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ABSTRACT

Graph contrastive learning (GCL) has achieved great success in pre-training graph
neural networks (GNN) without ground-truth labels. The performance of GCL
mainly rely on designing high quality contrastive views via data augmentation.
However, finding desirable augmentations is difficult and requires cumbersome
efforts due to the diverse modalities in graph data. In this work, we study model
perturbation to perform efficient contrastive learning on graphs without using data
augmentation. Instead of searching for the optimal combination among perturb-
ing nodes, edges or attributes, we propose to conduct perturbation on the model
architectures (i.e., GNNs). However, it is non-trivial to achieve effective pertur-
bations on GNN models without performance dropping compared with its data
augmentation counterparts. This is because data augmentation 1) makes com-
plex perturbation in the graph space, so it is hard to mimic its effect in the
model parameter space with a fixed noise distribution, and 2) has different dis-
turbances even on the same nodes between two views owning to the random-
ness. Motivated by this, we propose a novel model perturbation framework –
PERTURBGCL to pre-train GNN encoders. We focus on perturbing two key op-
erations in a GNN, including message propagation and transformation. Specifi-
cally, we propose weightPrune to create a dynamic perturbed model to contrast
with the target one by pruning its transformation weights according to their mag-
nitudes. Contrasting the two models will lead to adaptive mining of the per-
turbation distribution from the data. Furthermore, we present randMP to dis-
turb the steps of message propagation in two contrastive models. By randomly
choosing the propagation steps during training, it helps to increase local vari-
ances of nodes between the contrastive views. Despite the simplicity, coupling
the two strategies together enable us to perform effective contrastive learning on
graphs with model perturbation. We conduct extensive experiments on 15 bench-
marks. The results demonstrate the superiority of PERTURBGCL: it can achieve
competitive results against strong baselines across both node-level and graph-
level tasks, while requiring shorter computation time. The code is available at
https://anonymous.4open.science/r/PerturbGCL-F17D.

1 INTRODUCTION

Graph neural networks (GNN) (Kipf & Welling, 2016a; Hamilton et al., 2017; Gilmer et al., 2017)
have become the de facto standard to model graph-structured data, such as social networks (Li
& Goldwasser, 2019), molecules (Duvenaud et al., 2015), and knowledge graphs (Arora, 2020).
Nevertheless, GNNs require task-specific labels to supervise the training, which is impractical in
many scenarios where annotating graphs is challenging and expensive (Sun et al., 2019). Therefore,
increasing efforts (Hou et al., 2022; Veličković et al., 2018; Hassani & Khasahmadi, 2020; Thakoor
et al., 2022) have been made to train GNNs in an unsupervised fashion, so that the pre-trained model
or learned representations can be directly applied to different downstream tasks.

Recently, graph contrastive learning (GCL) becomes the state-of-the-art approach for both graph-
level (You et al., 2020; 2021; Suresh et al., 2021; Xu et al., 2021) and node-level (Qiu et al., 2020;
Zhu et al., 2021b; Bielak et al., 2021; Thakoor et al., 2022) tasks. The general idea of GCL is to
create two views of the original input using data augmentation (Jin et al., 2020), and then encode
them with two GNN branches that share the same architectures and weights (You et al., 2020). Then,
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the model is optimized to maximize the mutual information between the two encoded representations
according to contrastive objectives, such as InfoNCE (Oord et al., 2018) or Barlow Twins (Zbontar
et al., 2021). As such, the performance of GCL mainly relies on designing high quality contrastive
views (Zhang et al., 2021). Recently, intensive studies (You et al., 2020; Jin et al., 2020; Han et al.,
2022) has been devoted to exploring effective augmentation strategies for graph data.

Despite their success, finding desirable augmentations requires cumbersome efforts, since the opti-
mal augmentations are domain-specific and vary from graph to graph (You et al., 2020; Yin et al.,
2022). To tackle this problem, SimGRACE (Xia et al., 2022) introduced the idea of model perturba-
tion. Instead of searching for the optimal combination among perturbing nodes, edges or attributes in
the graph space, SimGRACE conducts perturbation in a unified parameter space by adding Gaussian
noise to model weights. However, we observe that SimGRACE may lead to sub-optimal represen-
tations compared with its data augmentation counterparts because of two reasons. Firstly, the data
augmentation in the graph space is rather complicated and beyond Gaussian distribution. As a result,
the weight perturbation based on Gaussian noises cannot achieve similar effects as data perturbation
on representation learning (as illustrated in Section 2.2) . Secondly, the weight perturbation does not
consider local variances among different nodes in a graph, since the perturbation is data-agnostic.
Therefore, it still remains an important yet unsolved challenge to develop effective model pertur-
bation framework for GCL, so that it can produce effective representations on both node and graph
learning tasks in a more efficient manner.

To tackle these challenges, in this work, we propose a novel framework – PerturbGCL to train GNN
encoders via model perturbation. Different from SimGRACE (Xia et al., 2022) that only focuses
on weight perturbation, we make one step further to disturb the message passing (MP) of GNNs,
since it allows to provide local disturbances between contrastive views. Specifically, we present
weightPrune to construct a perturbed model by pruning the transformation weights of the target one.
Unlike the Gaussian noise in SimGRACE (Xia et al., 2022), the pruned model will co-evolve with
the target GNNs, leading to an adaptive mining of the noise perturbation from the data, i.e., data-
driven. Furthermore, we propose randMP to offer local disturbances on nodes among contrastive
views. It works by conducting k times of message propagation steps in each contrastive model,
where k is randomly sampled on-the-fly. Informally, performing MP k times can be thought of as
conducting convolution on the anchor node’s k-hops of neighbors (Gao et al., 2018). On this basis,
we can learn diverged but correlated representations from the two contrastive models with different
k values due to the homophily theory (Altenburger & Ugander, 2018). Coupling the two strategies
together yields a principled model perturbation solution tailored for GCL, whose effectiveness and
efficiency have been empirically verified through our extensive experiments. We summarize our
main contributions as follows:

• We introduce Perturbed Graph Contrastive Learning (PerturbGCL), a principled contrastive learn-
ing method on graphs that works by perturbing GNN architectures. PerturbGCL is flexible and
easy to implement. To the best of our knowledge, PerturbGCL is the first model perturbation work
that can achieve promising results on both node and graph learning tasks.

• PerturbGCL innovates to perturb GNN architectures from both the message passing and model
weight perspectives via two effective perturbation strategies: randMP and weightPrune. By ap-
plying the two strategies jointly in contrastive models, PerturbGCL can be learned to mimic the
effect of data augmentation from the model perturbation aspect.

• Extensive experiments across 15 benchmark datasets demonstrate the superiority of our proposal.
Specifically, PerturbGCL can outperform state-of-the-art baselines without using data augmenta-
tion across two evaluation scenarios. Moreover, PerturbGCL is easy to optimize and runs generally
faster than the strong GCL baselines.

