
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

NCVX: A General-Purpose Optimization Solver for
Constrained Machine and Deep Learning

Buyun Liang1 LIANG664@UMN.EDU

Tim Mitchell2 TMITCHELL@QC.CUNY.EDU

Ju Sun1 JUSUN@UMN.EDU
1Computer Science & Engineering, University of Minnesota, Minneapolis, USA
2Queens College, City University of New York, New York City, USA

Abstract
Imposing explicit constraints is relatively new but increasingly pressing in deep learning, stimu-
lated by, e.g., trustworthy AI that performs robust optimization over complicated perturbation sets
and scientific applications that need to respect physical laws and constraints. However, it can be
hard to reliably solve constrained deep learning problems without optimization expertise. The ex-
isting deep learning frameworks do not admit constraints. General-purpose optimization packages
can handle constraints but do not perform auto-differentiation and have trouble dealing with nons-
moothness. In this paper, we introduce a new software package called NCVX, whose initial release
contains the solver PyGRANSO, a PyTorch-enabled general-purpose optimization package for con-
strained machine/deep learning problems, the first of its kind. NCVX inherits auto-differentiation,
GPU acceleration, and tensor variables from PyTorch, and is built on freely available and widely
used open-source frameworks. NCVX is available at https://ncvx.org, with detailed docu-
mentation and numerous examples from machine/deep learning and other fields. Future updates on
this topic will be posted at https://arxiv.org/abs/2210.00973.

1. Introduction

Mathematical optimization is an indispensable modeling and computational tool for all science
and engineering fields, especially for machine/deep learning. To date, researchers have devel-
oped numerous foolproof techniques, user-friendly solvers, and modeling languages for convex
(CVX) problems, such as SDPT3 [66], Gurobi [28], Cplex [14], TFOCS [5], CVX(PY) [22, 27],
AMPL [24], YALMIP [46]. These developments have substantially lowered the barrier of CVX
optimization for non-experts. However, practical problems, especially from machine/deep learning,
are often nonconvex (NCVX), and possibly also constrained (CSTR) and nonsmooth (NSMT).

There are methods and packages handling NCVX problems in restricted settings: PyTorch [56]
and TensorFlow [1] can solve large-scale NCVX, NSMT problems without constraints. CSTR prob-
lems can be heuristically turned into penalty forms and solved as unconstrained, but this may not
produce feasible solutions for the original problems. When the constraints are simple, structured
methods such as projected (sub)gradient and Frank-Wolfe [61] can be used. When the constraints
are differentiable manifolds, one can consider manifold optimization methods and packages, e.g.,
(Py)manopt [6, 67], Geomstats [53], McTorch [51], and Geoopt [39]. For general CSTR prob-
lems, KNITRO [58] and IPOPT [74] implement interior-point methods, while ensmallen [18] and
GENO [42] rely on augmented Lagrangian methods. However, moving beyond smooth (SMT) con-

© B. Liang1, T. Mitchell2 & J. Sun1.

https://ncvx.org
https://arxiv.org/abs/2210.00973


A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

straints, both of these families of methods, at best, handle only special types of NSMT constraints.
Finally, packages specialized for machine learning, e.g., scikit-learn [57], MLib [52] and Weka [72],
often use problem-specific solvers that cannot be easily extended to new formulations.

2. The GRANSO and NCVX packages

GRANSO1 is among the first optimization packages that can handle general NCVX, NSMT, CSTR
problems [19]:

min
x∈Rn

f(x), s.t. ci(x) ≤ 0, ∀ i ∈ I; ci(x) = 0, ∀ i ∈ E . (1)

Here, the objective f and constraint functions ci’s are only required to be almost everywhere con-
tinuously differentiable. GRANSO is based on quasi-Newton updating with sequential quadratic
programming (BFGS-SQP) and has the following advantages: (1) unified treatment of NCVX
problems: no need to distinguish CVX vs NCVX and SMT vs NSMT problems, similar to typical
nonlinear programming packages; (2) reliable step-size rule: specialized methods for NSMT prob-
lems, such as subgradient and proximal methods, often entail tricky step-size tuning and require
the expertise to recognize the structures [61], while GRANSO chooses step sizes adaptively via a
gold-standard line search; (3) principled stopping criterion: GRANSO stops its iteration by check-
ing a theory-grounded stationarity condition for NMST problems, whereas specialized methods are
usually stopped when reaching ad-hoc iteration caps.

