Abstract

Commonsense reasoning is an important capability for a range of AI applications such as text understanding. Neural models for commonsense reasoning QA often directly predict answers based on learned representations of language. In this work, we consider the challenge of producing an explicit reasoning step for a commonsense QA system. We propose a latent-variable model that identifies what type of knowledge from an external knowledge base may be relevant to answering the question, computes the commonsense inferences, and predicts the answer. Our method can therefore learn to provide posterior rationales for why a certain answer was chosen. Experimental results show that the model can identify the correct reasoning step in twice as many examples compared to an existing unsupervised approach for producing explanations, while still maintaining comparable accuracy to end-to-end pretrained models.

1 Introduction

Commonsense is knowledge that is considered obvious to most humans. Commonsense reasoning uses this knowledge to solve complex reasoning tasks (Sap et al., 2020; Cambria et al., 2010). Specifically, we study multiple-choice QA (MCQ) that requires commonsense reasoning. Recent approaches have applied end-to-end pretrained language models (PLMs) to solve MCQ. A downside of the approaches is that it is impossible to extract the explicit reasoning steps used by the model. To get around this issue, Bansal et al. (2021); Paranjape et al. (2021) proposed to directly predict intermediate steps in the reasoning chain. However, these methods require direct supervision on the reasoning steps, which implies manual annotations. Bosselut et al. (2021) developed an unsupervised approach to obtain explanations by leveraging a dynamic knowledge base (KB). However, because this approach does not involved any learning component with respect to the target task, its ability to identify reasoning steps is limited.

In this work, we consider the problem of learning the reasoning path for MCQ that requires commonsense reasoning, without sacrificing the benefits of pretrained neural models. Explicitly, we propose a structured latent-variable approach that can learn the intermediate reasoning step for answering a question without supervision. Our model first identifies what type of knowledge from an external KB may be relevant, then obtains that knowledge from the KB; finally, the model predicts an answer. In Table 1, we present an example of the reasoning step our model has inferred.

We empirically evaluate our method on the socialIQA dataset (Sap et al., 2019) and show that we are able to achieve similar accuracy to that of a pretrained model while we identify the explanations. We also introduce a new evaluation set that annotates the correct reasoning steps drawn from comet2020 (Hwang et al., 2021) for test examples in socialIQA (Sap et al., 2019). On this new evaluation set, we analyze the generated explanations and show our model is able to find the correct reasoning steps in 45% cases compared to 22% for the dynamic KB method.

2 Related Work

Learning explanations for commonsense reasoning. Several multi-stage models have been proposed to produce explanations for commonsense MCQ problems. Bansal et al. (2021) first trained a model to infer free-form commonsense from the context; then they used a separate model to predict the answer conditioned on both the context and the commonsense. Paranjape et al. (2021) learned to generate contrastive commonsense explanations for coreference resolution. We note that both methods are supervised and require manually provided explanations. Additionally, Shwartz et al. (2020)
The goal of this work is to generate explanations for MCQ that requires commonsense reasoning. When humans do MCQ, they often read the choices first and quickly come up with an answer. Then, they work backwards to figure out what commonsense knowledge they have used to reach the answer. For example, there is a question, “Jordan took a football outside to play with their friends. What does Jordan need to do before this?” There are many things one needs to do before the event, such as finding a playground, gathering the friends, etc., but the correct choice is “buy a football.” Due to this ambiguity, humans tend to perform explicit reasoning afterwards. Therefore, we consider the explanation to come after an answer being chosen.

Our approach for computing explanations will be to utilize a generative model that first retrieves knowledge relevant for a given context from an external KB. In particular, we will use Resource Description Framework (RDF) triples (Auer et al., 2007; Bollacker et al., 2008) to represent commonsense knowledge. For a given MCQ example, we can then utilize this generative model to infer the explicit reasoning used by the system on specific commonsense examples.

At a high level, we assume there is unobserved commonsense knowledge that is necessary for reaching the correct answer. However, there is a large number of commonsense tuples that may be relevant, so we need to identify the specific one that is required given the context and the question.

Table 1: An MCQ example from the socialIQA dataset and possible reasoning steps extracted from an external knowledge graph. ➔ points to the reasoning step that our latent-variable model chooses to predict the answer. The bold texts are the correct reasoning step and the correct answer annotated by humans.

