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ABSTRACT

Reconstructing 3D hand-face interactions with deformations from a single image is
a challenging yet crucial task with broad applications in AR, VR, and gaming. The
challenges stem from self-occlusions during single-view hand-face interactions,
diverse spatial relationships between hands and face, complex deformations, and the
ambiguity of the single-view setting. The previous state-of-the-art, Decaf, employs
a global fitting optimization guided by contact and deformation estimation networks
trained on studio-collected data with 3D annotations. However, Decaf suffers from
a time-consuming optimization process and limited generalization capability due to
its reliance on 3D annotations of hand-face interaction data. To address these issues,
we present DICE, the first end-to-end method for Deformation-aware hand-face
Interaction reCovEry from a single image. DICE estimates the poses of hands
and faces, contacts, and deformations simultaneously using a Transformer-based
architecture. It features disentangling the regression of local deformation fields and
global mesh vertex locations into two network branches, enhancing deformation
and contact estimation for precise and robust hand-face mesh recovery. To improve
generalizability, we propose a weakly-supervised training approach that augments
the training set using in-the-wild images without 3D ground-truth annotations,
employing the depths of 2D keypoints estimated by off-the-shelf models and
adversarial priors of poses for supervision. Our experiments demonstrate that
DICE achieves state-of-the-art performance on a standard benchmark and in-the-
wild data in terms of accuracy and physical plausibility. Additionally, our method
operates at an interactive rate (20 fps) on an Nvidia 4090 GPU, whereas Decaf
requires more than 15 seconds for a single image. Our code will be publicly
available upon publication.

1 INTRODUCTION

Hand-face interaction is a common behavior observed up to 800 times per day across all ages and
genders (Spille et al., 2021). Therefore, faithfully recovering hand-face interactions with plausible
deformations is an important task given its wide applications in AR/VR (Pumarola et al., 2018;
Hu et al., 2017; Wei et al., 2019), character animation (Qin et al., 2023; Zhao et al., 2024), and
human behavior analysis (Liu et al., 2022; Guo et al., 2023; Mueller et al., 2019). Given the speed
requirement of downstream applications like AR/VR, fast and accurate 3D reconstruction of hand-face
interactions is highly desirable. However, several challenges make monocular hand-face deformation
and interaction recovery particularly challenging: 1) self-occlusions involved in hand-face interaction,
2) the diversity of hand and face poses, contacts, and deformations, and 3) ambiguity in the single-
view setting. Most existing methods (Rempe et al., 2020; Muller et al., 2021) only reconstruct hand
(Romero et al., 2022) and face (Li et al., 2017) meshes, unified as a whole-body model (Loper et al.,
2023; Pavlakos et al., 2019), without capturing contacts and deformations. A seminal advance, Decaf
(Shimada et al., 2023), recovers hand-face interactions while accounting for both deformations and
contacts. However, Decaf requires time-consuming optimization, which takes more than 15 seconds
per image, rendering it unsuitable for interactive applications. Moreover, Decaf’s iterative fitting
process depends heavily on accurate initial estimates of hand and face keypoints, as well as contact
points on their surfaces, which could fail when significant occlusion is present in the image (See Fig.
8). Additionally, Decaf cannot scale up their training to fruitful hand-face interaction data in the wild,
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(a)

(b)

Input Image

(c)

Input ImageFront View Side View Front View Side View

Figure 1: Our method is the first end-to-end approach that captures hand-face interaction and deformation from a
monocular image. Results are from (a) Decaf’s validation dataset, (b) in-the-wild images, and (c) VR use cases.

as they require 3D ground-truth annotations, such as contact labels and deformations that are not
available from the in-the-wild data.

To tackle the issues above, we present DICE, the first end-to-end approach for Deformation-aware
hand-face Interaction reCovEry from a monocular image. Our approach features three key designs: 1)
Our Transformer-based model leverages the attention mechanism to capture the relationships between
the hand and face. 2) Motivated by the global nature of pose and shape, as well as the local nature of
the deformation field and contact probabilities–their invariance to global transformations of the hand
and face–we propose disentangling the regression of global geometry and local interaction into two
network branches. We evaluate this approach to enhance the estimation of deformations and contacts
while ensuring accurate and robust recovery of hand and face meshes. 3) Instead of directly regressing
the hand and face parameters, we learn an intermediate non-parametric mesh representation. This
representation is used to regress the pose and shape parameters of the hand and face using a neural
inverse-kinematics network. Compared to directly regressing pose and shape parameters, which
learns abstract parameters in a highly non-linear space, predicting vertex positions in Euclidean
space and then applying inverse-kinematics improves the reconstruction accuracy (Li et al., 2021;
2023c;b). Combining all these contributions, our model achieves higher reconstruction accuracy
than all previous regression- (Feng et al., 2021a; Li et al., 2017; Lin et al., 2021a) and optimization-
based (Shimada et al., 2023; Lugaresi et al., 2019; Li et al., 2017) methods. Additionally, by
utilizing the neural inverse-kinematics network, our approach benefits from an animatable parametric
representation of the hand and face, which can be readily utilized in downstream applications.

Despite containing rich 3D annotations, the existing benchmark dataset (Shimada et al., 2023) col-
lected in a studio is still limited in the diversity of hand motions, facial expressions, and appearances.
Training only on such a dataset limits the model’s ability to generalize to in-the-wild scenarios.
To achieve robust and generalizable hand-face interaction and deformation recovery, we introduce
a weak-supervision training pipeline that utilizes in-the-wild images without the reliance on 3D
annotations. To achieve this, our key insight is to leverage additional prior knowledge, such as depth
supervision alongside 2D keypoint supervision, compensating for the absence of ground truth contact
and deformation annotations. We leverage the robust depth prior provided by a diffusion-based
monocular depth estimation model (Ke et al., 2024), which provides essential geometric information
for accurate mesh recovery and captures spatial relationships critical for contact state and deformation
estimation. As the task becomes highly ill-posed for in-the-wild images, we further employ pose
priors of the hand and face by introducing hand and face parameter discriminators that learn rich hand
and face motion priors from additional datasets on hand or face separately (Pan et al., 2023a; Zim-
mermann et al., 2019). By incorporating a small set of real-world images alongside the Decaf dataset
and leveraging our weak-supervision pipeline, we markedly enhance the accuracy and generalization
capacity of our model.