However, GRANSO users must derive gradients analytically2 and then provide code for these
computations, a process which is often error-prone in machine learning and impractical for deep
learning. Furthermore, as part of the MATLAB software ecosystem, GRANSO is generally not com-
patible with popular machine/deep learning frameworks—mostly in Python and R—and users’ own
existing toolchains. To overcome these issues and facilitate both high performance and ease of use
in machine/deep learning, we introduce a new software package called NCVX, whose initial release
contains the solver PyGRANSO, a PyTorch-port of GRANSO with several new and key features: (1)
auto-differentiation of all gradients, a critical feature to make PyGRANSO user-friendly; (2) support
for both CPU and GPU computations for improved hardware acceleration and massive parallelism;
(3) support for general tensor variables including vectors and matrices, as opposed to the single vec-
tor of concatenated optimization variables that GRANSO uses; (4) integrated support for OSQP [62]
and other QP solvers for respectively computing search directions and the stationarity measure on
each iteration. OSQP generally outperforms commercial QP solvers in terms of scalability and
speed. All of these enhancements are crucial for solving large-scale machine/deep learning prob-
lems. NCVX, licensed under the AGPL V3, is built entirely on freely available and widely used
open-source frameworks; see https://ncvx.org for documentation and examples.

3. Usage examples: dictionary learning and neural perceptual attack

In order to make NCVX friendly to non-experts, we strive to keep the user input minimal. The user is
only required to specify the optimization variables (names and dimensions of variables) and define

1. http://www.timmitchell.com/software/GRANSO/
2. GRANSO is implemented in MATLAB and does not support auto-differentiation, although recent versions of MAT-

LAB have included primitive auto-differentiation functionalities.

2

https://ncvx.org
http://www.timmitchell.com/software/GRANSO/


A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

the objective and constraint functions. Here, we briefly demonstrate the usage of PyGRANSO solver
on a couple of machine/deep learning problems.

Orthogonal dictionary learning (ODL, [3]) One hopes to find a “transformation” q ∈ Rn to
sparsify a data matrix Y ∈ Rn×m:

min
q∈Rn

f(q)
.
= 1/m · ∥q⊺Y ∥1, s.t. ∥q∥2 = 1, (2)

where the constraint ∥q∥2 = 1 is to avoid the trivial solution q = 0. Eq. (2) is NCVX, NSMT,
and CSTR: nonsmoothness comes from the objective, and nonconvexity comes from the constraint.
Demos 1 & 2 show the implementations of ODL in GRANSO and PyGRANSO, respectively. Note
that the analytical gradients of the objective and constraint functions are not required in PyGRANSO.

function[f,fg,ci,cig,ce,ceg]=fn(q)
f = 1/m*norm(q’*Y, 1);%obj
fg = 1/m*Y*sign(Y’*q);%obj grad
ci = [];cig = [];%no ineq constr
ce = q’*q - 1; % eq constr
ceg = 2*q; % eq constr grad

end
soln = granso(n,fn);

Demo 1: GRANSO for ODL

def fn(X_struct):
q = X_struct.q
f = 1/m*norm(q.T@Y, p=1) # obj
ce = pygransoStruct()
ce.c1 = q.T@q - 1 # eq constr
return [f,None,ce]

var_in = {"q": [n,1]}# def variable
soln = pygranso(var_in, fn)

Demo 2: PyGRANSO for ODL

Neural perceptual attack (NPA, [41]) The CSTR deep learning problem, NPA, is shown below:

max
x̃

L (f (x̃) , y) , s.t. d (x, x̃) = ∥ϕ (x)− ϕ (x̃)∥2 ≤ ϵ. (3)

Here, x is an input image, and the goal is to find its perturbed version x̃ that is perceptually similar
to x (encoded by the constraint) but can fool the classifier f (encoded by the objective). The loss
L (·, ·) is the margin loss used in Laidlaw et al. [41]. Both f in the objective and ϕ in the constraint
are deep neural networks with ReLU activations, making both the objective and constraint functions
NSMT and NCVX. The d (x, x̃) distance is called the Learned Perceptual Image Patch Similarity
(LPIPS) [41, 76]. Demo 3 is the PyGRANSO example for solving Eq. (3). Note that the codes
for data loading, model specification, loss function, and LPIPS distance are not included here. It
is almost impossible to derive analytical subgradients for Eq. (3), and thus the auto-differentiation
feature in PyGRANSO is necessary for solving it.

