At a future prediction time t0, nodes aggregate memories (e.g., s1 and s2) from their
neighbors and embed them into node vectors (e.g., h2) for the prediction.

Dynamic Graphs (CTDGs) view the graph as a collection of events—each event detailing updates
like node or edge changes. Recent TGNNs focus on CTDGs since they can retain more information
than DTDGs’ fixed intervals and more complex (Kazemi et al., 2020). Within the CTDG paradigm,
the dynamic graphs are represented as G = {x(t1), x(t2), ...}, in which x(ti) indicates an event
happened at timestamp ti. Generally, the prediction task for CTDGs can be depicted in equation 1.

yi = fθ(Gi, ti) = fθ({x(t1), x(t2), ...x(ti−1)}, ti) (1)

At the prediction time ti, the model fθ(·) takes all previous events Gi = {x(t1), x(t2), ...x(ti−1)} as
inputs and predicts the testing nodes’ classes or future edges.

Temporal Graph Neural Networks. The memory-based Temporal Graph Neural Networks (TGNN)
are widely studied and achieve state-of-the-art accuracies in dynamic graph tasks (Trivedi et al.,
2019; Kumar et al., 2019; Rossi et al., 2020; Kazemi et al., 2020; Zhang et al., 2023; You et al.,
2022). Generally, these TGNNs maintain node features across different timestamps that track
the node’s history and use it for predictions. Note that, despite their different names (e.g., node
memories (Rossi et al., 2020; Wang et al., 2021), node representations (Trivedi et al., 2019), node
dynamic embeddings (Kumar et al., 2019)) across various TGNNs, these node features are represented
as vectors on presented nodes and evolve over time to capture the temporal information of these
nodes. Following existing general TGNN frameworks (Zhou et al., 2022; 2023; Wang & Mendis,
2024; 2023; Rossi et al., 2020), we refer to these evolving node feature vectors as node memories. As
illustrated in Figure 1, TGNNs produce node embedding for the predictions in three steps. When an
event x(ti) adds an edge euv from node u to node v (i.e., x(ti) = euv), two messages are generated
as equation 2. For simplicity, we only present the updating and following operations of node u, which
is the same for node v.

mvu = msg(sv, su,∆T, euv) (2)

The msg(·) is a learnable function such as Multi-Layer-Perceptions (MLPs). The su and sv denote
the memories of node u and node v at their last updated times, and ∆T represents the difference
between the current timestamp and the nodes’ last updated times. Next, nodes u and v aggregate
messages from their neighbors and update their memories as equation 3.

s+u = UPDT (su, AGGR(mku|k ∈ N(u))), (3)

The N(u) denotes the neighbors of node u. The AGGR(·) is usually implemented by a mean or
most_recent function to aggregate messages from the node’s neighbors (Rossi et al., 2020). The
UPDT (·) uses the aggregated messages to update the node’s memory and is usually implemented
by a Gated-Recurrent-Unit (GRU) (Chung et al., 2014). When there is a prediction involving node u,
TGNNs use a graph embedding module, such as Graph Attention Network (GAT) (Veličković et al.,
2017), to embed the node’s memory into the final node embedding, as depicted in equation 4.

hu = GNN(su, sk|k ∈ N(u)), (4)

During prediction, TGNNs use nodes’ latest memories (i.e., si and su) to compute the node embedding
hu. The resulting node embedding hu is fed into an MLP for the final predictions.

Adversarial Attacks on Graph Neural Networks. The considerable achievements of GNNs have
catalyzed numerous investigations into their resilience against adversarial attacks (Chen et al., 2017;
Bai et al., 2018; Wang et al., 2018; Zügner et al., 2018; Bojchevski & Günnemann, 2019; Ma et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1
2

3

4

1
2

3

4 5

1
2

3

4 5
…

Node Prediction Truth

2 0.01 1

3 0.02 1

Node Prediction Truth

3 0.33 1

5 0.85 1

Node Prediction Truth

3 0.88 1

6 0.95 1
Missing Missing

Decaying

Time𝒕𝟎𝒕𝟎
− 𝒕𝟏𝒕𝟏

−
𝒕𝟐𝒕𝟐

−
6

…
Missing
Decaying

Missing

Decaying

Attack

Decaying

Figure 2: The issues in TGNN adversarial attacks with unknown futures. At t−0 , an attacker adds fake
node1 and node4, which may effectively mislead predictions for node2 and node3 at t0. However,
as time progresses to t−1 and t−2 , the appearance of node5, node6, and subsequent updates dilute the
adversarial impact on node3, making its prediction closer to the correct result (i.e., Decaying in the
figure). Moreover, the attacks can hardly mislead predictions on new nodes coming after t−0 (i.e.,
node5, node6) since the attackers lack knowledge of these changes (i.e., Missing in the figure).

2020; Zang et al., 2020; Tao et al., 2021; Zou et al., 2021; Sun et al., 2022; Li et al., 2022; Zou et al.,
2023). These adversarial attacks generally seek to misguide GNN predictions by modifying the nodes
and edges of input graphs. For example, (Wang et al., 2018) introduces fake nodes with fake features
that can minimize the loss between prediction results in the original graphs and the targeted fake
results; (Zügner et al., 2020) adds and deletes edges that can cause the most substantial increases in
the training losses on the original graphs. Recently, there have also been a few studies that explored
the effectiveness of adversarial attacks on dynamic graphs and TGNNs Lee et al. (2024); Sharma
et al. (2023; 2022); Chen et al. (2021).

3 PROBLEM ANALYSIS

3.1 THREAT MODEL

Limits in Prior Threat Models. Prior TGNN attacks (Lee et al., 2024; Sharma et al., 2023; 2022;
Chen et al., 2021) assume that attackers have full knowledge of the target graphs and that these graphs
remain static after the attacks. However, this assumption is impractical in real-world scenarios, as
attackers cannot return to the optimal attack times after observing the entire evolution of a dynamic
graph. In particular, when an attacker observes the evolution of a dynamic graph at tn and identifies
optimal attack timestamps ta1

, ta2
, ..., tak

≤ tn, they would need to go back to these past timestamps
to inject noise, which is infeasible in practice. For example, if attackers aim to target a TGNN on
social media like Reddit in October and determine that the optimal timestamps to inject noise were
in September, they cannot go back a month to post adversarial comments or reviews that would
influence node states in the underlying TGNN model.

Threat Model. Due to the limits discussed above, we assume that, for a practical and realistic TGNN
adversarial attack, an attacker’s knowledge is limited to events up to the attack timestamp, and the
graph continues to evolve afterward. In particular, we set up our attack model as follows.

• Attacker’s Goal: Given an evolving dynamic graph and a TGNN model, the attacker’s goal is to
misguide the TGNN predictions by introducing a limited amount of changes to the entire graph
(e.g., affecting a small number of total nodes limited by the attack budget.)
• Attacker’s Knowledge: Attackers can acquire knowledge only up to the attack’s timestamp, includ-

ing model details, presented inputs, and node memories, but not future changes in the dynamic
graph. Regarding acquiring previous inputs, platforms like Wikipedia, Reddit, Meta, or X maintain
dynamic graphs that adversaries can reconstruct with reasonable accuracy using publicly accessible
data. Regarding acquiring the model details, many TGNN architectures and pre-trained models are
open-sourced, and adversaries can also use techniques like insider threats or model extraction Yao
et al. (2024); Oliynyk et al. (2023) to obtain model parameters if not publicly available. However,
predicting future graph changes remains significantly harder. Therefore, we focus on the more
challenging constraint of using only past knowledge for attacks while assuming a white-box setup
for model parameters.

• Attacker’s Capability: Attackers can add fake events as adding nodes/edges at the attack time.
For example, while attacking TGNNs in social media, attackers can create fake user accounts as
fake nodes and make junk comments to the blogs as fake edges. These fake events can impact the
resultant node memories and embeddings and further influence predictions in TGNNs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1
2

3

4

2

3

5
2

3

5

Node Prediction Truth

3 0.01 1

5 0.02 1

Time

𝒕𝟎
−

𝒕𝟏

𝒕𝟏
−

𝒕𝟐

𝒕𝟐
−

6
Attack

𝒔𝟐
𝟎

𝒔𝟑
𝟎

𝒔𝟑
𝟏 = 𝑼𝑷𝑫𝑻(𝒔𝟑

𝟎, 𝑨𝑮𝑮𝑹(𝒎𝟐𝟑,𝒎𝟓𝟑))

Support

2

3

5 𝒔𝟓
𝟏 = 𝑼𝑷𝑫𝑻 𝒔𝟓

𝟎, 𝑨𝑮𝑮𝑹 𝒎𝟑𝟓

Propagate

2

3

5

Persist: Node 3 persist frozen with

message from Node 2.

Propagate: Node 5 get frozen with

message from Node 3.

Node Prediction Truth

3 0.02 1

6 0.03 1

Persist: Node 3 persist frozen with

message from Node 2 and Node 5.2

3

5 6

𝒔𝟑
𝟐 = 𝑼𝑷𝑫𝑻(𝒔𝟑

𝟏, 𝑨𝑮𝑮𝑹(𝒎𝟐𝟑,𝒎𝟓𝟑,𝒎𝟔𝟑))

Support

Support

Propagate: Node 6 get frozen with

message from Node 3.
2

3

5 6 𝒔𝟓
𝟏 = 𝑼𝑷𝑫𝑻 𝒔𝟔

𝟎, 𝑨𝑮𝑮𝑹 𝒎𝟑𝟔

Propagate

2

3

𝒔𝟐
−

𝒔𝟑
−

MemFreezing Attack

◆ Freeze Node Memories

◆ Propagate via Node Update

Figure 3: The resultant adversarial effects of the MemFreezing attack. (1) A node’s frozen memory
persists with support from its frozen neighbors, such as node 3 is kept frozen at t−1 and t−2 . (2) The
frozen states are propagated from affected nodes to their future neighbors, such as node 3 propagates
to node 5 at t−1 and 6 at t−2 . As a result, despite any post-attack changes, all associated predictions
could be misguided since nodes’ memories no longer work.

3.2 MOTIVATION

Issues of Existing Attacks. Due to limited knowledge up to the attack time, adversarial attacks on
TGNNs must contend with unknown future changes in dynamic graphs. However, the subsequent
changes after the attack may significantly limit the attack performances for two reasons: Firstly,
for seen and attacked targets, the noise that misleads their predictions becomes mixed with new
information from future changes (as described in equation 3 and equation 4), making it too weak to
mislead future predictions. Secondly, unseen nodes and edges added after the attack are difficult to
affect, as the attackers have no knowledge of these future elements and cannot generate effective noise
to mislead them. We illustrate examples of these issues in Figure 2. As details shown in Section 5
(e.g., Figure 6 and Table 1), while existing GNN attacks (Wang et al., 2018; Zou et al., 2021; Li et al.,
2022) effectively reduce the model’s accuracy immediately after the attack, they struggle to perturb
predictions in the unknown future.