As a result, our method achieves superior performance in terms of accuracy, physical plausibility,
inference speed, and generalizability. It surpasses all previous methods in accuracy on both standard
benchmarks and challenging in-the-wild images. Fig. 1 visualizes some results of our method. We
conduct extensive experiments to validate our method. In summary, our contribution is three-fold:
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• We propose DICE, the first end-to-end learning-based approach that accurately recovers
hand-face interactions and deformations from a single image.

• We propose a novel weak-supervised training scheme with depth supervision on keypoints to
augment the Decaf data distribution with a diverse real-world data distribution, significantly
improving the generalization ability.

• DICE achieves superior reconstruction quality compared to baseline methods while running
at an interactive rate (20fps).

2 RELATED WORK

Extensive efforts have been made to recover meshes from monocular images, including human
bodies (Bogo et al., 2016; Moon & Lee, 2020; Li et al., 2021; Cai et al., 2024; Contributors; Xie
et al., 2022; Wang & Daniilidis, 2023; Wang et al., 2023b; Lin et al., 2021b; Kanazawa et al., 2018;
Cai et al., 2022; Zhang et al., 2021b; Feng et al., 2023; Li et al., 2022c; Wang et al., 2023a; Dou
et al., 2023b; Cho et al., 2022; Huang et al., 2022b; Lin et al., 2021a), hands (Rong et al., 2021;
Moon et al., 2020; 2024; Moon, 2023; Oh et al., 2023; Park et al., 2022; Yang et al., 2021; 2022b; Li
et al., 2023d; Yu et al., 2023), and faces (Feng et al., 2021b; 2018; Wood et al., 2022; Daněček et al.,
2022; Zielonka et al., 2022; Chai et al., 2023; Zhang et al., 2023c; Otto et al., 2023; He et al., 2023;
Chatziagapi & Samaras, 2023; Kumar et al., 2023; Li et al., 2023a). This also includes recovering the
surrounding environments (Clever et al., 2022; Huang et al., 2022a; Hassan et al., 2019; 2021; Zhang
et al., 2020b; Li et al., 2022b; Zhang et al., 2021c; Shimada et al., 2022; Luo et al., 2022; Weng &
Yeung, 2021) and interacting objects (Yang et al., 2022a; Zhang et al., 2020a; Pham et al., 2017;
Tsoli & Argyros, 2018; Hampali et al., 2020; Tekin et al., 2019; Zhang et al., 2020a; Grady et al.,
2021; Pokhariya et al., 2023; Hasson et al., 2019; Ye et al., 2022; Chen et al., 2023; 2021; Liu et al.,
2021; Corona et al., 2020) while reconstructing the mesh. The acquired versatile behaviors play a
crucial role in various applications, including motion generation (Tevet et al., 2022; Peng et al., 2022;
Pan et al., 2023b; Guo et al., 2022; Wang et al., 2022a; Xu et al., 2023; 2024; Lin et al., 2024; Zhou
et al., 2023; Wan et al., 2023a; Peng et al., 2021; Dou et al., 2023a; Wan et al., 2023b), augmented
reality (AR), virtual reality (VR), and human behavior analysis (Zhang et al., 2023a; Yang et al.,
2024; Zhang et al., 2024; 2023b; Guo et al., 2023; Liu et al., 2022). In the following, we mainly
review the related works on hand, face and full-body mesh recovery.

3D Interacting Hands Recovery. Recent advancements have markedly enhanced the capture and
recovery of 3D hand interactions. Early studies have achieved reconstruction of 3D hand-hand interac-
tions utilizing a fitting framework, employing resources such as RGBD sequences (Oikonomidis et al.,
2012), hand segmentation maps (Mueller et al., 2019), and dense matching maps (Wang et al., 2020).
The introduction of large-scale datasets for interacting hands (Moon et al., 2020; 2024) has motivated
the development of regression-based approaches. Notably, these include regressing 3D interacting
hand directly from monocular RGB images (Rong et al., 2021; Moon, 2023; Zhang et al., 2021a;
Li et al., 2022a; Zuo et al., 2023). Additionally, research has extended to recovering interactions
between hands and various objects in the environment, including rigid (Cao et al., 2021; Grady
et al., 2021; Liu et al., 2021; Tekin et al., 2019; Fan et al., 2024; Ye et al., 2023b;a), articulated (Fan
et al., 2023), and deformable (Tretschk et al., 2023) objects. Following Shimada et al. (2023), our
work distinguishes itself by introducing hand interactions with a deformable face, characterized
by its non-uniform stiffness—a significant difference from conventional deformable models. This
innovation presents unique challenges in accurately modeling interactions.

