
Probabilistic Margins for Instance Reweighting
in Adversarial Training

Qizhou Wang1,∗ , Feng Liu2,∗ , Bo Han1,† , Tongliang Liu3, Chen Gong4,5,
Gang Niu6, Mingyuan Zhou7, Masashi Sugiyama6,8

1Department of Computer Science, Hong Kong Baptist University
2DeSI Lab, Australian Artificial Intelligence Institute, University of Technology Sydney

3TML Lab, School of Computer Science, Faculty of Engineering, The University of Sydney
4PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of MoE

5Jiangsu Key Lab of Image and Video Understanding for Social Security,
School of Computer Science and Engineering, Nanjing University of Science and Technology

6RIKEN Center for Advanced Intelligence Project (AIP)
7McCombs School of Business, The University of Texas at Austin
8Graduate School of Frontier Sciences, The University of Tokyo

{csqzwang, bhanml}@comp.hkbu.edu.hk, feng.liu@uts.edu.au,
tongliang.liu@sydney.edu.au, chen.gong@njust.edu.cn, gang.niu.ml@gmail.com

mingyuan.zhou@mccombs.utexas.edu, sugi@k.u-tokyo.ac.jp

Abstract

Reweighting adversarial data during training has been recently shown to improve
adversarial robustness, where data closer to the current decision boundaries are
regarded as more critical and given larger weights. However, existing methods
measuring the closeness are not very reliable: they are discrete and can take only a
few values, and they are path-dependent, i.e., they may change given the same start
and end points with different attack paths. In this paper, we propose three types
of probabilistic margin (PM), which are continuous and path-independent, for
measuring the aforementioned closeness and reweighting adversarial data. Specif-
ically, a PM is defined as the difference between two estimated class-posterior
probabilities, e.g., such a probability of the true label minus the probability of
the most confusing label given some natural data. Though different PMs capture
different geometric properties, all three PMs share a negative correlation with the
vulnerability of data: data with larger/smaller PMs are safer/riskier and should
have smaller/larger weights. Experiments demonstrated that PMs are reliable and
PM-based reweighting methods outperformed state-of-the-art counterparts.

1 Introduction

Deep neural networks are susceptible to adversarial examples that are generated by changing natural
inputs with malicious perturbation [17, 20, 37, 39]. Those examples are imperceptible to human eyes
but can fool deep models to make wrong predictions with high confidence [3, 35]. As deep learning
has been deployed in many real-life scenarios and even safety-critical systems [15, 16, 28], it is
crucial to make such deep models reliable and safe [19, 25, 30]. To obtain more reliable deep models,
adversarial training (AT) [2, 10, 29] was proposed as one of the most effective methodologies against
adversary attacks (i.e., maliciously changing natural inputs). Specifically, during training, it simulates
adversarial examples (e.g., via project gradient descent (PGD) [1, 29, 46, 41]) and train a classifier
∗Equal contribution.
†Corresponding author.
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(a) Loss Curve
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(b) Histogram
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(c) Accuracy Curve

Figure 1: An illustration for the drawbacks of LPS. (a) suggested that LPS is path-dependent and the
PGD method (PGD) may get stuck at sub-optimal points. Here, we proved the existence of a better
(not optimal) solution given by a LM-PGD method (Appendix A). LPSs are 50 and 14 estimated
by PGD and LM-PGD, respectively, which reveals that LPS depends on the adopted attacks. (b)
suggested that LPS can take only a few discrete values, and it may have confusing meanings when
LPS met its maximum. In this case, one can hardly distinguish non-robust data with LPS being
10 and safe data that are insensitive to be attacked. (c) showed that the accuracy of GAIRAT (on
CIFAR-10) dropped when facing CW attacks. The main reason is that LPS is not reliable in measuring
the distance, and thus it makes wrong judgments when assigning weights for non-robust instances.

with the simulated adversarial examples [29, 46]. Since such a model has seen some adversarial
examples during its training process, it can defend against certain adversarial attacks and is more
adversarial-robust than traditional classifiers trained with natural data [7, 14, 36, 49].