2 METHODOLOGY

2.1 NOTATIONS AND PRELIMINARIES

Notations. Let G = (V, E ,X) be an undirected graph, where V is the set of nodes and E is the set
of edges. X ∈ R|V|×F is the node feature matrix where the i-th row of X denote the F -dimensional
feature vector of the i-th node in V . We use fw denote the mapping function that encodes each node
v ∈ G into a D-dimensional representation hv ∈ RD.
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Graph Neural Networks. To learn representations on graph data, we use graph neural networks
(GNN) (Kipf & Welling, 2016a; Hamilton et al., 2017; Gilmer et al., 2017) as the encoder fw.
Without loss of generality, we present GNN as a message passing network:

h(l)
v = σ(a(l−1)

v Wl), a(l−1)
v = g(l−1)(h(l−1)

v , {h(l−1)
u : u ∈ Nv}), (1)

where h(l)
v ∈ RD is the intermediate representation of node v at the l-the layer, Nv denotes the direct

neighbors of node v. We use g to denote the message propagation (MP) function, which updates
node representations by integrating its neighbors with a transformation function (Wu et al., 2019).
Wl ∈ RD×D is the transformation weight matrix and σ is the activation function, such as ReLU.

We often use the final layer’s output as node-level representations, i.e., hv = hL
v where L is the

number of layers in a GNN. To get the graph-level representation hG ∈ RD for graph G, we further
aggregate all node-level representations in a graph via a readout function:

hG = READOUT({hL
v : v ∈ V}), zG = h(hG) = MLP(hG). (2)

Here READOUT(·) can be the simple average pooling function or more sophisticated ones (Ying
et al., 2018; Gao & Ji, 2019). h(·) is the projection head, and zG ∈ RD denotes the embedding
towards loss estimation. In the development of our method, we follow the existing graph con-
trastive learning practices and consider three state-of-the-art GNNs: GCN (Kipf & Welling, 2016a),
GIN (Xu et al., 2018), and ResGCN (Chen et al., 2019).

Graph Contrastive Learning. Graph contrastive learning (GCL) (You et al., 2020) has become
an state-of-the-art approach for pre-training GNNs without ground-truth labels (Liu et al., 2021b;a).
Unlike reconstruction-based methods (Perozzi et al., 2014; Kipf & Welling, 2016b), GCL is built
upon a contrastive objective between the so-called positive pairs and negative pairs generated from
the original data. Formally, given an anchor node v, let (zv, z+v ) denote the representations of
positive pairs and (zv, z

−
v ) be the negative pairs. The contrastive loss could be defined as:

LCL =
1

|V |
∑
v∈V

− log
exp(sim(zv, z

+
v )/τ)

exp(sim(zv, z
+
v )/τ) +

∑
u∈V,u̸=v exp(sim(zv, z

−
u )/τ)

, (3)

where τ is the temperature parameter, sim(·, ·) denotes the similarity function. By minimizing Eq. 3,
the GNN encoder will be trained to enforce the similarity of the positive pairs while enlarging the dis-
tance of negative pairs in the hidden space. It is also worth noting that some GCL variants (Thakoor
et al., 2022; Bielak et al., 2022) do not rely on negative samples. The key question in contrastive
learning is how to generate effective positive (or negative) pairs. To this end, graph augmentation
has been adopted as the golden rule in GCL (You et al., 2020; Jin et al., 2020). Typical graph
augmentation techniques include edge perturbation, node masking and attribute masking.

2.2 THE PROPOSED PERTURBGCL FRAMEWORK

� Motivation: How to perform model perturbation on GCL? Given a graph G = (A,X)
where A is the adjacency matrix. For illustration purposes, we consider the mapping function
fw(A,X;W) with one simple GCN (Wu et al., 2019) layer without activation function. Then, the
hidden representation is computed by fw(A,X;W) = g(A,X)W, where W is the weight matrix
and g(·, ·) is the message propagation operation defined in Eq. 1. g(A,X) = D̃− 1

2 (A+IG)D̃
− 1

2Xv ,
where D̃ii =

∑
j(A+IG)ij is the degree matrix and IG is the identity matrix. An intuitive solution

is adding Gaussian noise to the model weight and derive two contrastive views f ′
w(A,X;W) and

f ′′
w(A,X;W), as done in SimGRACE (Xia et al., 2022):

f ′
w(A,X;W) = g(A,X)W,

f ′′
w(A,X; p(W)) = g(A,X)p(W),

(4)

where p(W) = W + η∆W is the perturbation function on model weight, and ∆W ∼ N (0, δ2)
represents the noise term sampled from Gaussian distribution with zero mean and variance δ2, and
η is a hyperparameter to scale the magnitude of the perturbation. Since the learning task is to
minimize the distance between the two views, SimGRACE trains the model so that it is robust to
the Gaussian noise in the weight.
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Figure 1: The alignment and uniformity performance (↓) of SimGRACE and augmentation-based
GCL method (Thakoor et al., 2022) on the same perturbed graphs. Black circles ( ) indicate the
results of baselines. Orange circles ( ) represent the results of SimGRACE. SimGRACE performs
worse than standard GCL methods in modeling common perturbations achieved by data augmenta-
tion. Detailed experimental setups are listed in Appendix B.
However, we found that the contrastive views created by SimGRACE could be sub-optimal com-
pared with its data-augmentation counterparts (see Figure 1). To measure the quality of representa-
tions learned by GCL models, we consider two popular metrics: alignment and uniformity (Wang &
Isola, 2020) expressed as:

Lalign(fw;α) ≜ E(x,y)∼Ppos [||hx − hy||α2 ], α > 0

Luniform(fw; t) ≜ logE
(x,y)

i.i.d∼Pdata
[e−t||hx−hy||22 ]. t > 0

(5)

Ppos is the distribution of positive pairs, i.e., augmentations of the same sample, Pdata is the data
distribution. Lalign is used to measure if positive samples stay close in the hidden space. Luniform
is used to measure if random samples are scattered on the hypersphere of hidden space. In our
experiments, we set α = t = 2 following (Xia et al., 2022).

Figure 1 reports the test results of SimGRACE and augmentation-based GCL methods (Zhang et al.,
2021; Thakoor et al., 2022; Zhu et al., 2020) on the same perturbed graphs created by random
edge and attribute masking. Black circles ( ) and rrange circles ( ) represent the performance of
baselines and SimGRACE, respectively. As can be observed, SimGRACE performs worse than three
baselines across different datasets with a great margin. These results shed light on the bottleneck
of SimGRACE in capturing common perturbations achieved by data augmentation. This is because
SimGRACE is limited by the Gaussian noise and cannot handle perturbations in graph space. We
thus ask: Can we design more advanced model perturbation strategies so that they can achieve
similar functions as data augmentation done in GCL?

What is behind data augmentation in GCL? To answer this question, we start by analyzing the
working mechanism behind the standard GCL framework. Let T (·) and q(·) denote augmentation
functions on topology structure and node attributes, respectively. The two contrastive representations
f ′
w(A,X;W) and f ′′

w(A,X;W) of standard GCL (You et al., 2020) are defined as:

f ′
w(A,X;W) = g(T ′(A), q′(X))W,

f ′′
w(A,X;W) = g(T ′′(A), q′′(X))W.