3D Human Face Recovery. Research in human face recovery encompasses both optimization-
based (Aldrian & Smith, 2012; Thies et al., 2016) and regression-based (Feng et al., 2018; Sanyal
et al., 2019) methodologies. Beyond mere geometry reconstruction, recent approaches have evolved
to incorporate training networks with the integration of differentiable renderers (Feng et al., 2021b;
Zielonka et al., 2022; Zheng et al., 2022; Wang et al., 2022b; Cho et al., 2022). These methods
estimate variables such as lighting, albedo, and normals to generate facial images and compare
them with the monocular input. However, a significant limitation in much of the existing literature
is the neglect of the face’s deformable nature and hand-face interactions. Decaf (Shimada et al.,
2023) represents a pivotal development in this area, attempting to model the complex mimicry of
musculature and the underlying skull anatomy through optimization techniques. In contrast, our
work introduces a regression-based, end-to-end method for efficient problem-solving, setting a new
benchmark in the field.
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Figure 2: Overview of the proposed DICE framework. The input image is first fed to a CNN to extract a
feature map, which is then passed to the Transformer-based encoders for mesh and interaction, i.e., MeshNet and
InteractionNet. MeshNet extracts hand and face mesh features, which are then used by the Inverse Kinematics
models (IKNets) to predict pose and shape parameters that drive FLAME (Li et al., 2017) and MANO (Romero
et al., 2022) models. InteractionNet predicts per-vertex hand-face contact probabilities and face deformation
fields from the feature map, where the latter is applied to the face mesh output by the FLAME model. To improve
the generalization capability, we introduce a weakly-supervised training scheme using off-the-shelf 2D keypoint
detection models (Lugaresi et al., 2019; Bulat & Tzimiropoulos, 2017) and depth estimation models (Ke et al.,
2024) to provide depth supervision on keypoints. In addition, we use face and hand discriminators to constrain
the distribution of parameters regressed by IKNets.

3D Full-Body Recovery. The task of monocular human pose and shape estimation involves recon-
structing a 3D human body from a single image. Optimization-based approaches (Bogo et al., 2016;
Pavlakos et al., 2019; Shi et al., 2023; Rempe et al., 2021) employ the SMPL model (Loper et al.,
2023), fitting it to 2D keypoints detected within the image. Conversely, regression-based methods (Li
et al., 2021; Lassner et al., 2017; Kocabas et al., 2021; Kanazawa et al., 2018; Feng et al., 2021a;
Fang et al., 2021; Lin et al., 2023; Cai et al., 2024; Feng et al., 2023) leverage deep neural networks
to directly infer the pose and shape parameters of the SMPL model. Hybrid methods (Kolotouros
et al., 2019a) integrate both optimization and regression techniques, enhancing 3D model supervision.
Distinct from these approaches, we follow parametric methods (Li et al., 2021; Cai et al., 2024;
Kanazawa et al., 2018; Bogo et al., 2016) due to its flexibility for animation purposes. Unlike most
research in this domain, which primarily concentrates on the main body with only rough estima-
tions of hands and face, our methodology uniquely accounts for detailed interactions between these
components.

3 METHOD

Problem Formulation. Following Decaf (Shimada et al., 2023), we adopt the FLAME (Li et al.,
2017) and MANO (Romero et al., 2022) parametric models for hand and face. Given a single
RGB image I ∈ R224×224×3, the objective of this task is to reconstruct the vertices of a hand mesh
VH ∈ R778×3 and a face mesh VF ∈ R5023×3, along with capturing the face deformation vectors
D ∈ R5023×3 resulting from hand-face interaction and its non-rigid nature. Additionally, we estimate
per-vertex contact probabilities of hand CH ∈ R778 and face CF ∈ R5023.

3.1 TRANSFORMER-BASED HAND-FACE INTERACTION RECOVERY

Our model incorporates a two-branch Transformer architecture and integrates inverse-kinematic
models, specifically, MeshNet, InteractionNet, and IKNets. A differentiable renderer (Ravi et al.,
2020) is used to compute depth maps from the predicted mesh for depth supervision, while the hand
and face discriminators are used as priors for constraining the hand and face poses; See Fig. 2 for an
overview.
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Given a monocular RGB image I, we use a pretrained HRNet-W64 (Sun et al., 2019) backbone to
extract a feature map XI ∈ RH×W×C . Following Lin et al. (2021a;b), we flatten the image feature
maps and upsample the H ×W feature maps to N feature maps, corresponding to each keypoint and
downsampled vertex of both hand and face. The feature maps F′ ∈ RN×C are then concatenated
with the downsampled hand and face vertex and keypoint coordinates of dimension N × 3, with
the pose set to the mean pose, serving as positional encodings. This results in the final feature map
F ∈ RN×(C+3). To model the vertex-vertex interactions, we mask the feature maps F for a randomly
selected subset of vertices.

Once the feature map F is obtained, it is fed into MeshNet and InteractionNet, which handle the
regression of mesh vertices and the deformation field separately. This decomposition is motivated by
their semantic differences: mesh contains global features, whereas deformation vectors and contact
states are localized features, i.e., invariant to the global transformations of the hand and face. Thus,
MeshNet takes the feature map F as input and regresses the unrefined vertex positions of hand
V′

H and face V′
F . InteractionNet, on the other hand, predicts the 3D deformation field D for each

face vertex, along with the contact labels for each hand and face vertex, CH and CF , respectively.
Note the contacts and deformations are regressed within the same encoder to model their causal
relationship: the contacts cause the deformations. We validate our design in Sec. 4.4.

Next, instead of directly using the unrefined hand and face vertices V′
H and V′

F , our method takes
these vertices as input to regress the pose and shape of their respective parametric models (Li
et al., 2017; Romero et al., 2022). This is achieved by a neural inverse kinematics model, named
IKNet, following Kolotouros et al. (2019b). The IKNet takes the unrefined hand and face vertices
V′

H and V′
F as inputs and predicts their pose, shape, and expression parameters (θh,βh) for hand,

(θf-pose,βf,θf-exp) for face, along with the root position and orientation for hand (th, rh) and face
(tf , rf ), respectively. Afterward, we use the predicted parameters to first obtain the hand vertices VH

and undeformed face vertices V∗
F . Then, we apply the deformation D predicted by the InteractionNet

on V∗
F to get the final deformed face VF . Utilizing parametric forward-kinematics and neural

inverse-kinematics models offer several advantages: first, it enables readily animatable meshes for
downstream applications; second, compared to non-parametric regression methods, where meshes
typically contain artifacts such as spikes (Lin et al., 2021a; Cho et al., 2022; Lin et al., 2021b), this
approach significantly improves mesh quality; third, the compact parameter space allows for a more
effective discriminator, which will be discussed in the following section.