def comb_fn(X_struct):
adv_inputs = X_struct.x_tilde
f = MarginLoss(model(adv_inputs),labels) # obj
ci = pygransoStruct()
ci.c1 = lpips_dists(adv_inputs) - 0.5 # ineq constr. bound eps=0.5
return [f,ci,None] # No eq constr

var_in = {"x_tilde": list(inputs.shape)} # define variable
soln = pygranso(var_in,comb_fn)

Demo 3: PyGRANSO for NPA

3



A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

4. Constrained deep learning applications

In this section, we highlight 4 families of constrained deep learning problems with highly non-
trivial, often nonsmooth, constraints. These constraints cannot be easily built into the underlying
neural networks. PyGRANSO can directly solve these problems, and detailed codes and tutorials
are available on https://ncvx.org/examples.

4.1. Robustness of deep learning models

In visual recognition, deep neural networks (DNNs) are not robust against perturbations—either ad-
versarially constructed or naturally occurring—that are easily discounted by human perception [26,
33]. To formalize robustness, one popular way is the adversarial loss defined as [49]

max
x′

ℓ
(
y, fθ(x

′)
)

s. t. x′ ∈ ∆(x) = {x′ ∈ [0, 1]n : d
(
x,x′) ≤ ϵ}, (4)

where fθ is the DNN model, and ∆(x) is the set of allowable perturbations with a radius ϵ mea-
sured with respect to the metric d. Early works assume that ∆(x) is the ℓp norm ball intersected
with the natural image box, i.e., {x′ ∈ [0, 1]n : ∥x− x′∥p ≤ ϵ}, where p = 1, 2,∞ are pop-
ular choices [26, 49]. To capture visually realistic perturbations, recent work has also modeled
nontrivial transformations [33] that use non-ℓp metrics. For empirical robustness evaluation (RE),
solving Eq. (4) leads to the worst perturbations that could fool fθ.

An alternative formalism of robustness is the robustness radius (or minimum distortion radius),
defined as the minimal level of perturbation that can cause fθ to change its predicted class:

min
x′∈[0,1]n

d
(
x,x′) s. t. max

i ̸=y
f i
θ(x

′) ≥ fy
θ (x

′), (5)

where the superscript for fθ indexes its elements, i.e., the output logits. Solving Eq. (5) produces not
only a minimally distorted perturbation x′ but also a robustness radius, making it another popular
choice for RE [15, 16]. For small and restricted fθ and selected d, Eq. (5) can be solved exactly
by mixed integer programming [7, 38, 65]. For general fθ and selected d, lower bounds of the
robustness radius can be computed [48, 70, 71, 75]. But in general, Eq. (5) is heuristically solved
via gradient-based methods or iterative linearization [8, 15, 30, 54, 59, 60, 64].

Eqs. (4) and (5) are difficult constrained problems, especially when d is sophisticated—necessary
for modeling realistic perturbations [23, 33, 34, 40, 73]. Popular exisiting solvers for them rely on
explicit projections onto simple sets, and they will not work when d is a non-ℓp metric. Also, pre-
vious work has shown that the quality of the solution using these handcrafted methods is sensitive
to key hyperparameters: e.g., step-size schedule and iteration budget [9, 16]. With PyGRANSO, we
can reliably solve Eqs. (4) and (5) with general d’s with minimal hyperparameter tuning [45]; see
https://arxiv.org/pdf/2210.00621 for more details.

4.2. Neural structural optimization

Designing physical structures such as bridges, optical devices and airplanes often boils down to
structural optimization, a fundamental family of problems in physical science and engineering [10,
11, 13, 35]. A primitive version of structural optimization takes the form3:

min
x,u

u⊺K(x)u s. t.K(x)u = f ,V (x) ≤ v0,x ∈ {0, 1}d , (6)

3. This form is also called topology optimization.

4

https://ncvx.org/examples
https://arxiv.org/pdf/2210.00621


A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

where x ∈ Rd is the vectorized binary design variable that indicates where the material should be
put to form the structure, u ∈ Rn is the displacement vector, K is the global stiffness matrix, and
f is the vector of external force. For the constraints, K(x)u = f encodes the physical laws (e.g.,
Hooke’s law) and is often called the equilibrium constraint, and V (x) = v0 limits the amount of
material to be used.

