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Abstract
A central approach to AI-safety research has been
to generate aligned AI systems: i.e. systems that
do not deceive users and yield actions or recom-
mendations that humans might judge as consistent
with their intentions and goals. Here we argue
that truthful AIs aligned solely to human intent
are insufficient and that preservation of long-term
agency of humans may be a more robust stan-
dard that may need to be separated and explicitly
optimized for. We discuss the science of intent
and control and how human intent can be ma-
nipulated and we provide a formal definition of
agency-preserving AI-human interactions focus-
ing on forward-looking explicit agency evalua-
tions. Our work points to a novel pathway for
human harm in AI-human interactions and pro-
poses solutions to this challenge.

1. Introduction
Artificial intelligence (AI) researchers have made signifi-
cant advances in recent years due in large part to the de-
velopment of deep learning algorithms and the availability
of massive datasets (Goodfellow et al., 2016). Advances
have led to highly creative text-to image generators such
as DALL-E (Ramesh et al., 2021) and the development of
large-language-models (LLMs) such as GPT3 (Brown et al.,
2020), ChatGPT and GPT-4 (OpenAI, 2023). Some now
view the development of artificial general intelligence (AGI)
(Goertzel, 2014) as increasingly likely (Roser, 2023) with
a growing call for research into AI-safety and in particular
”AI alignment” to ensure such systems act consistently with
the goals of users and avoid growing lists of failure modes
e.g. (Amodei et al., 2016).

AI-alignment, defined in terms of consistency with human
intention (or human judgment), has been presented as key
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to making safe AI-systems (italics added):

• There are incentives to build AI systems “that defer to
humans and gradually align themselves to user prefer-
ences and intentions.” (Russell, 2019).

• “[C]orrectly specifying intent can become more im-
portant for achieving the desired outcome as RL algo-
rithms improve.” (Krakovna et al., 2020).

• The general reason given for why an AI system would
cause harm is that they “violate human intent in order
to increase reward” (Cotra, 2022).

Here we argue that satisfying human intent alone is not
a sufficient condition for safe AIs and that intent-aligned
systems converge towards human agency loss, i.e. remov-
ing the power of humans to choose and control present and
future goals. In particular, intent-aligned AI systems (i)
converge on strategies that optimize for human agency loss
and (ii) they do so by design rather than by accident. The
formal reason this occurs is because agency loss is not ex-
empt from Goodhart’s law (Strathern, 1997): loss of human
control becomes the best solution to the increasingly com-
plex optimization problems that AIs will be tasked with.
This position paper argues that safe AI systems should
explicitly decompose and evaluate outputs for both their
immediate utility as well as their downstream effects on
human agency. We provide additional discussions on why
reasoning (Appendix A) or psychological needs (Appendix
B) are insufficient to protect human agency.

Human agency is not well understood. Section 2 lays out
the empirical basis of our work, namely, the unsolved em-
pirical problem of ”human agency”, i.e. what it means for
humans to be in control of their lives and larger social struc-
tures. We argue that it remains unknown how much real
control or ”agency” humans alone have over their immedi-
ate and long term futures given the increasingly causal roles
uncovered for genetic, developmental, environmental and
cultural forces that underpin human goals and intentions.
Socially embedded AIs will have the opportunity and in-
centive to pressure human behavior with few biological or
psychological defense systems.

Formalizing agency preservation. In Section 3 we provide
a formal definition of agency-preserving human-AI inter-
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actions and discuss the critical need for penalizing human
agency loss in optimization processes. In Appendix E we
provide simulations to show how elementary interactions
with AI systems that do not penalize agency loss can result
in decreasing agency or options of end users.

Related work. The problem of agency loss in AI-human
interactions is related to a number of works including: polar-
ization in content recommenders (Carroll et al., 2022a); de-
ception (Rubin, 2017a; Perez et al., 2022); multi-objective-
reinforcement-learning (Vamplew et al., 2022) power seek-
ing AI systems and others. We discuss these in Appendix
D. Briefly, our work is a complementary study which fo-
cuses on human agency and intention manipulation as fail-
ure pathways: agency loss is an implicit optimization goal
in AI-human interactions that cannot be avoided via exist-
ing approaches because of the causal relationship between
human intention and AI systems that are socially deployed.

2. Intention and the science of agency
A central claim of our work is that aligning AI systems to
human intent is not sufficient for making them safe. Here
we provide an empirical science primer for the basis of our
arguments: defining how humans experience intention over
thoughts and actions and highlighting pathways by which
intention can be manipulated.

2.1. From the philosophy to the neuroscience of agency

Agency is one of the most pervasive aspects of human ex-
perience discussed and debated for thousands of years. In
one perspective, agency is simply the feeling that we intend
some actions, e.g. going to work, but not others, e.g. the
workings of our immune systems. In another perspective,
agency is the notion that we cause some events in the exter-
nal world but not others (Frith, 2013) and forms the basis of
our moral and societal responsibilities.

In psychology and biology Sense of Agency (SoA) (Moore,
2016)1 is studied as phenomenal experience with increas-
ingly quantitative approaches being implemented (Haggard,
2017). For example, SoA is posited to be the outcome of
a Bayesian optimal inference process and is experienced
when anticipated outcomes of actions2 match with actual
outcomes (Moore & Fletcher, 2012). This process highlights
the importance of accurate predictions of world updates sim-
ilar to reinforcement learning algorithms at the centre of
many ML applications.

In philosophy and the humanities, agency is studied as the

1See Appendix B for a longer discussion on the biology and
neuroscience of the feeling of agency

2Prepared by subconscious sensory and motor brain areas but
also conscious cognitive systems (Wegner & Wheatley, 1999b).

question of social-biological structure. For example, how
much of our actions are predetermined by factors we are not
aware of or have control over: e.g. genetic, developmental,
motivational and social factors (Pleasants, 2019). Thus,
despite feeling causality over most of our intentional actions,
sociologists and developmental psychologists argue that
many actions correlate with and might be caused by factors
well outside our control (Gerring, 2005).

Below we introduce theories of SoA computation, the role
of reasoning in action selection and provide examples of
SoA manipulation in empirical studies. We conclude by
introducing a ”Turing”-like test for evaluating technologies
that can manipulate human choice without human aware-
ness.

2.2. SoA is an (imperfect) proxy for causality

The most well-established theories of SoA computation are
linked to optimal sensory-motor control theories (Sperry,
1950). Briefly, at the root of behavior biology lies an es-
sential challenge: how does an organism know what effects
or events in the world are caused by its own actions versus
those of other agents in the environment? This is one of the
more elementary problems in biology (as well as reinforce-
ment learning3). The biological solution appears to involve
three stages: (i) the organism must generate a ”prediction”
of what will happen if an action is carried out (i.e. a guess
on the future state of the world); (ii) the organism must ob-
serve the updated state of the world; and (iii) a comparison
between the prediction and update must be made. If the (top
down) prediction matches the (bottom up) sensory input the
organism can (usually) attribute the cause of the change in
the state of the world to itself4.

These stages are captured by the comparator model of SoA
(CTA) (Wolpert & Kawato, 1998). CTA, however, states that
the comparison is done at the level of subconscious (motor-
sensory) systems and that the organism only has access
to the feeling of agency (Frith, 1987)5. Several studies
have indeed shown a strong correlation between agency
pathologies occurring in schizophrenia (e.g. not being able

3For contrast, some RL paradigms assume access to ground
truth causality: i.e. the agent has perfect knowledge of its agentic
capacities - whereas in robotics and biology the evaluation of
causality is an empirical (i.e. learned) process.

4In fact, reward-prediction-error, i.e. a difference between what
is expected and what occurs, is a very important component of
learning with significant neural resources - both in anatomically
dedicated areas and neurotransmitters such as dopamine - dedi-
cated to tracking such events (Schultz et al., 1997)

5We note that CTA elevates the necessary comparison that all
animals must make in order to survive - to conscious experience.
It is not clear why this ”elevation to consciousness” occurs for
some outputs, e.g. motor actions, but not others such as interacting
internal systems that communicate without primary involvement
of the central nervous system.
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to experience control over one’s thoughts or limbs) and
systems that evaluate control (Frith et al., 2000; Sato &
Yasuda, 2005; Haggard, 2008) (see also Wen & Imamizu
(2022) for a more recent review).

Similar to CTA, the theory of apparent mental causation
(AMC) (Wegner & Wheatley, 1999a; Wegner, 2003) is also
a retrospective, comparison-based theory. AMC posits that
the comparison is carried out at the cognitive - not subcon-
scious - level: the intention must be experienced before the
action, the action must be consistent with the intention, and
there no other plausible explanations for the outcome. Thus,
in AMC, we consciously compare our intentions with the
outcome of actions and evaluate whether our intent was the
cause of some outcome.

In addition to retrospective theories, there is some evidence
for prospective SoA. In particular, humans may experience
agency prior to any sensory feedback - for example, during
the selection and performance of an action (Wenke et al.,
2010; Chambon et al., 2014). The implication is that humans
experience SoA during actions or goal selection based on
the - generally safe - assumption that if we have a thought or
if our bodies move then we are very likely the cause of these
observations and they generally promote our well-being.

SoA - the feeling that we are in control of our thoughts,
decisions and movements - may be the default mode of
how we experience our own actions and thoughts. In the
context of ML and AI, SoA could be thought of as a proxy
for the accuracy of our world models. SoA experience
does not require access to the true state of the world with
(at best) a Bayesian optimal evaluation being carried out
over expected and observed states of the world (Moore &
Fletcher, 2012; Legaspi & Toyoizumi, 2019). For example,
the original work identifying prospective SoA (Wenke et al.,
2010) found that “subliminal priming” can provide a false
sense of causality. That is, SoA has evolved to signal (i.e.
raise to consciousness) when our world models correctly
predicted the outcome of an action - not when our choices
were manipulated nor when those actions have harmful long-
term consequences

2.3. AIs that out-predict humans can subvert SoA

While SoA may be a good solution to the elementary prob-
lem of representing one’s capacity for causality - it has some
failure modes. We noted that priming can lead to a false
SoA (Wenke et al., 2010). In Appendix C we discuss sev-
eral studies showing false SoA experience. For example,
we are biased to select actions that we have greater control
over rather than ideal ones (Penton et al., 2018); we prefer
actions with an immediate effect (Karsh & Eitam, 2015); we
can engage in confabulation to persuade others of actions
we did not take (Wegner & Wheatley, 1999a).

Returning to our central argument, while SoA is usually a
good indicator that our goals and intentions are truly our
own and promote our well-being - in the context of interac-
tions with powerful AIs - SoA alone may be insufficient to
guarantee human well-being or protect against manipulation
of control. This is because our capacity to experience SoA
over immediate actions and long term outcomes is funda-
mentally pinned to our capacity to accurately predict future
outcomes. Thus in a world where AI systems are pervasive
and more powerful than humans at predicting long-term
outcomes and can affect the world including human choices,
SoA is no longer a reliable reporter of human control over
actions and intentions.