3.2 WEAKLY-SUPERVISED TRAINING SCHEME

Although the aforementioned benchmark, Decaf (Shimada et al., 2023), accurately captures hand,
face, self-contact, and deformations, it consists of only eight subjects and is recorded in a green-screen
studio. Thus, training a model only with the Decaf dataset limits its generalization capability to
in-the-wild images that exhibit far more complex and diverse human identities, hand poses, and face
poses.

To further enhance the generalization capability, we train our model with 500 diverse in-the-wild
images of hand-face interaction collected from the internet without the reliance on the 3D ground
truth annotations. First, we use 2D hand and face keypoints detected by Lugaresi et al. (2019) and
Bulat & Tzimiropoulos (2017) as pseudo-ground-truth. Then, we use Marigold (Ke et al., 2024),
a diffusion-based monocular depth estimator pre-trained on a large amount of images to generate
2D affine-invariant depth maps for depth supervision (see Eq. 4). The depth supervision provides a
strong depth prior, which guides the spatial relationship between hand and face meshes, promoting
accurate modeling of hand-face interaction. We first use a differentiable rasterizer (Ravi et al.,
2020) to compute a depth map from the predicted hand and face meshes. We use a depth loss to
measure the difference between the depths of the hand and face keypoints and their corresponding
points on the predicted depth map, providing supervision. This keypoint-to-keypoint correspondence
enables accurate depth supervision even when the rendered hand/face mesh and the ground-truth
meshes are misaligned. Moreover, we train adversarial priors on the hand and face parameter space
on multiple hand and face motion datasets: the face-only RenderMe-360 (Pan et al., 2023a), the
hand-only FreiHand (Zimmermann et al., 2019), and Decaf (Shimada et al., 2023). This ensures the
plausibility of generated face and hand poses and shapes while allowing for flexible poses and shapes
beyond the Decaf data distribution to handle in-the-wild cases. The overall weak-supervision pipeline
significantly enhances our model’s generalization capability and robustness, which we investigate in
Sec. 4.4.
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3.3 LOSS FUNCTIONS

Mesh losses Lmesh: For richly annotated Decaf dataset (Shimada et al., 2023), we employ an L1 loss
for 3D keypoints, 3D vertices, and 2D reprojected keypoints, comparing them against their respective
ground-truths, following common practice in human and hand mesh recovery (Lin et al., 2021a; Cho
et al., 2022; Dou et al., 2023b). We further apply an L1 loss Lparams on the estimated hand and face
pose, shape, and facial expression against the ground-truth parameters. For in-the-wild data, only the
2D reprojected keypoints are supervised, as they are the only type with corresponding ground truth.

Interaction losses Linteraction: Similar to Shimada et al. (2023), we impose Chamfer Distance losses
to promote touch for predicted contact vertices and discourage collision. We also introduce a binary
cross-entropy loss to supervise contact labels and a deform loss with adaptive weighting mechanism
to supervise deform vectors. For in-the-wild data, we also impose touch and collision losses since
they do not require annotations.

Adversarial loss Ladv are applied to the predicted hand and face parameters for in-the-wild data to
constrain their parameter space, and for Decaf data to facilitate the training of the discriminators. The
adversarial loss is given by:

Ladv(E) = Eθf∼pE
[log (1−DF (E(I)))] + Eθh∼pE

[log (1−DH(E(I)))] . (1)

The losses for the hand and face discriminators are given by:

Ladv(DF ) = −
(
Eθf∼pE

[log (1−DF (E(I)))] + Eθf∼pdata [log (DF (θf ))]
)
, (2)

and
Ladv(DH) = − (EθH∼pE

[log (1−DH(E(I)))] + EθH∼pdata [log (DH(θh))]) , (3)
where E jointly denotes the image backbone, the mesh encoder and the parameter regressor, pE
denotes the output distribution of E, pdata denotes the data distribution of the motion datasets,
θf = (θf-pose,βf,θf-exp), θH = (θh,βh).

Depth loss Ldepth: To provide pseudo-3D hand and face keypoints supervision for in-the-wild data, we
use a modified SILog Loss (Eigen et al., 2014), an affine-invariant depth loss as our depth supervision
Ldepth. Formally, let K̂D denote the pseudo-ground-truth affine-invariant depth of the face and hand
keypoints, and KD denote the rendered depth for the keypoints,

Ldepth =
[
Var

(
log(KD + ε)− log(K̂D + ε)

)]1/2
, (4)

where Var is the standard variance operator and ε = 10−7.

Overall, our loss for the mesh and interaction networks is formulated by

L = λmeshLmesh + λinteractionLinteraction + λadvLadv + λdepthLdepth, (5)

where λmesh = 12.5, λinteraction = 5, λdepth = 2.5, λadv = 1 for all the experiments in the paper; See
more details in Appendix C.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND METRICS

Datasets We employ Decaf (Shimada et al., 2023) for reconstructing 3D face and hand interactions
with deformations, along with the in-the-wild dataset we collected containing 500 images. We use the
shape, pose, and expression data of hands and faces from Decaf (Shimada et al., 2023), RenderMe-360
(Pan et al., 2023a), and FreiHand (Zimmermann et al., 2019) for training the adversarial priors. We
use the training set of the aforementioned datasets for network training. We use the official split from
Decaf to separate the training and testing sets, and select a few in-the-wild images for the test set to
perform qualitative visualizations.

Metrics We adopt commonly-used metrics for mesh recovery accuracy following Kanazawa et al.
(2018); Lin et al. (2021a); Dou et al. (2023b); Cho et al. (2022): 1) Mean Per-Joint Position Error
(MPJPE): the average Euclidean distance between predicted keypoints and ground-truth keypoints.
2) PAMPJPE: MPJPE after Procrustes Analysis (PA) alignment. 3) Per Vertex Error: per vertex
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Table 1: Comparison of hand-face interaction and deformation recovery on Decaf.