(6)

That is, standard GCL framework learns to be robust to small disturbances (created by (T ′(·), q′(·))
and ((T ′′(·), q′′(·))) on the graph. We can easily observe two major properties of data augmentation
as follows. ❶ It can disturb different nodes in a graph (different graphs in a graph set) differently.
This is because T (·) and q(·) are random functions, such as edge masking, so they can have distinct
effects even for the same input. ❷ The perturbation distribution incurred by data augmentation
(e.g., (T ′(·), q′(·))) is complicated and often beyond Gaussian noise. As analyzed in Figure 1,
although SimGRACE is trained to be robust to Gaussian noise to some extent, it cannot handle
the perturbation in the graph space well. These properties motivate us to design tailored model
perturbation strategies from the two aspects.

� Our PerturbGCL proposal. To birdge the gap, we propose a novel model perturbation frame-
work called PerturbGCL. Figure 2 provide the overview our framework. In this work, we build
PerturbGCL upon the GraphCL pipeline (You et al., 2020), and follows its major components, such
as two GNN branches and a non-linear projection head. The main difference is that GraphCL aug-
ments the input graph to get two views and then process them with two branches that share the same
GNN architecture and weights, while PerturbGCL processes the original input graph with two non-
symmetric GNN branches. One branch uses the original GNN model fw, while the other branch
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Figure 2: The overview of the proposed PerturbGCL framework. The original graph is fed into two
asymmetric GNN branches: one is the target encoder fw to be trained, and the other is the perturbed
version f ′

w that is pruned from the former online. The two branches share weights for their non-
pruned parameters. Either branch has independent message propagation (MP) operations perturbed
by a random number, i.e., k, to disturb nodes locally. Since the pruned branch is always obtained
and updated from the latest target model, the two branches will co-evolve during training.

disturbs the message propagation process and model weights of fw. We conduct perturbation on
two major GNN operations, including message passing (MP) and transformation. On this basis,
we introduce the following simple yet effective perturbation strategies: randMP and weightPrune,
towards effective model augmentation for GNN architectures.

Strategy #1: weightPrune. Recently, model pruning has attracted increasing attention for model
compression thanks to the popularity of the lottery ticket hypothesis (Frankle & Carbin, 2018). Work
in (Chen et al., 2021) found that GNN can be pruned to a sparse sub-network without significant per-
formance drop using rewinding techniques. These observations indicate the latent of pruning as a
practical perturbation approach to GNN’s weights. Inspired by this, we propose weightPrune, which
creates the perturbed branch by pruning the model parameters of the target encoder. Specifically,
assuming W denote the weights of the target branch, mw be the mask of the pruned branch, which
has the same size as W. At each iteration, we prune the target branch according to a pre-defined
prune ratio s according to the magnitude of weight values, i.e., masking weights out if their magni-
tudes are ranked below s. By changing s, we can control the distortion degree of the target branch to
a certain extent. After that, the target and perturbed branches will use W and W⊙mw respectively
as model weights to generate representations, which are then fed into the contrastive loss. Since
the mask indicator mw is continuously updated from the latest target model, the two branches will
co-evolve during training.

Strategy #2: randMP. Message passing is another critical component of the GNN architecture,
since it offers the flexibility to aggregate features from multi-hop neighbors. Performing MP for k
times over the graph G is equivalent to updating node v’s representation based on its k-hop local
subgraph. In light of this, k could be naturally regarded as a perturbation factor, where different
k values generate diverse but semantically correlated representations for the same node. To im-
plement randMP, we will randomly sample two k values at each iteration: one is for the target
branch (i.e., k′) and the other for the perturbed branch (i.e., k′′). Formally, if we assume g(A,X) =

D̃− 1
2 (A + IG)D̃

− 1
2Xv , performing MP k times gives g(A,X)k = (D̃− 1

2 (A + IG)D̃
− 1

2 )kXv . In
experiments, we consider sampling k during the training because it may enforce the GNN encoder
to learn generable representations invariant to different combinations of local enclosing graphs.

To sum up, different from existing methods (Xia et al., 2022; Thakoor et al., 2022) that disturb
model weights with Gaussian noise, we suggest a principled approach to effectively perturb GNN
architectures from their message propagation and feature transformation perspectives, via two sim-
ple perturbation techniques: randMP and weightPrune. randMP aims to map the same input graph
into two semantically similar representations by conducting a random number of message passing
steps. Meanwhile, weightPrune targets to increase the diversity of two representations via model
pruning. Combining the two strategies enables us to spot the sweet point between the two view
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representations (Tian et al., 2020), i.e., correlated but diverged enough. The complete optimization
procedure of our model is outlined in Algorithm 1 and 2 in Appendix.

2.3 MORE DISCUSSIONS ON PERTURBGCL

PerturbGCL is complementary to other GCL efforts. We focus on training GCL by only using
model perturbation. It can be easily combined with existing contrastive learning advances, such as
mature graph augmentation techniques (You et al., 2020) and the negative-sample free contrastive
loss objectives (Bielak et al., 2022; Thakoor et al., 2022), as we will show in Section 3.4.

Computational complexity analysis. In addition to saving a lot of time in searching for the optimal
data augmentation strategies, we analyze the complexity of PerturbGCL. Given a graph G = (V, E)
and the GNN encoder fw. The time complexity for most popular GNN architectures (Kipf &
Welling, 2016a; Veličković et al., 2017; Gilmer et al., 2017) is O(|E| + |V|), where O(|E|) and
O(|V|) are mainly caused by the message propagation and feature transformation operations, respec-
tively. PerturbGCL performs two encoder computations per update step (one for each GNN branch)
plus a node-level projection head. Assuming that the backward pass to be approximately as costly as
a forward pass and ignoring the cost for weight pruning as it is small and negligible. Thus the total
time complexity per update step for PerturbGCL is 4Cencoder(K|E| + |V|s) + 2Chead(|V|) + Closs,
where C. are constants depending on architecture of the different components, K is the maximum
number of MP operations considered (e.g., K = 3), and s is the pruning ratio. It is worth noting that
although our model at most takes K times MP operations in forward pass, due to weight pruning
(e.g., s = 70%), the computation costs for feature transformation and backpropagation are signifi-
cantly lower than standard GCL methods. Therefore, the total running cost of PerturbGCL can be
further accelerated in practice. We empirically analyze the efficiency of our model in Section 3.5.

3 EXPERIMENTS

In this section, we evaluate the performance of PerturbGCL. Specifically, we first visualize the
weight distribution and the alignment between positive pairs in Section 3.1 to investigate what the
proposed two strategies actually do. Then we evaluate the effectiveness of PerturbGCL in node
classification with several benchmarks and SOTA baselines in Section 3.2. Next, we test the perfor-
mance of PerturbGCL in graph classification under both unsupervised and semi-supervised settings
in Section 3.3. After that, we evaluate the contributions of different components in Section 3.4,
as well as how it improves the efficiency of GCL against standard methods in Section 3.5. The
experiment setting and more experiments are summarized in Appendices A and E. Through the
experiments, the main observations are highlighted.