Recently, researchers have found that over-parameterized deep networks still have the insufficient
model capacity, due to the overwhelming smoothing effect of AT [47, 33]. As a result, they proposed
instance-reweighted adversarial training, where adversarial data should have unequal importance
given limited model capacity [47]. Concretely, they suggested that data closer to the decision
boundaries are much more vulnerable to be attacked [45, 47] and should be assigned larger weights
during training. To characterize these geometric properties of data (i.e., the closeness between the
data and decision boundaries), Zhang et al. [47] suggested an estimation in the input space, i.e., the
least PGD steps (LPS), to identify non-robust (i.e., easily-be-attacked) data. Specifically, LPS is the
number of steps to make the adversarial variant of such an instance cross the decision boundaries,
starting from a natural instance. Based on LPS, they achieved state-of-the-art performance via a
general framework termed geometry-aware instance-reweighted adversarial training (GAIRAT).
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Figure 2: LPS and the proposed PM
in comparison. The PGD method
takes 6 step to find an instance to
violate the decision boundary (i.e.,
LPS equals 6), while PM is contin-
uous to represent this distance.

However, existing methods [18, 22, 38] in measuring the ge-
ometric properties of data are path-dependent, i.e., they may
change even given the same start (a natural example) and end
point (the adversarial variant); and they are discrete with only
a few valid values (Figure 2). The path-dependency makes
the computation unstable, where the results may change given
different attack paths. The discreteness makes the measure-
ment ambiguous since each value would have several (even
contradictory) meanings. We take LPS as an example to demon-
strate a path-dependent (Figure 1a) and discrete measurement
(Figure 1b). As we can see in Figure 1c, the consequence is
non-negligible: although adopting LPS (i.e., GAIRAT) reveals
improvement for the PGD-100 attack [29], its performance is
well below AT regarding the CW attack [9].

In this paper, we propose the probabilistic margin (PM), which
is continuous and path-independent, for reweighting adversarial
data during AT. PM is a geometric measurement from a data
point to the closest decision boundary, following the multi-class
margin [23] in traditional geometry-aware machine learning.
Note that, instead of choosing the input space as LPS, PM
is defined by the estimated class-posterior probabilities from the model outputs, e.g., such the
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probability of the true label minus the probability of the most confusing label given some natural data.
Therefore, PM is computed in a low-dimensional embedding space with normalization, alleviating
the troubles in comparing data from different classes.

The definition of PM is general, where we consider three specifications, namely, PMnat, PMadv, and PMdif.
Concretely, PMnat and PMadv are the PM scores regarding natural and adversarial data, respectively.
They assume that the vulnerability of data is revealed by the closeness regarding either the natural
data or the adversarial variants. However, the definition of PMdif is slightly different, which is the
distance of a natural data point to its adversarial variant. PMdif is viewed as a conceptual counterpart of
LPS, but is critically different since it is continuous and path-independent. In our paper, we verified
the effectiveness of PMnat and PMadv and showed that they can represent the geometric properties
of data well. Note that, though these types of PMs depict different geometric properties, they all
share a negative correlation with the vulnerability of data—larger/smaller PMs indicate that the
corresponding data are safer/riskier and thus should be assigned with smaller/larger weights.

Eventually, PM is employed for reweighting adversarial data during AT, where we propose the Margin-
Aware Instance reweighting Learning (MAIL). With a non-increased weight assignment function in
Eq. (8), MAIL pays much attention to those non-robust data. In experiments, MAIL was combined
with various forms of commonly-used AT methods, including traditional AT [29], MART [40],
and TRADES [45]. We demonstrated that PM is more reliable than previous works in geometric
measurement, irrelevant to the forms of the adopted objectives. Moreover, in comparison with
advanced methods, MAIL revealed its state-of-the-art performance against various attack methods,
which benefits from our path-independent and continuous measurement.

2 Preliminary

2.1 Traditional Adversarial Training

For a K-classification problem, we consider a training dataset S = {(xi, yi)}ni=1 independently
drawn from a distribution D and a deep neural network h(x; θ) parameterized by θ. This deep
classifier h(x; θ) predicts the label of an input data via h(x; θ) = arg maxk pk(x; θ), with pk(x, θ)
being the predicted probability (softmax on logits) for the k-th class.