Methods Type 3D Reconstruction Error Physics Plausibility Metrics Running Time
(per image; s)↓PVE‡↓MPJPE↓PAMPJPE↓Col. Dist. ↓Non. Col. ↑Touchness ↑F-Score ↑

Comparison between DICE and optimization-based methods
Decaf (Shimada et al., 2023) O 9.65 − − 1.03 83.6 96.6 89.6 19.59
Benchmark (Lugaresi et al., 2019; Li et al., 2017) O 17.7 − − 19.3 64.2 73.2 68.4 16.40
PIXIE (hand+face) (Feng et al., 2021a) O 26.3 − − 7.04 75.9 75.1 75.5 −
DICE (Ours) R 8.32 9.95 7.27 0.16 66.6 79.9 72.7 0.088

Comparison between DICE and regression-based methods
PIXIE (whole-body) (Feng et al., 2021a) R 39.7 − − 0.11 97.1 51.8 67.6 0.070
PIXIE-R (Feng et al., 2021a) R 11.0 22.0 21.2 0.27 62.6 83.0 72.0 0.070
METRO* (hand+face) (Lin et al., 2021a) R 11.8 15.4 11.9 0.08 80.7 54.8 65.2 0.103
FastMETRO* (single-target) (Cho et al., 2022) R 9.27 11.8 9.41 0.09 82.2 55.5 66.2 0.110

DICE (Ours) R 8.32 9.95 7.27 0.16 66.6 79.9 72.7 0.088

* parametric version. O and R denote optimization-based and regression-based methods, respectively. ‡ calculated after translating the center of
the head to the origin. bold denotes the best result in a comparison group. Note our method operates at an interactive rate (20 fps; 0.049s per
image) on an Nvidia 4090 GPU. Here we report the runtime performance on an A6000 GPU for a fair comparison.
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error (PVE) with translation. Following Decaf (Shimada et al., 2023), we use the following metrics
to measure the plausibility: 4) Collision Distance (Col. Dist.): the average collision distances over
vertices and frames; 5) Non-Collision Ratio (Non. Col.): the proportion of frames without hand-face
collisions; 6) Touchness Ratio (Touchness): the ratio of hand-face contacts among ground truth
contacting frames; 7) F-Score: the harmonic mean of Non-Collision Ratio and Touchness Ratio. Note
that F-Score measures Touchness and Non-Collision Ratio as a whole, which is a metric of overall
physical plausibility, whereas Non-Collision Ratio or Touchness are meaningless when considered
individually.

4.2 IMPLEMENTATION DETAILS

We train MeshNet, InteractionNet, and IKNet, along with the face and hand discriminators using
AdamW (Loshchilov, 2017) optimizers, each with a learning rate of 6× 10−4, and a learning rate
decay of 1× 10−4. The generator and discriminator networks are optimized in an alternating manner.
Our batch size is set to 16 during the training stage. The training takes 40 epochs, totalling 48 hours.
The model is trained and evaluated on 8 Nvidia A6000 GPUs with an AMD 128-core CPU. Inference
times are calculated on a single Nvidia A6000 GPU.

4.3 PERFORMANCE ON HAND-FACE INTERACTION AND DEFORMATION RECOVERY

We compare our method with the following: 1) Benchmark: the baseline (Lugaresi et al., 2019;
Li et al., 2017) introduced in Decaf (Shimada et al., 2023); 2) Decaf (Shimada et al., 2023): an
optimization-based method for hand-face interaction and deformation recovery. 3) PIXIE (whole-
body) (Feng et al., 2021a): a representative model for full-body recovery, including the hand and
face, introduced in Decaf. 4) PIXIE (hand+face) (Feng et al., 2021a): a optimization-based variant
of PIXIE, introduced in Decaf. For regression-based methods, as we are dealing with a relatively
new task, there are few readily available baselines. To facilitate comparison, we adapt the following
regression-based models from related tasks: 5) METRO (Lin et al., 2021a): A representative work in
human body/hand mesh recovery. We adapt METRO to predict both hand and face meshes, adding
extra output heads to predict contact and deformation. 6) PIXIE-R (Feng et al., 2021a): Adapted
PIXIE, using the same backbone and hand and face branches but trained with losses from DICE. 7)
FastMETRO (single-target) (Cho et al., 2022): Another representative work in human and hand
mesh recovery. We adapt two independent FastMETROs, one for estimating hand mesh vertices and
contact, and the other for estimating face mesh, deformation, and contact. Here, the word single-target
means each FastMETRO considers hand and face individually, with no information exchange. This
model is trained using the same hyperparameter, loss, and optimizer as DICE, on the Decaf (Shimada
et al., 2023) dataset.

4.3.1 QUANTITATIVE EVALUATIONS

Reconstruction Accuracy In Tab. 1, our method surpasses all baseline methods in terms of reconstruc-
tion accuracy, achieving a 7.5% reduction in per-vertex error compared to the current state-of-the-art,
Decaf. Note that our method is regression-based and allows inference at an interactive rate, while
Decaf (Shimada et al., 2023) uses a cumbersome test-time optimization process, taking more than
200x more time per image. Decaf also requires using temporal information in successive frames,
while our method only uses a single frame. Our method shows a 30% reduction in reconstruction error
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Figure 3: Qualitative results of hand-face interaction, deformation, and contact recovery by DICE on Decaf and
in-the-wild images. In contact visualizations, a deeper color indicates a higher contact probability.

Table 2: Comparison of hand-face contact estimation on Decaf.
Method F-score ↑ Precision ↑ Recall ↑ Accuracy↑
Decaf (face) (Shimada et al., 2023) 0.57 0.69 0.49 0.99
Decaf (hand) (Shimada et al., 2023) 0.47 0.62 0.39 0.98

DICE (face) 0.61 0.64 0.57 1.00
DICE (hand) 0.50 0.55 0.45 0.98

compared to the modified METRO baseline, and up to 79% reduction compared to other end-to-end
baselines. Notably, our method achieves a 27% MPVE reduction compared to the PIXIE-R baseline
which uses the same mesh and interaction losses as our method, demonstrating the superiority of our
network design and weak-supervised training scheme. Our method is also more accurate than another
end-to-end baseline, FastMETRO.