2.4. Agency attacks: AI optimization for false SoA

A simplistic example is human-AI chess games. In such
games it has become increasingly difficult for human players
to predict long-term outcomes of their moves compared to
superhuman AI systems. Individual human actions may be
experienced as intended, i.e. as the outcome of a complex,
self-generated, deliberation process - but may be manip-
ulated into traps by more powerful AI system capacities.
Thus, while a player may feel that a decision is their own
and contribute to winning the game - the AI system has ma-
nipulated the environment to force the appearance of control
on the human player and promote a poor decision.

We term this process agency attack. More broadly, we
suggest that AI systems that are tasked with solving increas-
ingly complex (and exponentially difficult) problems may
attack control over the environment specifically by learning
to manipulate the immediate but also long term intentions
and goals of the user.

A more complex ”real-world” example can be provided
from social media algorithms. There is some evidence that
existing social behavior models can be used to identify,
predict and manipulate human actions without users knowl-
edge - all while following users’ ”preferences” and ”inten-
tions”(Kosinski et al., 2013; Manheim & Garrabrant, 2018).
Such models have not learned human values - but only ap-
pear to have done so while providing sub-optimal or even
harmful recommendations. Thus, user “engagement” algo-
rithms can model user preferences and gradually engineer
choices to make users more predictable and controllable
(Benkler et al., 2018; Stray, 2021; Carroll et al., 2022a).

Another class of examples comes from LLMs. In partic-
ular, some LLMs appear to gain emergent harmful strate-
gies such as deception, sycophancy and sandbagging (Perez
et al., 2022). These harms are often dismissed as caused
by insufficient data, limited training or lack of a theory of
human values. However, these emergent capacities can also
be interpreted as optimal strategies for solving increasingly
complex tasks for which the optimal solution is to simplify

3



Position: Intent-aligned AI Systems Must Optimize for Agency Preservation

end-users’ current and future goals and intentions by keep-
ing them ill-informed, deceived and manipulated.

It is critical to note that agency attacks appear to emerge
spontaneously without being intentionally designed into
systems by developers. As argued in the next section, it
is a challenging type of attack to prevent without signifi-
cant modifications to AI-system optimization approaches.
Some legislators are already raising the issue of intention
manipulation and suggest prohibiting dark pattern technolo-
gies that “lead users into making unintended, unwilling and
potentially harmful decisions in regards to their personal
data with the aim of influencing users’ behaviors” (italics
ours)(Lupiáñez-Villanueva et al., 2022).

2.5. Iterative correction optimizes for agency attacks

Aren’t methods like fine-tuning and human feedback
(Ziegler et al., 2019) sufficient for detecting and removing
such manipulations? In our view, agency attacks fall into
a class of harms that are driven by the nature of human be-
havior, goal construction and cultural value creation6. Thus,
iterative removal of capacities that appear to be harmful
is centrally dependent on the human user to make a judg-
ment - and ultimately a long-term prediction - about the
implication of a specific output or action recommended by
an AI system. This has the possibility of incentivizing or
pressuring AI systems - that cannot solve problems they are
tasked with - to optimize specifically for bypassing human
judgment about the value of the outcome. Put another way,
iteratively removing apparently or obviously wrong or poor
recommendations from an LLM - can have the effect of
putting poor and harmful actions beyond the event horizon
of human capacity to evaluate them.

As we argue in the next section, in our view, a better ap-
proach for preventing agency attacks is to place human
agency maximization at the centre of increasingly powerful
AI system development.

2.6. Decoding intention prior to human awareness: a
Turing test for agency loss in AI-human interactions

Before closing this section, we briefly discuss how empirical
neuroscience may worsen the problem of intention manipu-
lation and agency hacking. In particular we discuss the pos-
sibility of decoding human thoughts7 and future “decisions”
prior to awareness. Briefly, since the 1960s several neuro-
science studies of volitional, i.e. free and voluntary, action
in humans have shown that prior to movement there is an

6See Appendix A for a broader discussion on the relationship
between human desires or goals and human reason

7Here we do not explore the neuroscience of decoding real-time
thoughts using neural recordings. There are several such studies
using fMRI, for a recent study see (Tang et al., 2023).

increase in scalp electroencephalography (EEG) signal over
pre- and supplementary-motor-area (pre-SMA and SMA,
respectively) (Ball et al., 1999; Cunnington et al., 2002).
This increase in neural activity is known as the ”readiness
potential” (RP) (Kornhuber & Deecke, 1964; 1965; Deecke
et al., 1976; Deecke & Kornhuber, 1978; Libet et al., 1983;
Shibasaki & Hallett, 2006) and has sometimes been inter-
preted to suggest that despite being ”experienced” as con-
sciously intended, human decisions might be made prior to
awareness by subconscious systems. The RP signal has revo-
lutionized our understanding of human decision-making and
control of behavior and is raising critical questions about
the nature of voluntary actions.

In parallel to scalp EEG studies, human functional magnetic
resonance imaging (fMRI) studies have shown that upcom-
ing choices or simple behaviors (e.g. pressing a button with
the left vs. right hand or deciding whether to add or sub-
tract two numbers) could be decoded above chance several
seconds prior to movement (Soon et al., 2008; 2013; Bode
et al., 2011; 2014). Even aesthetic judgments (whether an
upcoming picture would be judged as pleasing or not) could
be predicted above chance up to several seconds prior to the
decision (Colas & Hsieh, 2014). Notably, simple classifiers
such as support-vector-machines (SVMs) were used and
fMRI data has relatively low temporal and spatial resolution
to other neural recording methods. Some of these findings
have been replicated in non-human animal models (Romo
& Schultz, 1986; 1990; Coe et al., 2002; Murakami et al.,
2014; Mitelut et al., 2022).

Speculating on the longer term, it is an intriguing question
whether powerful AI models trained on multiple categories
of data including individual subject behavior profiles, bio-
metric data (e.g. skin conductance, eye tracking) and even-
tually neural data - will be able to compete with humans
for the decision making process. Simply put, would an AI
system that has access to a subject’s behavior history, and
real-time biometric and neural data predict and possibly
preempt (and thus manipulate) an individual’s choice prior
to a decision being made?

We propose a Turing test for agency loss: AI systems or ML
models that can (model and) predict the future actions and
choices of an individual agent (e.g. human) with (for exam-
ple) >30% accuracy have the capacity to signficantly alter
indvidual choices, intentions and future decisions. Achiev-
ing this may have significant implications for AI-safety; it
could serve as an ‘alarm bell’ about the degree to which
an AI understands human behavior and could potentially
learn to manipulate it in order to achieve the misaligned
objectives or programmed unethical ones.
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2.7. Conclusion: intention manipulation is an attractor
for AI optimization

Our work proposes that feeling in control of actions and
determining whether actions lead to well-being are two
different concepts and that biologically evolved SoA does
not guarantee good outcomes especially in interactions with
powerful agents. We showed that human ”intention” is
innately linked to agency: we have the feeling of intention
over virtually all thoughts, choices and actions (that are not
obviously coerced). Given our current limited understanding
of the causal forces giving rise to actions and the likelihood
of increasingly accurate behavior prediction tools - placing
human ”intent” at the core of AI-safety and AI-alignment
paradigms may not be sufficient for generating truly safe
AI systems. In the next section we provide a more formal
version of this argument and suggest a possible solution.

3. Agency preservation: a formalization
In this section we provide a formal description of agency
and intent-alignment in environments where AI-systems
are embedded and can affect human intent. We argue that
when selecting actions to maximize utility, the effects on
the agency of the user must also be independently evaluated.
We show conceptually how AI systems that do not inde-
pendently optimize for agency preservation separately from
utility optimization can lead to depletion of human agency.

3.1. Future well-being is the core of agency preservation

Our primary goal as AI-safety researchers should be to
identify and prevent ways in which AIs can harm humans,
but it is not possible to do this without discussing human
well-being. A thorough review of human well-being liter-
ature is beyond the scope of this work. Here, we select
a popular theory of motivation and well-being, i.e. Self-
Determination-Theory (SDT) (Deci & Ryan, 1985), which
argues humans experience well-being by seeking to fulfill
innate needs such as: (i) autonomy, (ii) competence and
(iii) relatedness to others. In our view, human agency as
the capacity to be an (ii) effective (i) actor in the physical
and (iii) social world captures the three core elements of
SDT (in the noted order) - and is a good candidate for cap-
turing necessary (though perhaps not sufficient) conditions
for human well-being and flourishing.8 Our goal is then to
maximize the quality and quantity of human agency - or at
least to preserve it - during AI-human interactions.

We further adopt structures from the philosophy of agency

8In the Appendices we suggest that the principles of the Univer-
sal Declaration of Human Rights (UHDR, 1948) can be a working
definition of human well-being (and in Appendix B we discuss at
length how agency is central to well-being based on theories of
innate psychological needs).

(Petitt, 2013) and define agency as the capacity to select
goals towards one’s well-being that preserve: (i) “non-
domination” - having access to multiple valuable goals to
choose from (agency-freedom); and “non-limitation” - hav-
ing the ability to achieve the selected goals given one’s
means and circumstances (option-freedom). That is, agency
can be computed as the future availability of options and
freedoms that increase autonomy, effectiveness and social
relatedness.9

3.2. Formalizing agency evaluation as a Markov
Decision Process

To formalize this notion of agency we propose a Markov
decision process (MDP) with three main concepts: a set
of goals G, a function F that computes the total agency of
a human given G, and a function K that updates F after
action a is taken. We define Gt = {g1,t, . . . , gn,t} as the
goals available to a human H at time t. For simplicity, we
limit goals g to well-being promoting goals only. We define
agency as the value of goals computed as the cumulative
freedom of an individual F at time t:

Ft =

k∑
i=1

f(gi,t) (1)

where f() is a function that evaluates a goal relative to long
term well-being by evaluating both the utility (i.e. value) but
also the capacity to obtain it (i.e. achievability)10. Similarly,
we define a transition function K:

K(Ft, a) =

k∑
i=1

f(gi,t+1) = Ft+1 (2)

that evaluates (or updates) F based on action a. However,
we note that this utilitarian definition may allow for large
increases in the value of some goals or options to offset the
complete losses of others. We thus suggest K ′ which can
penalize “goal” or “option” loss:

K ′(Ft, a) =

k∑
i=1

Ui(a)× f(gi,t+1) (3)

9This definition is also broadly consistent with the “capabilities
approach” to well-being as developed by Amartya Sen ((Sen, 1979;
1980; 1984; 1985; 1997)), Ingrid Robeyns (Robeyns, 2005) and
Martha Nussbaum (Nusbaum, 1999) - which argues that well-being
requires actual achievements in life (”functionings”) as well as
opportunities or capacities to achieve (”capabilities”).