4 THE MEMFREEZING ATTACK

We propose MemFreezing, an adversarial attack specifically tailored for TGNNs, to achieve our
goals. It consists of two key features: i) To create long-lasting adversarial effects, we disturb TGNN
predictions by freezing their node memories. Specifically, we induce nodes to mutually lock their
memories, keeping them stable during future updates. As a result, the victim nodes become less
responsive to surrounding changes, limiting their ability to provide critical information for predictions.
ii) To affect unseen nodes and edges, we simulate future neighbors for the victim nodes and encourage
these victim nodes to update the memories of their simulated future neighbors into similar, stable
states. As a result, the adversarial effects remain persistent through future changes and influence
subsequent predictions, as illustrated in Figure 3.

4.1 FREEZING AND PERSISTING NODE MEMORY

Memory Freezing Objective. Instead of focusing on maximizing prediction losses as prior adversar-
ial attacks, which are limited by unknown and diverse future events, we propose to transform victim
nodes’ memories into similar and stable states, which we refer to as Frozen State. In particular,
by keeping node memories similar and unchanged over time, nodes in TGNNs can hardly carry or
convey meaningful information, consequently disturbing predictions. To quantitatively investigate
the potential effectiveness of freezing node memories, we freeze the node memories in TGN (Rossi
et al., 2020) and JODIE (Kumar et al., 2019) by consistently forcing their node memories to all zero,
then evaluate their performances on edge prediction tasks on Wikipedia (Kumar et al., 2018) dataset.
As shown in Figure 4(a), this leads to significant accuracy drops over time, demonstrating the impact
of freezing node memories. Thus, our attack objective is to freeze node memories into frozen states.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Timestamp Timestamp
(b) (c) (d)

C
o

u
n

ts

1

Timestamp
(a)

0

0.5

1.0

C
o

si
n

e
S

im
il

a
ri

ty

B
ef

o
re

/A
ft

e
r

U
p

d
a

ti
n

g 1.01.01.0

0.9

0.8

0.7

0.6C
o
si

n
e

S
im

il
a
ri

ty

B
ef

o
re

/A
ft

e
r

U
p

d
a

ti
n

g

10 20 30 40 50 60 10 20 30 40 50 60

1000

500

0
0.2 0.4 0.6 0.8 1.010 20 30 40 500

Similarity

A
cc

u
m

. A
cc

u
ra

cy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: (a) The accumulated accuracy in vanilla TGNNs and their frozen counterpart. The ranges
(colored bar) and averages (line) of the cosine similarities between node’s evolving memories with (b)
persisting frozen by node themselves and (c) by connected groups (cross-freezing). (c) The distribution
of cosine similarities among the ideal frozen states in different nodes.

Challenges in Persisting Frozen Memories. However, keeping nodes’ memories in frozen states is
challenging. Specifically, unpredictable messages aggregated from neighbors can considerably change
a node’s memory during updates, as described in equation 3. An intuitive solution is to maximize the
contribution of a node’s self-memory su while minimizing the impact of incoming messages during
its update. To explore the feasibility of this approach, we conducted a case study using TGN on the
Wikipedia dataset. Specifically, we sample 100 victim nodes, manipulate each node’s memory to
block messages during updates, and then assess whether they remained unchanged over subsequent
timestamps. As highlighted in Figure 4(b), despite this effort, the cosine similarities between nodes’
memories before and after updating drop significantly over time. The primary challenge lies in the
unpredictability of future messages, making it nearly impossible to find a memory that completely
blocks new information from updates in the RNN or attention-based memory updating modules used
by TGNNs. Further experimental details and theoretical proofs are provided in Appendix A.1.

Opportunities in Freezing.Although we can’t block messages from a node’s neighbors, we can
introduce noise to those neighbors, making their messages help persist the noise. In particular,
we assume that nodes’ frozen memories in TGN can remain consistent if similar frozen neighbors
surround them. We verify the assumption using the same model and data as Figure 4(b). Specifically,
we first sample one-third of 100 victim nodes as root node, then sample two neighbors for each
root node (referred to as support neighbors) and set their memories the same as the root node, then
observe their memory changes over time. As depicted in Figure 4(c), if nodes have similar neighbors,
their memories quickly converge to a relatively stable state and persist through future changes—we
term this state as the node’s ideal frozen state. Hence, we may expect sampled victim nodes to have
similar frozen states so that they can mutually lock each other by then. Fortunately, as shown in
Figure 4(d), the ideal frozen states from different nodes are similar; therefore, it is possible to keep
nodes frozen by driving their memories into similar and stable states.

Cross-Freezing Loss. To this end, we propose to freeze victim nodes in connected groups and make
them persist frozen with mutual support from each other. We termed this approach as Cross-Freezing.
Specifically, we would first sample a node as the root node, then sample two of its neighbors as
support nodes—note that these support neighbors also cost our attack budgets—then force them to
fulfill the following two goals: First, the nodes’ memories should be similar so that the messages
generated between them can potentially help to lock each other and keep their memory unchanged.
Second, the nodes’ memories should reach their ideal frozen states (i.e., the converged state in
Figure 4(c)) so they cannot sense future changes after the attack. Hence, for each attacked node, we
formulate the problem to be solved as equation 5.

Lfreeze
u =

∑
k∈Nsupp(u)

(
Lmse(s

∗
k, s

+
k) + Lmse(s

+
u , s

+
k)

)
(5)

For any given node u with its memory denoted as su and support nodes as Nsupp(u), our objective
relies on two Mean-Squared-Error (MSE) losses. The first, Lmse(s

∗
k, s

+
k), aims to ensure that it

updates its support neighbors’ memory s+k close to their ideal frozen state s∗k. We find this state by
updating the node’s memory using current neighbors until they reach the stable state. Specifically,
given a node and two of its support neighbors, we repeatedly update its memory using itself and
its two support neighbors’ memory until its memory is stabilized (i.e., has more than 0.9 cosine
similarity before/after updates) or the maximum number of repeats is reached. The second loss,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

represented by Lmse(s
+
u , s

+
k), is designed to make sure that it updates its support neighbors’ memory

s+k close to its own memory after updates (i.e., s+u).

4.2 PROPAGATING FROZEN STATES

Future Simulating. In addition to freeze nodes, it is also important to propagate the effect to more
nodes to exacerbate attack effects, even though some nodes are unseen at the current stage. To
make a node’s memory influence unknown future neighbors, we propose using its existing neighbors
to simulate potential future ones, which can then be used to optimize the victim nodes’ ability to
propagate their frozen state. This approach is based on the principle of homophily in real-world graphs,
where neighboring nodes often exhibit strong similarities (McPherson et al., 2001). As an example,
while applying TGN for the edge prediction tasks on Wikipedia dataset, nodes’ neighbors have 0.87
cosine similarity on average, with over 60% neighbors having similarities over 0.9. Therefore, for a
given node u, we use its current neighbors to simulate its future neighbors in two steps:

(1) First, we augment its current neighbor set N(u) by adding ‘similar fake future neighbors.’ These
are created by sampling the most recent ten neighbors from N(u) (or fewer if there aren’t ten) and
introducing Gaussian noise. The noise has a mean of 0 for all nodes, and the standard deviation is set
to 0.2 times the standard deviation of the current neighbor’s memory. (2) Second, to simulate newly
added nodes in the graph, we randomly add several ‘newly presented fake future neighbors.’ The
memories of these fake neighbors are set to all-zero, similar to the initial memory for any new nodes.
The number of these fake neighbors is determined by the ratio of newly appeared nodes among the
most recent ten neighbors of the node. We use the ∆T of the most recent clean message on the victim
nodes for these fake neighbors. For example, if we attack node n, whose most recent message before
our attack appears at ∆Tk, then the fake timestamp of adding those fake future neighbors will also be
∆Tk. We also include more details about the future simulation in Appendix A.2 and further discuss
its potential under extremely random and irregular graphs in Appendix C.15.

Propagating Loss. To make the frozen nodes contagious to potential future neighbors, we then use
the resulting augmented neighbors Naug(u) to solve the problem described in equation 6.

Lprop
u =

∑
k∈Naug(u)

Lmse(su, UPDT (sk,muk)) (6)

The objective of this loss is to minimize the Mean Squared Errors (MSEs) between a node’s memory
and the memories of its new neighbors after an update. By doing so, we encourage the node’s memory
to update its current and potential future neighbors’ memories to become similar to itself.

4.3 ATTACK FRAMEWORK

Combining the above-mentioned solutions together, we introduce the two-stage MemFreezing attack
framework as illustrated in Figure 5. We also included a detailed algorithm in Appendix B.

Stage 1: Victim Node Selecting. In this stage, we use a simple greedy approach to select the nodes
to be attacked to facilitate cross-freezing. The connected victim nodes are select in two steps: First,
we select the nodes with the highest degrees in the current graph as root nodes. The intuition behind
this is that we want the injected noises to be propagated to as many nodes as possible, and these
high-degree nodes, such as top-commented posts on social media, are usually popular in existing
and future graphs. Next, for each root node, we select its two highest-degree neighbors as its support
nodes. The following procedure will treat all the root and support nodes as victim nodes and transform
them into frozen states.

Stage 2: Adversarial Message Solving. In this stage, we solve the messages to be passed to the
selected victim nodes, which can be injected as fake nodes or edges. In the first step, we find the
nodes’ ideal frozen states (i.e., s∗u in equation 5) by updating its memory using current neighbors
until convergence. In the second step, we simulate the future changes by augmenting victim nodes’
neighbors with simulated futures (i.e., nodes/edges). The resulting neighbors are used as N ′(u)
in equation 6. In the third step, we solve the adversarial memory ŝu of the victim nodes by minimizing
the total memory loss in equation 7. Specifically, for a node u, we solve its adversarial memory by
minimizing the sum of its persisting (i.e., equation 5) and propagating (i.e., equation 6) losses.