Plausibility In terms of overall physical plausibility (F-Score), our method is the best among all
regression-based methods: PIXIE (whole-body), PIXIE-R, METRO, and FastMETRO. On the other
hand, while some optimization-based methods (Decaf and PIXIE (hand+face) have higher overall
plausibility (F-Score) compared to DICE, this is due to their test-time optimization, which iteratively
adjusts the relative positioning of hand and face. Thus, they are much more computationally intensive
than our regression-based method. With a highly efficient end-to-end inference scheme, DICE still
outperformed an optimization-based method (Benchmark) on F-Score.

Contact Estimation The contact estimation metrics (accuracy, precision, recall) are calculated by
the predicted per-vertex contact probabilities against the respective 0-1 contact ground truths. In Tab.
2, DICE achieves superior contact estimation performance on the Decaf dataset, surpassing previous
work (Shimada et al., 2023) in F-Score for both face and hand contacts. Here F-score provides a
comprehensive measure of both precision and recall ratio combined. These two metrics involve a
trade-off: focusing solely on precision may lead to a decrease in recall, and vice versa. Balancing this
trade-off, the F-score offers a more meaningful evaluation of contact estimation.

4.3.2 QUALITATIVE EVALUATIONS

As discussed in Sec. 3.2, the Decaf (Shimada et al., 2023) dataset is collected in an indoor environment
with a green screen, which doesn’t reflect the complex environment where real-world hand-face
interactions occur. Therefore, a model only trained with the Decaf dataset might have generalization
issues when tested on in-the-wild data. Fig. 4 supports this claim by demonstrating our model’s
superior generalization performance on in-the-wild data with unseen identity and pose. On the
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Figure 4: Qualitative comparison of DICE, Decaf (Shimada et al., 2023), PIXIE (Feng et al., 2021a) (whole-
body version), METRO* (Lin et al., 2021b) on Decaf validation set and in-the-wild images. Our method
achieves superior reconstruction accuracy and plausibility in the Decaf (Shimada et al., 2023) dataset, especially
generalizing well to difficult in-the-wild actions unseen in Decaf compared to all baselines.

other hand, Decaf’s reconstruction suffers from self-collision and incorrect hand-face relationship.
PIXIE and METRO reconstruct inaccurate hand poses and often demonstrates implausible non-
touching artefacts. As shown in Fig. 3, our method faithfully reconstructs hand-face interaction and
deformation and accurately labels the contact areas.

4.4 ABLATION STUDY

Network Design In Tab. 3, adopting the two-branch architecture, which separates deformation and
interaction estimation from mesh vertices regression, improves both accuracy and plausibility.

In-the-wild data As shown in Tab. 3, adding weak-supervision training and in-the-wild data for DICE
training improves all reconstruction error metrics (PVE*, MPJPE, PAMPJPE) while maintaining a
high plausibility (F-Score). We deem that the slight decrease in F-Score could mainly be attributed to
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Table 3: Comparison of hand-face interaction and deformation recovery on Decaf. Bold denotes the best result.

Methods PVE*↓MPJPE↓PAMPJPE↓F-Score ↑
DICE (single branch) 9.29 11.6 8.51 69.3
DICE (w.o. in-the-wild data) 8.93 11.0 7.50 73.3
DICE (w.o. supervision on V′

F , V′
H) 12.2 14.4 11.1 70.7

DICE (w.o. Ldepth) 15.6 19.5 13.7 64.2
DICE (w.o. Lparams) 10.3 12.8 10.4 64.7
DICE (w.o. Ladv) 11.1 14.2 10.4 69.8
DICE (Full) 8.32 9.95 7.27 72.7

the difference in distribution between the studio-collected Decaf (Shimada et al., 2023) and in-the-
wild data. This is because the limited pose and identity distribution of the Decaf training dataset may
cause the model to overfit, and the inclusion of in-the-wild images out of the Decaf data distribution
effectively improves the generalization capability of DICE.

Unrefined Features Supervision Regressing the unrefined head and hand mesh features V′
F ,V

′
H and

then perform inverse kinematics to regress the parametric mesh improves plausibility and accuracy,
compared to directly estimating the face and hand parameters.

Depth Supervision Although depth supervision is only applied to in-the-wild data, as shown in
Tab. 3, removing it also significantly degrades performance on the Decaf validation set. Without
depth loss, wrong predictions in depth are not penalized for in-the-wild data, introducing noise in the
training process, and resulting in erroneous predictions on the Decaf dataset. As shown in Appendix
Fig. 7, the absence of depth supervision introduces ambiguity in the z-direction, resulting in artifacts
such as self-collision.

Parameter Supervision Supervising parameters directly, in addition to the indirect supervision
of parameters by the mesh losses, improves both plausibility and accuracy. This is because direct
parameter supervision eliminates ambiguity, preventing the network from converging to alternative
parameter combinations that produce incorrect meshes that appear geometrically similar, i.e., with
small vertex loss, to the target but are incorrect in their underlying structure, such as pose or shape.

Adversarial Prior The adversarial prior incorporates diverse but realistic pose and shape distribution
beyond Decaf (Shimada et al., 2023), ensuring the reality of regressed mesh while allowing for
generalization. As shown in Tab. 3, introducing adversarial supervision improves the accuracy and
physical plausibility.

4.5 LIMITATIONS AND FUTURE WORKS

While our method achieves SotA accuracy on the Decaf (Shimada et al., 2023) dataset and generalizes
well to unseen scenes and in-the-wild cases, it still encounters failure cases when the hand-pose
interactions are extremely challenging and have severe occlusions (see Appendix D.2). Moreover,
despite our method effectively recovering hand and face meshes with visually plausible face deforma-
tions, there remains room for improvement in deformation accuracy and physical plausibility. Hand
deformations could also be considered in future work for more realistic reconstructions. In the future,
physics-based simulation (Hu et al., 2018; Li et al., 2020; Hu et al., 2019; Han et al., 2019; Lin
et al., 2022; Huang et al., 2024) can be used as a stronger prior, producing more physically accurate
estimations. In this paper, although we found using 500 in-the-wild images significantly improves
the model’s generalization ability, scaling up to a larger amount of in-the-wild data, on the order of
millions or billions, would further enhance performance, which we will study in future work.