Figure 3: Visualization of weight distribution (from left to right: initial weights, PerturbGCL w/o.
weightPrune, and PerturbGCL) on Coauthor-Phy. The x-axis indicates weight values and y-axis
is the count. Obviously, the number of activated neurons after using weightPrune is significantly
smaller than others. It shows that weightPrune can regularize the model.

3.1 WHAT ARE weightPrune AND randMP DOING? A CASE STUDY

We visualize the weight distribution of PeruturbGCL during training in Figure 3 and Figure 8 (in
Appendix). It shows that ① by continuously pruning the target model along the training, weight-
Prune can regularize the target model progressively. From the weight histograms in Figure 3, we
can see that the bars around zero become higher and higher, which indicates more neurons are inac-
tivated in the end. This observation shows the regularization effect of weightPrune. Since effective
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Figure 4: The visualization of PerturbGCL w.r.t. different k values on the original graphs and the
perturbed graphs generated by data augmentation. The x-axis indicates propagation steps and y-
axis is the Lalign ↓. The gap between the blue and orange lines indicate the generalization ability.
Apparently, performing more MP steps will increase the diversity of two positive views since Lalign
increases. Sweet spots (i.e., minimum performance gap) exist across three scenarios.
Table 1: Test accuracy on benchmark datasets in terms of node classification. We report both mean
accuracy and standard deviation. A.R. denotes the averaged rank.

Method Cora PubMed Compute Photo CS Phy A.R. ↓

Supervised GCN 81.5 79.0 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16 8.33
GAT 83.0 ± 0.7 79.0 ± 0.3 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24 95.47 ± 0.15 8.00

Unsupervised

Raw Features 47.9 ± 0.4 69.1 ± 0.3 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00 14.33
DeepWalk 70.7 ± 0.6 74.3 ± 0.9 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15 13.67

GAE 71.5 ± 0.4 72.1 ± 0.5 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71 94.92 ± 0.07 12.50
DGI 82.3 ± 0.6 76.8 ± 0.6 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52 11.00

MVGRL 83.5 ± 0.4 80.1 ± 0.7 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03 7.50
GRACE 81.9 ± 0.4 80.6 ± 0.4 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 − 6.40

GCA 83.4 ± 0.3 80.3 ± 0.4 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01 95.68 ± 0.05 5.33
BGRL 81.8 ± 0.3 80.4 ± 0.5 89.68 ± 0.31 92.87 ± 0.27 93.21 ± 0.18 95.56 ± 0.12 4.83
GBT − − 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17 7.00

InfoGCL 83.5 ± 0.3 79.1 ± 0.2 − − − − 6.00
CCA-SSG 84.2 ± 0.4 81.6 ± 0.4 88.74 ± 0.28 93.14 ± 0.14 93.31 ± 0.22 95.38 ± 0.06 3.17
AFGRL 82.3 ± 0.4 79.7 ± 0.2 89.88 ± 0.33 93.22 ± 0.28 93.27 ± 0.17 95.69 ± 0.10 3.83

SimGRACE 78.5 ± 0.3 79.3 ± 0.5 86.42 ± 0.35 91.55 ± 0.22 92.37 ± 0.33 94.37 ± 0.15 10.67

PerturbGCL 83.3 ± 0.5 82.10 ± 0.37 88.45 ± 0.77 93.62 ± 0.40 94.18 ± 0.09 95.85 ± 0.08 2.33

regularization can improve the generalization ability of neural networks (Scholkopf & Smola, 2018),
we believe that why the proposed weightPrune can improve the performance.

To investigate the effect of randMP, we report the impacts of different k values on PerturbGCL in
terms of the alignment between positive views. From Figure 4, we observe that ② randMP can
improve the diversity of contrastive views when k increases, and sweet points widely exist
across three datasets. In Figure 4, with the increase of k, the generalization gap tends to first
decrease to the sweet points and then increase a little bit. It validates the effect of randMP in
generating correlated but diverged views. On the other hand, it indicates the potential of randMP to
improve the generalization ability, i.e., these sweet points.

3.2 CAN PERTURBGCL PERFORM WELL ON NODE CLASSSIFICATION TASK?

We first examine the effectiveness of PerturbGCL in node classification. Results of 15 baseline
methods across 6 benchmark datasets are collected in Table 1. We make the following observa-
tions: ③ PerturbGCL can achieve better node classification results than SOTA GCL methods
without using data augmentation. From Table 1, PerturbGCL gains 4 best performances among 6
evaluation scenarios. On average, it ranks 2.33 among 13 augmentation-based baselines including
strong methods, such as BGRL and CCA-SSG, which indicates the power of model perturbation
based contrastive learning. Meanwhile, ④ PerturbGCL outperforms the model perturbation
baseline – SimGRACE with great margins. Among 6 datasets, SimGRACE loses to PerturbGCL
in all cases. Specifically, PerturbGCL improves SimGRACE 6.11%, 3.53%, 2.34%, 2.26%, 1.95%,
and 1.56% on Cora, PubMed, Computer, Photo, CS, and Phy, respectively. This result is in line with
our analysis in Section 2.2.

3.3 CAN PERTURBGCL GENERALIZE WELL TO GRAPH CLASSIFICATION TASK?

To validate the effectiveness of PerturbGCL on graph classification, we compare it with state-of-
the-art graph-level GCL methods on different datasets. Table 2 and Table 9 (in Appendix) report
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Table 2: Test accuracy on benchmark datasets in TUdatasets in terms of the unsupervised setting for
graph classification. − means that results are not available in published papers.

Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R. ↓
GL − − − 81.66± 2.11 − 77.34± 0.18 41.01± 0.17 65.87± 0.98 9.50
WL 80.01± 0.50 72.92± 0.56 − 80.72± 3.00 − 68.82± 0.41 46.06± 0.21 72.30± 3.44 7.50
DGK 80.31± 0.46 73.30± 0.82 − 87.44± 2.72 − 78.04± 0.39 41.27± 0.18 66.96± 0.56 6.50

node2vec 54.89± 1.61 57.49± 3.57 − 72.63± 10.20 − − − − 10.67
sub2vec 52.84± 1.47 53.03± 5.55 − 61.05± 15.80 − 71.48± 0.41 36.68± 0.42 55.26± 1.54 11.50
graph2vec 73.22± 1.81 73.30± 2.05 − 83.15± 9.25 − 75.78± 1.03 47.86± 0.26 71.10± 0.54 8.00
MVGRL − − − 75.40± 7.80 − 82.00± 1.10 − 63.60± 4.20 9.67
InfoGraph 76.20± 1.06 74.44± 0.31 72.85± 1.78 89.01± 1.13 70.65± 1.13 89.53± 0.84 55.99± 0.28 73.03± 0.87 3.63
GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.34 71.36± 1.15 89.53± 0.84 55.99± 0.28 71.14± 0.44 4.13
JOAO 78.07± 0.47 74.55± 0.41 77.32± 0.54 87.35± 1.02 69.50± 0.36 85.29± 1.35 55.74± 0.63 70.21± 3.08 5.63
JOAOv2 78.36± 0.53 74.07± 1.10 77.40± 1.15 87.67± 0.79 69.33± 0.34 86.42± 1.45 56.03± 0.27 70.83± 0.25 4.75
SimGRACE 79.12± 0.44 75.35± 0.09 77.44± 1.11 89.01± 1.31 71.72± 0.82 89.51± 0.89 55.91± 0.34 71.30± 0.77 3.13