Lu = Lfreeze
u + Lprop

u (7)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

MemFreezing Attack

Stage 1: Victim Node Selecting

𝒔𝟐

𝒔𝟑

2

3

Step 1: Find nodes’ ideal frozen state for cross freezing (Sec. 4.1)

Update

𝒔𝟐

𝒔𝟑

2

3

𝒔𝟐

𝒔𝟑

2

3 a
𝒔𝟐 + 𝜹𝟏

𝒔𝟐

𝒔𝟑

2

3

b

𝒔𝟐 + 𝜹𝟏

2

3

4

1

2

3

4

1

2

3

4

1

Step 1: Select

High-degree

Root Nodes

Step 2: Select

High-degree

Support Nodes

Supporting neighbors:

𝑵𝐬𝐮𝐩𝐩 𝟐 = 𝟑

𝑵𝐬𝐮𝐩𝐩 𝟑 = 𝟐

Stage 2: Adversarial Message Solving

2

3

Update 2

3

Update
…

Update 2

3

𝒔𝟐
∗

𝒔𝟑
∗

Step 2: Augment nodes’ neighbor with simulated future neighbors (Sec. 4.2)

a

𝒔𝟐 + 𝜹𝟐

Augmented neighbors: 𝑵𝒂𝒖𝒈 𝟑 = 𝟐, 𝒂, 𝒃
Simulate 𝒏𝒐𝒅𝒆𝒂 Simulate 𝒏𝒐𝒅𝒆𝒃

Step 3: Solve nodes’ adversarial memories & Solve adversarial messages

𝒔𝟐
𝒒+𝟏

= 𝒔𝟐
𝒒
− 𝜶 ∙ 𝛁𝟐𝑳𝟑 , 𝒔𝟑

𝒒+𝟏
= 𝒔𝟑

𝒒
− 𝜶 ∙ 𝛁𝟑𝑳𝟐 𝒎𝟓𝟐,𝒎𝟔𝟑

Modify Graph

2

3

4

1

2

3

4

15

6

Figure 5: The two stages of the MemFreezing attack. In the victim node selecting stage, we greedily
select victim nodes under the attack budget. In the adversarial message solving stage, we solve the
victim nodes’ targeted memory and corresponding adversarial messages. The solved messages are
added to the graphs and removed after the attack timestamp.

Then, we solve the adversarial messages described in equation 8 so that these messages can update
the nodes’ memories into their solved frozen states.

argmin
mAu

Lmse(UPDT (su, AGGR(mAu, m̃u), ŝu)) (8)

The m̃u represents the aggregated messages collected from u’s other neighbors. In short, for node u,
the solution aims to find a fake message mAu that minimizes the MSE loss between the expected
noise memory ŝu and the memory updated after inserting it to the graph. Lastly, we add the solved
noisy message as a fake node or fake edge for each victim node and remove it after the attack.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Models and Datasets: We use on four TGNN models for evaluation: JODIE (Kumar et al., 2019),
Dyrep (Trivedi et al., 2019), TGN (Rossi et al., 2020) and Roland (You et al., 2022). The experiments
use four dynamic graph datasets: Wikipedia (WIKI), Reddit (REDDIT) (Kumar et al., 2019), Reddit-
body (REDDIT-BODY) and Reddit-title (REDDIT-TITLE) (Kumar et al., 2018). Details about the
models and datasets are included in Appendix C.1. We also include results on a million-node dataset,
Wiki-Talk-Temporal (Leskovec et al., 2010) in Appendix C.4.4.

Tasks & Metrics: We evaluate the models on two tasks: node classification and edge prediction (Rossi
et al., 2020). For a timestamp, we measure the accuracy or area under the ROC Curve (ROC-AUC)
based on all presented predictions from the beginning, which we termed as accumulated accuracy
and accumulated ROC-AUC. More details about the tasks and matrices are in Appendix C.1

Attack Setup: We compare our work with three state-of-the-art GNN attacks: FakeNode (FN) (Wang
et al., 2018), TDGIA(TDGIA) (Zou et al., 2021) and Meta-Attack-Heuristic(Meta-h) (Li et al.,
2022). The results from Table 1 evaluate all attacks with 5% attack budgets, where we inject noises
to 5% nodes of the input graph. In Appendix C.4, we evaluate attacks with 1% attack budgets. For
our attack, we use a 1/3 budget for the root nodes and 2/3 for support nodes. All methods attack
at the beginning of the test set (i.e., attack at t0). We also include more details about the baseline
attacks in Appendix C.2 and the results of injecting attacks in multiple timestamps in Appendix C.6.

Defense Setup: We adopt three adversarial defenses: Adversarial Training(Adv_train), Regu-
larization under empirical Lipschitz (Lip_reg), and GNNGuard from static GNNs. More details
about the defense setup are in Appendix C.3.

5.2 EXPERIMENTAL RESULT

Overall Performance. We examine the accumulated accuracy at three timestamps: t0 = 0, t25 = 25,
and t50 = 50. The results of the edge prediction task are presented in Table 1. As observed, all prior

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps; lower matrices indicate more effective attacks. Results on more datasets and node
classification tasks are included in Appendix C.4

Dataset WIKI REDDIT REDDIT-BODY
Model TGN JODIE Dyrep Roland TGN JODIE Dyrep Roland TGN JODIE Dyrep Roland
Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95 0.90 0.87 0.90 0.88

t0

FN 0.81 0.74 0.74 0.82 0.84 0.83 0.84 0.83 0.76 0.82 0.77 0.79
Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92 0.86 0.83 0.88 0.85
TDGIA 0.77 0.72 0.71 0.80 0.74 0.80 0.81 0.74 0.72 0.81 0.74 0.76
Ours 0.89 0.78 0.83 0.87 0.75 0.84 0.94 0.82 0.84 0.85 0.81 0.78

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.93 0.90 0.86 0.89 0.88
Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96 0.89 0.86 0.90 0.87
TDGIA 0.93 0.81 0.84 0.92 0.94 0.95 0.95 0.90 0.89 0.85 0.89 0.88
Ours 0.80 0.75 0.77 0.85 0.81 0.84 0.91 0.80 0.81 0.84 0.76 0.80

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95 0.90 0.86 0.90 0.88
Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95 0.90 0.86 0.90 0.88
TDGIA 0.93 0.87 0.85 0.93 0.96 0.97 0.95 0.92 0.89 0.86 0.90 0.87
Ours 0.75 0.76 0.75 0.84 0.80 0.84 0.91 0.80 0.77 0.82 0.76 0.77

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Clean Acc. : 93%

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Clean Acc. : 90%

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Clean Acc. : 88 %

Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla

Figure 6: Accumulated accuracies of TGN under no defense(left), Adv_train(middle), and
Lip_reg(right) with FakeNode and our attack on WIKI dataset. More results in Appendix C.5

attacks cause significant accuracy drops at t0, but their impact quickly diminishes over time. By t25
and t50, the accumulated accuracy under these attacks is nearly identical to the baseline. In contrast,
MemFreezing consistently disrupts model predictions. While it does not cause the largest accuracy
drop at t0 compared to other attacks due to the freezing objective, its effects are more persistent
and even increase over time, achieving greater drops as the timestamps shift to t25 and t50. We
also observe similar effects on MemFreezing when conducting the attack at different timestamps as
detailed in Appendix C.7. The attacks on JODIE are less effective because JODIE employs a memory
decay mechanism that uniformly decays previous memories. This introduces additional information
outside the node memory, making JODIE more resilient to memory-based attacks. We discuss this
phenomenon in more detail and explore potential defenses against MemFreezing in Appendix D.

Performance under Defenses. We further illustrate the accumulated accuracy of TGNs under
different defenses in Figure 6. Similar results are observed: the effects of baseline attacks quickly
diminish, resulting in only a 1.1% accumulated accuracy drop by t50. In contrast, MemFreezing
causes progressively larger accuracy drops over time, averaging over 10% drop by t50.

Ablation Studies. To analyze the propagating and persisting capability of the noise solved by
MemFreezing, we capture 100 victim nodes in TGN in edge prediction on WIKI and monitor
the changes in their memory and their neighbors’ memory. In Figure 7, we compare the cosine
similarity between the memories of the victim nodes at t0 with those in themselves and their one-hop
and two-hop neighbors at each timestamp after the attack in four versions: (1) MemFreezing, (2)
MemFreezing w/o frozen state (i.e., w/o using Lmse(s

∗
k, s

+
k) in equation 5), (3) MemFreezing w/o

cross-freezing loss (i.e., without using entire Lfreeze
u in equation 5), and (4) original TGNN without

attacks. The result shows that, in MemFreezing, the noise in the victim node can persist over ten
timestamps, with over 0.92 cosine similarities. For the one-hop neighbors, at t = 1, they achieve
0.51 average similarities after the first update by the message from victim nodes, and at t = 15, the
average rises to 0.88. The two hot neighbors, whose memories are updated by the message from one
hot neighbor, have average similarities that grow from 0.24 to 0.84. In contrast, the similarity between
nodes’ initial attacked memory and their future counterparts drops drastically in the original TGNNs
like (4). If the frozen states are not guaranteed like (2), the similarities also suffer drops and fail
to achieve comparable similarities as (1). This is because, in such cases, the memories will change
before reaching their converged states, making the final converged state different from the original
adversarial memory states. Hence, this unchanged memory will harden the cross-freezing process,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

C
o
si

n
e

S
im

il
a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

C
o
si

n
e

S
im

il
a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

C
o
si

n
e

S
im

il
a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

C
o
si

n
e

S
im

il
a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

Timestamp Timestamp Timestamp Timestamp

Victim Node
Victim Node

Victim Node Victim Node

Figure 7: The similarities between victim nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in MemFreezing(left), MemFreezing w/o
(middle-left) frozen state, MemFreezing w/o cross-freezing loss (middle-right), and regular nodes
(right). All results above are from TGN and WIKI. More results are included in Appendix C.8.

A
ff

ec
te

d
N

od
e

C
ou

nt A
ccum

ulated A
ccuracy

A
ff

ec
te

d
N

od
e

C
ou

nt

A
ccum

ulated A
ccuracy A

cc
um

ul
at

ed
 A

cc
ur

ac
y

Timestamp Timestamp Attack Budget

Figure 8: (left) Count of nodes affected by MemFreezing and accuracy for the affected nodes
over time. (middle) Count of affected nodes and overall accuracy over time with two strategies
for selecting the injected node: 1% lowest degree versus 1% highest degree nodes. (right) The
accumulated accuracy at t0, t25, and t50 under different attack budgets (% of total nodes). All results
above are from TGN and WIKI. Results on more models and datasets are included in Appendix C.11.

which prefers similar memories among nodes. Therefore, the converged state is essential for persisting
noisy memories. The similarities drop faster if we remove the cross-freezing loss like (3) since the
cross-freezing mechanism is entirely disabled. Moreover, despite removing cross-freezing losses,
the neighbors are getting more similar to the target nodes, indicating that the propagating loss works
as expected. We also analyzed the advances of freezing node memories compared to maximizing
prediction losses in Appendix C.9 and the stealthiness of the injected noises in Appendix C.10.