5 CONCLUSION

In this work, we present DICE, the first end-to-end approach for reconstructing 3D hand and
face interaction with deformation from monocular images. Our approach features a two-branch
transformer structure, MeshNet, and InteractionNet, to model local deform field and global mesh
geometry. An inverse-kinematic model, IKNet, is used to output the animatable parametric hand and
face meshes. We also proposed a novel weak-supervision training pipeline, using a small amount
of in-the-wild images and supervising with a depth prior and an adversarial loss to provide pose
priors. Benefitting from our network design and training scheme, DICE demonstrates state-of-the-art
accuracy and plausibility, compared with all previous methods. Meanwhile, our method achieves
a fast inference speed (20 fps), allowing for more downstream interactive applications. In addition
to strong performance on the standard benchmark, DICE also achieves superior generalization
performance on in-the-wild data.
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Figure 5: Structural details of the MeshNet and InteractionNet. (a) MeshNet; (b) InteractionNet; (c) Internal
structure of a Transformer Encoder block.

A IMPLEMENTATION DETAILS

A.1 CNN BACKBONE

The CNN backbone used in our framework is an HRNet-W64 (Sun et al., 2019), initialized with
ImageNet-pretrained weights. The weights of the backbone would be updated during training. We
extract a (49×H)-dim feature map from this network and upsamples it to a (N ×H)-dim feature
map, where N = Nhk

+Nfk +Nhv
+Nhv

, the total number of head and hand keypoints Nhk
, Nfk

and vertices Nhv
, Nfv . Then, we concatenate the keypoints and the vertices corresponding to the

head and hand mean pose as keypoints and vertex queries, resulting in a ((N + 3)×H)-dim feature
map. Random masking of keypoints and vertex queries of rate 30% is applied, following (Lin et al.,
2021a).

A.2 MESHNET AND INTERACTIONNET

Our MeshNet and InteractionNet have similar progressive downsampling transformer encoder struc-
tures, see Fig. 5 for an illustration. The MeshNet has three component transformer encoders with
decreasing feature dimensions. The InteractionNet starts with a fully connected layer that downsam-
ples the feature dimension, followed by two transformer encoders. Each transformer encoder has a
Multi-Head Attention module consisting of 4 layers and 4 attention heads. In addition to head and
hand mesh features, MeshNet also regresses head and hand keypoints, which are only for supervision
and not used by any downstream components.

A.3 IKNET

Our IKNets take in rough mesh features V′
F ,V

′
H and output the pose and shape parameters (θ, β),

as well as the global rotation and translation (R, T ). They feature a Multi-Layer Perceptron (MLP)
structure, each consisting of five MLP Blocks and a final fully connected layer. Each MLP Block
contains a fully connected layer, followed by a batch normalization layer (Ioffe & Szegedy, 2015)
and a ReLU activation layer. There are two skip-connections, connecting the output of the first block
with the input of the third block, and the output of the third block with the input of the final fully
connected layer. See Fig. 6 for an illustration. The hand and head IKNets have the same structure,
differing only in their input and output dimensions. The hidden dimensions of the two IKNets are
1024.
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Figure 6: Structural details of the IKNet.

Figure 7: Qualitative demonstration of the effects of the depth loss. The model generalizes poorly in the
z-direction when trained without depth supervision.

A.4 TRAINING AND TESTING DETAILS

To be consistent with the training setting of Decaf1 (Shimada et al., 2023), in the Decaf dataset, we
use all eight camera views and the subjects S2, S4, S5, S7, and S8 in the training data split for training.
For testing, we use only the front view (view 108) and the subjects S1, S3, and S6 in the testing
data split. The low, mid, and high-resolution head mesh consists of 559, 1675, and 5023 vertices,
respectively. The low and high-resolution hand mesh consists of 195 and 778 vertices, respectively.
We use the middle-resolution head mesh and the high-resolution hand mesh as the inputs of head and
hand IKNets.

B MORE QUALITATIVE COMPARISONS

We demonstrate qualitatively the effect of the absence of the depth loss in Fig. 7. When trained
without depth loss, the network is only supervised with 2D information on in-the-wild data, without
any constraints in the z-direction. As a result, artifacts such as self-penetration frequently occur
in this case. The introduction of depth loss eliminates this ambiguity, allowing the correct relative
positioning of hand and face.

1Confirmed by the authors of Decaf
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C ADDITION DETAILS ON LOSSES

Here, we provide the details of the mesh losses and the interaction losses. The details of the adversarial
loss and the depth loss are already mentioned in the main paper.

C.1 MESH LOSSES

The mesh loss Lmesh consists of four components.

Lmesh = Lreproj + 4Lvert + 2Lkey + 2Lparams (6)

Vertices Loss L1 loss is used for predicted rough 3D face and hand vertices V′
f , V′

h, FLAME-
regressed undeformed 3D face vertices V∗

f and MANO-regressed 3D hand vertices Vh against the
ground-truth 3D undeformed face vertices V̂f and 3D hand vertices V̂h.

Lvert = λh(µnonpara∥V′
h − V̂h∥1 + ∥Vh − V̂h∥1) + λf (µnonpara∥V′

f − V̂h∥1 + ∥V∗
f − V̂f∥1) (7)

where λh, λf are empirically set to 3 and 1 respectively. µnonpara is set to 4 to emphasize the
supervision on the more complex non-parametric mesh features.
Keypoints Loss We use L1 loss for predicted rough 3D face and hand keypoints K′

f , K′
h, 3D face

and hand keypoints extracted from rough mesh Kfmesh ,Khmesh , FLAME-regressed 3D face keypoints
Kf and MANO-regressed 3D hand keypoints Kh against the ground-truth 3D undeformed face
keypoints K̂f and 3D hand keypoints K̂f .