The goal of AT is to train a model with a low adversarial risk regarding the distribution D, i.e.,
R(θ) = E(x,y)∼D [maxδ∈∆ `(x+ δ, y; θ)], where ∆ is the threat model, defined by an Lp-norm
bounded perturbation with the radius ε: ∆ = {δ ∈ Rd | ||δ||p ≤ ε}. Therein, AT computes the new
perturbation to update the model parameters, where the PGD method [29] is commonly adopted: for
a (natural) example xi, it starts with random noise ξ and repeatedly computes

δ
(t)
i ← Proj

[
δ

(t−1)
i + αsign

(
∇θ`(xi + δ

(t−1)
i , yi; θ)

)]
, (1)

with Proj the clipping operation such that δ(t) is always in ∆ and sign the signum function. Due
to the non-convexity, we typically approximate the optimal solution by δ

(T )
i with T being the

maximally allowed iterations. Accordingly, δ(T )
i is viewed as the perturbation for the most adversarial

example [47], and the learning objective function is formulated by

arg min
θ

∑
i

`(xi + δ
(T )
i , yi; θ). (2)

Intuitively, AT corresponds to the worst-case robust optimization, continuously augmenting the
training dataset with adversarial variants that highly confuse the current model. Therefore, it is a
practical learning framework to alleviate the impact of adversarial attacks. Unfortunately, it leads to
insufficient network capacity, resulting in unsatisfactory model performance regarding adversarial
robustness. The reason is that, AT has an overwhelming smoothing effect in fitting highly adversarial
examples [45], and thus consumes large model capacity to learn from some individual data points.

2.2 Geometry-Aware Adversarial Training

Zhang et al. [47] claimed that training examples should have unequal significance in AT, and proposed
the geometry-aware instance-reweighted adversarial training (GAIRAT). It is a general framework
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to reweight adversarial data during training, where Eq. (2) is modified as

arg min
θ

∑
i

ωi`(xi + δ
(T )
i , yi; θ) s.t. ωi ≥ 0 and

∑
i

ωi = 1. (3)

Note that, the constraints are required since the risk after weighting is consistent with the original one
without weighting. Further, the generation of perturbation still follows Eq. (1). They revealed that
data near decision boundary are much vulnerable to be attacked and require large weights.

LPS as a geometric measurement. In assigning weights, GAIRAT needs a proper measurement
for the distance to the decision boundaries. They suggested the estimation in high-dimensional
input space via LPS (Fig. 2), which is the least PGD iterations for a perturbation that leads to a
wrong prediction. Intuitively, a small LPS indicates that the data point can quickly cross the decision
boundary and thus close to it.

The drawbacks of LPS. Although promising results have been verified in experiments, LPS is
path-dependent and limited by a few discrete values, where the consequence is non-negligible. In
Figure 1(a), we showed that the PGD method will get stuck. Therefore, using LPS as a geometric
measurement, we might identify non-robust examples as robust ones. Here, we modified the vanilla
PGD method with the line-searched learning rate [43] and Nesterov momentum [31] (see Appendix A),
termed Line-search & Momentum-PGD (LM-PGD), and we compared the loss curve of PGD with
that of LM-PGD on one example. The maximal iterations of PGD was 50. As we can see, PGD
almost converged at the 14-th step, and the loss value did not ascend anymore. As a result, LPS
of this example was 50, and this example was taken as a robust one in the view of LPS. However,
LM-PGD still ascended after the 14-th step and successfully attacked the instance at the 15-th step.
This result means that such an instance is not a robust one, but LPS made a wrong judgment in its
robustness. The main reason is that, LPS is heavily dependent on attack paths, even though both
paths are highly similar.

Now, we demonstrate that the limited range of LPS would cause problems as well. In Figure 1b, we
show the histogram of LPSs for data on CIFAR-10 [24]. Higher LPS values mean that these examples
were more robust and required smaller weights during AT. It could be seen that LPS has a confusing
meaning when it equaled the maximal value, which is 10 following [29]. For data whose LPSs were
10, they would be the most robust/safe ones. However, it could be seen that they still contained the
critical data points (the blue part). Although the proportion of the critical data seems low, ignoring
them during AT (i.e., assigning small weights for them) will cause problems. For example, the trained
classifier’s accuracy will drop significantly when facing the CW attack [9] (Figure 1c).

3 Probabilistic Margins for Instance Reweighting

The drawbacks of LPS motivate us to improve the measurement in discerning robust data and risky
data, and we introduce our proposal in this section.