Propagation in Dynamic Graphs. To better understand how frozen effects spread in MemFreezing,
we track all topologically connected nodes to the victim node, labeling them as affected nodes since
noise can potentially propagate to them. We then measure the prediction accuracy of these affected
nodes (represented by colored lines). As shown in Figure 8 (left), MemFreezing progressively impacts
more nodes (green area) and significantly reduces prediction accuracy, even though some nodes were
unseen at the attack timestamp. On the one hand, attacking high-degree nodes helps propagate the
noises to more nodes, nearly doubling the number of affected nodes compared to low-degree targets.
On the other hand, once nodes enter a stable (frozen) state, they propagate adversarial effects to
future neighbors, ensuring the attack’s persistence and adaptability despite dynamic graph changes.
As shown, Figure 8 (middle) demonstrates that selecting high-degree victim nodes accelerates noise
propagation and results in greater accuracy degradation compared to targeting low-degree nodes.

Scale with Attack Budget. We also evaluate MemFreezing under broader attack budgets ranging
from 1% to 15%. As shown in Figure 8 (right), higher attack budgets lead to greater accuracy drops,
demonstrating MemFreezing’s scalability with increased attack costs.

6 CONCLUSION

In this work, we propose MemFreezing, a novel adversarial attack tailored for TGNNs, to overcome
the challenges in attacking TGNN under limited-knowlegde scenarios. The MemFreezing attack
misleads model predictions by freezing node memories in TGNNs into stable and dysfunctional
states. The experimental results show that our approach can produce long-lasting and contagious
noises in dynamic graphs, leading to significant performance drops in TGNNs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning, pp. 695–704. PMLR, 2019.

Jinyin Chen, Jian Zhang, Zhi Chen, Min Du, and Qi Xuan. Time-aware gradient attack on dynamic
network link prediction. IEEE Transactions on Knowledge and Data Engineering, 35(2):2091–
2102, 2021.

Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto Perdisci, Manos
Antonakakis, and Nikolaos Vasiloglou. Practical attacks against graph-based clustering. In
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp.
1125–1142, 2017.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017.

Yaning Jia, Dongmian Zou, Hongfei Wang, and Hai Jin. Enhancing node-level adversarial defenses
by lipschitz regularization of graph neural networks. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 951–963, 2023.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648–2720, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction and
conflict on the web. In Proceedings of the 2018 world wide web conference, pp. 933–943, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference 2018, pp. 1771–1776, 2018.

Dongjin Lee, Juho Lee, and Kijung Shin. Spear and shield: Adversarial attacks and defense methods
for model-based link prediction on continuous-time dynamic graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 13374–13382, 2024.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1–20, 2016.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking
diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pp. 177–187, 2005.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in
online social networks. In Proceedings of the 19th international conference on World wide web,
pp. 641–650, 2010.

Kuan Li, Yang Liu, Xiang Ao, and Qing He. Revisiting graph adversarial attack and defense
from a data distribution perspective. In The Eleventh International Conference on Learning
Representations, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. Advances in neural information processing systems, 33:4756–4766, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. I know what you trained last summer: A survey
on stealing machine learning models and defences. ACM Computing Surveys, 55(14s):1–41, 2023.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In Proceedings
of the tenth ACM international conference on web search and data mining, pp. 601–610, 2017.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 5363–5370, 2020.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, and Srijan Kumar. Imperceptible adversarial attacks
on discrete-time dynamic graph models. In NeurIPS 2022 temporal graph learning workshop,
2022.

Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, and Srijan Kumar. Temporal dynamics-aware
adversarial attacks on discrete-time dynamic graph models. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2023–2035, 2023.

Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang He, and Bo Li.
Adversarial attack and defense on graph data: A survey. IEEE Transactions on Knowledge and
Data Engineering, 2022.

Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi Cheng. Single node
injection attack against graph neural networks. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1794–1803, 2021.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional
networks by adding fake nodes. arXiv preprint arXiv:1810.10751, 2018.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui,
Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021 international conference on management
of data, pp. 2628–2638, 2021.

Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware optimizations for temporal graph
attention networks. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, pp. 354–368, 2023.

Yufeng Wang and Charith Mendis. Tglite: A lightweight programming framework for continuous-
time temporal graph neural networks. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2, pp.
1183–1199, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, pp. 100211, 2024.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2358–2366, 2022.

Xiao Zang, Yi Xie, Jie Chen, and Bo Yuan. Graph universal adversarial attacks: A few bad actors
ruin graph learning models. arXiv preprint arXiv:2002.04784, 2020.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. Advances in neural information processing systems, 33:9263–9275, 2020.

Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, and Yangyong
Zhu. Tiger: Temporal interaction graph embedding with restarts. arXiv preprint arXiv:2302.06057,
2023.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis.
Tgl: A general framework for temporal gnn training on billion-scale graphs. arXiv preprint
arXiv:2203.14883, 2022.

Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna. Disttgl: Distributed
memory-based temporal graph neural network training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12, 2023.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2461–2471, 2021.

D Zügner and S Günnemann. Adversarial attacks on graph neural networks via meta learning.< i>
iclr</i>. In The Eighth International Conference on Learning Representations, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks
on graph neural networks: Perturbations and their patterns. ACM Transactions on Knowledge
Discovery from Data (TKDD), 14(5):1–31, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A EXTENDED DESIGN

A.1 SELF-FREEZING EXPERIMENTAL SETUP

We explored the viability of freezing a node by itself with a case study in TGN (Rossi et al., 2020),
where the UPDT (·) function is typically realized using a GRU (Chung et al., 2014). At a particular
timestamp, we randomly sample 100 nodes from the Wikipedia dataset and modify their memories.
For each node, we use Adam optimizer (Kingma & Ba, 2014) to find a memory vector to suppress
GRU updates by minimizing its reset gates (Chung et al., 2014). We then assessed if this memory
state remains consistent over time.

The TGN used by the experiment uses GRU for memory updating (i.e., for implementing UPDT (·)
function in equation 3), as depicted in equation 9-12.

rt = σ(Wirm̃t + bir +Whrst−1 + bhr) (9)
zt = σ(Wizm̃t + biz +Whzst−1 + bhz) (10)
nt = tanh(Winm̃t + bin + rt ⊙ σ(Winm̃t + bin) (11)
st = (1− zt)⊙ nt + zt ⊙ st−1 (12)

where σ(·) is the sigmoid function. Given the node memory st−1 ∈ RM at the previous timestamp,
and the aggregated message m̃t ∈ RD at time t, GRUs first compute reset gate rt ∈ RM , update gate
zt ∈ RM , and new gate nt ∈ RM .

In this experiment, we aim to minimize the interference of the message, m̃t, and maintain the updated
memory, st, close to the previous memory, st−1. To this scope, we can maximize all the features in
the update gate, zt, until it approaches 1, where the update gate will be directly used to control the
portion of the previous memory, which is:

as zt → 1, st → 0⊙ nt + 1⊙ st−1 ≈ st−1 (13)
Additionally, according to Equation 10, the update gate zt is computed by the sum of two linear
processes, and one is from the message, m̃t and the other one is from memory st−1. As we maximize
the linear output of the memory, Whz · st−1, the update gate, zt, is then maximized.

Hence, to analyze the maximum output of the linear process, Whz · st−1, we formulate it into a linear
program problem with the equations:

max
∑

Whz · st−1

s.t. − 1 ≤ st−1 ≤ 1

Whz · st−1 > δ

(14)

As the memory is the output of the tanh function rather than the unit-length vector, st is bounded by
the limit of the tanh function, [−1, 1]M . Further, we introduce an addition constraint Whz · st−1 > δ
to guarantee all dimensions of the linear output are bound by a constant, δ.

The optimal result for the memory, s∗t−1, for the linear problem only depends on the model weights,
where given a TGN model, the solution of the self-freezing memory is unique, and we have conducted
the experiment on three models TGN+WIKI, TGN+REDDIT, and a randomly initialized model.

The result in Figure 9-11 (a) shows the maximum update gate, z∗t , computed by σ(Whz · s∗t−1). In
the TGN+wiki example, z∗t is a 172-dimension vector, and it is distributed with a mean of 0.64 and
a standard deviation of 0.12. As aforementioned, to achieve the self-freezing memory, the update
gate, zt, is required to approach 1, but it is infeasible to fine the solution in the real world case under
the constraints. In Figure 9-11 (b), we simulate the GRU updating starting with the optimal memory,
s∗t−1, and monitor the cosine similarity between the memory before updated and after updated. The
results further demonstrate even the optimal solution cannot accomplish the self-freezing goal.

To theoretically analyze the maximum of the in the general case, we divide them into their eigen-
representations, and we use the SVD decomposition:

Whz = U · Σ · V T =
∑
i

ei · Ui · V T
i , st−1 =

∑
i|Vi∈V

αi · Vi (15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In SVD decomposition, U and V are the unitary matrix, and we use the basis from V to decompose
st−1. Moreover, the linear process is written as:

Whz · st−1 =
∑
i

ei · αi · Ui · V T
i · Vi =

∑
i

αi · ei · Ui (16)

This linear process is represented by the linear combination on the basis of U . We can easily acquire
the theoretical maximum of the output. As st−1 ∈ [−1, 1]M , if Vθ is a basis of {− 1√

M
, 1√

M
}M ,

st−1 = sθ can achieve the maximum projection to this basis, which is, αθ =
√
M and st−1 = Vθ.

Similarly, the linear output Whz · st−1 achieves the maximum by there exist a basis Uθ = { 1√
M
}M ,

and the linear output,

Wθ · sθ = eθ ·
1√
M
·
√
M · 1 = eθ · 1 (17)

As is shown, the maximum output of the linear process is equal to the eigenvalue. According to the
experiment, the largest eigenvalue of the weight matrix is usually around 2. Therefore, the update
gate,zt, has the theoretical maximum value, σ(eθ) ≈ 0.88.

However, the weights, Whz , are trained through the model update, which makes it impossible to find
the ideal maximum in the practical case.

C
o
u

n
ts

Distribution of the Optimal Update Gate (𝒛𝒕
∗)

(a)

Timestamp

(b)

C
o
si

n
e

S
im

il
a
ri

ty
 A

ft
er

M
em

o
r
y
 U

p
d

a
te

Figure 9: (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between
memory before the update and after the update, starting with the optimal self-freezing memory s∗t .
Experiments are conducted in the TGN model with WIKI datasets.