Recent work [35] has introduced the deep image prior (DIP) [68] idea into Eq. (6): x is
reparametrized as x = gθ(β), where gθ is a deep neural network parametrized by θ, and β is a
fixed random input. DIP has shown great promise for solving difficult visual inverse problems (see,
e.g., discussions in [44, 69, 78]), and can implicitly promote spatial continuity of the design—which
is not explicitly modeled in Eq. (6)4. Also, the overparametrization in DIP tends to ease the global
optimization. Relaxing the integer constraint x ∈ {0, 1}d into a box constraint x ∈ [0, 1]d as is
typically done in structural optimization, we arrive at

min
θ,u

u⊺K(gθ(β))u s. t.K(gθ(β))u = f ,V (gθ(β)) ≤ v0, gθ(β) ∈ [0, 1]d. (7)

In order to solve Eq. (7), recent work [35] transforms Eq. (7) into an unconstrained problem, which
includes 1) eliminating u from the physical constraint by solving the linear system K(gθ(β))u =
f ; 2) enforcing the couple of constraints V (gθ(β)) ≤ v0 and gθ(β) ∈ [0, 1]d via reparametrization,
binary search, and implicit differentiation. By contrast, using PyGRANSO we can directly solve
Eq. (7) without any of the problem-specific tricks. For realistic design problems, x needs to be
discrete-valued (it can have more than 2 discrete values in multi-material design), and the constraint
K(gθ(β))u = f becomes nonlinear—K becomes a nonlinear operator acting on u due to the
governing PDEs [10, 11]. PyGRANSO can easily handle these general cases also, whereas the
tricks used in [35] cannot be generalized.

4.3. Orthogonal recurrent neural networks (RNNs)

The exploding and vanishing gradient issues are common in RNNs, and they could occur whenever
the recurrent kernel does not have unit eigenvalues [2, 4, 29, 32, 43], i.e., the associated weight
matrix is not orthogonal. Recent work proposes imposing orthogonality constraint on the weight
matrix directly [31, 43]:

min
θ

L (fθ(x),y) s. t.W ⊺
hh(θ)Whh(θ) = I, detWhh(θ) = 1, (8)

where fθ is the RNN parameterized by θ, and Whh is the recurrent kernel of the RNN (i.e., a
subvector of θ). Since the constraints define the famous special orthogonal group which is a smooth
manifold, manifold optimization methods can be developed to solve Eq. (8) [31, 43]. But these
methods entail heavy mathematics from differential geometry, and hence is impractical for non-
experts to implement and build on (there could be additional constraints in real applications). Again,
PyGRANSO is able to directly handle the nonlinear constraints, whether the user recognizes or not
that the constraint forms the special orthogonal group.

4. The state-of-the-art methods for structural optimization use smoothing filters during iteration heuristically to encour-
age spatial continuity; see, e.g., [11].

5



A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

4.4. Knowledge-aware machine learning (KAML)

KAML concerns learning that incorporates prior knowledge, e.g., physical laws as constraints. As
an example, it can take the general form of minimizing a loss subject to PDE constraints [21, 50]:

min
u(x)

L(u(x)) s. t.

{
f
(
x; ∂u

∂x1
, . . . , ∂u

∂xd
; ∂2u
∂x1∂x1

, . . . , ∂2u
∂x1∂xd

; . . .
)
= 0, ∀x ∈ Ω

B (u,x) = 0, ∀x ∈ ∂Ω
. (9)

Here, Ω and ∂Ω denote the domain and its boundary respectively, and the loss L depends on the
functional variable u(x) over the domain Ω. The constraints are PDEs, with boundary and/or initial
conditions B (·) = 0. If the loss is a constant, this reduces to solving the PDE problem about u(x).
In supervised learning scenarios, the loss could take the form of 1/N ·

∑N
i=1 ℓ(yi, u(xi)), where

{(xi,yi)} is the training set and u is the predictor to be learned from the training set.
To solve Eq. (9), one can parametrize u(x) as a neural network, i.e., u(x;θ). This is nat-

ural in modern supervised learning, and is called physics-informed neural networks (PINNs) in
the numerical PDE community [12, 17, 21, 36, 47, 55]. In numerical PDEs, classical methods use
finite-difference approximations for all the partial derivatives, whereas the PINN idea directly works
with continuous functions that allow partial derivatives to be computed via auto-differentiation.
This “mesh-free” nature of PINNs holds the promise for high-precision solutions even for high-
dimensional PDEs.