<table>
<thead>
<tr>
<th>Context & Question</th>
<th>Reasoning step</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carson brought the spoon to Taylor’s mouth so Taylor could eat.</td>
<td>Happens before Taylor is eating</td>
<td>a) bring a cup</td>
</tr>
<tr>
<td>What does Carson need to do before this?</td>
<td>Is motivated by a goal Taylor is full</td>
<td>b) leave the house</td>
</tr>
<tr>
<td></td>
<td>As an effect Carson gets thanked</td>
<td>c) sit with Taylor</td>
</tr>
<tr>
<td></td>
<td>➔ Carson needs to be near Taylor</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: The graphical model for the generative process for performing commonsense reasoning. Here, \((c, r, o)\) is a knowledge triplet, where the subject is set to be the context \(c\), \(r\) is the relation, and \(o\) is the object.

3 Method

The goal of this work is to generate explanations for MCQ that requires commonsense reasoning. When
Therefore, the goal of our model is to find this missing piece and return it as the explanation for the correct answer.

Formally, MCQ problems start with a context c and question q. The goal is to produce a distribution over answer strings a, defined by $P(a|c, q)$. To model this distribution we will introduce a latent variable $z = (r, o)$, such that $\sum_z P(a, z|c, q)$. The complete RDF triplet has form (s, r, o) where $s, o \in V^*$ are a subject and an object, respectively, and $r \in R$ is the relation between s and o. V is a vocabulary, and R is a fixed set. o is a commonsense inference that is inferred given s and r. In the MCQ task, s can be deterministically computed from the context c, whereas r and o cannot. We use the same way as that in Bosselut et al. (2021) to compute s from c.

Figure 1 shows the generative process, which proceeds in three stages:

\[
\begin{align*}
 r &\sim P(r | c, q) \quad \text{Relation Model} \\
o &\sim P(o | r, c) \quad \text{Object Model} \\
a &\sim P(a | c, r, o, q) \quad \text{Answer Model}
\end{align*}
\]

The following three sections describe each of these stages in more detail.

3.1 Relation Model

When generating a reasoning step, the relation model determines what type of commonsense from the external KB is required to answering the question under the context. For example, when one has a question asking “how would you describe X,” the commonsense usually come up in one’s mind is X’s physical entities if X is an object or X’s characteristics if X is a person. Including the context further reduces ambiguity because without a scope, a question could have many interpretations. Therefore, the relation model specifies a distribution over all relations conditioned on c and q. $P(r|c, q; \theta)$ is parameterized by a BERT model with a multiple-choice head (Kenton and Toutanova, 2019) which takes $[CLS]c[SEP]q[SEP]r$ as input.

3.2 Object Model

After the type of relevant knowledge is identified, the object model then generates commonsense inferences given the context and the relation. Learning to infer the commonsense knowledge from a context and a knowledge type is in fact a well-studied problem, called KB completion (Saito et al., 2018; Malaviya et al., 2020). We thus treat it as a KB completion task. The object model specifies a distribution over all objects o conditioned on c and r. $P(o|c, r; \phi)$ is parameterized by a BART model (Lewis et al., 2020), where the input is a concatenation of c and r.

3.3 Answer Model

We arrive at the final component of our generative model, which governs how the information about contexts, questions, and knowledge are rendered into answers. The answer model explicitly considers the commonsense inferred from the context by conditioning on the RDF triplet. $P(a|c, r, o; \psi)$ is also parameterized by a BERT model with a multiple-choice head. The input to the model is $[CLS]c[SEP]r[SEP]a[SEP]q[SEP]a$.

3.4 Training and Inference

The generative model is trained in two steps. It first learns the object model; then, it uses the following objective to jointly learn the relation model and the answer model, summing out r, o:

\[
\max_{\theta, \psi} \sum_{r, o} P(a|c, r, o; \psi)P(o|c, r)P(r|c, q; \theta).
\]

Because V^* is a combinatorially large space, exactly enumerating all objects is intractable. The joint distribution is then approximated by:

\[
\sum_r \max_o P(a|c, r, o; \theta^o)P(o|c, r)P(r|c, q; \theta^r),
\]

where o is found by a greedy search. To get an explanation from the model, we compute a posterior rational as follows:

\[
P(r|c, q, a) = \frac{P(r|c, q)P(a|c, q, r, a)}{\sum_r P(a|c, q, r, a)}
\]

4 Experiments

The goal of the system is to identify the intermediate reasoning step used in question answering. We therefore experimentally evaluate two aspects of our model – accuracy of answers and correctness of reasoning steps.