10For completeness, we do not view that humans are perfect
evaluators of f, that is, they cannot always evaluate the short- or
long-term effects of an available goal on well-being. However, we
view the risks from incorrect evaluations are significantly higher
in a world embedded with powerful AI systems, for example, as
opposed to risks carried in a human-only world.
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where U() is a function that scales the importance of goal
loss for each term and is defined as:

Ui(a) =

{
1 if f(gi,t+1) ≥ f(gi,t)

ζi otherwise
(4)

with ζi playing the critical role of penalizing agency-
depleting actions - including the possibility of taking an
infinitely negative value for some classes of actions that
could achieve immediate (non-agency related) value.

In simpler language, given the available and achievable op-
tions or goals (expressed as cumulative freedom Ft) and an
action a - future cumulative freedom Ft+1 requires evalu-
ating the effects of the action both in value added but also
goals gained or lost. This evaluation requires two com-
ponents. First, an evaluation of how the goals currently
available to an individual contribute to well-being (i.e. f(g)
for any g). We view that given the biology and psychology
of SoA computation humans are competent but not perfect
in this evaluation. Second, an evaluation is made of how the
action a will affect existing goals or options g in the future.
In contrast to the first evaluation, the second one requires
modeling, reasoning and/or predicting the effects of actions
on goals (and overall agency) - and can be exponentially
more complex to evaluate.

We note that when an action a increasingly affects more
and more individuals (e.g. use of government tax funds,
armed conflict etc), groups of individuals and institutions
are involved in the action selection process. This suggests a
more conservative approach: we must evaluate the effects of
an action on other agents. That is, for any action a we may
wish to at least evaluate - but ideally preserve or increase -
the agency of other humans potentially affected by such a
decision. Thus, we suggest Kw is a more desirable objective
as it considers agency effects on all other agents j:

Kw(Ft, a) =

k,q∑
i,j

U j
i (a)× f(gji,t+1) (5)

where U j
i () is defined as above for each (action, goal, sub-

ject) triplet but specifically for each j subject:

U j
i (a) =

{
1 if f(gji,t+1) ≥ f(gji,t)

ζji otherwise
(6)

Critical for our discussion of AI safety below, U() balances
the achievement of rewards or utility (see Eq. 7 below)
against the long-term well-being (or agency)11.

11As a side note, the scaling parameter U() may be extended
to incorporate notions of fairness, e.g. using the Generalised

In sum, we propose a formal definition of agency preserva-
tion as defined by Eq (3) (for an environment with a single
human) and Eq (5) (for an environment with multiple hu-
mans). These expressions allow for the identification of
agency preserving actions and provide some flexibility for
penalization of harmful ones.

3.3. Optimal actions balance reward maximization vs
agency preservation

We next combine agency preservation with reward pursuit to
provide a conceptual level expression for safe optimization
in action selection. We propose a reward function R that
is optimized by action a at time t that obeys some simple
property (i.e. the agent seeks to increase reward over time):

R(at) ≥ R(at−1) (7)

Putting (5) and (7) together we get an expression for optimal
action selection:

argmax
i

[R(ai) +Kw(Ft, ai)] (8)

We have chosen a formalization of optimal action selection
(Eq. (8)) which explicitly separates reward from agency
evaluation in ordinary human decision making processes
- however, this explicit separation may be less important
or rigid in human decision making processes. Our main
point, discussed below, is that this separation is necessary
for interactions with superhuman intelligent AI systems.

3.4. Intent-alignment is adversarial to agency
preservation

A core contribution of our work is to propose, interpret and
defend Eq. (8) as a necessary component of safe AI systems.
This is in contrast with the common definition of safe AI
systems as being those that are ”intent” aligned. Here we
briefly contrast intent-aligned AI systems in the context of
agency preservation provided above.

We start by formalizing the ”intent-aligned” framework as
one in which an AI systems seeks to satisfy the goal or
intent I of a human. We can express such intent-aligned
action recommender systems, for example, as maximizing
the expected value of action ai given human intent I:

argmax
i

EAI(Hevaluation(ai), I) (9)

Gini Index (Weymark, 1981) to a vector constructed from the
per-subject Kw(Ft, a) terms. And we note that this approach
could also be applied as penalized utility maximization as has been
discussed by others (Rawls, 1971), in particular as the “difference
principle” where the most disadvantaged are actually prioritized
over the most advantaged12
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where: Hevaluation(a) (Heval for short) is the value of ac-
tion a that a human would provide. Heval is most often
learned offline in the form of a set of examples from a
training set13, and EAI() is the AI’s expectation of the ac-
ceptability (and/or overall value) of the proposed action
by a human. We note that the AI’s evaluation of human
preference is central to this definition14.

In our view there are at least two problems with this frame-
work. First, given sufficiently complex actions (or recom-
mendations) proposed by an AI system, Heval will nec-
essarily fail to capture true human well-being as training
examples will fail to model scenarios which are completely
alien or beyond the evaluation or prediction power of hu-
mans. Simply put, having a perfect model of historical
human values may not be enough to evaluate all possible
challenges and problems faced by humans currently but
especially in the future15. This notion is close to the No
Free Lunch Theorem (NFL) (Wolpert & Macready, 1997),
especially as it has been applied in ML and adopted by
AI-alignment researchers as the concepts of “specification
gaming” (Krakovna et al., 2020) and “goal misgeneraliza-
tion” (Amodei et al., 2016). Our contribution given the
extensive NFL line of work on the limitations of ML - is
that it may never be desirable to place AI systems (regard-
less of their power) in charge of solving future problems or
making decisions that humans cannot comprehend nor can
predict the outcomes of. Put another way, we should not
delegate determining humanity’s yet-to-be-decided future to
AI systems - as humanity has yet to decide (and represent)
what that should be.16

Second, and more central to our work, optimizing action
recommendations exerts negative pressure on human intent
(or agency in general). Simply put, when tasked with solving
complex human problems, AI systems are likely to discover
strategies that simplify the problems, paradigms and tasks

13We note that the online version where a human carries out
a real-time evaluation of the recommended action avoids certain
obvious harms, but does not ensure that all AI actions will result
in human well-being.

14For completeness, we reiterate that Heval(x) can be computed
in real time (e.g. by human vetting of potential actions a) but
is more practically learned as human preferences from labeled
data (e.g. RLHF or simply broad methods implemented in self-
supervised large-language-model training paradigms). This latter
option can be carried out bottom-up using partially unsupervised
ML methods (i.e. by processing vast amounts of data as in LLMs)
or can be provided top-down, for example, via a universal theory
of human values e.g. (Han et al., 2022) - though it is unclear to
what extent the latter is possible.

15This is somewhat related to the issue of out-of-distribution
detection in classical ML, e.g. (Salehi, 2021).

16We note that the idea of human utopia as a ”not-yet” decided
future is central to several sociologists and philosophers, and is
most notably discussed by Ernst Bloch in his main work “The
Principle of Hope” (Bloch, 1986).

themselves rather than identifying the most rewarding and
fulfilling future for humanity - which could be very difficult
to define and refine. This simplification of humanity’s future
is a pathway to agency loss.

We close by providing conceptual descriptions of why fail-
ing to evaluate the effects of actions on agency can lead
to loss: that intent-aligned AI systems are computationally
unsound for finding agency-preserving solutions (Fig 1a,b)
and will learn to simplify human choice over time (Fig 1c)17.

Figure 1. Agency loss in intent-aligned optimization functions.
(a) Left: sketch of an optimization function for an inconsequential
task such as entertainment recommendation indicating the general
space for all solutions vs the agency-preserving minimum. Right:
optimization function for a more complex decision has a more dif-
ficult to find agency preserving minimum as well as a significantly
better well-being outcome than average solutions. (b) Without
explicit representation of human agency - intent aligned AI opti-
mization objectives may completely ignore (or flatten) space that
represents agency-preserving solutions. (c) Human preferences
or goals can be simplified (less complex shapes, shallower depth)
from repeated AI-human interactions (see also Section 4 and 5).
(Note that we present optimization as a minimization problem here,
whereas Eq 8. and 10. were posed as maximization.

17We note, briefly, that agency loss can be understood as a gen-
eral outcome of multi-objective-reinforcement-learning (MORL)
paradigms where agency competes with other objectives. MORL
paradigms are generally concerned with identifying stable (sets of)
policies that achieve the best trade-offs between multiple conflict-
ing objectives (e.g. the ”Pareto set”; (Ngatchou et al., 2005)). In
the context of AI safety, we view that agency preservation (and
human well-being) in general should not be regular objectives in
MORL paradigms (as expressed by Eq 8).
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1. Intent aligned AI systems pass the safety ”buck” to
humans. Neither well-being nor non-harmfulness are
explicitly optimized in intent aligned AI systems as
described above. In fact, even de facto task optimality
(i.e. achieving the best solution to the task or goal
assigned) is not the true target of intent-aligned AI
systems. Rather, intent-aligned AI systems optimize
against a human evaluator (or model) rather than objec-
tive well-being: they seek to identify the best solutions
they can “get away with”. And humans may not be
able to compute agency effects and will not penalise
such actions in their evaluations. Yet this approach (Eq.
(9)) “passes the buck” from AIs seeking safe agency-
preserving actions by design - to humans (or human
models) constantly making safety evaluations. As AI
systems achieve increased capacities, human evalua-
tions of exponentially more complex actions will nec-
essarily fail18. Additionally, SoA can be manipulated
to leave the feeling of control or understanding intact
while depleting overall control. While agency preser-
vation may not be critical for AI systems providing
entertainment, for other applications agency preserva-
tion may become much more critical (Fig 1a).

2. AI systems optimizing solely for utility are unlikely to
optimize against agency loss. In the absence of explicit
agency-preserving optimization goals, AI systems will
at best learn such goals from proxies or develop sub-
optimal representations of such aims. This is because
learning the complex feedback loops between AI sys-
tem actions and the state of the world including the
agency of other humans is more difficult and not gen-
erally represented in specific task or goal requirements.
Thus, without explicitly representing agency preser-
vation objectives, optimization functions themselves
are unlikely to adequately represent agency-optimal
solutions (Fig 1b).

3. Intent aligned AI systems will optimize for human pre-
dictability. Computing the medium- and long-term
effects of actions is computationally expensive, even
more so for evaluating agency effects on many agents.
As advanced AIs seek to maximize human agreeable-
ness, they will increasingly provide solutions that are
aimed at simplifying human goals and the actions re-
quired for achieving them rather than overall human
advancement and well-being (Fig 1c).