The state-of-the-art methods for solving the DNN-parametrized version of Eq. (9) use penalty
methods, Lagrangian methods, and augmented Lagrangian methods [17, 21, 47, 50], which often
involve delicate tuning of multiple hyperparameters and could lead to infeasible solutions. By
contrast, PyGRANSO stops iterations by rigorous check of constraint violation and stationarity.

5. Roadmap

Although NCVX, with the PyGRANSO solver, already has many powerful features, we plan to further
improve it by adding several major components: (1) symmetric rank one (SR1): SR1, another
major type of quasi-Newton methods, allows less stringent step-size search and tends to help escape
from saddle points faster by taking advantage of negative curvature directions [20]; (2) stochastic
algorithms: in machine learning, computing with large-scale datasets often involves finite sums
with huge number of terms, calling for stochastic algorithms for reduced per-iteration cost and better
scalability [63]; (3) conic programming (CP): semidefinite programming and second-order cone
programming, special cases of CP, are abundant in machine learning, e.g., kernel machines [77]; (4)
minimax optimization (MMO): MMO is an emerging modeling technique in machine learning,
e.g., generative adversarial networks (GANs) [25] and multi-agent reinforcement learning [37].

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

6



A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software available from tensorflow.org.

[2] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pages 1120–1128. PMLR, 2016.

[3] Yu Bai, Qijia Jiang, and Ju Sun. Subgradient descent learns orthogonal dictionaries. arXiv preprint
arXiv:1810.10702, October 2018.

[4] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regulariza-
tions in training deep networks? Advances in Neural Information Processing Systems, 31, 2018.

[5] Stephen R. Becker, Emmanuel J. Candès, and Michael C. Grant. Templates for convex cone problems
with applications to sparse signal recovery. Mathematical programming computation, 3(3):165, 2011.

[6] Nicolas Boumal, Bamdev Mishra, Pierre-Antoine Absil, and Rodolphe Sepulchre. Manopt, a Matlab
toolbox for optimization on manifolds. Journal of Machine Learning Research, 15(42):1455–1459,
2014.

[7] Rudy Bunel, P Mudigonda, Ilker Turkaslan, P Torr, Jingyue Lu, and Pushmeet Kohli. Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning Research, 21
(2020), 2020.

[8] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
arXiv:1608.04644, August 2016.

[9] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
arXiv:1902.06705, February 2019.

[10] Aaditya Chandrasekhar and Krishnan Suresh. Tounn: topology optimization using neural networks.
Structural and Multidisciplinary Optimization, 63(3):1135–1149, 2021.

[11] Aaditya Chandrasekhar, Saketh Sridhara, and Krishnan Suresh. Auto: a framework for automatic dif-
ferentiation in topology optimization. Structural and Multidisciplinary Optimization, 64(6):4355–4365,
2021.

[12] Di Chen, Yiwei Bai, Wenting Zhao, Sebastian Ament, John M Gregoire, and Carla P Gomes. Deep
reasoning networks: Thinking fast and slow. arXiv preprint arXiv:1906.00855, 2019.

[13] Peter W. Christensen and Anders Klarbring. An Introduction to Structural Optimization. Springer
Netherlands, 2008. doi: 10.1007/978-1-4020-8666-3.

[14] IBM ILOG Cplex. V12. 1: User’s manual for CPLEX. International Business Machines Corporation,
46(53):157, 2009.

[15] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive
boundary attack. In International Conference on Machine Learning, pages 2196–2205. PMLR, 2020.

[16] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pages 2206–2216.
PMLR, 2020.

[17] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maizar Raissi, and
Francesco Piccialli. Scientific machine learning through physics-informed neural networks: Where we
are and what’s next. arXiv preprint arXiv:2201.05624, 2022.