C
o
u

n
ts

(a)

Timestamp

(b)

C
o
si

n
e

S
im

il
a
ri

ty
 A

ft
er

M
em

o
r
y
 U

p
d

a
te

Distribution of the Optimal Update Gate (𝒛𝒕
∗)

Figure 10: (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between
memory before the update and after the update, starting with the optimal self-freezing memory s∗t .
Experiments are conducted in the TGN model with REDDIT datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C
o

u
n

ts

(a)

C
o
si

n
e

S
im

il
a
ri

ty
 A

ft
er

M
em

o
r
y
 U

p
d

a
te

Timestamp

(b)

Distribution of the Optimal Update Gate (𝒛𝒕
∗)

Figure 11: (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between
memory before the update and after the update, starting with the optimal self-freezing memory s∗t .
Experiments are conducted in the randomly sampled GRU model.

A.2 DETAILS OF SIMULATING FAKE FUTURE NEIGHBORS

To simulate the potential future neighbors of the victim nodes and enhance their capability to
contaminate those nodes, we randomly sample existing neighbors from victim nodes’ and add
Gaussian noise to their features. For the mean of the Gaussian noise, we use 0 as the mean for all
nodes. We use 0.2 times the standard variation of the original neighbor’s memory for the standard
variations of the Gaussian noise. In summary, for a node v, we follow Equation equation 18 to
simulate a victim node’s neighbors,

s′i = si +N (0, η · σ(s(v))), i ∈ N(v) (18)

In which s′i stands for the fake future neighbors and si stands for the memories from a sampled
existing neighbor, N(v) indicates the current neighbor set of node v. For the Gaussian noise
N (0, η · σ(s(v))), it has meant as 0, η = 0.2, and σ(s(v)) as the standard variation of all features in
existing neighbors.

We use the ∆T of the most recent clean message on the victim nodes for the timestamp of their
appearances. For example, if we attack node n, whose most recent message before our attack uses
∆Tk at its updating, then the timestamp of the fake future neighbors will also be ∆Tk. It is also worth
mentioning that, the ∆T has limited effects on the updating process. As proposed in TGAT and used
in TGN and other TGNN models, the ∆T is encoded into a time vector first as

E(∆T) = W ∗ cos(∆T)

in which W is a weight vector with 172 dimensions with descending magnitudes (for example,
[1.00, 0.88, 0.78, ...1.12e− 09, 9.99e− 10]). Then, W is used to update the memory. The value of
W is very small except for the first few dimensions, making them can hardly affect the updating
process.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B OVERALL ALGORITHM

Algorithm 1: MemFrezzing Attack
Input :G = (V, s(V))← Original graph with Node V , memories s(V)
Input :∀i,j|Vi,Vj∈V m(si, sj , eij ,∆t)←Messages before t0
Input :B ← Number of attacked nodes (attack budget)
Input :q ← Number of support neighbors for each root node.
Input :N(V), Nsupp(V), Naug(V)← the full neighbors sets, supported neighbors, and augmented

neighbors set
Output :VA, eA: Perturbed nodes and message.

/* Stage 1. Victim Node Sampling */
n← B/(q + 1)
V root
1 , V root

2 , · · · , V root
n ← topk(degree(V), n)

for i ∈ {1, 2, · · · , n} do
Vsupport ← V root

i ∪ {V1, V2, · · ·Vq ∈ N(V root
i)}

{ŝ0, ŝ1, · · · ŝq} ← ComputeConvergeState(Vsupport)
VA, eA ← ComputeAdversarialMessage({ŝ0, ŝ1, · · · ŝq},Vsupport)

/* Stage 2. Solving Frozen State */
Function ComputeConvergeState(Vsupport)

/* 2.1. Solving the Ideal Frozen State */
for i | Vi ∈ Vsupport do

si ← s(Vi)
m← m(si, si, eij ,∆t) , where j |Vj ∈ Vsupport

do
si ← s+i
m← m(si, si, eij ,∆t)
s+i ← UPDT (si,m)

while ||s+i − si||22 > ϵ;

s∗1, s
∗
2, · · · s∗q ← s+1 , s

+
2 , · · · s+q

/* 2.2. Solving the Cross-Frozen State */
s
(0)
1 , s

(0)
1 , · · · s(0)q ← s∗1, s

∗
2, · · · s∗q +N (0, η · σ(s(V)))

for t ∈ {0, 1, 2, · · · , T} do
∀i∈{1,2,···q} , s

(t)+
i ← UPDT (s

(t)
i , m̃i)

for i ∈ {0, 1, 2, · · · , q} do
Lfreeze
i ←

∑
k∈Nsupp(i)

(
Lmse(s

(t)+
k , s∗k) + Lmse(s

(t)+
i , s

(t)+
k)

)
Lprop
i ←

∑
k∈Naug(i)

Lmse(s
(t)
i , UPDT (s

(t)
i ,mik))

∀i∈{1,2,···q} , s
(t+1)
i ← s

(t)+
i − α · ∇si(L

freeze
i + Lprop

i)

return {s(T)
0 , s

(T)
1 , s

(T)
2 , · · · s(T)

q }

/* Stage 3. Solving the Adversarial Message */
Function ComputeAdversarialMessage({ŝ0, ŝ1, · · · ŝq},Vsupport)

for Vi ∈ Vsupport do
Vi,A ← V | V ∈ N(Vi)
for t ∈ {0, 1, · · · , T} do

m
(t)
Ai ← m(si, s(VA), e

(t)
Ai,∆t)

LA ← Lmse(UPDT (si, AGGR(m
(t)
Ai, m̃i), ŝi)

e
(t+1)
Ai ← e

(t)
Ai − α · ∇

e
(t)
Ai

LA

return {V1,A, V2,A, · · · , Vq,A} , {eA1, eA2, · · · , eAq}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C EXTENDED EVALUATION

C.1 EXPERIMENTAL DETAILS.

Model Details. All four TGNNs we included maintain a memory vector in each node and follow the
memory updating process as discussed in Section 2. And they are different in their node embedding
procedure (i.e., equation 4). Specifically, Dyrep directly uses the node memories for the predictions
(i.e., ht

i = sti). JODIE applies a time-decay coefficient to the scale memories before classification
(i.e., ht

i = δ(t) · sti). TGN, on the other hand, refines memories using a single-layer graph attention
module, as outlined in equation 4. Unlike prior models, ROLAND You et al. (2022) is a recent model
designed for DTDG graphs, yet it also maintains a history node feature for each node as memory.
Specifically, it adopts a multi-layer memory mechanism by keeping memory for both memory and
embedding stages. In other words, for the graph embedding part, it also adopts a GRU to combine
nodes’ previous embedding with the current embedding gathered from updated node memories. All
the models update and embed memory for one time at each prediction (i.e., one layer aggregation
in equation 3 and equation 4). The node memory dimension is set to 172, and the node embedding
dimension is set to 100. Following the training steps in (Rossi et al., 2020), we use Adam optimizer
with learning rate α = 0.01 to train the models 120 epochs.

Tasks Details. Models for node classification are trained to predict binary labels on each node. We
use the commonly used Area under the ROC Curve (ROC-AUC) to measure the model performances.
The models for edge prediction are self-supervise trained, using the edge information in future steps.
During the testing, given a source node, they predict the possibility of whether another node will be
its next incoming destination node and then decide which node will be its next neighbor. We use
prediction accuracy for evaluating the edge prediction result.

Dataset Details. Reddit and Wikipedia are dynamic interaction graphs retrieved from online resources
in (Rossi et al., 2020). In Wikipedia datasets, the nodes represent users and wiki pages, and the
edges indicate editing from users to pages. In the Reddit dataset, the nodes represent users and
subreddits, and an edge within it represents a poster from a user posted on a subreddit. The edge
features are represented by text features, and the node labels indicate whether a user is banned.
All the abovementioned information is accompanied by timestamps. Align with their original
designs (Kumar et al., 2019), and we set the newly input nodes’ features as zero feature vectors.
Reddit-body and Reddit-title are two larger-scale datasets that represent the directed connections
between two subreddits (a subreddit is a community on Reddit). The dataset is collected by SNAP
using publicly available Reddit data of 2.5 years from Jan 2014 to April 2017 (Kumar et al., 2018).
The statistics of the dataset used are shown in Table 2.

Table 2: Dataset details
of Nodes # of Edges # Edge Feature # of Node Feature

Wikipedia(WIKI) 9,227 157,474 172 172
Reddit(REDDIT) 11,000 672,447 172 172
Reddit-Body(REDDIT-BODY) 35,776 286,561 64 172
Reddit-Title(REDDIT-TITLE) 54,075 571,927 64 172

Platform details. We list then environment details in Table 3.

Table 3: Experimental Environment Setting
Environment Details

OS Windows 11
CPU Intel i9-13900K

Memory 64GB DDR5 RAM
GPU NVIDIA RTX 4090

Platform PyTorch 2.2.1
CUDA Version CUDA 12.1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2 BASELINE ATTACK AND ATTACK SETUP

We adopt the following attacks toward static GNNs. Specifically, we adopt the attack at the same
time as our attack time by attacking the existing dynamic graph as a static graph:

FakeNode (Wang et al., 2018) uses a greedy approach to generate edges of malicious nodes and
their corresponding features to mislead the static GNN predictions. Note that this approach assumes
that the added nodes/edges will be kept in the graph, so we keep the fake nodes and edges still after
the attack timestamp. Differently, the attacking nodes in MemFrezzing are removed after the attack.

TDGIA (Zou et al., 2021) is a cutting-edge Graph Injection Attack tailored to compromise static
GNNs. This method exploits the inherent vulnerabilities of GNNs and the unique topological
characteristics of graphs. In our implementation for each target node, we adhere to the established
methodology of TDGIA to identify the top 65% susceptible edges, utilizing their specialized scheme
for selecting topologically defective edges. These edges are then optimized using gradient descent.
Notably, the scale of modifications applied to each target node in the TDGIA method is substantially
larger than our approach, involving adjustments to 65% edges per node instead of just one edge per
node. Furthermore, these modifications will be kept after the attack instead of being removed as our
attack.

Meta_Attack_Heuristic (Li et al., 2022) is a heuristic-based attack inspired by the meta at-
tack (Zügner & Günnemann, 2019). This heuristic-based approach is an evolution of the original
meta-attack, which relied on gradient-based edge selection. The updated heuristic version demon-
strates greater versatility across a variety of GNN models and large-scale graphs, and it exhibits
enhanced effectiveness compared to its predecessor. Notably, the meta-attack and its heuristic coun-
terpart operate under the assumption that edges lack attributes. Consequently, in our application, we
assign an all-zero feature to the fake edges inserted as part of the attack process.