3.1 Geometry Information in view of Probabilistic Margin

Instead of using the input space as LPS, we suggest the measurement on estimated class-posterior
probabilities, which are normalized embedding features (softmax on logits) in the range [0, 1] for
each dimension. Note that, without normalization, average distances from different classes might
be of diverse scales (e.g., the average distance is 10 for the i-th class and 100 for the j-th class),
increasing the challenge in comparing data from different classes (see Appendix B).

Inspired by the multi-class margin in margin theory [23], we propose the probabilistic margin (PM)
regarding model outputs, namely,

PM(x, y; θ) = py(x; θ)− max
j,j 6=y

pj(x; θ), (4)

where the first term in the r.h.s. is the closeness of x to the “center” of the true label y and the second
term is the closeness to the nearest class except y (i.e., the most confusing label). The difference
between the two terms is clearly a valid measurement, where the magnitude reflects the distance
from the nearest boundary, and the signum indicates which side the data point belongs to. Figure 3
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Figure 3: An illustration of PM, where pi
is the probability that a data point belongs
to the i-th class. As a special example,
here we assume PM = pi − pj with i the
target y and j the nearest class except y.
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Figure 4: Comparison of LPS and PM (PMnat). An
interquartile range box represents the middle 50%
of the considered data with the inside line being the
median; a whisker is the range for the bottom/top 5%
data, and points above/below whiskers are outliers.

summarizes the key concepts, with i for the true label y and j for the most confusing class. For
example, when py(x; θ) = pj(x; θ) = 0.5, PM is 0 and the data point x is on the decision boundary
between two classes; when py(x; θ) = 0.6 and pj(x; θ) = 0.4, PM is positive and the data point x
is much closer to the true label; if py(x; θ) = 0.4 and pj(x; θ) = 0.6, PM is negative and the data
point x is much closer to the most confusing class.

The above discussion indicates that PM can point out which geometric area a data point belongs to,
where we discuss the following three scenarios: the safe area with large positive PMs, the class-
boundary-around data with positive PMs close to 0, and the wrong-prediction area with negative
PMs. The safe area contains guarded data that are insensitive to perturbation, which are safe and
require low attention in AT (i.e., small weights); for the class-boundary-around data, they are much
vulnerable to be attacked [45, 47] and thus need larger weights than the safe data; for data in the
wrong-prediction area, they are the most critical since the attack method can successfully fool the
current model, and thus they should be assigned the largest weights. For a data point, this indicates a
negative correlation of its PM with the vulnerability, where a larger PM indicates a smaller weight is
required for this data point. In realization, the measurement of PM can be employed for adversarial
data or natural ones, which are of the forms:

PMadv
i = pyi(xi + δ

(T )
i ; θ)− max

j,j 6=yi
pj(xi + δ

(T )
i ; θ), (5)

PMnat
i = pyi(xi; θ)− max

j,j 6=yi
pj(xi; θ), (6)

for a data point xi respectively. They assume that the vulnerability of data is revealed by the closeness
regarding either the natural data or their adversarial variants. Besides these two basic cases, one can
also consider the difference between the natural and adversarial predictions, namely,

PMdif
i = pyi(xi; θ)− pyi(xi + δ

(ti)
i ; θ), (7)

where ti ≤ T denotes LPS of xi. PMdif is a conceptual counterpart of LPS, while Eq. (7) is actually
path-independent and continuous, which is more reliable than LPS. Note that, the valid range of
PMdif (i.e., [0, 1]) is different from that of PMadv and PMnat (i.e., [−1, 1]), which may bring unnecessary
troubles since the geometric meanings of PMnat and PMdif are highly similar. Therefore, in our
experiments, we mainly verify the effectiveness of PMadv and PMnat.

Without direct involvement of the PGD method, PM is continuous and path-independent, making it
more reliable than LPS. In Figure 4, we depicted the box plot regarding PM for training data with
various LPSs. The instability of LPS is evident: from the box centers, there is a little differentiation
for data with large LPSs (e.g., LPS = 7 or 9) regarding PM; from the whiskers and outliers, the
spreads of PMs are relatively scattered and the numbers of outliers are significant, confirming that the
geometric messages characterized by LPS may not be very stable.
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Algorithm 1 MAIL: The Overall Algorithm.
Input: a network model with the parameters θ; and a training dataset S of size n.
Output: a robust model with parameters θ∗.

