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Abstract

Commonsense reasoning is an important capa-
bility for a range of AI applications such as
text understanding. Neural models for com-
monsense reasoning QA often directly predict
answers based on learned representations of
language. In this work, we consider the chal-
lenge of producing an explicit reasoning step
for a commonsense QA system. We propose a
latent-variable model that identifies what type
of knowledge from an external knowledge base
may be relevant to answering the question, com-
putes the commonsense inferences, and pre-
dicts the answer. Our method can therefore
learn to provide posterior rationales for why
a certain answer was chosen. Experimental
results show that the model can identify the
correct reasoning step in twice as many exam-
ples compared to an existing unsupervised ap-
proach for producing explanations, while still
maintaining comparable accuracy to end-to-end
pretrained models.

1 Introduction

Commonsense is knowledge that is considered
obvious to most humans. Commonsense reason-
ing uses this knowledge to solve complex reason-
ing tasks (Sap et al., 2020; Cambria et al., 2010).
Specifically, we study multiple-choice QA (MCQ)
that requires commonsense reasoning. Recent ap-
proaches have applied end-to-end pretrained lan-
guage models (PLMs) to solve MCQ. A downside
of the approaches is that it is impossible to extract
the explicit reasoning steps used by the model. To
get around this issue, Bansal et al. (2021); Paran-
jape et al. (2021) proposed to directly predict in-
termediate steps in the reasoning chain. However,
these methods require direct supervision on the rea-
soning steps, which implies manual annotations.
Bosselut et al. (2021) developed an unsupervised
approach to obtain explanations by leveraging a
dynamic knowledge base (KB). However, because

this approach does not involved any learning com-
ponent with respect to the target task, its ability to
identify reasoning steps is limited.

In this work, we consider the problem of learning
the reasoning path for MCQ that requires common-
sense reasoning, without sacrificing the benefits of
pretrained neural models. Explicitly, we propose a
structured latent-variable approach that can learn
the intermediate reasoning step for answering a
question without supervision. Our model first iden-
tifies what type of knowledge from an external KB
may be relevant, then obtains that knowledge from
the KB; finally, the model predicts an answer.

We empirically evaluate our method on the so-
cialIQA dataset (Sap et al., 2019) and show that
we are able to achieve similar accuracy to that of
a pretrained model while we identify the explana-
tions. We also introduce a new evaluation set that
annotates the correct reasoning steps drawn from
comet2020 (Hwang et al., 2021) for test examples
in socialIQA (Sap et al., 2019). On this new eval-
uation set, we analyze the generated explanations
and show our model is able to find the correct rea-
soning steps in 45% cases compared to 22% for the
dynamic KB method.

2 Related Work

Learning explanations for commonsense reason-
ing. Several multi-stage models have been pro-
posed to produce explanations for commonsense
MCQ problems. Bansal et al. (2021) first trained
a model to infer free-form commonsense from the
context; then they used a separate model to predict
the answer conditioned on both the context and
the commonsense. Paranjape et al. (2021) learned
to generate contrastive commonsense explanations
for coreference resolution. We note that both meth-
ods are supervised and require manually provided
explanations. Additionally, Shwartz et al. (2020)
hand-crafted a number of commonsense knowl-
edge templates, and the templates were later filled



by pretrained models, which could be viewed as an
explanation for choosing an answer.

Finally, Lin et al. (2017) developed a similar
generative approach for a machine reading com-
prehension problem. They mined heterogeneous
knowledge from different sources and identified the
reasoning trajectory by using an attention mecha-
nism over the mined knowledge. However, we
assume different data generating processes and em-
ploy different mechanisms to incorporate KBs.

Incorporating external knowledge sources. Be-
cause leveraging external knowledge sources is a
key component in generating explanations in our
approach, we also provide an overview of differ-
ent ways to incorporate such sources into QA sys-
tems. Bauer et al. (2018); Lin et al. (2019); Feng
et al. (2020); Paul and Frank (2019); Yasunaga
et al. (2021); Wang et al. (2020) extracted entities
in contexts/questions/answers and built knowledge
graphs on the entities according to external KBs;
some of them made specific network architecture
changes to include this information. Bauer and
Bansal (2021) developed a method to choose the
KB that has knowledge most aligned with the target
task given several candidate KBs. Xia et al. (2019)
performed multi-task learning, where, in addition
to the original task, they added hand-crafted aux-
iliary tasks based on nodes and edges in the KB
to improve generalization. The aforementioned
approaches all use static KBs, which only have
fixed nodes. Bosselut et al. (2021) instead utilized
a dynamic KB to retrieve knowledge relevant to
the context. Due to its strong generalization ca-
pacity, we use the method and adapt it to generate
commonsense inferences.