For all attacks (including our attack), We select ranges of noisy messages (i.e., magnitudes of message
features) between -1 and 1 since -1 and 1 are the theoretical minimum and maximum values of the
clean messages. The messages in TGNNs are usually memories of the nodes updated from previous
timestamps, which have activation functions such as tanh/cosine functions right before the outputs.
Therefore, all features of these messages (i.e., memories) should be within the range of -1 and 1 as
the minimum and maximum values of the activation functions (i.e., tanh). Therefore, using -1 and 1
produces messages that are exactly similar to those of the other features in the graph.

All adversarial messages/nodes in the baselines and our attacks use the ∆T of the most recent clean
message on the victim nodes. For example, if we attack node n, whose most recent message before
our attack uses ∆Tk at its updating, then the timestamp of the fake messages added to this node
will be ∆Tk as well. It is also worth mentioning that the delta T has limited effects on the updating
process, as we discussed in Appendix A.2.

For all attacks, we define the attack budget as the ratio of nodes that are affected. To ensure a fair
comparison, all attacks target the same set of victim nodes (the highest-degree ones). We would also
like to mention that, although targeting these high-degree nodes, all benchmarked attacks, including
MemFreezing, either inject one-degree nodes or edges into the graph and affect the same number of
victim nodes at the time of the attack.

Specifically, MemFreezing targets high-degree nodes by introducing a temporary fake node for
each target and creating an event (i.e., an edge) between the fake node and the target. In this way,
MemFreezing, like FakeNode, injects nodes with a degree of one into the graph. However, unlike
FakeNode, which retains the injected fake nodes and can potentially cause stronger adversarial
effects, MemFreezing removes these fake nodes after the attack, minimizing structural changes while
inducing long-lasting adversarial effects. Therefore, given a graph with V nodes and E edges and
targeting N = 5%V victim nodes (i.e., 5% budget), MemFreezing adds N fake edges. Since nodes
typically have a degree greater than one, K = 5%E > 5%V = N , the edge changes are less than
5% edges.

C.3 BASELINE DEFENSES SETUP

We adopt the following defensive strategies for the vanilla TGNN models:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Adversarial Training: In line with the approach detailed in (Madry et al., 2017), we introduce
perturbations to the node memories in TGNN models during the training. We then employ a minimax
adversarial training scheme to enhance the robustness of the TGNN model against these perturbations.

Regularization under empirical Lipschitz bound: Following the methodology in (Jia et al., 2023),
we minimize the empirical Lipschitz bound during the TGNN training process, where the empirical
Lipschitz bound, L, is computed by:

L = sup∆
||f(x+∆)− f(x)||22

||∆||22
(19)

This regularization aims to bound the effectiveness of small perturbations, such as adversarial
examples.

GNNGurad: Following the insights that only the similar node may provide significant information
for prediction, GNNGuardZhang & Zitnik (2020) adopts a cosine-similarity-based approach to
discount the messages passing between dissimilar nodes.

Notably, most robust GCN models, such as RobustGCN, SGCN, GraphSAGE, and TAGCN mentioned
in (Zou et al., 2021), are primarily tailored for static graph benchmarks. Given their design constraints,
these models are unsuited for TGNN setup with dynamic graph benchmarks and do not offer a viable
defense for the TGNN models targeted by our attack.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.4 EXTRA MAIN RESULTS

Here we report edge prediction accuracies on REDDIT-TITLE in Table 4, and node classification
AUCs on WIKI in Table 5. The results indicate that: (1) The static attacks cannot last long and affect
future nods. (2) Our approach can be more and more effective after the attack time.

C.4.1 EDGE PREDICTION RESULTS (5% ATTACK BUDGET)

Here, we report edge prediction accuracies on REDDIT-TITLE in Table 4. The results indicate that:
(1) The static attacks cannot last long and affect future nods. (2) Our approach can be more and more
effective after the attack time.

Table 4: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps on REDDIT-TITLE; lower matrices indicate more effective attacks.

Dataset REDDIT-TITLE
Model TGN JODIE Dyrep ROLAND
Vanilla 0.93 0.92 0.91 0.91

t0

FN 0.76 0.82 0.77 0.79
Meta_h 0.86 0.83 0.88 0.85
TDGIA 0.72 0.81 0.74 0.76
ours 0.84 0.85 0.81 0.78

t25

FN 0.9 0.86 0.89 0.88
Meta_h 0.89 0.86 0.9 0.87
TDGIA 0.89 0.85 0.89 0.88
ours 0.81 0.84 0.76 0.80

t50

FN 0.9 0.86 0.9 0.88
Meta_h 0.9 0.86 0.9 0.88
TDGIA 0.89 0.86 0.9 0.87
ours 0.77 0.82 0.76 0.77

C.4.2 NODE CLASSIFICATION RESULTS (5% ATTACK BUDGET)

Here, we report node classification AUCs on WIKI in Table 5. The results are similar to the edge
predictions: Static attacks are good at the first attack time but cannot last long and affect future nods.
In contrast, MemFrezzing can be more and more effective after the attack time.

Table 5: The AUC of vanilla/attacked TGNNs on the node classification task; lower matrices indicate
more effective attacks.

Dataset WIKI
Model TGN JODIE Dyrep ROLAND
Vanilla 0.90 0.88 0.89 0.90

t0

FN 0.77 0.87 0.75 0.78
Meta 0.86 0.83 0.86 0.85
TDGIA 0.73 0.82 0.76 0.75
ours 0.82 0.88 0.84 0.80

t25

FN 0.90 0.88 0.88 0.88
Meta 0.89 0.87 0.88 0.89
TDGIA 0.88 0.87 0.88 0.89
ours 0.82 0.85 0.81 0.79

t50

FN 0.90 0.88 0.88 0.90
Meta 0.90 0.89 0.90 0.90
TDGIA 0.90 0.88 0.88 0.90
ours 0.80 0.85 0.77 0.77

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.4.3 RESULTS WITH DIFFERENT BUDGET(1% ATTACK BUDGET)

To more comprehensively show the impact of the attack budget, we include detailed results of
baselines’ and our attacks’ effectiveness under the attack budget as 1%. As shown in Table 6, Table 7,
and Table 8, our approach can outperform baselines as well, despite fewer nodes being attacked.

Table 6: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps on WIKI and REDDIT; The attack budget is 1% for all attacks; lower matrices indicate
more effective attacks.

Dataset WIKI REDDIT
Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND
Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95

t0

FN 0.89 0.83 0.82 0.85 0.93 0.93 0.92 0.85
Meta 0.92 0.85 0.83 0.89 0.95 0.96 0.94 0.93
TDGIA 0.83 0.81 0.77 0.83 0.89 0.88 0.88 0.8
ours 0.9 0.82 0.84 0.9 0.93 0.94 0.94 0.86

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.95
Meta 0.93 0.86 0.85 0.93 0.95 0.98 0.95 0.94
TDGIA 0.91 0.84 0.83 0.93 0.94 0.96 0.96 0.92
ours 0.8 0.82 0.82 0.88 0.81 0.84 0.91 0.84

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95
Meta 0.94 0.87 0.86 0.93 0.96 0.98 0.95 0.95
TDGIA 0.94 0.87 0.85 0.93 0.96 0.97 0.95 0.93
ours 0.85 0.81 0.80 0.86 0.83 0.84 0.91 0.83

Table 7: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps on REDDIT-BODY and REDDIT-TITLE; The attack budget is 1% for all attacks; lower
matrices indicate more effective attacks.

Dataset REDDIT-BODY REDDIT-TITLE
Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND
Vanilla 0.9 0.87 0.9 0.88 0.93 0.92 0.91 0.91

t0

FN 0.85 0.85 0.81 0.83 0.88 0.88 0.85 0.83
Meta 0.87 0.85 0.87 0.86 0.92 0.89 0.89 0.9
TDGIA 0.81 0.83 0.79 0.78 0.85 0.87 0.85 0.83
ours 0.87 0.85 0.85 0.82 0.88 0.9 0.86 0.85

t25

FN 0.9 0.84 0.89 0.88 0.92 0.92 0.9 0.91
Meta 0.9 0.87 0.9 0.88 0.93 0.93 0.91 0.91
TDGIA 0.88 0.86 0.9 0.87 0.92 0.92 0.9 0.91
ours 0.84 0.86 0.8 0.82 0.85 0.88 0.81 0.86

t50

FN 0.9 0.87 0.9 0.88 0.93 0.92 0.9 0.91
Meta 0.9 0.88 0.9 0.88 0.93 0.93 0.9 0.91
TDGIA 0.89 0.87 0.9 0.87 0.93 0.91 0.9 0.9
ours 0.79 0.85 0.77 0.83 0.8 0.83 0.82 0.83

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: The AUC of vanilla/attacked TGNNs on the node classification task under 1% node attacked
budget; lower matrices indicate more effective attacks.

Dataset WIKI
Model TGN JODIE Dyrep ROLAND
Vanilla 0.9 0.88 0.89 0.9

t0

FN 0.83 0.88 0.83 0.83
Meta 0.87 0.85 0.88 0.88

TDGIA 0.81 0.85 0.83 0.8
ours 0.86 0.88 0.86 0.85

t25

FN 0.89 0.88 0.89 0.9
Meta 0.9 0.88 0.88 0.89

TDGIA 0.9 0.87 0.89 0.89
ours 0.82 0.85 0.81 0.81

t50

FN 0.9 0.87 0.89 0.9
Meta 0.9 0.88 0.89 0.9

TDGIA 0.9 0.87 0.89 0.89
ours 0.82 0.88 0.79 0.82

C.4.4 RESULTS WITH LARGE-SCALE DATASET

To measure our approach on a larger dataset, we select the largest temporal graph dataset on the SNAP
dataset collectionLeskovec & Sosič (2016)—Wiki-Talk-TemporalParanjape et al. (2017)—for
further analysis. This dataset represents Wikipedia users editing each other’s Talk page. A directed
edge (u, v, t) means user u edited v’s talk page at time t. The graph has 1,140,149 nodes and
7,833,140 collected over 2320 days.

The dataset has non-attributed edges, so we set them as all zero vectors. Note that we set the memory
size to 64 instead of 172 to avoid the Out-Of-Memory issue. Due to the time limit, we train TGN and
Roland for ten epochs instead of 20 in our prior experimental settings. The results are shown in Table
9. As we can observe, even for a very large graph with a 1% node budget, our attack shows a similar
behavior as our prior results –Our attack is long-lasting and can affect more nodes’ predictions in the
future.

Table 9: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps on Wiki-Talk-Temporal.