1: for e = 1 to num_epoch do
2: for b = 1 to num_batch do
3: sample a mini-batch {(xi, yi)}mi=1 from S; . mini-batch of size m.
4: for i = 1 to batch_size do
5: δ

(0)
i = ξ, with ξ ∼ U(0, 1);

6: for t = 1 to T do
7: δ

(t)
i ← Proj

[
δ

(t−1)
i + αsign

(
∇θ`(xi + δ

(t−1)
i , yi; θ)

)]
;

8: end for
9: wunn

i = sigmoid(−γ(PMi − β));
10: end for
11: ωi = M × wunn

i /
∑
j w

unn
j , ∀i ∈ [m]; . ωi = 1 during burn-in period.

12: θ ← θ − η∇θ
∑m
i=1 ωi`(xi + δi, yi; θ) +R(xi, yi; θ);

13: end for
14: end for

3.2 Margin-Aware Instance Reweighting Learning (MAIL)

To benchmark our proposal against state-of-the-art counterparts, we propose the margin-aware in-
stance reweighting learning (MAIL). The overall algorithm is summarized in Algorithm 1. Generally,
the objective is

∑
i ωi`(xi + δ

(T )
i , yi; θ) +R(xi, yi; θ), whereR is an optional regularization term.

This objective implies the optimization for the model, with one step (Step 5–8) generating the ad-
versarial variants, one step (Step 9–11) calculating the importance weights, and one step (Step 12)
minimizing the reweighted loss w.r.t. the model parameters.

Weight Assignment: We adopt the sigmoid function for weight assignment, which can be viewed as
a softened sample selection operation of the form:

ωunn
i = sigmoid(−γ(PMi − β)), (8)

where β indicates how many data should have relatively large weights and γ ≥ 0 controls the
smoothness around β. Note that, PMi denotes the PM score for the i-th data point, which could be
any one of PMadv

i , PMnat
i , and PMdif

i . Eq. (8) is a monotonic function that assigns large values for data
with small PMs, paying attention to critical data as discussed in Section 2.2. Moreover, it should be
further normalized by ωi = N × wunn

i /
∑
j w

unn
j to meet the constraint in Eq. (3).

Burn-in Period: During the initial training phase, the geometric information is less informative since
the deep model is not adequately learned. Directly using the computed weights may mislead the
training procedure and accumulate the bias in erroneous weight assignment. Therefore, we introduce
a burn-in period at the beginning, where ω is fixed to 1 regardless of the corresponding PM value. A
similar strategy has also been considered in Zhang et al. [47].

Two Realizations: The proposed MAIL is general for reweighting adversarial data, which can be
combined with existing works. Here we give two representative examples: the first one is based on
the vanilla AT [40], with the learning objective of the form (termed MAIL-AT):

−
∑
i

ωi logpyi(xi + δ
(T )
i ; θ). (9)

The second one is based on TRADES [45], which adopts the Kullback-Leibler (KL) divergence
regarding natural and adversarial prediction, and also requires the learning guarantee (taken as
a regularization term here) on the natural prediction. Overall, the learning objective is (termed
MAIL-TRADES)

β
∑
i

ωiKL(p(xi + δ
(T )
i ; θ)||p(xi; θ))−

∑
i

logpyi(xi; θ), (10)

where β > 0 is the trade-off parameter and KL(p||q) =
∑
k pk log pk/qk denotes the KL divergence.
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Table 1: Comparison of LPS and PM on CIFAR-10 dataset.

AT [29] MART [40] TRADES [45]
LPS PMnat PMadv LPS PMnat PMadv LPS PMnat PMadv

NAT 82.26
± 0.60

82.50
± 0.20

83.15
± 0.46

84.45
± 0.17

83.75
± 0.09

84.12
± 0.46

78.52
± 0.20

82.71
± 0.52

80.49
± 0.18

PGD 54.14
± 0.15

55.00
± 0.32

55.25
± 0.23

53.16
± 0.26

53.63
± 0.21

53.65
± 0.23

51.67
± 0.54

52.37
± 0.65

53.67
± 0.14

AA 36.32
± 0.57

44.25
± 0.45

44.10
± 0.21

46.00
± 0.26

46.70
± 0.10

47.20
± 0.21

44.40
± 0.20

49.52
± 0.11

50.60
± 0.22

Our proposal is flexible and general enough in combining with many other advanced methods. For
example, we can modify MART [40], which could discern correct/wrong prediction, to further
utilize their geometric properties (termed MAIL-MART). Its formulation is similar to that of MAIL-
TRADES with a slightly different learning objective, which is provided in Appendix C.