3 Method
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Figure 1: The graphical model for the generative process
for performing commonsense reasoning. Here, (c, r, o)
is a knowledge triplet, where the subject is set to be the
context c, r is the relation, and o is the object.

The goal of this work is to generate explanations
for MCQ that requires commonsense reasoning.

We consider how humans generate explanations
from the psychological point of view: given an
event that a person believes has happened, the per-
son come up with a set of explanations and select
the one that best explains the event (Gordon and
Hobbs, 2017). For example, we know that “Jack
needed some money, so he went and shook his
piggy bank. He was disappointed when it made
no sound." When we are asked to explain the rea-
son for the pippy bank made no sound, and the
two possible commonsense explanations are “the
piggy bank’s physical material makes no sound”
and “there is not money in the pippy bank.” Be-
cause the latter better explains the event in that
making no sound disappointed Jack, we believe
this explanation is correct. We follow this proce-
dure to produce explanations for humans to per-
form evaluation: we first let humans believe the
MCQ example (with the answer produced by the
model) is a past event, and ask humans to choose
an explanation that best explains the event. There-
fore, we consider the posterior rationales to be the
explanation. The existing literature also refers to
the process of generating commonsense explana-
tions for given events as abductive commonsense
reasoning (Bhagavatula et al., 2019).

Our approach for computing the posterior ex-
planations will be to utilize a generative model
that first retrieves knowledge relevant for a given
context from an external KB. In particular, we
will use Resource Description Framework (RDF)
triples (Auer et al., 2007; Bollacker et al., 2008) to
represent commonsense knowledge. For a given
MCQ example, we can then utilize this generative
model to infer the explicit reasoning used by the
system on specific commonsense examples.

At a high level, we assume there is unobserved
commonsense knowledge that is necessary for
reaching the correct answer. However, there is
a large number of commonsense tuples that may
be relevant, so we need to identify the specific one
that is required given the context and the question 1.
Therefore, the goal of our model is to find this miss-
ing reasoning step and return it as the explanation
for the correct answer. We walk readers through the
generative process with examples shown in Table 1.
End-to-end neural models directly produce an an-
swer distribution based on contexts and questions;
however, we generate a reasoning step from con-

1There may be a sequence of commonsense tuples that are
required for answering a question. We do not address such
cases here and leave them to the future work.



Context & Question Reasoning step (r, o) Answers

Carson brought the spoon to Taylor’s
mouth so Taylor could eat.

Desires to be helpful
HasSubevent PersonY is eating a) bring a cup
MotivatedByGoal they are full b) leave the house

What does Carson need to do before this?
xEffect gets thanked c) sit with Taylor
➨ xNeed to be near someone

Lee found the Northeast to be way too
cold. Lee decided to move to Florida.

➨ Desires to get away from the cold
HasSubevent get a new job a) happy
MotivatedByGoal cold b) likes cold weather

How would you describe Lee?
xEffect gets cold c) likes the heat
xNeed to have a job

Riley wanted to get a raise and started to
work very hard at work.

Desires to be successful
HasSubevent get a raise a) work hard as well
MotivatedByGoal they get a raise b) quit work

What will Others want to do next?
➨ xEffect gets promoted c) be alone
xNeed to be a good employee

Tracy sat down next to Ash and began
softly kissing him.

➨ Desires to show affection
HasSubevent get closer a) be romantic
MotivatedByGoal none b) kiss back

What will Ash want to do next?
xEffect gets kissed back c) run away
xNeed to be near him

Table 1: An MCQ example from the socialIQA dataset and possible reasoning steps extracted from an external
knowledge graph. ➨ points to the reasoning step that our latent-variable model chooses to predict the answer. A
reasoning step consists of a relation r and an object o. The bold texts are the correct reasoning step and the correct
answer annotated by humans. On the first two rows, the LVM is able to identify the correct knowledge; on the third
row, none of the commonsense inferences retrieved from COMET can lead the correct answer; and on the last row,
the LVM chooses the wrong reasoning step when a correct one is present.

texts and produce the the answer distribution also
based on this intermediate step. In the first example
of Table 1, the reasoning step the generative model
produces is that Carson needs to be near someone
in order to make the event in the context happen,
which helps to reach the answer. More specifically,
the generative model produces this reasoning step
in two stages: the first stage identifies the relation
(in blue) that may be relevant for the context and
the question, and the second stage generates the
most plausible object (in brown). Note that com-
pared to prior work like (Bosselut et al., 2021), the
prior work only produces commonsense inferences
as intermediate step, but our model also selects
the best explanation among all other explanations
based on the learned representation of the context
and the question.