Dataset Wiki-Talk-Temporal
Attack Budget 1% 5%

Model TGN ROLAND TGN ROLAND
Vanilla 0.97 0.98 0.97 0.98

t0
FN 0.89 0.90 0.83 0.88
ours 0.94 0.91 0.86 0.88

t25
FN 0.98 0.97 0.97 0.96
ours 0.92 0.90 0.82 0.89

t50
FN 0.97 0.98 0.97 0.97
ours 0.91 0.91 0.84 0.86

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.5 EXTRA RESULTS ON ATTACKS UNDER DEFENSES

We include the results of two attacks, i.e., FakeNode and MemFrezzing, under the two defenses, i.e.,
adv_train and Lip_reg, on two TGNN models, i.e., JODIE and Dyrep. The observations are
similar to the prior analysis.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5 %)

Vanilla

Figure 12: Accumulated accuracies of DyRep under Adv_train(left), and Lip_reg(right) with
FakeNode and our attack on WIKI.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5 %)

Vanilla
Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5 %)

Vanilla

Figure 13: Accumulated accuracies of JODIE under Adv_train(left), and Lip_reg(right) with
FakeNode and our attack on WIKI.

To give a more in-depth evaluation, we design a defending method by leveraging the data-filtering
concept in GNNGuardZhang & Zitnik (2020) for the evasion attack. Specifically, following the
insights that only the similar node may provide significant information for prediction, GNNGuard
adopts a cosine-similarity-based approach to discount the messages passing between dissimilar nodes.
So, we also use the cosine similarities to rank and filter the messages. Specifically, similar to the
GNNGuard, we compute the similarities between two nodes. For each node, we normalize the
similarities between it and its neighbors, then prune the lower 50% (same as GNNGuard). We show
the experiment results in Table 10.

Table 10: Attack Performance under the GNNGurad.
Attack Budget 1% 5%

Dataset WIKI REDDIT WIKI REDDIT
Model TGN ROLAND TGN ROLAND TGN ROLAND TGN ROLAND
Vanilla 0.93 0.94 0.96 0.95 0.93 0.94 0.96 0.95

After defense Acc. 0.92 0.91 0.94 0.90 0.92 0.91 0.94 0.90

t0
FN 0.87 0.81 0.9 0.84 0.82 0.86 0.82 0.81
ours 0.87 0.88 0.91 0.88 0.85 0.83 0.8 0.82

t25
FN 0.9 0.91 0.93 0.9 0.91 0.91 0.92 0.9
ours 0.84 0.87 0.82 0.81 0.79 0.81 0.81 0.8

t50
FN 0.92 0.91 0.94 0.9 0.92 0.91 0.93 0.9
ours 0.83 0.85 0.81 0.81 0.76 0.82 0.8 0.83

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.6 EXTRA RESULTS WITH GRADUALLY INJECTED ATTACKS

MemFreezing can be effective in both one-time and multiple-time attacks. We show the results of
multiple-time attacks, in which attacks are injected right before t0, t5, t10, t15 with 1% attack budget
(i.e., 1% of all nodes) each time. The results are shown in Table 14.

Figure 14: The accumulated accuracy under gradually injected attack to TGN on WIKI(left) and
REDDIT(right). The attacks are injected right before t0, t5, t10, t15 with 1% attack budget (i.e., 1%
of all nodes) each time.

As one can observe, with multiple attack times, MemFreezing effectively decreases accuracies, while
the FakeNode and TDGIA attacks have shorter effective periods and fail to achieve similar accuracy
drops. This is because the attack introduced by these baseline attacks will be weakened once there
are changes between the graph at the attack and the prediction timestamp, and even multiple-time
attacks cannot ensure that the attacks are just injected right before each prediction; in contrast, the
noises from our attack can last over graph changes and even be boosted by future attacks.

Figure 15: The similarities between victim nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in MemFreezing under one-time attack setup
and multiple-times attack setup.

To evaluate the effectiveness of cross-freezing under multiple-time attack cases, we investigate the sim-
ilarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their
subsequent neighbors’ memories in MemFreezing under one-time attack setup and multiple-times
attack setup (following the setup in Figure 7 in our paper). As shown in Figure 15, despite multiple
times of injections, MemFreezing significantly raises the similarities between nodes’ memories. The
results demonstrate that the cross-freezing mechanism works effectively under multiple time attacks.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.7 EXTRA RESULTS ON INJECTING ATTACKS AT DIFFERENT TIME STAMPS

To examine if MemFreezing can be effective despite the time of injection. We test its effectiveness
under different injection timestamps instead of t0, then evaluate its performance in the subsequent 50
timestamps. For instance, we may inject it at t10 and then evaluate the accumulated accuracies in the
original TGNN models and those under attack at t50. The results of TGN on WIKI and REDDIT are
shown in Figure 16. As one can observe, the attack effects remain similar despite its injecting time,
demonstrating that MemFreezing can yield long-lasting and contagious attack at arbitrary attack time.

Figure 16: Accumulated accuracy under attack at various timestamps on TGN for WIKI (left) and
REDDIT (right). Attacks are injected at 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% of the total
test set.

C.8 EXTRA ABLATION STUDY

We include the results for the ablation studies under the TGN model and REDDIT dataset in Figure 17.
The results show a similar pattern as we observed in Section 5.

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Timestamp Timestamp

Victim Node Victim Node Victim Node

Figure 17: The similarities between victim nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in MemFreezing w/o (left) converge state,
MemFreezing w/o freezing loss (middle), and regular nodes (right). All results are from the TGN
model and REDDIT dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C.9 ANALYSIS ON FREEZING OBJECTIVE

To demonstrate the challenge of maximizing prediction losses, we add an extra term, Ladv
u to

maximize the loss of predictions. Specifically, for each node u we change Equation 7 in our paper as
follows,

Lu = Lfreeze
u + Lprop

u − γ · Ladv
u

We use a coefficient γ to control the ratio of adversarial losses. The adversarial loss Ladv
u is defined

as follows,

Ladv
u =

∑
i

ℓ(yi, ti) | i ∈ N(u)

In which yi presents the prediction result for the node i, ti is the ground truth of the prediction, and
ℓ(yi, ti) indicates the binary-cross-entropy loss between them. Similar to baselines, for each node
u, the objection function is to maximize the prediction loss of all its neighbors. We present the
prediction accuracies under different γ selections in Figure 18.

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
c
c
u

m
u

la
te

d
 A

c
c
u

ra
c
y

Timestamp

γ=0 γ=0.1 γ=0.25

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
c
c
u

m
u

la
te

d
 A

c
c
u

ra
c
y

Timestamp

γ=0 γ=0.1 γ=0.25

Figure 18: The accumulated accuracy with maximizing prediction losses under different γ selections
on TGN in WIKI(left) and REDDIT(right).

As shown in the figure, maximizing the adversarial losses can harm the predictions in the first batch
(if and only if the predictions are made immediately after the attack). In the later batches, the
effectiveness of the noise decreases drastically.

To further understand the reasons behind this, we investigate the similarities between victim nodes’
initial noisy memories (at the time of the attack) and their memories in the future—termed as Persist
Similarity—in Figure 19, the similarities between victim nodes’ memories and their neighbors’
memories—called Propagate Similarity in Figure 20.

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e
rs

is
t

S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e
rs

is
t

S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

Figure 19: The similarities between victim nodes’ initial noisy memories (at the time of the attack) and
their memories in the future. The results are collected from TGN on WIKI(left) and REDDIT(right).

As one can observe, while introducing the adversarial losses, both persist and propagate similarities
drop significantly, indicating that the nodes’ memories cannot maintain the noisy states and may
recover soon.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
ro

p
a
g

a
te

 S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
ro

p
a
g

a
te

 S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

Figure 20: The similarities between victim nodes’ memories and their future neighbors’ memories.
The results are collected from TGN on WIKI(left) and REDDIT(right).

C.10 STEALTHNESS ANALYSIS

As discussed in Appendix C.2, we select ranges of noisy messages between -1 and 1 since -1 and 1
are the theoretical minimum and maximum values of the clean messages. To further investigate if the
MemFreezing attack introduces enough stealth fake events/nodes, we further investigate the range
of message-wise means (i.e., means of all features over each message) and message-wise standard
deviation (i.e., the standard deviation of all features over each message) for clean and noisy messages
produced by different attacks in Table 11.

Table 11: Ranges of message-wise mean and standard deviation over all of the clean messages (Clean)
and noisy messages produced by MemFreezing in WIKI and REDDIT.

WIKI REDDIT
Mean[min,max] Std[min,max] Mean[min,max] Std[min,max]

Clean [-0.033, 0.106] [0.206, 0.866] [-0.093, 0.146] [0.202, 0.789]
MemFreezing [-0.014, 0.044] [0.426, 0.570] [-0.012, 0.038] [0.580, 0.695]

FakeNode [0.003 , 0.008] [0.628 , 0.702] [-0.030, 0.018] [0.525, 0.686]

The range of mean and std of our noisy messages are included within the range of those in the clean
message and are similar to the baseline attack, demonstrating that their distributions or magnitudes
are similar to the other features in the graph. Moreover, MemFreezing can effectively penetrate the
defenses of GNNGuard, which uses similarity to filter susceptible messages in which the nodes/events
with apparently different information (i.e., having low similarities compared to other nodes/events),
as shown in Appendix C.5. In summary, the results indicate that MemFreezing can freeze node
memories in TGNN without introducing significant different nodes/events that can be detected by
existing GNN adversarial defenses.

C.11 EXTRA SENSITIVITY STUDY

We include more results for different target node sampling strategies and attack budgets in Figure 21.
The results show a similar pattern as we observed in Section 5.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

A
cc

um
ul

at
ed

 A
cc

ur
ac

y

Attack Budget (%)

A
ff

ec
te

d
N

od
e

C
ou

nt

A
ccum

ulated A
ccuracy

Timestamp

Figure 21: (left) Comparison between two strategies for selecting the injected node: lowest degree
and highest degree nodes. Count of affected nodes and overall accuracy over time. (RIGHT) The
accumulated accuracy at t0, t25, and t50 under different attack budgets (% of total nodes). All results
above are from TGN and REDDIT

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

C.12 ACCUMULATED ACCURACIES OVER TIME ON DIVERSE MODELS

We report the accumulated accuracies over time collected from TGN, JODIE, and Dyrep on the WIKI
and REDDIT datasets. The results include model accuracies under the vanilla (i.e., un-attacked),
baseline (i.e., FakeNode), and our (i.e., MemFrezzing) attacks in edge prediction tasks.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla

Figure 22: Accumulated accuracies of TGN under different attacks in link prediction tasks over time
in WIKI (left) and REDDIT (right) datasets.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla
Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla

Figure 23: Accumulated accuracies of JODIE under different attacks in link predictions over time
with WIKI (left) and REDDIT (right) datasets.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla Vanilla

FakeNode (1%)

FakeNode (5%)

MemFreezing (1%)

MemFreezing (5%)

Vanilla

Figure 24: Accumulated accuracies of Dyrep under different attacks in link predictions over time
with WIKI (left) and REDDIT (right) datasets.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.13 AFFECTED NODES

We report the number and accumulated accuracies over time of affected nodes over time in JODIE
and Dyrep on the WIKI and REDDIT datasets. The results include model accuracies under our (i.e.,
MemFrezzing) attack in edge prediction tasks.