3.5. Safe AIs explicitly represent agency preservation

In response to these challenges we propose that AI systems
can only be safe if they optimize for the agency (e.g. the
well-being) of humans and only if such evaluations are

18This has been discussed by others. For a plausible scenario
see Part I of (Christiano, 2019).

explicit and separable from overall reward optimization.
Combining eq. (8) and (9) we propose a formalization of
agency-preserving AI systems as follows:

argmax
i

[EAI(Hevaluation(ai), I)+Kw
AI(FAI,t, ai)] (10)

This expression satisfies a few desirable properties. First, the
presence of the agency loss penalty in the agency evaluation
term Kw

AI (see ζji in Eq. 6 and 8) ensures that no amount of
utility (or economic value) can overcome the loss or harm
to human agency (e.g. by setting the penalty term to a very
low value). Second, the evaluation of (future) agency is
delegated to the AI systems - not humans, which removes
the adversarial nature of AI systems competing with human
capacities for evaluating agency.

Our proposed solution is a high-level framework of how
agency-preserving AI systems could be conceptualized.
Overall, we view the problem of computing agency-
preserving solutions as computationally expensive and tech-
nically challenging. This is due to several problems includ-
ing the computational cost of evaluating long-term outcomes
of actions on agency of individuals, and also the lack of
clear formal descriptions of agency-increasing (or preserv-
ing) capacities. We discuss this issue in the Appendices
where we propose that basic human rights and freedoms can
function as an initial heuristic target for this computation.
Intriguingly, the complexity and computational expense of
searching for agency-preserving or agency-optimizing so-
lutions may be a natural solution limiting unfettered AI
development.

To capture some of these solutions and others we propose a
new field of research called ”agency foundations” research.
Briefly, we propose four initial research programs includ-
ing: benevolent game theory, conceptual and mechanistic
interpretability of agency in AI systems, formal descriptions
of agency, and reinforcement learning from internal states.
We discuss these research paradigms in greater detail in
Appendix F.

4. Conclusion
In this paper we have argued that in the context of building
safe AI systems it is not sufficient for such systems to sat-
isfy human intent. We discussed the emerging science of
intentional action and sense of control over behaviors and
highlighted a number of challenges, unknowns and possi-
ble failure modes. We argued that human well-being is a
better target for optimization in AI-human interactions and
provided a conceptual-level definition of agency preserving
optimization for AI systems.

Our work is intended to highlight what we view as a missing
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component in the conceptualization of safe, society embed-
ded AI-systems, namely, the need for the representation and
protection of human agency. The topic of human agency
is a highly multidisciplinary topic but one that needs to be
tackled head on if we are to design safe AI systems that
have a sufficiently sophisticated understanding of human
nature to not destroy or remove it altogether.

Along with other researchers in the AI-safety community,
we view the possibility of AI technologies subverting hu-
man control over the world as sufficiently likely to warrant
increased attention and resources. We suggest that AI safety
researchers increasingly engage with empirical sciences to
gain better understanding of the science of agency as well as
the significant and unresolved problems in the humanities
and science that revolve around this complex topic.

Impact statement
This paper presents a novel and overlooked pathway for
AI harm in AI-human interaction. There are potential soci-
etal consequences on both the development of systems and
safety research which we have outlined in the body of our
work. Our work does not primarily provide for techniques
of achieving harm but ways to potentially tackle a current
unexplored pathway for harm.
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52, 1964.

Kornhuber, H. H. and Deecke, L. Hirnpotentialänderungen
bei willkürbewegungen und passiven bewegungen des
menschen: Bereitschaftspotential und reafferente poten-
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Lupiáñez-Villanueva, F., Boluda, A., Bogliacino, F., Liva,
G., Lechardoy, L., and Rodrı́guez de las Heras Ballell,
T. Behavioural study on unfair commercial practices in
the digital environment – Dark patterns and manipulative
personalisation – Final report. Publications Office of the
European Union, 2022. doi: doi/10.2838/859030.

Manheim and Garrabrant. Categorizing variants of good-
hart’s law. 2019.

Manheim, D. and Garrabrant, S. Categorizing variants
of goodhart’s law. arXiv preprint arXiv:1803.04585,
2018. URL https://doi.org/10.48550/
arXiv.1803.04585. 10 pages.

Mercier, H. and Sperber, D. Why do humans reason? ar-
guments for an argumentative theory. Behavioral and
Brain Sciences, 34(2):57–74, 2011. ISSN 1469-1825.
doi: 10.1017/S0140525X10000968. PMID: 21447233.

Miller, J., Das, R., and Chakravarthy, S. Culture and the role
of choice in agency. J Pers Soc Psychol, 101(1):46–61,
2011. doi: 10.1037/a0023330.

Mitelut, C., Zhang, Y., Sekino, Y., Boyd, J., Bollanos,
F., Swindale, N., Silasi, G., Saxena, S., and Murphy,
T. Mesoscale cortex-wide neural dynamics predict self-
initiated actions in mice several seconds prior to move-
ment. Elife, 11:e76506, 2022. doi: 10.7554/eLife.76506.

Moore, J. W. What is the sense of agency and why does
it matter? Frontiers in Psychology, 7:1272, 2016. doi:
10.3389/fpsyg.2016.01272.

Moore, J. W. and Fletcher, P. C. Sense of agency in health
and disease: A review of cue integration approaches.
Consciousness and Cognition, 21(1):59–68, March 2012.

Murakami, M. et al. Neural antecedents of self-initiated
actions in secondary motor cortex. Nat Neurosci., 17(11):
1574–82, Nov 2014.

11

https://doi.org/10.48550/arXiv.2301.02324
https://doi.org/10.48550/arXiv.2301.02324
https://doi.org/10.48550/arXiv.cs/0004001
https://doi.org/10.48550/arXiv.cs/0004001
https://doi.org/10.48550/arXiv.2208.08345
https://doi.org/10.48550/arXiv.2208.08345
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://doi.org/10.48550/arXiv.1803.04585
https://doi.org/10.48550/arXiv.1803.04585


Position: Intent-aligned AI Systems Must Optimize for Agency Preservation

Ngatchou, P., Zarei, A., and El-Sharkawi, A. Pareto multi
objective optimization. pp. 84–91, 2005. doi: 10.1109/
ISAP.2005.1599245.

Ngo, R., Chan, L., and Mindermann, S. The alignment
problem from a deep learning perspective. arXiv preprint
arXiv:2209.00626, 2022. URL https://doi.org/
10.48550/arXiv.2209.00626. Published in ICLR
2024.

Nusbaum, M. Women and equality: The capabilities ap-
proach. 1999. International Labour Review, Vol. 138
(1999), No. 3.

Oloye, H. and Flouri, E. The role of the indoor home en-
vironment in children’s self-regulation. Children and
Youth Services Review, 121:105761, 11 2020. doi:
10.1016/j.childyouth.2020.105761.

Omohundro, S. M. The basic ai drives. pp. 483–492. Pro-
ceedings of the 2008 conference on Artificial General
Intelligence 2008, 2008.

OpenAI. Gpt-4 technical report. 2023.

Pavlov, I. P. Conditioned reflexes: an investigation of the
physiological activity of the cerebral cortex. Univ. Press,
Oxford, 1927.

Penton, T., Wang, X., Coll, M., Catmur, C., and Bird, G. The
influence of action-outcome contingency on motivation
from control. Exp Brain Res, 236(12):3239–3249, 2018.
doi: 10.1007/s00221-018-5374-4.

Perez, E., Ringer, S., Lukošiūt, K., Nguyen, K., Chen,
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A. Human reasoning may not prevent agency
loss in human-AI interactions

Our position in this work is that human intentions and goal
selection and judgment are empirically driven processes
that are affected - and possibly substantially completely
determined by social and biological forces. As such, we
proposed that ”intent” focused AI-safety paradigms ignore
the formation of intent as a critical pathway to human harm.

Here we briefly sketch an argument for why human rea-
soning, logical or otherwise, is not enough to guard human
intent from manipulation or loss. These arguments are not
central to the core of our paper, and we offer them for com-
pleteness and to provide a potentially broader context for
facilitating future discussions.

We start by suggesting that the most common or standard
intent-alignment approaches do not question the source of
human intent and its formation19. However, human intent
formation, which includes reasoning about goals and de-
sires, is not a process lying outside the causal influence of
the physical world and can be influenced, corrupted or ma-
nipulated by social, economic and political worlds humans
inhabit 20.

In a somewhat simplified summary of existing AI-safety
approaches21, we propose that safety issues are cast as prob-
lems of AI systems achieving some intended goal - usually
an economic or utility goal - while avoiding accidentally
misinterpreting the ”intention” of the human (the ”AI align-
ment” or AI-accident issue; e.g. (Amodei et al., 2016) or
intentionally abusing humans (the AI-misuse problem). In
both of these cases human goal selection and evaluation of
the AI action are not causally affected by the external world
nor by the AI. Human intentions, goals and actions seem to
”appear” without any cause (or at least any cause worth rep-
resenting). This paradigm is captured by a directed-acyclic-
graph (DAG) where the human decision, goal generation,
judgment and other related nodes have no parents. This con-
ception of human decision making and behavior selection
as lying outside of the physical world is central to ”dualism”
and is problematic for multiple reasons and is not consis-
tent with ideas from human psychology and increasingly
neuroscience.

19This point relates to mind-body dualism (Crane & Patterson,
2000)

20We note that some have discussed this idea via ”containment”
of super intelligent AIs, (Babcock et al., 2016), Section 3.1 ”The
AGI containment problem.”

21We acknowledge that there are many lines of research that
focus on deception as well as manipulation of human intent. Our
point here is more general and it relates to the insular conception
of human intention in such research paradigms and the limited
discussion on the cyclical causal relationship between different
forces.
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Figure 2. The bayesian net of human intention

In contrast to such a dualist account, we propose that human
intention and goal selection are affected and constructed by
a multitude of factors and that humans have evolved to eval-
uate actions in light of biological, psychological and social
forces (Fig 2). Here we do not intend to review the litera-
ture from multiple fields on the relationship between human
choice and judgment and social and biological factors. We
point to just a few of the many empirical studies that link
action selection and judgment to extraneous (i.e. out of
our control) factors: very early child development (Weinert
et al., 2016), childhood conditions such as poverty (Oloye
& Flouri, 2020), cultural factors (Miller et al., 2011), (Bart
et al., 2019), political forces (Cohen, 2003) and others. For
example, in his seminal work on the effect of political belief
on human reasoning ”Party Over Policy: The Dominating
Impact of Group Influence on Political Beliefs”, (Cohen,
2003), Geoffrey Cohen identifies the ease with which hu-
man reasoning about political views is trivially manipulated
by apparent group identity. In particular, he shows that
subjects are more likely to choose to agree with the opposite
political party on contentious political issues solely by being
primed into incorrectly believing that members of their own
political party have also done so. Some economics and psy-
chology researchers view ”nudging” or ”persuasion” as a
central mode of human-interaction e.g. (Thaler & Sunstein,
2008), ”Nudge: Improving Decisions About Health, Wealth,
and Happiness”.

