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Abstract
Imposing explicit constraints is relatively new but increasingly pressing in deep learning, stimu-
lated by, e.g., trustworthy AI that performs robust optimization over complicated perturbation sets
and scientific applications that need to respect physical laws and constraints. However, it can be
hard to reliably solve constrained deep learning problems without optimization expertise. The ex-
isting deep learning frameworks do not admit constraints. General-purpose optimization packages
can handle constraints but do not perform auto-differentiation and have trouble dealing with nons-
moothness. In this paper, we introduce a new software package called NCVX, whose initial release
contains the solver PyGRANSO, a PyTorch-enabled general-purpose optimization package for con-
strained machine/deep learning problems, the first of its kind. NCVX inherits auto-differentiation,
GPU acceleration, and tensor variables from PyTorch, and is built on freely available and widely
used open-source frameworks. NCVX is available at https://ncvx.org, with detailed docu-
mentation and numerous examples from machine/deep learning and other fields. Future updates on
this topic will be posted at https://arxiv.org/abs/2210.00973.

1. Introduction

Mathematical optimization is an indispensable modeling and computational tool for all science
and engineering fields, especially for machine/deep learning. To date, researchers have devel-
oped numerous foolproof techniques, user-friendly solvers, and modeling languages for convex
(CVX) problems, such as SDPT3 [66], Gurobi [28], Cplex [14], TFOCS [5], CVX(PY) [22, 27],
AMPL [24], YALMIP [46]. These developments have substantially lowered the barrier of CVX
optimization for non-experts. However, practical problems, especially from machine/deep learning,
are often nonconvex (NCVX), and possibly also constrained (CSTR) and nonsmooth (NSMT).

There are methods and packages handling NCVX problems in restricted settings: PyTorch [56]
and TensorFlow [1] can solve large-scale NCVX, NSMT problems without constraints. CSTR prob-
lems can be heuristically turned into penalty forms and solved as unconstrained, but this may not
produce feasible solutions for the original problems. When the constraints are simple, structured
methods such as projected (sub)gradient and Frank-Wolfe [61] can be used. When the constraints
are differentiable manifolds, one can consider manifold optimization methods and packages, e.g.,
(Py)manopt [6, 67], Geomstats [53], McTorch [51], and Geoopt [39]. For general CSTR prob-
lems, KNITRO [58] and IPOPT [74] implement interior-point methods, while ensmallen [18] and
GENO [42] rely on augmented Lagrangian methods. However, moving beyond smooth (SMT) con-
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straints, both of these families of methods, at best, handle only special types of NSMT constraints.
Finally, packages specialized for machine learning, e.g., scikit-learn [57], MLib [52] and Weka [72],
often use problem-specific solvers that cannot be easily extended to new formulations.

2. The GRANSO and NCVX packages

GRANSO1 is among the first optimization packages that can handle general NCVX, NSMT, CSTR
problems [19]:

min
x∈Rn

f(x), s.t. ci(x) ≤ 0, ∀ i ∈ I; ci(x) = 0, ∀ i ∈ E . (1)

Here, the objective f and constraint functions ci’s are only required to be almost everywhere con-
tinuously differentiable. GRANSO is based on quasi-Newton updating with sequential quadratic
programming (BFGS-SQP) and has the following advantages: (1) unified treatment of NCVX
problems: no need to distinguish CVX vs NCVX and SMT vs NSMT problems, similar to typical
nonlinear programming packages; (2) reliable step-size rule: specialized methods for NSMT prob-
lems, such as subgradient and proximal methods, often entail tricky step-size tuning and require
the expertise to recognize the structures [61], while GRANSO chooses step sizes adaptively via a
gold-standard line search; (3) principled stopping criterion: GRANSO stops its iteration by check-
ing a theory-grounded stationarity condition for NMST problems, whereas specialized methods are
usually stopped when reaching ad-hoc iteration caps.

However, GRANSO users must derive gradients analytically2 and then provide code for these
computations, a process which is often error-prone in machine learning and impractical for deep
learning. Furthermore, as part of the MATLAB software ecosystem, GRANSO is generally not com-
patible with popular machine/deep learning frameworks—mostly in Python and R—and users’ own
existing toolchains. To overcome these issues and facilitate both high performance and ease of use
in machine/deep learning, we introduce a new software package called NCVX, whose initial release
contains the solver PyGRANSO, a PyTorch-port of GRANSO with several new and key features: (1)
auto-differentiation of all gradients, a critical feature to make PyGRANSO user-friendly; (2) support
for both CPU and GPU computations for improved hardware acceleration and massive parallelism;
(3) support for general tensor variables including vectors and matrices, as opposed to the single vec-
tor of concatenated optimization variables that GRANSO uses; (4) integrated support for OSQP [62]
and other QP solvers for respectively computing search directions and the stationarity measure on
each iteration. OSQP generally outperforms commercial QP solvers in terms of scalability and
speed. All of these enhancements are crucial for solving large-scale machine/deep learning prob-
lems. NCVX, licensed under the AGPL V3, is built entirely on freely available and widely used
open-source frameworks; see https://ncvx.org for documentation and examples.