[18] Ryan R. Curtin, Marcus Edel, Rahul Ganesh Prabhu, Suryoday Basak, Zhihao Lou, and Conrad Sander-
son. The ensmallen library for flexible numerical optimization. Journal of Machine Learning Research,
22(166):1–6, 2021.

[19] Frank E Curtis, Tim Mitchell, and Michael L Overton. A BFGS-SQP method for nonsmooth, non-
convex, constrained optimization and its evaluation using relative minimization profiles. Optimization
Methods and Software, 32(1):148–181, 2017.

[20] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimiza-
tion. In Proceedings of the 27th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’14, page 2933–2941, Cambridge, MA, USA, 2014. MIT Press.

7

https://www.tensorflow.org/


A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

[21] Alp Dener, Marco Andres Miller, Randy Michael Churchill, Todd Munson, and Choong-Seock Chang.
Training neural networks under physical constraints using a stochastic augmented lagrangian approach.
arXiv preprint arXiv:2009.07330, 2020.

[22] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[23] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Ex-
ploring the landscape of spatial robustness. In Kamalika Chaudhuri and Ruslan Salakhutdinov, ed-
itors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 1802–1811. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/engstrom19a.html.

[24] David M. Gay. The AMPL modeling language: An aid to formulating and solving optimization prob-
lems. In Mehiddin Al-Baali, Lucio Grandinetti, and Anton Purnama, editors, Numerical analysis and
optimization, pages 95–116. Springer International Publishing, Cham, 2015. ISBN 978-3-319-17689-5.

[25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

[26] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2015.

[27] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX: Matlab software for disciplined convex program-
ming. http://cvxr.com/cvx, 2008.

[28] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

[29] Mehrtash Harandi and Basura Fernando. Generalized backpropagation,\’{E} tude de cas: Orthogonal-
ity. arXiv preprint arXiv:1611.05927, 2016.

[30] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. arXiv:1705.08475, May 2017.

[31] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled cayley
transform. In International Conference on Machine Learning, pages 1969–1978. PMLR, 2018.

[32] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and long-memory
tasks. In International Conference on Machine Learning, pages 2034–2042. PMLR, 2016.

[33] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[34] Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 1614–1619, 2018.

[35] Stephan Hoyer, Jascha Sohl-Dickstein, and Sam Greydanus. Neural reparameterization improves struc-
tural optimization. arXiv preprint arXiv:1909.04240, 2019.

[36] Dou Huang, Haoran Zhang, Xuan Song, and Ryosuke Shibasaki. Differentiable projection for con-
strained deep learning. arXiv preprint arXiv:2111.10785, 2021.

[37] Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
4880–4889. PMLR, 13–18 Jul 2020.

[38] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An efficient smt
solver for verifying deep neural networks. arXiv:1702.01135, February 2017.

[39] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in PyTorch.
arXiv preprint arXiv:2005.02819, May 2020.

[40] Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. Advances in neural information
processing systems, 32, 2019.

[41] Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense against
unseen threat models. arXiv preprint arXiv:2006.12655, June 2020.

8

https://proceedings.mlr.press/v97/engstrom19a.html
https://proceedings.mlr.press/v97/engstrom19a.html
http://cvxr.com/cvx
https://www.gurobi.com
https://www.gurobi.com


A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

[42] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. GENO – GENeric Optimization for classical
machine learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[43] Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in neural networks:
A simple parametrization of the orthogonal and unitary group. In International Conference on Machine
Learning, pages 3794–3803. PMLR, 2019.

[44] Taihui Li, Zhong Zhuang, Hengyue Liang, Le Peng, Hengkang Wang, and Ju Sun. Self-validation:
Early stopping for single-instance deep generative priors. arXiv:2110.12271, October 2021.

[45] Hengyue Liang, Buyun Liang, Ying Cui, Tim Mitchell, and Ju Sun. Optimization for robustness evalu-
ation beyond ℓp metrics. arXiv preprint arXiv:2210.00621, 2022.

[46] Johan Lofberg. YALMIP : a toolbox for modeling and optimization in MATLAB. In 2004 IEEE
International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pages 284–289.
IEEE, 2004. doi: 10.1109/cacsd.2004.1393890.