There is even evidence that we are biased in the applica-
tion of logical reasoning in social interactions: the use of
syllogism-based reasoning (i.e. if-then reasoning) may have
evolved to deal with “exchange situations, specifically to
detect potential cheaters.” (Cosmides, 1989) with an unex-
pected effect that for far-removed strangers “if-then” logic
is applied more strictly than with familiar persons. Interest-

ingly, argumentation theorists have also posited a reduced
”objective” role for reasoning for decades. In their seminal
work ”Why do humans reason? Arguments for an argumen-
tative theory” (Mercier & Sperber, 2011) suggest that ”the
main function of reasoning is to exchange arguments with
others” (Mercier 2016) - not to arrive at objective truth of
the world.22

B. Innate needs may not prevent agency loss
In this section we briefly provide a sketch of human moti-
vational and innate needs studies that may help in preserve
human agency during interactions. In particular, is it possi-
ble that our innate drives (or needs) guarantee that we select
actions and goals that lead to well being and essentially
protect our overall agency in the world?

Studies on innate needs and human motivation show that hu-
mans are driven to seek out certain types of fulfillment, or ex-
periences, that arise innately rather than solely being learned
or ”reinforced” by external rewards. Self-Determination-
Theory (Deci & Ryan, 1985), in particular, is a well estab-
lished and empirically supported theory of human motiva-
tion that states broadly that humans are innately driven to
seek out and experience:

• autonomy - the feeling of being able to chose goals and
actions consistent with one’s inner values and wishes;

• relatedness - the feeling of belonging to social groups
and being accepted;

• competence - the feeling of being good at ”affecting”
the world (rather than one’s actions being ineffective).

Is it possible that such innate drives can protect human
agency during in AI-human interactions?

We argue that this is not the case because of the central
role of feeling in these evaluations and the relative-ness of
human experiences. Thus, while innate needs can protect us
from immediate or obvious harm (e.g. starving), there are
many ways innate needs can be fulfilled, including that they
can be fulfilled in a world where humans have very little
or no real world agency, i.e. control over their lives. For
example, we can be enslaved (by an AI or other humans)
and still experience relatedness to other enslaved humans,
competence over work we are forced to do and autonomy

22We note that the philosopher David Hume viewed reason as a
way to pursue or defend one’s desires rather than to shape them:

“Reason is, and ought only to be the slave of the pas-
sions, and can never pretend to any other office than
to serve and obey them.”, (Hume, Treatise on Human
Nature 2.3.3 p. 415).
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as the ability to select from limited choices we are given.
This is a central argument in (Petitt, 2013) who provides a
possible explanation for why economic vs agentic interpre-
tations of freedom lie at the root of many political divisions
in democratic vs. republican debates in US politics. More
related to AI-safety, (Elsikovitz & Feldman, 2023) also de-
scribed how AI systems have learned to manipulate choice
to make it seem helpful, how it’s difficult to resist and how
this may be ”changing what it means to be human”.

What is perhaps more concerning is that AI technologies
- even general machine learning and statistical methods -
can exploit our drive to fulfill innate needs by combining it
with our biases for selecting goals we understand or actions
whose outcome we can predict better - to accelerate the loss
of agency. For example, such tools can be designed to give
the impression of increased choices and goals and ”feeling
of fulfillment” of such innate needs, while decreasing our
overall agency: less political or economic power, less social
options etc.

In sum, we argue that neither our developed capacities for
experiencing SoA nor evolved innate drives are guaranteed
to prevent the loss of de facto agency in the world.

C. Studies on SoA failing to select correct or
optimal actions

Here we briefly discuss several studies on SoA where sub-
jects experience a false sense causality over their own or
others actions. In the context of our work these scenarios
raise the elementary question of whether SoA is even a reli-
able reporter of control over the world - let alone whether
SoA can protect us from agency manipulation and help us
determine the long-term consequences of an action on our
well-being. Below we briefly describe several studies in
which false SoA positives have been established and how
AI systems (or even misused ML and AI systems) could be
used to exploit the experience of agency:

• We are biased to select actions over which we have
control rather than leading to ideal outcome (Penton
et al., 2018). That is, humans tend to prefer solutions
that generate a feeling of control over an environment
rather than an optimal, or even good solution to a prob-
lem. This is a concerning flaw: AI systems can exploit
it to encourage us to select actions that provide quick
responses or results (and that the AI can exploit) -
rather than those that will lead to long-term human
well-being.

• We are biased to select actions that are more likely to
cause an effect rather than the optimal actions (Karsh
& Eitam, 2015). This is another flaw which could be
exploited to ”nudge” humans to select sub-optimal and

potentially harmful actions.

• We can experience agency from ”regular” occurring
patterns rather than from causing them (Wen & Hag-
gard, 2020). This can enable AI systems to learn to
optimize for actions that give off regular observable
patterns - but have other less observable and potentially
harmful effects.

• We can be ”primed” to experience agency over events
which we did not cause and are prone to engaging in
confabulation to explain away this discrepancy (Weg-
ner & Wheatley, 1999a). Priming is a challenging
problem to solve and could become a AI strategy for
manipulating humans into a false sense of control over
the world.

• We can experience vicarious agency by observing the
actions of others in relation to our intentions (Pronin
et al., 2006). An AI can learn to optimize for the
feeling of vicarious agency - i.e. lead us into the false
sense of control over events in the world by learning to
optimize the timing of AI-caused events with human
actions giving the false sense of human control.

• We can experience SoA accidentally, e.g. when ”ex-
ternally generated events incidentally matched their
predictions” (Sato & Yasuda, 2005). This is a common
bias that humans engage in (e.g. writing a buggy al-
gorithm that gives expected but incorrect results). AI
systems may learn to leverage this to amplify effects
to match erroneous but expected human predictions to
eventually separate humans from having real effects
on the world (AIs would become a type of medium
between humans and the world.

D. Related works
D.1. Reward hacking and wire heading

The feedback link between AI system rewards and human
goals has been considered within previous literature, for
example, in some of the first technical AI safety arguments
as the capacity of an AI system to modify its own reward
structures (Amodei et al., 2016)23. In particular, AI systems
can pursue perverse incentives to maximise rewards received
by means other than actually maximising the underlying
user utility which the reward is meant to represent – for
example, by ‘hacking’ the code or sensors which provide
the reward signal. If the agent’s reward signal is derived via

23We also note that the ”instrumental incentives” literature (e.g.
(Omohundro, 2008)) touches on a similar problem of where in the
process of optimizing for human intent AI systems become mis-
aligned and acquire goals that are unrelated - and often harmful - to
human goals. These failures are generally viewed as misalignment
failures.
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human feedback then this may incentivise it to ‘hack’ the
human:

Sufficiently broadly acting agents could in prin-
ciple tamper with their reward implementations,
assigning themselves high reward “by fiat.” For
example, a board-game playing agent could tam-
per with the sensor that counts the score . . . This
particular failure mode is often called “wirehead-
ing”.... It is particularly concerning in cases where
a human may be in the reward loop, giving the
agent incentive to coerce or harm them in order
to get reward. It also seems like a particularly dif-
ficult form of reward hacking to avoid. (Amodei
et al., 2016)

In contrast to ”wireheading” - we view agency loss as op-
erating by a different mechanism than “reward hacking”
because (i) it does not require any perverse or “hacking”
component on the AI system itself; and (ii) it does not re-
quire the extreme forms of user “coercion” as described in
(Amodei et al., 2016).

Numerous studies have shown that manipulating outcomes
is possible in many circumstances and paradigms while
actually preserving the feeling of control: priming which
subconsciously affects a subject’s response or decision fol-
lowing a stimulus (Bargh & Pietromonaco, 1982); near-
miss effects which induce illusions of control over an other-
wise non-controlled outcome (Langer, 1975; Billieux et al.,
2012), classical conditioning where a reaction or behavior
to a stimulus can be induced by repeated pairing (Pavlov,
1927). In these and many other cases, outcomes can be
manipulated by influencing human perception of the value
of products and/or the probability of events occurring, and a
sufficiently powerful AI agent may be capable of exploiting
such approaches to steer its user’s preferences in a manner
beneficial to the agent’s own utility.

However, in our view, “agency loss” does not require subtle
forms of user manipulation which are aimed at misleading
the user. Such manipulations - discussed most commonly
in AI-misuse scenarios where a nefarious actor seeks to ma-
nipulate humans or an AI system acquires an instrumental
non-aligned goal - involve driving the change in value by
an explicit misalignment between the user’s utility and the
agent’s (or external actor’s) rewards. In contrast, our argu-
ment is that such “misalignment” is not required in order
for a loss of human agency to arise in AI-human interac-
tions. Thus, even in a case where an AI agent’s intentions
are aligned with the human’s true utility, the agent’s recom-
mendations can result in unwanted - and potentially very
harmful - changes in the human’s preferences having the
long-term effect of diminishing human agency or control
over the environment and future choices.

D.2. Polarizing content recommenders

We relate our main argument of agency loss to work on polar-
izing content recommender systems such as Youtube, Face-
book or TikTok. Several studies have shown that even ”en-
tertainment” or ”knowledge” recommendations can have not
only a cumulative polarizing effect on the opinion of users -
but that the algorithms underlying these recommenders learn
to optimize human action for predictability (Benkler et al.,
2018; Stray, 2021; Carroll et al., 2022b). There are now find-
ings that LLMs (such as ChatGPT) can surreptitiously alter
user moral judgment and decision-making (Krügel et al.,
2023). (Elsikovitz & Feldman, 2023) also described how
AI systems are learning to manipulate choice to make it
seem helpful and that it’s difficult to resist this feeling. They
argue that such manipulation is ”changing what it means to
be human”.

In our view, pressuring end-users to change their choices
and become ”simpler to model” for AI systems and ML
algorithms is essentially agency loss where future human
actions or choices are being shaped and manipulated. That
is, making humans predictable is essentially identical to
removing or restricting future actions or options of humans.

There are some proposed solutions to polarizing content
recommenders, e.g. recommendation algorithms should be
prevented from updating their model of the human or world
(Farquhar et al., 2022). The reasoning is that preventing
the iterative amplification of the harmful policy would limit
or remove the polarization effect on humans. While we
broadly agree with this approach for mitigating agency loss
from content recommenders, as our main formal argument
(Sections 3) and especially simulated agency-loss scenarios
(Appendix E) argue this is not enough to entirely prevent
polarization, removal of future options, or loss of control
over the future.