PerturbGCL 80.24± 0.45 76.08± 0.30 78.33± 0.37 89.97± 0.50 75.06± 0.87 88.98± 0.67 55.78± 0.72 74.14± 0.50 2.13

Photo CS Phy
50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Noise
w/o MP
w/o WP
PerturbGCL

PubMed Photo CS
50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Barlow Twins
InfoNCE
Bootstrap

20 40 60 80 100

Epochs

7.75

8.00

8.25

8.50

8.75

9.00

9.25

9.50

Tr
in

in
g 

Lo
ss

Coauthor-CS

s = 0.5
s = 0.7
s = 0.9

Figure 5: Left: Ablation study of PerturbGCL. Middle: The impact of different contrastive objec-
tives. Right: Empirical training curves of PerturbGCL with different s values.

the results on unsueprvised and semi-supervised settings, respectively. We observed that ⑤ Pertur-
bGCL generally performs better than other baselines across two graph learning tasks. From
the unsupervised setting (See Table 2), PerturbGCL achieves the best (or comparable best) results
on 6 of 8 datasets, and obtain substantial improvements on COLLAB and IMDB-B datasets. In
the semi-supervised setting (See Table 9 in Appendix), PerturbGCL generally performs better than
other baselines across 7 comparisons and always ranks top three on all the datasets. These results
demonstrate the effectiveness of PerturbGCL on graph learning task.

3.4 ABLATION STUDY

We investigate the contributions of different components in PerturbGCL. Figure 5 and Figure 9 in
Appendix report the results on graph and node datasets, respectively. We observe that ⑥ Pertur-
bGCL benefits from the combination of randMP with weightPrune. From the figures, Pertur-
bGCL consistently outperforms two variants (i.e., w/o MP and w/o WP) in all cases, which indicates
the reciprocal effects of using randMP and weightPrune together. Moreover, ⑦ replacing weight-
Prune with Gaussian noise, PerturbGCL drops significantly. In both node and graph scenarios,
PerturbGCL outperforms the ”noise” variant with a great margin. It verifies the effectiveness of the
proposed weightPrune strategy.

We also test the results of PerturbGCL under different contrastive objectives, such as Barlow
Twins (Bielak et al., 2021), Bootstrap (Thakoor et al., 2022), and InfoNCE (You et al., 2020) (Please
refer to Appendix C for details). From Figure 5 (middle), we observe that ⑧ PerturbGCL performs
generally better on InfoNCE and Barlow Twins objectives. Given that InfoNCE is standard
contrastive loss and Barlow Twins is negative-sample free, PerturbGCL is ready to be applied on
scenarios with informative negative sample or without negative samples by using different losses.

3.5 CAN PERTURBGCL IMPROVE THE TRAINING EFFICIENCY OF GCL?

We compare the proposed PerturbGCL with strong GCL baselines in terms of the training costs in
Table 3 and report the optimization curves in Figure 5 (right panel). Experimental configurations
are listed in Appendix D. We observed that ⑨ using pure model perturbation, PerturbGCL is
training efficient. From Table 3, we can see that PerturbGCL runs significantly faster per epoch
than strong baselines in general, and the performance gap is particularly evident in graph datasets.
Besides, PerturbGCL can converge within one hundred epochs in practice as shown in Figure 5
(Right). Thus, the total training time of PerturbGCL could be further reduced.
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Table 3: Running time per epoch (in seconds). Baseline indicates BGRL and GraphCL for node and
graph classification, respectively. All the methods are evaluated on GeForce RTX 2080 Ti GPUs.

Node Benchmark Graph Benchmark

PubMed Computer Photo CS NCI1 COLLAB RDT-B RDT-M2K

Baseline 0.14 0.16 0.08 0.21 4.02 10.84 38.35 80.79
PerturbGCL 0.10 0.09 0.05 0.17 1.42 3.01 6.21 12.80
Speedup (vs Baseline) 1.40x 1.77x 1.60x 1.23x 2.83x 3.60x 6.17x 6.31x

3.6 FURTHER ANALYSIS

We finally investigate the sensitivity of PerturbGCL w.r.t. the propagation degree K and prune ratio
s in Figure 10 (Left) of Appendix, the impact of graph augmentation on PerturbGCL in Figure 10
(Middle), and the learning capacity of PerturbGCL in Figure 10 (Right). We can observe that ⑩
PerturbGCL performs stably when K ∈ [1, 2, 3, 4, 5] and s ∈ [0.7, 0.9]. In Figure 10 left, the
performance of PerturbGCL when K = 0.9 (or 0.7) is consistently better than others. PerturbGCL
is complementary with advanced graph augmentation. From Figure 10 (Middle), by feeding the
augmented graphs as input, PerturbGCL can be further improved. However, the trade-off is that the
improvement is not huge but the time to search optimal augmentation strategies is costing. Although
PerturbGCL is trained based on original graphs, it can generalize to perturbed graphs well.
As shown in Figure 10 (Right), PerturbGCL has lower Lalign and Luniform values than SimGRACE
and strong GCL baseline, which indicates the effectiveness of the proposed model.

4 RELATED WORK

We briefly introduce some related graph contrastive learning methods (Xie et al., 2022) and refer
readers to (Zhou et al., 2020) for a comprehensive review of graph neural networks.

Graph contrastive learning with data augmentation. Similar to contrastive learning on im-
ages (Chen et al., 2020), data augmentation is crucial to the success of contrastive learning on
graphs (GCL). Recently there has been steady progress (You et al., 2020; 2021; Qiu et al., 2020;
Lee et al., 2022; Luo et al., 2022) in designing or identifying informative augmentation strategies to
boost the performance of GCL. GraphCL (You et al., 2020) introduces four augmentation prototypes
for graphs, including node dropping, edge perturbation, attribute masking, and subgraph sampling.
MoCL (Sun et al., 2021) and G-Mixup (Han et al., 2022) propose to utilize domain knowledge
such as bioisosteres and graphon to aid augmentation. AutoGCL (Yin et al., 2022), JOAO (You
et al., 2021), and GPA (Zhang et al., 2022) suggest to leverage extra AutoML techniques (Waring
et al., 2020) to free human labor on augmentation choices. Unlike this line of research, we focus on
training GCL methods without explicitly graph augmentation.

Graph contrastive learning without data augmentation. To eliminate the influence of graph aug-
mentation on GCL, AFGRL (Lee et al., 2022) suggests sampling nodes that share similar semantic
information in the hidden space as positive samples. However, it requires non-negligible clustering
efforts to spot positive pairs in the learning process. SimGRACE (Xia et al., 2022) proposes to train
GCL by disturbing the model weight using Gaussian noise. However, SimGRACE could limit appli-
cations beyond Gaussian distribution, as illustrated in Figure 1. In this work, we introduce a tailored
model perturbation framework for GNN encoders without constraining the noise distribution.