Formally, MCQ problems start with a context
c and question q. The goal is to produce a distri-
bution over answer strings a, defined by P (a|c, q).
To model this distribution we will introduce a la-
tent explanation in the form of a partial RDF triple
z = (r, o), such that

∑
z P (a, z|c, q). The com-

plete RDF triplet has form (s, r, o) where s, o ∈ V∗

are a subject and an object, respectively, and r ∈ R
is the relation between s and o. V is a vocabulary,
and R is a fixed set. In the MCQ task, we set s to

be c, as c can be viewed as an event, and one can
make commonsense inference from the event with
different relations.

Figure 1 shows the generative process, which
proceeds in three stages:

r ∼ P (r | c, q) Relation Model

o ∼ P (o | r, c) Object Model

a ∼ P (a | c, r, o, q) Answer Model

The following three sections describe each of these
stages in more detail.

3.1 Relation Model
When generating a reasoning step, the relation
model determines what type of commonsense from
the external KB is required to answering the ques-
tion under the context. For example, when one has
a question asking “how would you describe X," the
commonsense that usually come up in one’s mind
is X’s physical attributes if X is an object or X’s
characteristics if X is a person. Including the con-
text further reduces ambiguity because without a
scope, a question could have many interpretations.
Therefore, the relation model specifies a distribu-
tion over all relations conditioned on c and q. We



parameterize P (r|c, q; θ) by a BERT model which
takes in [CLS] c [SEP ] q [SEP ] r. r is the re-
lation symbol from the relation set defined by the
external knowledge base (and this also applies to
the later models where r is also part of the input).

3.2 Object Model

After the type of relevant knowledge is identified,
the object model then generates commonsense in-
ferences given the context and the relation. Learn-
ing to infer the commonsense knowledge from a
context and a knowledge type is in fact a well-
studied problem, called KB completion (Saito et al.,
2018; Malaviya et al., 2020). We thus treat it as a
KB completion task. The object model specifies
a distribution over all objects o conditioned on c
and r. P (o|c, r;ϕ) is parameterized by a BART
model (Lewis et al., 2020), where the input is a
concatenation of c and r.

3.3 Answer Model

We arrive at the final component of our gen-
erative model, which governs how the infor-
mation about contexts, questions, and knowl-
edge are rendered into answers. The answer
model explicitly considers the commonsense in-
ferred from the context by conditioning on the
RDF triplet and produces a probability distri-
bution over all answers. P (a|c, r, o, q;ψ) is
also parameterized by a BERT model with a
multiple-choice head. The input to the model is
[CLS] c [SEP ] r [SEP ] o [SEP ] q [SEP ] a.

3.4 Training and Inference

The generative model is trained in two steps. It first
learns the object model; then, it uses the following
objective to jointly learn the relation model and the
answer model, summing out r, o:

max
θ,ψ

∑
r,o

P (a|c, r, o, q;ψ)P (o|c, r)P (r|c, q; θ).

Because V∗ is a combinatorially large space, ex-
actly enumerating all objects is intractable. The
joint distribution is then approximated by:∑

r

max
o
P (a|c, r, o, q;ψ)P (o|c, r)P (r|c, q; θ),

Note that we sum over all r’s, and for each r we
apply greedy search to pick the o that maximizes
the likelihood. To get an explanation from the

Type Form Relation

wants What will X want to do next?
xWant
oWant
HasSubEvent

reactions How would X feel afterwards?
xReact
oReact
Cause

descriptions How would you describe X? xAttr

motivations Why did X do this?
xReason
HinderedBy
xIntent

needs What does X need to do before this?
xNeed
isFilledBy
isAfter

effects What will happen to X?
xEffect
oEffect
isBefore

Table 2: A rule-based baseline for commonsense reason-
ing. Since the questions in socialIQA are categorized
in six types, a simple rule-based baseline can choose a
fixed set of relations based on the question form.

model, we compute a posterior rational as follows:

P (r|c, q, a) = P (r|c, q) ·
∑

o P (a, o|c, q, r)∑
r′,o P (a, r

′, o|c, q)

4 Experiments

The goal of the system is to identify the intermedi-
ate reasoning step used in question answering. We
therefore experimentally evaluate two aspects of
our model – accuracy of answers and correctness
of reasoning steps.