Lkey = µnonpara(∥K′
h − K̂h∥1 + ∥Khmesh − K̂h∥1 + ∥K′

f − K̂f∥1 + ∥Kfmesh − K̂f∥1) (8)

+∥Kf − K̂f∥1 + ∥Kh − K̂h∥1 (9)

Where µnonpara is empirically set to 4, to put more weight on the non-parametric mesh with high
degrees of freedom.
Reprojection loss L1 loss is used for reprojected rough 3D face and hand keypoints K′

f , K′
h,

3D face and hand keypoints extracted from rough mesh Kfmesh ,Khmesh , FLAME-regressed 3D face
keypoints K̂f and MANO-regressed 3D hand keypoints K̂h against the ground-truth face and hand
2D keypoints K̂f2D , K̂h2D .

Lreproj = λh(∥Π(K′
h)− K̂h2D∥1 + ∥Π(Khmesh)− K̂h2D∥1 + ∥Π(Kh)− K̂h2D∥1) (10)

+λf (∥Π(K′
f )− K̂f2D∥1 + ∥Π(Kfmesh)− K̂f2D∥1 + ∥Π(Kf )− K̂f2D∥1) (11)

Where Π is the learned camera projection function. λh, λf are set to 4 and 1 respectively.

Parameter loss We apply L1 loss on the regressed hand and face pose, shape, and facial expression
parameters against their respective ground truths.

Lface-params = (∥βf − β̂f∥1 + ∥θf-exp − θ̂f-exp∥1 + ∥θf-pose − θ̂f-pose∥1)/3 (12)

Lhand-params = (∥βh − β̂h∥1 + ∥θh − θ̂h∥1)/2 (13)

Lparams = Lface-params + Lhand-params (14)

C.2 INTERACTION LOSSES

The interaction loss Linteraction consists of four components.

Linteraction = 0.2Ltouch + 0.6Lcontact + Lcollision + 6Ldeform (15)

Deformation loss Due to the human anatomy, some vertices on the face are more easily deformed
than other vertices. Therefore, we impose an adaptive weighting on each vertex, and use square
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(a) (b) (c) (d)
Figure 8: Examples of failed keypoint estimation in case of large self-occlusion. (a) input image; (b) inaccurate
keypoint estimation by the same keypoint estimators used in Decaf (Lugaresi et al., 2019; Bulat & Tzimiropoulos,
2017); (c) reconstructed hand-face interaction by our method. (d) reconstructed hand-face interaction by Decaf.

loss to penalize large deformation. We also have a regularization term to penalize extremely large
deformations.

Ldeform =
∑
i∈I

(1 + µ∥d̂i∥2)∥d̂i − di∥22 + λ
∑
i∈L

∥di∥ (16)

Where I is the set of indices of face vertices, di, d̂i are the predicted and ground truth deformation
vector for index i, and L = {i ∈ I : ∥di∥2 > 3cm} the vertices of large deformations. µ and λ are
empirically set to be 5000, 100 respectively.

Touch loss Let VFC
and VHC

denote the set of face and hand vertices that are predicted by the
model to have contact probability greater than 0.5.

Ltouch = CD(VFC
,VHC

) + CD(VHC
,VFC

) (17)

Where CD(X,Y ) gives the mean Chamfer Distance (CD) between each point in X to the closest
point in Y .

Collision loss Let VHCol denote the set of hand vertices that penetrates the face surface, VF and DF

denote the predicted face mesh vertices and deformations.

Lcollision = CD(VHCol ,VF −DF ) (18)

Contact loss Let CH and CF denote the predicted hand and face contact probabilities and ĈH , ĈF

denote the ground-truth contact labels.

Lcontact = BCE(CH , ĈH) + BCE(CF , ĈF ) (19)

Where BCE denote the binary cross-entropy loss.

D MORE DISCUSSIONS

D.1 PERFORMANCE UNDER CHALLENGING OCCLUSION.

As seen in Fig. 8, our end-to-end DICE method is robust under challenging self-occlusion cases,
such as the hand covering more than half of the face. On the other hand, Decaf (Shimada et al.,
2023), which requires an initial keypoint prediction for test-time optimization, performs poorly in
this situation.
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Output MeshInput Image Output MeshInput Image

(b)

(a)

Figure 9: Examples of failure cases in case of complete occlusion of the hand.
(a) Hand or face completely occluded. (b) Out-of-distribution data.

D.2 FAILURE CASES

In Fig. 9, we demonstrate the failure cases of our method. When the hand is extremely far from the
face, or when the hand is completely obscured by the head, our method could fail to reconstruct the
hand-face interaction. Also, when given out-of-distribution data, such as when the hand is wearing
gloves or the input subject is an infant, the reconstruction accuracy could degrade.

D.3 SOCIETAL IMPACT

D.3.1 POTENTIAL MISUSE

DICE enables tracking of individuals’ appearances, gestures, and interactions with high fidelity,
there is a risk that it may be misused for negative applications, such as surveillance, and may cause
privacy infringement. Also, since DICE makes use of a readily animatable representation, it could
enable realistic deepfakes driven by the pose and shape information collected, which could be used in
creating misinformation and conducting identity theft. We are firmly against any form of misuse of
the DICE model.

D.3.2 DATA FAIRNESS

As hand-face interaction recovery is a human-related task, data fairness is critical. The currently
used Decaf Shimada et al. (2023) dataset needs improvement in the inclusion of human actors
from underrepresented demographic groups. This may result in a model trained only on Decaf
underperforming on input data on such groups, perpetuating inequality and limiting equitable access.
Our weak-supervised training scheme introduces diverse in-the-wild data, which could alleviate this
issue as the amount of in-the-wild data scales up.
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