5 CONCLUSION

In this work, we explore how to perform contrastive learning on graphs without using data aug-
mentation, and propose a principled framework – PerturbGCL, which is built upon pure model
perturbations. Specifically, motivated by the fact that GNN can be divided into message propagation
and feature transformation operations, we develop two tailored perturbation strategies: randMP and
weightPrune, to effectively disturb GNN’s two crucial operations accordingly. We build connections
between our model perturbation strategies and well-established graph augmentation techniques to
understand the working mechanism of PerturbGCL. Through extensive experiments across multi-
ple datasets and different graph learning tasks, we show that PerturbGCL can achieve competitive
results against strong baselines, while requiring substantially shorter computation time for training.
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A EXPERIMENT SETUP

In this section, we introduce the datasets used in our experiments. Specifically, we adopt the follow-
ing 6 popular node-level datasets and summarize their statistics in Table 4.

• Cora, and PubMed: They are two widely used citation network datasets (Sen et al., 2008).
Nodes represent documents and edges denote citation links. Each node has a sparse bag-
of-the-words feature vectors. Labels are defined as the academic topics.

• Amazon-Computers and Amazon-Photo: They are two networks of co-purchase relation-
ships constructed from Amazon (McAuley et al., 2015). Nodes indicate goods and edges
represent the co-purchase relationships of two products. Each node has a sparse bag-of-
words feature encoding products reviews and is labeled with its category. They are widely
used for node classification task. Nodes represent authors and edges indicate co-authorship
relationships. Each node has a sparse bag-of-words feature based on paper keywords of the
author. The task is to predict the most active research field of authors.

• Coauthor-CS and Coauthor-Physics: They are two academic networks, which represent
co-authorship graphs based on the Microsoft Academic Graph from the KDD Cup 2016
challenge (Sinha et al., 2015).

Moreover, we also consider 9 graph-level benchmark datasets to verity the effectiveness of Pertur-
bGCL on graph-learning task. Specifically, we use 5 social networks (COLLAB, REDDIT-BINARY,
REDDIT-MULTI-5K, IMDB-BINARY, and GITHUB), and 2 molecules networks (NCI1 and MU-
TAG), and 2 bioinformatics networks (PROTEINS and DD) from the benchmark TUDdataset (Mor-
ris et al., 2020). Table 5 lists their statistics.

Table 4: Dataset statistics of node-level benchmarks.

Data # Nodes # Edges # Features Split ratio # Classes
Cora 2, 708 5, 429 1, 433 85/5/15 7

PubMed 19, 717 44, 338 500 85/5/15 3
Amazon-Computers 13, 752 245, 861 767 − 10

Amazon-Photo 7, 650 119, 081 745 − 8
Coauthor-CS 18, 333 81, 894 6, 805 − 15

Coauthor-Physics 34, 493 247, 962 8, 415 − 5

A.1 SETUP FOR NODE CLASSIFICATION

Dataset. We use 2 Planetoid graphs (Cora and PubMed), and 4 widely used datasets (Shchur et al.,
2018) (Amazon-Computers, Amazon-Photo, Coauthor-CS, and Coauthor-Physics) for experiments.
For Cora and PubMed, we follow the common semi-supervised practice (Kipf & Welling, 2016a)
to generate train/val/test data splits without any modifications. For Amazon-Computers, Amazon-
Photo, Coauthor-CS and Coauthor-Physics, since there are no data splits available, so similar to
BGRL (Thakoor et al., 2022) and GBT (Bielak et al., 2022), we generate 20 random train/val/test
splits (10%/10%/80%).

Competitors. To have a rigorous and comprehensive comparison with state-of-the-art methods,
we compare PerturbGCL with 2 classical unsupervised models: DeepWalk (Perozzi et al., 2014)
and GAE (Kipf & Welling, 2016b), 9 standard self-supervised models, DGI (Veličković et al.,
2018), GRACE (Zhu et al., 2020), MVGRL (Hassani & Khasahmadi, 2020), GCA (Zhu et al.,
2021b), BGRL (Thakoor et al., 2022), GBT (Bielak et al., 2022), InforGCL (Xu et al., 2021),
CCA-SSG (Zhang et al., 2021), AFGRL (Lee et al., 2021), and one model perturbation method
– SimGRACE (Xia et al., 2022). We also compare with supervised learning models including
GCN (Kipf & Welling, 2016a) and GAT (Veličković et al., 2017). The results of baselines are
quoted from (Zhang et al., 2021; Xu et al., 2021; Xia et al., 2022) if not specified.

Evaluation protocol. We follow the popular linear evaluation scheme to evaluate the performance
of unsupervised models. Specifically, we first pre-train the model on the given graph without using
ground-truth labels. Then, we freeze the parameters of the encoder and use it to generate node rep-
resentations. After that, the generated node representations would be fed into a linear classification,
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Table 5: Dataset statistics of graph-level benchmarks.
| G | Avg.Nodes Avg.Edges #Label

NCI1 4, 110 29.87 32.30 2
PROTEINS 1, 113 39.06 72.82 2

DD 1, 178 284.32 715.66 2
MUTAG 188 17.93 19.79 2
COLLAB 5, 000 74.49 2, 457.78 3

IMDB-BINARY 1, 000 19.77 96.53 2
REDDIT-BINARY 2, 000 429.63 497.75 2

REDDIT-MULTI-5K 4, 999 508.52 594.87 5
GITHUB 12, 725 113.79 234.64 2

Table 6: Hyperparameters of PerturbGCL on node classification. We use GCN (Kipf & Welling,
2016a) as the backbone encoder.

Cora PubMed Computer Photo CS Phy

# layers 2 2 2 2 2 2
hidden dim 512 512 512 512 512 512
learning rate 0.005 0.0005 0.001 0.00001 0.00001 0.00001
propagation step 3 3 3 2 3 3
pruning ratio 0.5 0.7 0.7 0.9 0.9 0.9

i.e., a simple logistic regression model, to make the prediction for each node. It is worth noting that
only nodes in the training set are used as supervision when training the classifier, and we report the
accuracy results on testing nodes.

We implement PerturbGCL with PyTorch and use Adam optimizer to train the model. The graph
encoder fw is specified as a standard two-layer GCN model for all the datasets. We have two
hyperparameters (pruning ratio s and random propagation step K) to tune. For each dataset, we
search K ∈ [1, 2, 3] and s ∈ [0.5, 0.7, 0.9]. To avoid randomness, we report the mean accuracy
with a standard deviation through 10 random initialization. The detailed hyperparameter settings
are summarized in Table 6.