4 Experiments

We conducted extensive experiments on various datasets, including SVHN [32], CIFAR-10 [24],
and CIFAR-100 [24]. The adopted backbone models are ResNet (ResNet-18) [21] and wide ResNet
(WRN-32-10) [44]. In Section 4.2, we verified the effectiveness of PM as a geometric measurement.
In Section 4.3, we benchmarked our MAIL against advanced methods. The source code of our paper
can be found in github.com/QizhouWang/MAIL.

4.1 Experimental Setup

Training Parameters. For the considered methods, networks were trained using mini-batch gradient
descent with momentum 0.9, weight decay 3.5× 10−3 (for ResNet-18) / 7× 10−4 (for WRN-32-10),
batch size 128, and initial learning rate 0.01 (for ResNet-18) / 0.1 (for WRN-32-10) which is divided
by 10 at the 75-th and 90-th epoch. To some extent, this setup can alleviate the impact of adversarial
over-fitting [33, 40]. Moreover, following Madry et al. [29], the perturbation bound ε is 8/255 and
the (maximal) number of PGD steps k is 10 with step size α = 2/255.

Hyperparameters. The slope and bias parameters were set to 10 and −0.5 in MAIL-AT and to
2 and 0 in both MAIL-TRADES and MAIL-MART. The trade-off parameter β was set to 5 in
MAIL-TRADES, and to 6 in MAIL-MART (Algorithm 4 in Appendix C). For the training procedure,
the weights started to update when the learning rate drop at the first time following Zhang et al. [47],
i.e., the initial 74 epochs is burn-in period, and then we employed the reweighted objective functions.

Robustness Evaluation. We evaluated our methods and baselines using the standard accuracy on
natural test data (NAT) and the adversarial robustness based on several attack methods, including
the PGD method with 100 iterations [29], CW attack [8], APGD CE attack (APGD) [13], and auto
attack (AA) [13]. All these methods have full access to the model parameters (i.e., white-box attacks)
and are constrained by the same perturbation limit as above. Note that, here we do not focus on the
black-box attack methods [4, 12, 26, 27, 48], which are relatively easy to be defensed [11].

4.2 Effectiveness of Probabilistic Margin

In this section, we verified the effectiveness of PM as a measurement in comparison with LPS. Here,
we adopted ResNet-18 as the backbone model and conducted experiments on CIFAR-10 dataset.

Three basic methods were considered, including AT [29], MART [40], and TRADES [45], which
were further assigned weights given by either PM or LPS [47]. For LPS, we adopted the assignment
function in GAIRAT with the suggested setup [47]. We remind that AT-LPS, MART-LPS, and
TRADES-LPS represent GAIRAT, GAIR-MART, and GAIR-TRADES in [47]; and AT-PM, MART-
PM, and TRADES-PM represent MAIL-AT, MAIL-MART, and MAIL-TRADES, respectively. Note
that, we validated two types of PM, namely, PMadv and PMnat, which are very different from LPS.

7

https://github.com/QizhouWang/MAIL


Table 2: Average accuracy (%) and standard deviation on CIFAR-10 dataset with ResNet-18.