3. Usage examples: dictionary learning and neural perceptual attack

In order to make NCVX friendly to non-experts, we strive to keep the user input minimal. The user is
only required to specify the optimization variables (names and dimensions of variables) and define

1. http://www.timmitchell.com/software/GRANSO/
2. GRANSO is implemented in MATLAB and does not support auto-differentiation, although recent versions of MAT-

LAB have included primitive auto-differentiation functionalities.
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the objective and constraint functions. Here, we briefly demonstrate the usage of PyGRANSO solver
on a couple of machine/deep learning problems.

Orthogonal dictionary learning (ODL, [3]) One hopes to find a “transformation” q ∈ Rn to
sparsify a data matrix Y ∈ Rn×m:

min
q∈Rn

f(q)
.
= 1/m · ∥q⊺Y ∥1, s.t. ∥q∥2 = 1, (2)

where the constraint ∥q∥2 = 1 is to avoid the trivial solution q = 0. Eq. (2) is NCVX, NSMT,
and CSTR: nonsmoothness comes from the objective, and nonconvexity comes from the constraint.
Demos 1 & 2 show the implementations of ODL in GRANSO and PyGRANSO, respectively. Note
that the analytical gradients of the objective and constraint functions are not required in PyGRANSO.

function[f,fg,ci,cig,ce,ceg]=fn(q)
f = 1/m*norm(q’*Y, 1);%obj
fg = 1/m*Y*sign(Y’*q);%obj grad
ci = [];cig = [];%no ineq constr
ce = q’*q - 1; % eq constr
ceg = 2*q; % eq constr grad

end
soln = granso(n,fn);

Demo 1: GRANSO for ODL

def fn(X_struct):
q = X_struct.q
f = 1/m*norm(q.T@Y, p=1) # obj
ce = pygransoStruct()
ce.c1 = q.T@q - 1 # eq constr
return [f,None,ce]

var_in = {"q": [n,1]}# def variable
soln = pygranso(var_in, fn)

Demo 2: PyGRANSO for ODL

Neural perceptual attack (NPA, [41]) The CSTR deep learning problem, NPA, is shown below:

max
x̃

L (f (x̃) , y) , s.t. d (x, x̃) = ∥ϕ (x)− ϕ (x̃)∥2 ≤ ϵ. (3)

Here, x is an input image, and the goal is to find its perturbed version x̃ that is perceptually similar
to x (encoded by the constraint) but can fool the classifier f (encoded by the objective). The loss
L (·, ·) is the margin loss used in Laidlaw et al. [41]. Both f in the objective and ϕ in the constraint
are deep neural networks with ReLU activations, making both the objective and constraint functions
NSMT and NCVX. The d (x, x̃) distance is called the Learned Perceptual Image Patch Similarity
(LPIPS) [41, 76]. Demo 3 is the PyGRANSO example for solving Eq. (3). Note that the codes
for data loading, model specification, loss function, and LPIPS distance are not included here. It
is almost impossible to derive analytical subgradients for Eq. (3), and thus the auto-differentiation
feature in PyGRANSO is necessary for solving it.

def comb_fn(X_struct):
adv_inputs = X_struct.x_tilde
f = MarginLoss(model(adv_inputs),labels) # obj
ci = pygransoStruct()
ci.c1 = lpips_dists(adv_inputs) - 0.5 # ineq constr. bound eps=0.5
return [f,ci,None] # No eq constr

var_in = {"x_tilde": list(inputs.shape)} # define variable
soln = pygranso(var_in,comb_fn)

Demo 3: PyGRANSO for NPA
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4. Constrained deep learning applications

In this section, we highlight 4 families of constrained deep learning problems with highly non-
trivial, often nonsmooth, constraints. These constraints cannot be easily built into the underlying
neural networks. PyGRANSO can directly solve these problems, and detailed codes and tutorials
are available on https://ncvx.org/examples.