A.2 SETUP FOR UNSUPERVISED GRAPH CLASSIFICATION

Dataset. For the unsupervised graph classification task, we adopt 8 benchmark datasets (NCI1,
PROTEINS, DD, MUTAG, COLLAB, RDT-B, RDT-MSK, and IMDB-B) for experiments, follow-
ing (You et al., 2020). There are 20 epochs pre-training under the naive-strategy. After the

Competitors. We compare with the kernel-based methods like graphlet kernel (GL) (Sher-
vashidze et al., 2009), Weisfeiler-Lehman sub-tree kernel (WL) (Shervashidze et al., 2011), and
deep graph kernel (DGK) (Yanardag & Vishwanathan, 2015), and other unsupervised graph rep-
resentation meodels like node2vec (Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018),
graph2vec (Narayanan et al., 2017), as well as the state-of-the-art GCL methods like MVGRL (Has-
sani & Khasahmadi, 2020), InforGraph (Sun et al., 2019), GraphCL (You et al., 2020), JOAO (You
et al., 2021), and SimGRACE (Xia et al., 2022).

Evaluation protocol. Following GraphCL (You et al., 2020), contrastively train the representation
model using unlabeled graph data, and then fix the representation model and train a downstream
classifier using labeled data. Specifically, we adopt SVM as the classifier and perform 10-fold
cross validation. For each fold, we employ 90% of the data as the labeled data for training and the
remaining 10% as the labeled testing data. To avoid randomness, we repeatedly run experiments for
5 times and report the averaged results.

Following GraphCL (You et al., 2020), we use GIN (Xu et al., 2018) as the GNN backbone, and
also search the best K and s from {1, 2, 3} and {0.5, 0.7, 0.9}, respectively. Table 7 reports the
parameter configurations for all datasets.
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Table 7: Hyperparameters of PerturbGCL on unsupervised graph classification. We use GIN (Xu
et al., 2018) as the backbone encoder.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

# layers 3 3 3 3 3 3 3 3
hidden dim 32 32 32 32 32 32 32 32
learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
propagation step 2 2 3 2 3 2 2 2
pruning ratio 0.9 0.7 0.9 0.7 0.9 0.9 0.5 0.5

Table 8: Hyperparameters of PerturbGCL on semi-supervised graph classification. We use Res-
GCN (Chen et al., 2019) as the backbone encoder.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K GITHUB

# layers 5 5 5 3 5 5 3 3
hidden dim 128 128 128 128 128 128 128 128
learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
propagation step 2 2 3 2 3 2 2 2
pruning ratio 0.5 0.7 0.9 0.7 0.9 0.7 0.7 0.7

A.3 SETUP FOR SEMI-SUPERVISED GRAPH CLASSIFICATION

Dataset. We perform semi-supervised graph classification task 7 popular benchmark datasets
(NCI1, PROTEINS, DD, COLLAB, RDT-B, RDT-M5K, and GITHUB) from TUDataset (Morris
et al., 2020). There are 100 epochs pre-training under the default setting.

Competitors. We compare with unsupervised graph representation meodels: GAE (Kipf & Welling,
2016b), Infomax (DGI) (Veličković et al., 2018), and ContextPred (Hu et al., 2019), and other state-
of-the-art GCL methods like InforGraph (Sun et al., 2019), GraphCL (You et al., 2020), JOAO (You
et al., 2021), and SimGRACE (Xia et al., 2022).

Evaluation protocol. We employ a 10-fold cross validation on each dataset. For each fold, we use
80% of the data as the unlabeled data, 10% as labeled training data, and 10% as labeled testing data.
For the augmentation only (Augmentations) experiments, we only perform 30 epochs of supervised
training with augmentations using labeled data.

Following GraphCL (You et al., 2020), we use ResGCN (Chen et al., 2019) as the GNN backbone,
and also search the best K and s from {1, 2, 3} and {0.5, 0.7, 0.9}, respectively. Table 8 reports the
parameter configurations for all datasets.

Algorithm 1 PerturbGCL on node level task

1: Input: Original graph G = (V, E ,X), GNN encoder fw(·) with weight W , projection head
h(·), the maximum propagation step K, and pruning ratio s

2: Initialize the encoder fw(·) and set mask indicator to ones.
3: for iterate 1, 2, ... times until convergence do
4: Sample the random propagation steps k′, k′′ from the uniform distribution U(1,K)
5: Conduct weight pruning to update the mask indicator mw

6: Compute the target representation hv according to 1 by performing k′ times of g()
7: Get zv = h(hv) according to 2
8: Compute the perturbed representation h+

v according to 1 by performing k′′ times of g() and
using masked weight W ⊙mw

9: Get z+v = h(hv)

10: define LCL = 1
|V |

∑
v∈V − log

exp(sim(zv,z
+
v )/τ)

exp(sim(zv,z
+
v )/τ)+

∑
u∈V,u ̸=v exp(sim(zv,z

−
u )/τ)

according to 3

11: Optimize fw(·), h(·) to minimize LCL

12: end for
13: return the pre-trained GNN encoder fw(·)
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Algorithm 2 PerturbGCL on graph level task

1: Input: Original graph G = (V, E ,X), GNN encoder fw(·) with weight W , projection head
h(·), the maximum propagation step K, and pruning ratio s

2: Initialize the encoder fw(·) and set mask indicator to ones.
3: for iterate 1, 2, ... times until convergence do
4: for sampling batches Gn from G, where n = 1, 2, ..., N do
5: Sample the random propagation steps k′, k′′ from the uniform distribution U(1,K)
6: Conduct weight pruning to update the mask indicator mw

7: Compute the target representation hv according to 1 by performing k′ times of g()
8: Get zG = READOUT(h(hv)v∈Gn) according to 2
9: Compute the perturbed representation h+

v according to 1 by performing k′′ times of g()
and using masked weight W ⊙mw

10: Get z+Gn
= READOUT(h(h+

v )v∈Gn
)

11: define LCL = 1
|G|

∑
Gn∈G − log

exp(sim(zGn ,z+
Gn

)/τ)

exp(sim(zGn ,z+
Gn

)/τ)+
∑

u∈G,u ̸=v exp(sim(zGn ,z−
u )/τ)

accord-

ing to 3
12: Optimize fw(·), p(·) to minimize LCL

13: end for
14: end for
15: return The pre-trained GNN encoder f(·)

B DETAILS FOR TOY EXAMPLE

To verify the limitation of SimGRACE (Xia et al., 2022) on handling perturbation created by data
augmentation. We select three popular data augmentation based baselines: GRACE (Zhu et al.,
2020), BGRL (Thakoor et al., 2022), and CCA-SSG (Zhang et al., 2021). To measure the qualify of
the representation models on learning representations for input data, we adopt the widely used align-
ment and uniformity metrics (Wang & Isola, 2020) for quantitative analysis. According to (Wang &
Isola, 2020), both metrics are the smaller the better.

Evaluation setting. For all methods, we first pre-train them according to their own configurations
on PubMed, Amazon-Photo, and Coauthor-CS datasets. Then, we use data augmentation strategies
to construct two perturbed views. Specifically, we following this detailed empirical study (Zhu et al.,
2021a) and adopt edge perturbation and attribute masking as the default perturbation function on the
input graph. To have a fair comparison, we fix the random seed and generated two shared perturbed
graphs, and then feed the two views into BGRL, GRACE, CCA-SSG, and SimGRACE to obtain
node representations for all nodes in the graph. After that, we use the obtained node representations
of two views to compute the alignment and uniformity according to Eq. 5. WE repeat the process
for 10 times and report the averaged results in Figure 1.