[47] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library for
solving differential equations. SIAM Review, 63(1):208–228, 2021.

[48] Zhaoyang Lyu, Ching-Yun Ko, Zhifeng Kong, Ngai Wong, Dahua Lin, and Luca Daniel. Fastened
crown: Tightened neural network robustness certificates. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5037–5044, 2020.

[49] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[50] Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a soft
attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

[51] Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan, Hiroyuki Kasai, and Bamdev Mishra.
McTorch, a manifold optimization library for deep learning. arXiv preprint arXiv:1810.01811, October
2018.

[52] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin,
Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. MLlib: Machine learning in Apache Spark. Journal
of Machine Learning Research, 17(34):1–7, 2016.

[53] Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas,
Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, Hatem Hajri, Yann Cabanes, Thomas Gerald,
Paul Chauchat, Christian Shewmake, Daniel Brooks, Bernhard Kainz, Claire Donnat, Susan Holmes,
and Xavier Pennec. Geomstats: A Python package for Riemannian geometry in machine learning.
Journal of Machine Learning Research, 21(223):1–9, 2020.

[54] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. arXiv:1511.04599., November 2015.

[55] Yatin Nandwani, Abhishek Pathak, and Parag Singla. A primal dual formulation for deep learning with
constraints. Advances in Neural Information Processing Systems, 32, 2019.

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep learning li-
brary. Advances in neural information processing systems, 32:8026–8037, 2019.

[57] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[58] Gianni Pillo and Massimo Roma. Large-Scale Nonlinear Optimization, volume 83 of Nonconvex Opti-
mization and Its Applications. Springer Science & Business Media, Boston, MA, 2006.

9



A GENERAL-PURPOSE OPTIMIZATION SOLVER FOR CONSTRAINED MACHINE AND DEEP LEARNING

[59] Maura Pintor, Fabio Roli, Wieland Brendel, and Battista Biggio. Fast minimum-norm adversarial at-
tacks through adaptive norm constraints. Advances in Neural Information Processing Systems, 34,
2021.

[60] Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric Granger.
Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and defenses. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4322–
4330, 2019.

[61] Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for Machine Learning. The MIT
Press, Cambridge, MA, 2012.

[62] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP: an
operator splitting solver for quadratic programs. Mathematical Programming Computation, 12(4):637–
672, 2020. doi: 10.1007/s12532-020-00179-2.

[63] Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint arXiv:1912.08957,
December 2019.

[64] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[65] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. arXiv:1711.07356, November 2017.

[66] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. SDPT3—a Matlab software package for
semidefinite programming, Version 1.3. Optimization Methods and Software, 11(1-4):545–581, 1999.

[67] James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A Python toolbox for optimiza-
tion on manifolds using automatic differentiation. Journal of Machine Learning Research, 17(137):1–5,
2016.

[68] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 9446–9454, 2018.

[69] Hengkang Wang, Taihui Li, Zhong Zhuang, Tiancong Chen, Hengyue Liang, and Ju Sun. Early stopping
for deep image prior. arXiv:2112.06074, December 2021.

[70] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and
Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In International
Conference on Machine Learning, pages 5276–5285. PMLR, 2018.

[71] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. arXiv
preprint arXiv:1801.10578, 2018.

[72] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, Burlington, MA, third edition, 2011.

[73] Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations. arXiv:1902.07906, February 2019.

[74] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006.
doi: 10.1007/s10107-004-0559-y.

[75] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. Advances in neural information processing
systems, 31, 2018.

[76] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 586–595, 2018.

[77] Richard Y. Zhang, Cédric Josz, and Somayeh Sojoudi. Conic optimization for control, energy systems,
and machine learning: Applications and algorithms. Annual Reviews in Control, 47:323–340, 2019.

[78] Zhong Zhuang, Taihui Li, Hengkang Wang, and Ju Sun. Blind image deblurring with unknown kernel
size and substantial noise. arXiv:2208.09483, August 2022.

10


	Introduction
	The GRANSO and NCVX packages
	Usage examples: dictionary learning and neural perceptual attack
	Constrained deep learning applications
	Robustness of deep learning models
	Neural structural optimization
	Orthogonal recurrent neural networks (RNNs)
	Knowledge-aware machine learning (KAML)

	Roadmap