4.1. Robustness of deep learning models

In visual recognition, deep neural networks (DNNs) are not robust against perturbations—either ad-
versarially constructed or naturally occurring—that are easily discounted by human perception [26,
33]. To formalize robustness, one popular way is the adversarial loss defined as [49]

max
x′

ℓ
(
y, fθ(x

′)
)

s. t. x′ ∈ ∆(x) = {x′ ∈ [0, 1]n : d
(
x,x′) ≤ ϵ}, (4)

where fθ is the DNN model, and ∆(x) is the set of allowable perturbations with a radius ϵ mea-
sured with respect to the metric d. Early works assume that ∆(x) is the ℓp norm ball intersected
with the natural image box, i.e., {x′ ∈ [0, 1]n : ∥x− x′∥p ≤ ϵ}, where p = 1, 2,∞ are pop-
ular choices [26, 49]. To capture visually realistic perturbations, recent work has also modeled
nontrivial transformations [33] that use non-ℓp metrics. For empirical robustness evaluation (RE),
solving Eq. (4) leads to the worst perturbations that could fool fθ.

An alternative formalism of robustness is the robustness radius (or minimum distortion radius),
defined as the minimal level of perturbation that can cause fθ to change its predicted class:

min
x′∈[0,1]n

d
(
x,x′) s. t. max

i ̸=y
f i
θ(x

′) ≥ fy
θ (x

′), (5)

where the superscript for fθ indexes its elements, i.e., the output logits. Solving Eq. (5) produces not
only a minimally distorted perturbation x′ but also a robustness radius, making it another popular
choice for RE [15, 16]. For small and restricted fθ and selected d, Eq. (5) can be solved exactly
by mixed integer programming [7, 38, 65]. For general fθ and selected d, lower bounds of the
robustness radius can be computed [48, 70, 71, 75]. But in general, Eq. (5) is heuristically solved
via gradient-based methods or iterative linearization [8, 15, 30, 54, 59, 60, 64].

Eqs. (4) and (5) are difficult constrained problems, especially when d is sophisticated—necessary
for modeling realistic perturbations [23, 33, 34, 40, 73]. Popular exisiting solvers for them rely on
explicit projections onto simple sets, and they will not work when d is a non-ℓp metric. Also, pre-
vious work has shown that the quality of the solution using these handcrafted methods is sensitive
to key hyperparameters: e.g., step-size schedule and iteration budget [9, 16]. With PyGRANSO, we
can reliably solve Eqs. (4) and (5) with general d’s with minimal hyperparameter tuning [45]; see
https://arxiv.org/pdf/2210.00621 for more details.

4.2. Neural structural optimization

Designing physical structures such as bridges, optical devices and airplanes often boils down to
structural optimization, a fundamental family of problems in physical science and engineering [10,
11, 13, 35]. A primitive version of structural optimization takes the form3:

min
x,u

u⊺K(x)u s. t.K(x)u = f ,V (x) ≤ v0,x ∈ {0, 1}d , (6)

3. This form is also called topology optimization.
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where x ∈ Rd is the vectorized binary design variable that indicates where the material should be
put to form the structure, u ∈ Rn is the displacement vector, K is the global stiffness matrix, and
f is the vector of external force. For the constraints, K(x)u = f encodes the physical laws (e.g.,
Hooke’s law) and is often called the equilibrium constraint, and V (x) = v0 limits the amount of
material to be used.

Recent work [35] has introduced the deep image prior (DIP) [68] idea into Eq. (6): x is
reparametrized as x = gθ(β), where gθ is a deep neural network parametrized by θ, and β is a
fixed random input. DIP has shown great promise for solving difficult visual inverse problems (see,
e.g., discussions in [44, 69, 78]), and can implicitly promote spatial continuity of the design—which
is not explicitly modeled in Eq. (6)4. Also, the overparametrization in DIP tends to ease the global
optimization. Relaxing the integer constraint x ∈ {0, 1}d into a box constraint x ∈ [0, 1]d as is
typically done in structural optimization, we arrive at

min
θ,u

u⊺K(gθ(β))u s. t.K(gθ(β))u = f ,V (gθ(β)) ≤ v0, gθ(β) ∈ [0, 1]d. (7)

In order to solve Eq. (7), recent work [35] transforms Eq. (7) into an unconstrained problem, which
includes 1) eliminating u from the physical constraint by solving the linear system K(gθ(β))u =
f ; 2) enforcing the couple of constraints V (gθ(β)) ≤ v0 and gθ(β) ∈ [0, 1]d via reparametrization,
binary search, and implicit differentiation. By contrast, using PyGRANSO we can directly solve
Eq. (7) without any of the problem-specific tricks. For realistic design problems, x needs to be
discrete-valued (it can have more than 2 discrete values in multi-material design), and the constraint
K(gθ(β))u = f becomes nonlinear—K becomes a nonlinear operator acting on u due to the
governing PDEs [10, 11]. PyGRANSO can easily handle these general cases also, whereas the
tricks used in [35] cannot be generalized.