4.1 Setup

Datasets. The relation model and the answer
model are trained on the socialIQA dataset (Sap
et al., 2019). SocialIQA has 37,588 multiple-
choice questions that covers the pragmatic implica-
tions of everyday, social events. The object model
is trained on ATOMIC2020 (Hwang et al., 2021),
which consists of 1.33M RDF tuples about com-
mon entities and events with 23 unique relation
types. However, the relation model only places a
distribution over the 16 relations related to social
interactions.

Baselines. The baseline for comparing accuracy
is a standard BERT base model with a multiple-
choice head (Sap et al., 2019) (referred to as BERT).
Two baselines are considered for evaluating the
reasoning steps. Table 2 shows the first baseline
where each question type associates with a set of
relations (referred to as rule-based). The second
baseline uses the object likelihoods provided by



valid test

BERT (original) 63.30% 63.10%
BERT (reproduced) 62.23% 62.28%
Ours 62.74% 63.35%

Table 3: Accuracy for each approach on socialIQA.
Original BERT accuracy is reported in Sap et al. (2019).
Reproduction and our generative model use the same
framework.

COMET (Bosselut et al., 2021) for choosing the
most likely commonsense inference (referred to as
COMET).

Implementation & Hyperparameters. We im-
plement both latent variable and non-latent vari-
able (baseline) models with BertModel in Hugging-
face Transformers (Wolf et al., 2020). For the ob-
ject model, we use the released BART-large model
on github. 2 We perform grid search with learn-
ing rates {5e-6, 1e-5, 3e-5, 5e-5} and batch sizes
{1,2,3,4,8} to achieve best-possible performance
for the baseline model. Due to limited computa-
tion resources, we only fine-tune the latent variable
model with a learning rate of 1e-5 and batch sizes
of {1,2,3}. For both models, we warm up the learn-
ing rate for first 10% steps and train for five epochs.

Evaluation metrics. To check the correctness of
the reasoning steps, we annotate 500 test examples
in socialIQA: for each example, we label up to
three relations if they may lead to useful objects
that help to reach the answer. Furthermore, we also
annotate if their subsequent objects are correct; that
is, the entire RDF triple is correct. Each approach
is allowed to choose three relations. If any of the
relations is correct, then it is considered to identify
the correct knowledge type; if the objects followed
from the relations are also correct, then it is consid-
ered to find the fully correct reasoning step.

4.2 Results
Table 3 summarizes the accuracy results. For each
approach, the test result obtained from evaluating
the checkpoint with the best validation accuracy
is reported. Our model achieves an accuracy of
63.13% whereas the baseline is 62.28%. Therefore,
the latent-variable model is able to maintain similar
accuracy to the pretrained model.

Table 4 shows the results on identifying reason-
ing steps. For choosing a relation, our model im-
proves 24.2% over the rule-based method, suggest-

2github.com/allenai/comet-atomic-2020

Relation ACC RDF ACC

Rule-based 31.4% 13.6%
COMET 22.2% 22.2%
Ours 55.6% 45.6%

Table 4: Evaluation for identifying the reasoning steps.
Relation accuracy reflects if an approach has chosen the
correct knowledge types, and RDF accuracy reflects if
an approach has found the full reasoning steps.

ing that our generative model has learned how to
identify the relevant knowledge type for common-
sense examples. Furthermore, when comparing
the RDF accuracy (i.e., the reasoning step is fully
correct), our model improves 23.4% over COMET,
serving as an evidence that our relation model and
answer model have learned explanations specific
to the task. In summary, our model is able to iden-
tify the correct reasoning step that is not explicitly
present in the context but is required to derive the
answer for a substantial number of cases without
supervision.

5 Conclusion

We propose a latent-variable model to generate ex-
planations for commonsense reasoning QA without
supervision. The experimental results show that
our approach achieve similar accuracy to the pre-
trained model. The human evaluation suggests our
model can identify the correct reasoning steps for
significantly more examples than an existing unsu-
pervised approach for producing explanations.
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