Table 9: Test accuracy on benchmark datasets in TUdatasets in terms of semi-supervised graph
classification.

Dataset NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K GITHUB A.R. ↓
No pre-train 73.72± 0.24 70.40± 1.54 73.56± 0.41 73.71± 0.27 86.63± 0.27 51.33± 0.44 60.87± 0.17 9.86
Augmentations 73.59± 0.32 70.29± 0.64 74.30± 0.81 74.19± 0.13 87.74± 0.39 52.01± 0.20 60.91± 0.32 9.00

GAE 74.36± 0.24 70.51± 0.17 74.54± 0.68 75.09± 0.19 87.69± 0.40 53.58± 0.13 63.89± 0.52 7.14
InfoGraph 74.86± 0.26 72.27± 0.40 75.78± 0.34 73.76± 0.29 88.66± 0.95 53.61± 0.31 65.21± 0.88 4.71
ContextPred 73.00± 0.30 70.23± 0.63 74.66± 0.51 73.60± 0.37 84.76± 0.52 51.23± 0.84 − 10.50
Infomax 74.86± 0.26 72.27± 0.40 75.78± 0.34 73.76± 0.29 88.66± 0.95 53.61± 0.31 65.21± 0.88 5.71
GraphCL 74.63± 0.25 74.17± 0.34 76.17± 1.37 74.23± 0.21 89.11± 0.19 52.55± 0.45 65.81± 0.79 3.86
JOAO 74.48± 0.25 72.13± 0.92 75.69± 0.67 75.30± 0.32 88.14± 0.25 52.83± 0.54 65.00± 0.30 6.14
JOAOv2 74.86± 0.39 73.31± 0.48 75.81± 0.73 75.53± 0.18 88.79± 0.65 52.71± 0.28 66.60± 0.60 3.57
SimGRACE 74.60± 0.41 74.03± 0.51 76.48± 0.52 74.74± 0.28 88.86± 0.62 53.97± 0.64 65.33± 0.35 3.29

PerturbGCL 75.23± 0.52 74.11± 0.42 76.65± 0.57 74.50± 0.41 88.69± 0.63 55.39± 0.12 68.40± 0.10 2.14
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C MORE CONTRASTIVE LOSS FUNCTIONS

Although InfoNCE (You et al., 2020) (illustrated in Eq. 3) is the widely used contrastive objective in
learning GCL models, some other training objectives have been proposed recently, such as Barlow
Twins (Bielak et al., 2021), Bootstrap (Thakoor et al., 2022). Different from InfoNCE, the other two
contrastive objectives are negative-sample free, so they can avoid the efforts to identify informative
negative samples during the training. Specifically, the core idea of Bootstrap function is to maximize
the difference between the positive pairs, defined as:

L = − 2

N

N−1∑
v∈V

zvh
+
v

∥zv∥
∥∥h+

v

∥∥ . (7)

Here h+
v is the hidden representation encoded by GNN encoder, and zv = h(h+

v ), where h(·) is the
prediction head. In our cases, since we take the original graph as input, so we do not have symmetric
define of the loss function as done in (Thakoor et al., 2022). This might be the reason why our model
PerturbGCL performs not good using this objective.

Barlow Twins (Bielak et al., 2021) is a recent endeavor to reduce the usage of negative samples.
This objective is originally proposed in image domain by (Zbontar et al., 2021). The general idea
of Barlow Twins is to minimize the redundancy in the hidden dimension. Specifically, given the
hidden representation of two views (Z and Z+), it first compute the empirical cross-correlation
matrix C ∈ RD×D as below:

Ci,j =
∑

n Zn,iZ
+
n,j√∑

n (Zn,i)
2
√∑

n

(
Z+

n,j

)2 , (8)

where n is the the batch indexes and i, j are the indexes of embeddings. The cross-correlation matrix
C is optimized to be equal to the identity matrix. To be specific, it is composed of two parts: 1) the
invariance term and 2) the redundancy reduction term. The first one forces the on diagonal elements
Ci,i to be equal to one, hence making the embeddings invariant to the applied augmentations. The
second term optimizes the off-diagonal elements Ci,j to be equal to zero – this results in decorrelated
components of the embedding vectors. Formally, the loss function LBT is computed by:

LBT =
∑
i

(1− Ci,i)2 + λ
∑
i

∑
j ̸=i

C2
i,j . (9)

The λ > 0 parameter defines the trade-off between the invariance and redundancy reduction terms.
In our experiments, we set λ = 1

D following (Bielak et al., 2021).
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Figure 6: The alignment and uniformity plot for BGRL (Thakoor et al., 2022), SimGRACE (Xia
et al., 2022), GRACE (Zhu et al., 2020), CCA-SSG (Zhang et al., 2021), and our PerturbGCL on
the same perturbed graphs generated by data augmentation. Black circles ( ) indicate the baselines.
Orange circles ( ) represent the performance of SimGRACE. Red starts (⋆) are the results of
PerturGCL.

D EFFICIENCY ANALYSIS

To evaluate the efficiency of the proposed PerturbGCL, we compare it with two strong GCL base-
lines: BGRL (Thakoor et al., 2022) on node classification data and GraphCL (You et al., 2020) on
graph classification data. It is worth to note that since BGRL and GraphCL require to search for the
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optimal augmentation strategies via trial-and-error, which is super expensive in practice. To simplify
the comparison, we fix their optimal augmentations and only record the running time on the optimal
augmentations. For graph-level datastes, GraphCL and PerturbGCL use 3 GIN layers with hidden
dimension 32 as the backbone encoder. The propagation step and pruning ratio of PerturbGCL are
set as K = 2 and s = 0.7. For node-level datasets, BGRL and PerturbGCL use 2 GCN layers
with hidden dimension 512 as the backbone encoder. The propagation step and pruning ratio of
PerturbGCL are set as K = 3 and s = 0.9. We conduct experiments on a server with AMD EPYC
7282 16-Core processors, 252 GB memory, and one GeForce RTX 2080 Ti GPUs (24GB). To avoid
randomness, the reported results in Table 3 are the averaged performance over 100 training epochs.

Except the improvement in Table 3, another thing we want to mention is that the practical speedup
of PerturbGCL should be significantly higher than the results shown in Table 3. This is mainly
because the data augmentation based GCL methods require a lot of efforts to search for the best
augmentation strategies, such as the best augmentation types and their corresponding perturbation
ratios.

E MORE RESULTS
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Figure 7: Empirical training curves of PerturbGCL on graph benchmarks with different pruning
ratios s.

Figure 8: Visualization of second layer weight distribution during training process(from left to right:
initial weights, PerturbGCL w/o. weightPrune, and PerturbGCL) on Coauthor-CS. The x-axis indi-
cates weight values and y-axis is the corresponding count.
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Figure 9: Ablation study of PerturbGCL on node benchmarks.
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Figure 10: Left: Hyperparameter Analysis on Coauthor-CS. Middle: PerturbGCL with data aug-
mentation. Right: The alignment and uniformity results of PerturbGCL.
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