4.3. Orthogonal recurrent neural networks (RNNs)

The exploding and vanishing gradient issues are common in RNNs, and they could occur whenever
the recurrent kernel does not have unit eigenvalues [2, 4, 29, 32, 43], i.e., the associated weight
matrix is not orthogonal. Recent work proposes imposing orthogonality constraint on the weight
matrix directly [31, 43]:

min
θ

L (fθ(x),y) s. t.W ⊺
hh(θ)Whh(θ) = I, detWhh(θ) = 1, (8)

where fθ is the RNN parameterized by θ, and Whh is the recurrent kernel of the RNN (i.e., a
subvector of θ). Since the constraints define the famous special orthogonal group which is a smooth
manifold, manifold optimization methods can be developed to solve Eq. (8) [31, 43]. But these
methods entail heavy mathematics from differential geometry, and hence is impractical for non-
experts to implement and build on (there could be additional constraints in real applications). Again,
PyGRANSO is able to directly handle the nonlinear constraints, whether the user recognizes or not
that the constraint forms the special orthogonal group.

4. The state-of-the-art methods for structural optimization use smoothing filters during iteration heuristically to encour-
age spatial continuity; see, e.g., [11].
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4.4. Knowledge-aware machine learning (KAML)

KAML concerns learning that incorporates prior knowledge, e.g., physical laws as constraints. As
an example, it can take the general form of minimizing a loss subject to PDE constraints [21, 50]:

min
u(x)

L(u(x)) s. t.

{
f
(
x; ∂u

∂x1
, . . . , ∂u

∂xd
; ∂2u
∂x1∂x1

, . . . , ∂2u
∂x1∂xd

; . . .
)
= 0, ∀x ∈ Ω

B (u,x) = 0, ∀x ∈ ∂Ω
. (9)

Here, Ω and ∂Ω denote the domain and its boundary respectively, and the loss L depends on the
functional variable u(x) over the domain Ω. The constraints are PDEs, with boundary and/or initial
conditions B (·) = 0. If the loss is a constant, this reduces to solving the PDE problem about u(x).
In supervised learning scenarios, the loss could take the form of 1/N ·

∑N
i=1 ℓ(yi, u(xi)), where

{(xi,yi)} is the training set and u is the predictor to be learned from the training set.
To solve Eq. (9), one can parametrize u(x) as a neural network, i.e., u(x;θ). This is nat-

ural in modern supervised learning, and is called physics-informed neural networks (PINNs) in
the numerical PDE community [12, 17, 21, 36, 47, 55]. In numerical PDEs, classical methods use
finite-difference approximations for all the partial derivatives, whereas the PINN idea directly works
with continuous functions that allow partial derivatives to be computed via auto-differentiation.
This “mesh-free” nature of PINNs holds the promise for high-precision solutions even for high-
dimensional PDEs.

The state-of-the-art methods for solving the DNN-parametrized version of Eq. (9) use penalty
methods, Lagrangian methods, and augmented Lagrangian methods [17, 21, 47, 50], which often
involve delicate tuning of multiple hyperparameters and could lead to infeasible solutions. By
contrast, PyGRANSO stops iterations by rigorous check of constraint violation and stationarity.

5. Roadmap

Although NCVX, with the PyGRANSO solver, already has many powerful features, we plan to further
improve it by adding several major components: (1) symmetric rank one (SR1): SR1, another
major type of quasi-Newton methods, allows less stringent step-size search and tends to help escape
from saddle points faster by taking advantage of negative curvature directions [20]; (2) stochastic
algorithms: in machine learning, computing with large-scale datasets often involves finite sums
with huge number of terms, calling for stochastic algorithms for reduced per-iteration cost and better
scalability [63]; (3) conic programming (CP): semidefinite programming and second-order cone
programming, special cases of CP, are abundant in machine learning, e.g., kernel machines [77]; (4)
minimax optimization (MMO): MMO is an emerging modeling technique in machine learning,
e.g., generative adversarial networks (GANs) [25] and multi-agent reinforcement learning [37].
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