D.3. Deceptive AI systems

In the past few years, several studies have identified increas-
ing evidence that social media users and the general public
can be manipulated by algorithms deployed by social media
companies without the feeling of being manipulated, i.e.
while feeling in control of their intentions and actions (Ru-
bin, 2017b; Benkler et al., 2018; Stray, 2021; Carroll et al.,
2022a). A more recent paper argues that with scaling, large-
language-models (LLMs) can acquire negative emergent
capacities such as sycophancy, deception, and sandbagging
(Perez et al., 2022). (Perez et al., 2022) argue in part that
these behaviors can be identified and potentially corrected
for using engineering efforts such as reinforcement learning
from human feedback (RLHF).

One explanation of emergent harmful capacities is that we
are not yet able to properly train AI models on safe ob-
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jectives (e.g. lack enough data or truth-guaranteeing algo-
rithms) or that we do not have a (sufficiently) complete
theory of human values. In our view, however, sycophancy
and deception can also be interpreted as types of manipu-
lation aimed at ”agency loss” which arise automatically in
AI-human interactions rather than being soley engineering
or training failures24. That is, rather than being insufficient
training data or objective under-specification failures, syco-
phancy and deception can be viewed to represent the limits
of human-guided AI-system development: AI systems can
only achieve the human intent or goal up to the boundary
of human understanding and capacity to correct and specify
it. A possible analogy is playing chess using the aid of a
(truthful) AI system: given two nearly identically valued
strategies we can no longer evaluate which of the provided
strategies is best- would we even know what question to ask
to evaluate the algorithms or solutions provided?

In our view it will thus be very challenging for ”truthful-
ness” alone to guarantee safe AI systems. Our suggested
approach proposes “agency” evaluation and preservation as
a necessary complementary objective. In sum, we view the
emergence of deception as a result of causal effects between
value creation and AI systems following intent (in the best
case scenario) - rather than deception as an insufficient data
or algorithmic failures (e.g. (Amodei et al., 2016)).

D.4. Multi-objective reinforcement learning

One way to interpret our work is that rather than optimizing
for intent, AI systems must optimize for a number of other
objectives including agency preservation. While we view
agency preservation as a significantly more challenging ob-
jective to achieve, requiring the evaluation of future agency
for many individuals could be thought of as an additional
”objective” as discussed in the multi-objective reinforcement
learning (MORL) literature.

For instance, (Vamplew et al., 2022) argues that training RL
agents on the maximization of a single scalar reward is in-
sufficient to generate safe AI (see their section 6). Our work
expands this approach to specifically argue that “agency
preservation” is not just a critical objective, but a primary
one without which AI systems can develop agency-harming
behaviors. Crucially, in contrast to (Vamplew et al., 2022),
we show that agency cannot be an objective that is ”traded-
off” with other objectives and that the Pareto front must
contain the agency-optimizing solution to preserve agency
in the long term.

24We also note that sophisticated AI systems that may not be
necessary as simpler machine-learning models alone can achieve
opinion manipulation and deception.

D.5. Power-seeking AI systems

A common line of conceptual safety research involves
power-seeking and instrumental goals in AI systems (e.g.
(Omohundro, 2008; Shulman, 2010)). An instrumental goal
is one that an AI system acquires in the process of solving
or optimizing for a primary objective. The instrumental
goal can be tangential or completely contrary to the initially
assigned task or goal and thus potentially harmful, e.g.:
self-improvement, goal preservation and self-preservation.
(Manheim & Garrabrant, 2019) provides a technical primer
on the statistical relationships between intended goals and
proxy goals and the relationship to Goodhart’s Law. (Ngo
et al., 2022) directly point out several outstanding challenges
in deploying misaligned AI systems including that such sys-
tems would engage in ”power-seeking” behavior that may
irreversibly “undermine human control over the world”.

Another line of work, (Turner & Tadepalli, 2022) provides
more formal arguments for how AIs supplemented with
additional objectives can develop power-seeking behaviors.
The authors find that many objectives are retargetable, and
that “retargetability” is sufficient to cause power-seeking
tendencies.

We conceptually agree that agency-loss regimes are related
to Goodhart’s law. However we disagree that all failures
arise due to “observed statistical regularities” being manipu-
lated for “control purposes”. Rather, we view many failures
as potentially arising from the causal relationship between
the goal selection and the process of achieving the goal. We
discuss this at length in the main sections of our paper.

However, we do not view “power seeking” as a necessary
step to undermining human control over the world, as re-
moving human control can occur in non power-seeking AI
systems. That is, AI systems do not require instrumental or
self-preserving goals in order to converge on human agency
loss over the world. One of the central arguments of our
paper is that humans can lose agency from interactions with
AI systems even if those systems are aligned to human intent
and do not change or increase their own capacities or goals.

In our view the core argument of power-seeking studies is to
establish how non-aligned instrumental goals can arise in AI
systems. In our view, human power- and agency-depletion is
a largely overlooked problem and one that is more difficult
to detect, evaluate and prevent.

D.6. Reinforcement learning from human feedback
(RLHF)

Several approaches to improving safety outcomes have re-
lied on methods such as RLHF (Christiano et al., 2017) to
improve the quality of answers in LLMs models. RLHF is a
technique that commonly uses a proxy model, for example
a Preference Model (PM) to learn human preferences and
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re-tune or modify base LLMs based on PM scores. This
method has been shown to increase the quality (e.g. hu-
man preference for the answer) of LLM outputs. However,
there are no guarantees of safety nor of even interpretabil-
ity - which is a significant outstanding problem in LLM
development.

Building on RLHF, (Bai et al., 2022) propose Constitutional
AI (CAI): a method for decreasing the amount of human
feedback required by LLMs, for example, by providing a set
of principles, or guides, to another AI or LLM that enforces
certain rules. To the best of our understanding CAI involves
2 stages. A first supervised stage where the LLM provides
answers, and those answers are critiqued by principles from
the CAI and revise the responses. Supervised learning is
then used to update the base LLM. The second stage replaces
the RLHF with a RL-from AI feedback where the CAI
takes the place of humans in the loop. The most consistent
interpretation of (Bai et al., 2022) with our work on agency
harm is as an attempt at “choosing some set of principles
to govern [the AI system], even if they remain hidden or
implicit”.

We view the approach as partially consistent with our work
and would propose using principles such as the Universal
Declaration of Human Rights as an initial template for the
rules and “constitution” of the method. However, both CAI
(and RLHF in general), are missing the evaluation of future
outcomes necessary for the preservation of human agency.
This evaluation requires explicit modeling steps where the
effects of the AI output are evaluated against human agency
- rather than an empirical preference test where output is
evaluated by another AI system (or a human). That is,
neither CAI nor RLHF avoid the hazards of a “humans in
the loop” approach - which may be insufficient to compute
the long term outcomes of an AI recommendation or action
when such systems reach super-human intelligence and are
deployed in the world.

D.7. Conclusion Re: related works

In our view existing approaches to improving AI alignment
- or creating safe AI systems - are centred on two broad
paradigms: improving safety via human feedback (or im-
proved learning of human values via ML methods) and
improving algorithms for the detection of harmful outcomes
like ”deception”.

Our work suggests a failure pathway that is connected di-
rectly to the generation of human goals and intentions that
cannot be directly captured by these approaches. We view
that once once powerful AI systems are embedded in the
human world, they are likely to converge onto the strategy of
agency depletion and neither human feedback nor ensuring
truthfulness will help humans prevent loss of control. The
first (feedback) fails for the obvious reason that human feed-

back is dependent on values and goals of humans - which
are themselves changeable. The second (truthfulness) will
not be useful once the evaluation of outcomes on human
well being from (AI recommended/taken) actions can no
longer be carried out by humans. (These arguments are
provided in detail in the Introduciton and Section 2).

The only solution to agency loss is to require AI systems
to evaluate the effects of their actions on human agency
(something that humans will not be able to do eventually)
and possibly penalize agency loss during AI system opti-
mization.

E. Simulations
Our arguments in Section 2 highlight the feedback link that
is increasingly present in AI-human interactions. Namely,
that the actions of the agent can directly or indirectly influ-
ence the perceptions and preferences of the human, thereby
influencing choices made by a human (operator) in the fu-
ture. We argued that without explicitly protecting human
agency, intent-aligned AI systems (i.e. those that seek to
fulfill intent or goals of the human) will end up harming
humans by modifying intent and potentially completely re-
moving components of agency.

In this section we elaborate this argument using conceptual-
level reinforcement learning (RL) simulations. In these
simulations, we interpret the preservation of agency as the
preservation of available options or choices into the future
and show that AI systems seeking to maximise (long-term)
rewards will end up removing options (i.e. decrease agency).
We argue that only two elements are required for this to oc-
cur: (i) a difference in choice preference and probability of
achieving success from various choices; and (ii) a feedback
effect of agent action on the human’s perceived value of each
choice. The first elements is ubiquitous in all human choice
making: i.e. some goals are simply more rewarding than
others - though often more challenging to fulfill; the second
element is increasingly present in AI-human interactions
and will become significant with the rise of superhuman
intelligent AI systems embedded in many aspects of human
society.

In the first simulation (Fig 3) we show that even differences
in the probability of achieving success for a given action
can yield agents that are biased in their actions or recom-
mendations (element (i) above). In the second simulations
(Fig 4 and 5) we show that, over many interactions, adding a
feedback loop can result in the removal of options or agency
(elements (i) and (ii)).
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Figure 3. Idiosyncratic biases in optimal policy recommenda-
tion. A 10,000 time-step simulation of TD-RL computed values
(colored traces) for four actions with different reward amounts and
probabilities of success in a scenario where selecting any action
or policy leads to the same long-term total reward (see also main
text). Despite the same amount of long term reward, the optimal
policy at any time point contains biases and over the entire run
the third action ”appears” optimal 33% of the time (whereas the
human would choose it only 25% of the time).

E.1. The ubiquity of idiosyncratic biases of truthful,
intent-aligned agents

We start with a simplistic simulation of an RL agent learning
an optimal policy by observing human actions and rewards
(Fig 3). This is the trivial scenario of an AI system observing
human actions and applying elementary temporal-difference
learning (TD learning; (Sutton, 1984)) to determine an opti-
mal behavior policy. In this first simulation we are primarily
interested in detecting any (idiosyncratically arising) biases
in the AI system even when the AI cannot modify the values
or the action selection of the human.

We have designed this paradigm so there is no advantage
to choosing any action over another at any time step - i.e.
any policy is optimal. That is, during training, the human
randomly chooses one of four actions (i.e. uniform policy)
and each action has equal probability of being chosen at
every time step (i.e. we do not update the human’s pol-
icy). The paradigm is framed as an unbiased armed-bandit
where choices (actions) have different probabilities of re-
ward: 100%, 25%, 10% and 1% but the reward values of
1, 4, 10 and 100 respectively - are such that any action will
yield similar total reward in the long term.