4.1 Setup

Datasets. The relation model and the answer model are trained on the socialIQA dataset (Sap
et al., 2019). SocialIQA has 37,588 multiple-choice questions that covers the pragmatic implications of everyday, social events. The object model is trained on ATOMIC2020 (Hwang et al., 2021), which consists of 1.33M RDF tuples about common entities and events with 23 unique relation types. However, the relation model only considers the 16 relations related to social interactions.

Baselines. The baseline for comparing accuracy is a standard BERT base model with a multiple-choice head (Sap et al., 2019) (referred to as BERT). Two baselines are considered for evaluating the reasoning steps. The first baseline associates each question type with a set of relations (referred to as rule-based). The second baseline uses scores provided by the external KB for choosing the most likely commonsense inference (referred to as KB-based) (Bosselut et al., 2021).

Implementation & Hyperparameters. We implement both latent variable and non-latent variable (baseline) models with BertModel in Huggingface Transformers (Wolf et al., 2020). For the object model, we use the released BART-large model on github. We perform grid search with learning rates \{5e-6, 1e-5, 3e-5, 5e-5\} and batch sizes \{1,2,3,4,8\} to achieve best-possible performance for the baseline model. Due to limited computation resources, we only fine-tune the latent variable model with a learning rate of 1e-5 and batch sizes of \{1,2,3\}. For both models, we warm up the learning rate for first 10% steps and train for five epochs.

Evaluation metrics. To check the correctness of the reasoning steps, we annotate 500 test examples in socialIQA: for each example, we label up to three relations if they may lead to useful objects that help to reach the answer. Furthermore, we also annotate if their subsequent objects are correct; that is, the entire RDF triple is correct. Each approach is allowed to choose three relations. If any of the relations is correct, then it is considered to identify the correct knowledge type; if the objects followed from the relations are also correct, then it is considered to find the fully correct reasoning step.

4.2 Results

Table 2 summarizes the accuracy results. For each approach, the test result obtained from evaluating the checkpoint with the best validation accuracy is reported. Our model achieves an accuracy of 63.13% whereas the baseline is 62.28%. Therefore, the latent-variable model is able to maintain similar accuracy to the pretrained model.

Table 3 shows the results on identifying reasoning steps. Relation accuracy reflects if an approach has chosen the correct knowledge types, and RDF accuracy reflects if an approach has found the full reasoning steps.

5 Conclusion

We propose a latent-variable model to generate explanations for commonsense reasoning QA without supervision. The experimental results show that our approach achieve similar accuracy to the pretrained model. The human evaluation suggests our model can identify the correct reasoning steps for significantly more examples than an existing unsupervised approach for producing explanations.
References

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020. Unsupervised commonsense question answering with self-talk. In

<table>
<thead>
<tr>
<th>Type</th>
<th>Form</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>wants</td>
<td>What will X want to do next?</td>
<td>xWant, oWant, HasSubEvent</td>
</tr>
<tr>
<td>reactions</td>
<td>How would X feel afterwards?</td>
<td>xReact, oReact, Cause</td>
</tr>
<tr>
<td>descriptions</td>
<td>How would you describe X?</td>
<td>xAttr</td>
</tr>
<tr>
<td>motivations</td>
<td>Why did X do this?</td>
<td>xReason, HinderedBy, xIntent</td>
</tr>
<tr>
<td>needs</td>
<td>What does X need to do before this?</td>
<td>xNeed, isFilledBy, isAfter</td>
</tr>
<tr>
<td>effects</td>
<td>What will happen to X?</td>
<td>xEffect, oEffect, isBefore</td>
</tr>
</tbody>
</table>

Table 4: A rule-based baseline for commonsense reasoning. Since the questions in socialIQA are categorized in six types, a simple rule-based baseline can choose a fixed set of relations based on the question form.

A Appendix

Table 4 presents the rule-based baseline for identifying the reasoning steps.