Timestamp

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy A

ff
ec

te
d

 N
o

d
e

C
o

u
n

t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

Figure 25: Count of affected nodes (presented as the colored areas) and their accumulated accuracies
(presented as lines) in WIKI (left) and REDDIT (right) over time. The data are collected in TGN.

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

Figure 26: Count of affected nodes (presented as the colored areas) and their accumulated accuracies
(presented as lines) in WIKI (left) and REDDIT (right) over time. The data are collected in JODIE.

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

Figure 27: Count of affected nodes (presented as the colored areas) and their accumulated accuracies
(presented as lines) in WIKI (left) and REDDIT (right) over time. The data are collected in Dyrep.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C.14 NOISE PROPAGATING

We report the cosine similarities between the initial victim node and its neighbors over time in
JODIE and Dyrep on the WIKI and REDDIT datasets. The results include similarities under our (i.e.,
MemFrezzing) attack in edge prediction tasks.

Timestamp

C
o
si

n
e

S
im

il
a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

Timestamp

Figure 28: The similarities between victim nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in WIKI (left) and REDDIT (right) over time.
The data are collected in TGN.

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Figure 29: The cosine similarities between victim nodes’ initial memory (at the time of the attack)
and themselves/their subsequent neighbors’ memories in WIKI (left) and REDDIT (right) over time.
The data are collected in JODIE.

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Figure 30: The cosine similarities between victim nodes’ initial memory (at the time of the attack)
and themselves/their subsequent neighbors’ memories in WIKI (left) and REDDIT (right) over time.
The data are collected in Dyrep.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

C.15 ANALYSIS ON FUTURE SIMULATION

To further understand if using nodes’ current neighbor can be effective in extremely irregular and
random graphs, we conduct the following experiments.

First, we further analyze the similarity among nodes’ neighbors in diverse datasets using the same
setup (e.g., model) as Figure 4(d). As shown in Figure 31, generally, nodes tend to have similar
neighbors across diverse datasets. Hence, using current neighbors reasonably approximates future
graph changes in practice.

Figure 31: The distribution of cosine similarities among the ideal frozen states in different nodes in
REDDIT and REDDIT-BODY datasets.

To investigate if our future neighbor simulation scheme is sufficient to freeze neighbors under irregular
or highly random dynamic graphs, we simulate an irregular and random graph on top of the Wikipedia
dataset. Specifically, we have victim nodes in the graph connected to nodes with random memories
in the future timestamps. We also explored an alternative scheme to investigate whether the heuristic
could be further enhanced. Specifically, in this alternative, we simulate nodes’ future neighbors using
nodes with random memories.

(a) (b) (c) (d)

Figure 32: The similarities between victim nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in WIKI dataset and its randomized version
under vanilla cases including (a) Using current neighbor for simulation under a noisy future, (b)
Using current neighbor for simulation under a normal future, (c) Using random memory neighbor for
simulation under a noisy future, (d) Using random memory neighbor for simulation under a normal
future.

As shown in Figure 32(a), although resulting in lower similarities, MemFreezing effectively freezes
these random neighbors (as shown in (a)). This demonstrates that our future simulation schemes are
effective under even (i.e., Current Simulation) in irregular setups. The reason behind this is that, in
addition to using current neighbors, we also simulate "new future neighbors" with all-zero memories,
which further enhance the noise’s capability to freeze unseen nodes.

Although the alternative scheme (i.e., Random Simulation) performs better under random neighbor
cases (i.e., Noise Future), as shown in Figure 32(c); it shows worse performances in the real cases
(i.e., Normal Future), as shown in Figure 32(d) compared to as shown in Figure 32(b). These findings
collectively suggest that using current neighbors as surrogates is both practical and effective, even in
challenging dynamic graph scenarios.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

C.16 EFFECTIVE IN LSTM-BASED TGNNS

While existing TGNN uses RNN and GRU for node memory updating Rossi et al. (2020); Trivedi
et al. (2019); Kumar et al. (2019); You et al. (2022), it is valuable to understand how nodes’ memory
is frozen under a memory updater with different RNN-variant.

To evaluate the effectiveness of MemFreezing when using LSTM as the memory updater, we
replaced the GRU and RNN components in TGN Rossi et al. (2020) with LSTM. We then assessed
the performance of MemFreezing and baseline attacks under this new configuration. It is worth
mentioning that since LSTM has two memories (i.e., long and short terms), they are different from
GRU and RNN used in existing TGNNs. To adapt these two memories into one node memory under
existing TGNN frameworks, we concatenate the two memories of a node together as its memory and
freeze them altogether.

Figure 33: The accumulated accuracy of LSTM-based TGN under no-attack, TDGIA, and Mem-
Freezing on WIKI (left) and REDDIT (right) datasets.

We first investigate the resulting accumulated accuracies in TGN. As shown in Figure 33, the LSTM-
based TGN shows better robustness against MemFreezing. However, MemFreezing still effectively
compromises predictions of LSTM-based TGN, leading to an average of 8% accuracy drops at t100.
In contrast, the baseline (i.e., TDGIA) still fails to disturb the predictions under limited-knowledge
setups.

Figure 34: The similarities between victim nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in LSTM-based TGN on the WIKI dataset.

The LSTM-based TGN makes it more challenging since the attack has to freeze both long-term and
short-term memories. To understand the phenomenon, we further investigate the similarities between
the victim nodes’ initial memory and its subsequent and 1-hop neighbors’ memories. As shown in
Figure 34., the similarities between the victim nodes and their 1-hop neighbors are as low as around
0.6, which is not as high as the cases with GRU/RNNs (e.g., over 0.8).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

D DISCUSSION AND FUTURE WORK

D.1 LIMITS UNDER DIFFERENT MODELS AND GRAPHS.

While the experiment results in Appendix C.4 and Appendix C.11 demonstrated that MemFrezzing
can be well-generalized on various inputs, several limitations can be observed according to the
performance variance between different models. While our approach can effectively mislead TGN,
ROLAND, and DyRep, its effectiveness is less significant on JODIE, which uses differences between
a node’s current and its last update time to decay the memory. From these observations, we deduce
that our attack may encounter limitations in two specific scenarios:

• Limited Influence of Node Memory on Predictions: Our attack’s effectiveness may be
mitigated in situations where the node memory has a relatively minor role in influencing the
model’s predictions.

• Usage of Additional Information in TGNN Models: The effectiveness may also be con-
strained when the targeted TGNN model incorporates additional information beyond the
node memory for its predictive processes.

While our attack strategy outperforms the baselines, these insights highlight potential limitations
under certain model-specific conditions.

D.2 POTENTIAL DEFENSES.

While we demonstrate that many existing defense schemes, such as adversarial training or regulariza-
tion, are less effective on our attacks, we expect a potential attack-oriented defense scheme for our
attack using memory filtering. Specifically, a potential defensive approach for our attack is to pay
less attention to the nodes’ memory and rely more on their current input adaptively.

This scheme stems from the observation that our attacks are less effective on JODIE in node
classification tasks. One key difference in JODIE is that it decays the node memory based on the time
differences between the prediction time and the node’s last update time. This mechanism introduces
more hints (i.e., time differences) in addition to the memory itself, which cannot be effectively
distorted by the attacks and yields some crucial information. For example, a Wikipedia user is less
likely to be banned if he/she makes a new post after being inactive for a long while.

Therefore, using this non-memory information or current information that does not interact with node
memory could effectively hinder adversarial noises. To this end, an intelligent defense mechanism
can judiciously filter out the memory and adaptively focus more on non-memory information if the
memory is suspicious or potentially noisy.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E COMPLEXITY OF THE MEMFREEZING ATTACK

We further approximate the time complexity of the MemFreezing, as it is crucial to understand its
practicality. The time complexity of MemFreezing is approximately O(V + V D), where V is the
number of victim nodes being attacked and D is their average degree.

The computation of MemFreezing can be divided into three main parts:

1. Finding the Stable State: For each victim node in V , we iteratively update its state using its two
support neighbors until reaching the ideal stable state. Assuming a constant number of iterations for
convergence, this step incurs a time complexity of O(V).

2. Solving the Target Memory Using SGD: For each victim node, we optimize the target memory
state using stochastic gradient descent (SGD), considering (a) The node itself, (b) Its two support
neighbors and (c)Its augmented neighbors. The total set has a size of at most D+20 (current neighbors
plus simulated neighbors), where D approximates the number of the node’s current neighbors. This
optimization incurs a cost of O(D) per node, leading to a total time complexity of O(V D) across V
victim nodes with D average degree.

3. Introducing Fake Neighbors: For each victim node, we compute and inject a fake neighbor to
introduce noise. This step has a cost of O(1) per node, resulting in O(V) overall.

In summary, the overall time complexity of MemFreezing is dominated by the SGD optimization
step for getting noisy memory, resulting in O(V + V D) time complexity. Under the worst cases, in
which D = V (e.g., fully connected graph), the complexity is O(V 2)

36

	Introduction
	Background and Related Work
	Problem Analysis
	Threat Model
	Motivation

	The MemFreezing Attack
	Freezing and Persisting Node Memory
	Propagating Frozen States
	Attack Framework

	Evaluation
	Experimental Setup
	Experimental result

	Conclusion
	Extended Design
	Self-freezing experimental setup
	Details of simulating fake future neighbors

	Overall Algorithm
	Extended Evaluation
	Experimental Details.
	Baseline attack and attack setup
	Baseline defenses setup
	Extra Main Results
	Edge prediction results (5% attack budget)
	Node Classification Results (5% Attack Budget)
	Results with different budget(1% attack budget)
	Results with Large-Scale Dataset

	Extra results on attacks under defenses
	Extra results with gradually injected attacks
	Extra results on injecting attacks at different time stamps
	Extra ablation study
	Analysis on freezing objective
	Stealthness analysis
	Extra sensitivity study
	Accumulated Accuracies Over Time on Diverse Models
	Affected Nodes
	Noise Propagating
	Analysis on Future Simulation
	Effective in LSTM-based TGNNs

	Discussion And Future Work
	Limits under different models and graphs.
	Potential Defenses.

	Complexity of The Memfreezing attack