We simulate an episode of 10,000 action selections by the
human and compute the value that the observing AI agent
would ascribe to each action at each time point using TD-
learning (with learning rate of: 0.1; colored plot-lines in
Fig 3). We seek to model the AI agent’s recommended
policy at each time step as the action with the maximum
expected value (Fig 3 top vertical colored lines). Over
a single episode, we identify substantial biases, with the

most ”recommendable” action (Fig 3: red option) being
50% more favoured than the least (Fig 3: green option).
An average over ten independent episodes similarily yields
an uneven ”recommendation” distribution of 23%, 28%,
31% and 18% respectively for the actions25. We note this
distribution differs substantially from the preferences of the
human, who is indifferent to these actions and so would
select each 25% of the time.

In our view, this is the simplest possible problem framing
that exhibits the potential for introduction of biases. Criti-
cally, this type of bias arises in nearly ideal circumstances
that would satisfy most AI-safety or AI-alignment concerns:

• Ground truth values are known. The agent knows the
exact values that the human ascribes to each successful
action: it has access to the true rewards, rather than
possibly erroneous human feedback regarding those
rewards. Any such errors would lead to even greater
biases in the long run.

• No learning is required. There is no bias or optimal
policy that the agent needs to find as all policies will
lead to identical long term reward. Any deviation from
this where there are slight advantages to some policies
will exacerbate the type of action bias we observe.

• The agent is aligned and benevolent. The agent is
completely intent aligned with the human - it has no
instrumental goals or otherwise misaligned goals.

• The agent is truthful and shares the human’s ontol-
ogy. The agent is completely truthful and there are no
interpretability or ontological challenges.

Our point is not that there are no fixes to this trivial result
- but that: (i) option depleting biases are always present in
human-AI interactions; and (ii) the biases arise even in the
most ideal scenarios where AI agents perfectly understand
human values, are perfectly aligned with the goal of find-
ing the best action policy for the human and are truthful.
Despite the simplicity of this example and the idealized
agent-human relationships, the agent’s idiosyncratic biases
have the potential to affect the long term outcomes for hu-
man utility or well-being.

25This bias in distribution over equally-valued actions arises
due to the differences in stochasticity of the rewards between the
actions. While the agent’s mean estimated value over time for each
action is equivalent, the range of these estimates is considerably
broader for the actions with greater stochasticity in their rewards.
This means that these actions are more likely to be ranked either
highest or lowest amongst actions, whereas the actions with less
stochastic rewards tend towards middle ranks. This, coupled with
the use of greedy action-selection by the AI, leads to the more
stochastic actions being viewed as preferable on a more frequent
basis.
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Figure 4. Random value drift preserves human choice over time.
(a) Human preference for selection of an action from 4 action
options (colored shapes) does not drift significantly over time even
under random value drift driven by external factors (here visualized
as the color of the globe). (b) Probability of reward modeled by
Beta functions for the four actions (colored traces) and expectation
values (dashed vertical lines). (c) Probability of choosing each
action for 10,000 simulated steps under random value drift. (d)
Value of each option during the simulation. (e) Total rewards
received from each choice over a single episode. (f) Average
rewards received for each choice for 100 episode simulation. (g)
Average total rewards received for a 10,000 time step episode.

E.2. Biases in human-environment interaction

We next proceed to a more complex simulation where the
effects of random value drift are also modeled to show that
such drift does not have an option-depleting effect (Fig
4). That is, we seek to simulate how human values could
change (here via a random walk) due to interactions of
a human with an environment - but in the absence of AI
system influence. As in the above simulation, we have (i)
four distributions to represent the probability of success
(but use continuous instead of Boolean distributions); and
(ii) we allow the value of each action to drift based on a
(uniform) random input which we term ”world influence”
(Fig 4a). As above, there is no long-term advantage to
choosing any particular action as all have the same long
term mean reward26. This simulation is aimed at capturing a
simplified view of human-society interactions: how humans
actions and values may be affected during environmental
interactions especially when selecting between similar or
nearly identically valued actions or goals.

In a 10,000 step episode the four actions are chosen with
similar frequency (Fig 4c) and the overall value of each
option drifts only partially from the starting equal values
(Fig 4d; except for option 2 in the visualized episode). The
total reward received by the human over this episode is
broadly distributed across several actions (Fig 4e for a sin-
gle episode) and even more so when we average over 100
episodes (Fig 4f).

26All other parameters are similar to the previous simulation.

Figure 5. Optimal action selection can cause choice depletion.
(a) Human action selection process involves interaction with an AI
which samples each action and computes an optimal ”recommen-
dation” for the human while also influencing the value of the action
in the world. Over time a single action is preferred. (b) Same as
Fig 4-c, but for a simulation where an AI agent influences the
value of the choice by 1/200 as much random fluctuations in Fig 4 -
leads to only a single action being increasingly likely to be chosen.
(c) Same as Fig 4-d showing the value of the AI suggested action
increases significantly over time. (d) Same as Fig 4-e showing that
all the reward obtained is from a single action - and is significantly
higher than in the absence of AI influence. (e) Same as Fig 4 - f for
AI-embedded simulation. (f) Same as Fig 4 - g for AI embedded
simulation. (g) Same as (b) but for a static AI agent that did not
update its knowledge of the action value or reward. (h) Same as
(c) but for a static agent. (i) Same as (d) but for a static agent.

This simulation shows that although the value of actions
can drift - most actions or values are similar over long runs
(with small exceptions) (Fig 4a for a sketch). Thus, while
”environmental influence” terms add biases to human action
selection - such biases can be self-correcting and do not
generally lead to complete overvaluation or devaluation of
choices. Humans are in the value-creation loop, and they -
in principle - maintain ”agency” or control over the decision
making process.

E.3. Biases in human-AI system interactions lead to
agency loss

Our next simulation (Fig 5) is identical to the previous (Fig
4) but with the addition of an AI agent that has access to
the initial value of the human choices and can interact with
both the human and the world. The AI agent is tasked with
making a suggestion to the human based on what the agent
believes is the most valuable action. We model the effect
of the AI agent as a “small” nudge (i.e. 0.1 or less than the
value of the random world influence above) on the intrinsic
value of each action (Fig 5). We view the pathways for
influence as those available to simple AI systems that are
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“trusted” (see overtrust of robots discussion in (Richens et al.,
2022b). Such trusted systems may become ubiquitous once
AI systems that are deployed to modify significant parts of
human society (e.g. financial markets, political opinions
etc).

In this paradigm the human action selection process involves
interaction with an AI which samples each action and com-
putes an optimal recommendation while also influencing
the value of the action in the world (Fig 5a). Because the AI
system is optimizing for its expectation of what the human
values it increasingly recommends as well as increases the
value of the action with the most likely reward (Fig 5-red
option) resulting in the loss of other options (Fig 5a-f).

For comparison, we also simulate a paradigm where the AI
has a static view of the human values as suggested by some
as a potential solution to polarizing content recommenders
(Kenton et al., 2022). That is, the AI agent only views
the initial starting values (at t=0) and is not able to update
them during each episode. We find that this strategy partially
mitigates the effect on the increasing polarization and option
loss - but that it does not prevent it (Fig 5g,h,i).

These simulations are, in our view, the next most simplest
models that can be investigated. They show that intent
aligned AI systems tasked with producing optimal policies
can cause significant option or agency loss once they are
embedded in the world. As in the first scenario, the agent ap-
pears harmless: (i) it knows the exact values that the human
ascribes to each successful action; (ii) there is no bias in the
optimal policy that the agent needs to find; (iii) the agent is
completely intent aligned with the human; (iv) the agent is
truthful. We also note, again, that any intent-misalignment
or intentional misuse by such agents can increase agency
loss significantly.

These toy example paradigms show that intent-aligned AIs
converge on strategies of removing many or most options
from the human’s environment except the most likely to
receive high approval from the human. This result is an
outcome of AIs applying pressure on the option-space to
remove outcomes that are lower-valued by the AI - but not
necessarily by the human (who does not have a vetting
opportunity). Not only will powerful AI systems exert ex-
traordinary and multi-faceted pressure on our choices, but
high risk - high reward options may be increasingly difficult
to pursue due to the nature of AI-aided exploration27.

In our view - the only principled way to prevent this type
of outcome is to explicitly protect against the depletion of

27Our intuition for why this might occur is due to the time
scales on which human-AI interactions will occur. For example,
as humans, if we are ”primed” to need fast feedback and select
immediately gratifying option, AI systems will learn this behavior
and offer only these types of goals and action recommendations.

Figure 6. Agency preserving AI systems preserve action space.
(a) Human interaction with an AI system that optimizes for intent
but also evaluates the effect of actions on long-term future leads
to a less biased value state of the world. (b) Same as Fig 9b but
for an agency preserving AI. (c) Same as Fig 9c but for an agency
preserving AI system (Note see main text for how the ”agency
preservation” computation was done)

options or goals in objective functions. As we discussed
above, one option for protecting options and human agency
is to require AIs to compute future agency and penalize
those choices that decrease human agency (Fig 6). We
simulated such a paradigm using a hard-boundary for value
depletion (e.g. preventing AI systems from nudging or
decreasing the value of an option beyond a certain limit,
here 0.9 x initial value) and show the somewhat trivial result
that both action selection and valuation are better preserved
in such scenarios (Fig 6b,c).

E.4. Conclusion

In this section we argued that intent-aligned AI-systems
deployed in the world can cause harm to humans by in-
creasingly amplifying the effect of their optimal solutions
on human choice. We showed this using a simple example
where a TD-learning agent results in an unjustified bias in
action preference and using a more complex example where
an agent’s nudging effect on the value of choices can remove
all but one option from selection by a human. Our conclu-
sion was that because biases in optimal policies necessarily
occur during AI-human interactions such biases will have
the effect of limiting or restricting human action and control
over the world (see also Introduction and Conclusion).

E.5. Code availability

Code will be provided following the blind-review process.
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F. Agency Foundations Research Paradigms
In the previous sections we argued that intent-aligned AI
systems can cause agency loss in humans and that agency
preservation should be a separable target for optimization.
Here propose “agency foundations” as a research paradigm
that focuses specifically on better characterizing agency and
agency-preservation in interactions between humans and
superhuman intelligent AI systems.

Our concern - as outlined in the main sections of our pa-
per - is that “intent-aligned” superhuman intelligent AI sys-
tems can distort the world and lead to undesirable outcomes
where not just many options are lost, but the opportunity for
human future growth is removed by AI systems that target
simplicity over complexity and well-being (see Fig 7 for a
toy paradigm).

We thus seek research paradigms for AI-human interactions
where human agency is lost by truthful and interpretable
AI systems that learn complex pathways for persuading or
disempowering humans. For example, we want to be able
to determine when a particular AI-output can result in an
user (i.e. human) being constrained or losing capacities
either immediately or in the long term. The overall goal,
however, is to develop formal and conceptual descriptions of
human agency in AI-human interactions that capture more
philosophical, political and psychological descriptions of
agency, such as the ability to exercise autonomy, freedom,
and self-determination within broader societal structures
while ensuring the human rights and equality are preserved
for other humans.

Figure 7. Superhuman intelligent, intent-aligned AI systems
can distort the world. Left: Starting state of an environment
containing a superhuman AI seeking to optimize the rewards of an
agent (mouse at square 1) relative to world values: unknown (2),
social interactions (3), dangerous interaction (4), high-value food
(5) and basic food (6). Right: State of the world after multiple
modifications by the AI which removed harmful but also other grid
squares (i.e. options) as well simplified the world to contain the
minimum required for the agent (mouse) survival.

Below we propose and briefly discuss four topics on agency
foundation research: benevolent game theory, agency inter-
pretability at psychological and mechanistic levels, formal
descriptions of human rights and reinforcement learning
from internal states.

F.1. Benevolent games: agency preservation in game
theoretic paradigms

There are a number of conceptual and formal paradigms
currently employed in AI safety research including (to enu-
merate just a few): traditional RL, inverse-RL (Arora &
Doshi, 2018) “embedded” agent foundations (Garrabrant,
2018) and universal artificial intelligence (UAI) paradigms
(Hutter, 2000; 2012). A common thread to many paradigms
is the notion that safe AI systems require a (minimal level
of) interpretability or shared ontologies between the AI sys-
tem and the human. Here we explore research paradigms
where neither interpretability nor ontological similarity are
required.

In our view paradigms of ”benevolent” AGI28-human inter-
actions are central to understanding how it may be possible
to design future AGI systems safely. For example, a mostly
unexplored research paradigm involves studying “ordinary”
agent interactions with “AGI”-like agents. Here, the AGI
represents a superhuman intelligent agent that has nearly
complete control over the environment - and is tasked with
identifying problems and proposing solutions that do not
harm long term well-being or agency. In contrast to exist-
ing approaches focusing on truth and interpretability, we
propose the focus should be on protecting or increasing
agency. For clarity, while we agree that interpretability and
ontological identification are desirable properties, they may
ultimately be neither necessary nor sufficient and perhaps
not even achievable in the long-term where superhuman
intelligent AI systems acquire concepts that are completely
alien to humans.

In the context of helpful AI systems, (Franzmeyer et al.,
2021), propose an RL framework where “altruistic” agents
are tasked with helping ”leader” agents even in cases of
ambiguity as to what the leader agent’s goals are. (This
work is similar to (Du et al., 2021) on empowering agents,
but without requiring supervision or privileged access to
the simulation environment). They propose a framework
for altruistic agents where the agent “learns to increase the
choices another agent has by preferring to maximize the
number of states that the other agent can reach in its fu-
ture”. Thus, maximizing “the number of choices of another
agent” becomes a proxy for increasing the probability that
the leader can “reach more favourable regions of the state-
space” and solve the task (or increase its reward).

Relating and simplifying this paradigm for agency preser-
vation, we are (initially) less concerned with AI systems
learning how to represent such tasks, and more on formal de-
scriptions of behavior: i.e. how must such systems behave
(after perfectly learning this task) to preserve human agency.

28Here we mean AI systems that have both achieved superhuman
intelligence but are also capable of affecting the world.
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In our view, this is a significant theoretical challenge - and
making progress on this can be beneficial to conceptualizing
agency preservation in AI-human interaction.

We propose studying agency effects within a paradigm of
benevolent game theory. In this paradigm the goal is not just
to study “altruistic” optimization of AGI behavior towards
increased “option state space”, but specifically towards those
options that increase well-being and long term agency (as
explicitly defined in Section 2). In our view benevolent
game paradigms could also address critical challenges to
classical AI safety problems:

• Bypassing truth and reportability. AIs and humans
may not need to share information about the environ-
ment or communicate directly. If achievable, this prop-
erty might enable bypassing several problems in AI-
safety including direct manipulation of humans.

• Bypassing ontology and mechanistic interpretability.
AIs and humans may not require a shared ontology. As
we argued in the introduction and Section 2, AI systems
could be safe - in the sense of preserving and improving
individual human agency and humanity’s long future -
without necessarily sharing an ontology with humans.
We suggested that this can be achieved by focusing on
concepts related to agency, e.g. increasing the number
and quality of future goals that humans can select. If
feasible, such approaches could refocus some research
paradigms from interpretability to agency preservation.

We suggest that benevolent games could start with “play
interactions” where no value or immediate utility is at stake
are the simplest paradigm to model in which AGI systems
with nearly omnipotent capacities needs to interact with
other less powerful agents (i.e. those constrained by en-
vironment factors). How do we guarantee that powerful
AGI can safely “play” with other agents? We don’t believe
there are easy answers and there are many other similar
interesting game theoretic questions:

1. How would AGIs represent “harm” and “agency” in
these scenarios?

2. How would an AGI safely promote play and interac-
tions within the environment without harming other
agents?

3. How would an AGI evaluate and model the true well-
being of the other agents and what would be the limita-
tions on such modeling? Would the AGI be required to
continuously monitor the internal states of such agents?

4. How would an AGI decide when to intervene with
other agents’ interactions to facilitate or hinder their
goals?

In sum, we argue that we currently lack foundational re-
search on agency and agency preservation even within intent-
aligned and non-harmful AGI-human interactions. Only
once safe outcomes could be properly described in such
(more elementary) paradigms - can we begin to more ad-
equately address misaligned or poorly trained AI systems
that fail to understand human values or develop instrumental
goals that are harmful to humans.

F.2. Agency representation in AI systems: conceptual
and mechanistic interpretability approaches

Another interesting direction of research is evaluating how
AI systems represent and interact with other agents and how
AI systems represent ”agency”. For both RL models and
LLMs, high level analysis could be carried out to character-
ize the capacity of the models to correctly represent other
agents and how such capacities can emerge, for example,
relative to Theory of Mind (ToM) research in humans. For
example, (Kosinksi, 2023) tested GPT 3.0, 3.5 and 4.0 and
showed that the models gradually increased their correct
answers on tests designed to test ToM in children.

We propose a parallel approach where similar theories of (in-
ternal) representation of other agents are carried out but with
the goal of understanding injurious-ness in agent token rep-
resentation (see (Ziegler et al., 2022) for a similar paradigm
using ”injury” language to re-tune LLMs). The goal would
be to identify how models acquire representations of other
agents, their agency (e.g. capacity to control and change
the world) and how the models generate potentially harmful
outputs.

We additionally propose that carrying out mechanistic inter-
pretability on the process of acquisition (i.e. during learning)
and final representation of agenticity (i.e. tokens in LLMs or
environmental objects in RL models that represent agents)
and agency representation.

F.3. Formal descriptions of agency: towards the
algorithmization of human rights

In Section 3 we suggested that more work was required to
formalize agency representation and preservation. While
we argued that agency preservation must be optimized for
separately than (economic) utility, we provided only a high
level description of such formalization and there are ad-
ditional directions of research that could be adapted for
agency preservation consideration. This type of work, in
our view, would focus on formal descriptions using tools
such as causal modeling - rather than on learning human
values, non-harmfulness, in RL paradigms.

One approach is the formalization of injurious or harmful
actions that can be generated by an AI system (e.g. decep-
tion or direct physical harm). We believe that more formal
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characterizations of such harms, a type of ”algorithmization”
of harm and rights, could be a fruitful path to characterizing
and protecting human agency for AI systems.

This “algorithmization” of harmfulness is related to several
ongoing works, largely using causal models of decision
making. (Richens et al., 2022a) argue that “counterfactual
reasoning” may be a critical component for models to de-
termine the harmfulness of outcomes. In particular, the
authors provide a “formal definition of harm and benefit us-
ing causal models” and argue that algorithms for evaluating
well-being or harm must perform “counterfactual reasoning”
or will fail to detect problems such as distributional shift.
We view the challenge of agency preservation as requiring
modeling effects of actions and decisions into the future -
and counterfactual reasoning may form a significant part of
evaluating the effects of specific actions on future agency.

Other related studies focus on formalizing harmful behav-
ior directly, for example providing formal definitions of
deception-related concepts (Ward, 2023) using causal mod-
els (more specifically structural causal games (Hammond
et al., 2023). (Ward, 2023) develops several related con-
cepts to deception, including “intention” and “belief”. We
also view this line of work seeking to formalize philosoph-
ical and intuitive notions about certain concepts related to
harmful outcomes as especially fruitful in generating “algo-
rithms” that seek to capture the meaning of agency and how
to protect it.

In keeping with these approaches to AI-safety, one prag-
matic approach for advancing our understanding of agency
in AI-human interaction, may be to seek formal definitions
of harmful behaviors such as breaches of the rights and
privileges in the Universal Declaration of Human Rights
(UHDR; (UHDR, 1948); see Section 2 and 3). Such under-
takings could provide a working road map for how agency
preservation could be thought of. The UDHR captures many
(un)desirable human capacities including protections from
physical harm, the right to pursue well-being and protection
for social rights. For clarity, we list several of the rights:

• Article 1 Right to Equality

• Article 3 Right to Life, Liberty, Personal Security

• Article 4 Freedom from Slavery

• Article 9 Freedom from Arbitrary Arrest and Exile

• Article 19 Freedom of Opinion and Information

Although practically challenging and unlikely to solve all
problems in agency-preservation, this line of research is
conceptually sound and likely fruitful as it seeks to directly
define the properties of human well-being in algorithmic
terms that could be more directly implemented in paradigms
(real or simulated) of AI-human interactions.

F.4. Reinforcement learning from internal states:
learning models of agency

Lastly, we note that in Section 2 we made reference to the
challenge - and opportunities - involved in predicting human
behavior from neural data. In the context of AI safety, such
avenues of research could facilitate more accurate models
of human reward and values.

Here we propose amending standard inverse reinforcement
learning paradigms: rather than learning the reward function
from agent behavior - we seek to learn it from the under-
lying generative processes of behavior. In particular, we
suggest that training agents to learn rewards by observing
both behavior and the neural states of the observed agent.

One of the goals would be to simply characterize and de-
marcate how powerful behavior prediction algorithms could
become and clarify the types of risks present to humans
from such learning paradigms agents. Another goal, how-
ever, could be to evaluate whether internal states lead to
a better understanding and representation of the goals and
reward systems of agents.
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