NAT PGD APGD CW AA

AT [29] 84.86
± 0.17

48.91
± 0.14

47.70
± 0.06

51.61
± 0.15

44.90
± 0.53

TRADES [45] 84.00
± 0.23

52.66
± 0.16

52.37
± 0.24

52.30
± 0.06

48.10
± 0.26

MART [40] 82.28
± 0.14

53.50
± 0.46

52.73
± 0.57

51.59
± 0.16

48.40
± 0.14

FAT [46] 87.97
± 0.15

46.78
± 0.12

46.68
± 0.16

49.92
± 0.26

43.90
± 0.82

AWP [42] 85.17
± 0.40

52.63
± 0.17

50.40
± 0.26

51.39
± 0.18

47.00
± 0.25

GAIRAT [47] 83.22
± 0.06

54.81
± 0.15

50.95
± 0.49

39.86
± 0.08

33.35
± 0.57

MAIL-AT 84.52
± 0.46

55.25
± 0.23

53.20
± 0.38

48.88
± 0.11

44.22
± 0.21

MAIL-TRADES 81.84
± 0.18

53.68
± 0.14

52.92
± 0.62

52.89
± 0.31

50.60
± 0.22

The experimental results with 5 individual trials are summarized in Table 1, where we adopted
three evaluations, including natural performance (NAT), the PGD method with 100 steps (PGD),
and auto attack (AA). AA can be viewed as an ensemble of several advanced attacks and thus
reliably reflect the robustness. As we can see, the superiority of PM is apparent, regardless of the
adopted learning objectives: the results of PM are 0.70-7.93% better than LPS regarding AA and
0.14-2.00% better regarding PGD. Although LPS could achieve comparable results regarding PGD
attacks, its adversarial robustness is quite low when facing AA attacks. It indicates that the robustness
improvement of GAIRAT might be partially. This is probably caused by obfuscated gradients [2],
since stronger attack methods (e.g., AA) lead to poorer performance on adversarial robustness.

Comparing the results in using PMnat and PMadv, both PMs can lead to promising robustness, while
PMadv is slightly better. The reason is that PMadv can precisely describe the distance between
adversarial variants and decision boundaries. As a result, it can help accurately assign high wights
for those important instances during AT. Therefore, we adopt PMadv in the following experiments.

4.3 Performance Evaluation

We also benchmarked our proposal against advanced methods. Here, we reported the results on the
CIFAR-10 dataset due to the space limitation. Please refer to Appendix B for more results.

Compared Baselines. We compared the proposed method with the following baselines: (1) (tradi-
tional) AT [29]: the cross-entropy loss for adversarial perturbation generated by the PGD method; (2)
TRADES [45]: a learning objective with an explicit trade-off between the adversarial and natural
performance; (3) MART [40]: a training strategy which treats wrongly/correctly predicted data sepa-
rately; (4) FAT [46]: adversarial training with early-stopping in adversarial intensity; (5) AWP [42]:
a double perturbation mechanism that can flatten the loss landscape by weight perturbation; (6)
GAIRAT [47]: geometric-aware instance-reweighted adversarial training.

All the methods were run for 5 individual trials with different random seeds, where we reported their
average accuracy and standard deviation. The results are summarized in Table 2 and Table 3 with
the backbone models being ResNet-18 and WRN-32-10, respectively. Overall, our MAIL achieved
the best or the second-best robustness against all four types of attacks, revealing the superiority
of MAIL (i.e., MAIL-AT and MAIL-TRADES) in adversarial robustness. Specifically, AT and
TRADES both treat training data equally, and thus their results were unsatisfactory compared with
the best one (0.55%−6.34% decline with ResNet-18 and 0.02%−9.43% decline with WRN-32-10),
implying the possibility for its further improvement. Though MART and FAT consider the impact
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Table 3: Average accuracy (%) and standard deviation on CIFAR-10 dataset with WRN-32-10.

NAT PGD APGD CW AA

AT 87.80
± 0.13

49.43
± 0.29

49.12
± 0.26

53.38
± 0.05

48.46
± 0.46

TRADES 86.36
± 0.52

54.88
± 0.39

55.02
± 0.27

56.18
± 0.16

53.40
± 0.37

‘ MART 84.76
± 0.34

55.61
± 0.51

55.40
± 0.37

54.72
± 0.20

51.40
± 0.05

FAT 89.70
± 0.17

48.79
± 0.18

48.72
± 0.36

52.39
± 0.89

47.48
± 0.30

AWP 57.55
± 0.23

54.17
± 0.10

54.20
± 0.16

55.18
± 0.30

53.08
± 0.17

GAIRAT 86.30
± 0.61

58.74
± 0.46

55.64
± 0.36

45.57
± 0.18

40.30
± 0.16

MAIL-AT 84.83
± 0.39

58.86
± 0.25

55.82
± 0.31

51.26
± 0.20

47.10
± 0.22

MAIL-TRADES 84.00
± 0.15

57.40
± 0.96

56.96
± 0.19

56.20
± 0.30

53.90
± 0.22

of individuals on the final performance, they fail in paying attention to geometric properties of data
during training. Concretely, MART mainly focuses on the correctness regarding natural prediction,
and FAT prevents the model learning from highly non-robust data in keeping its natural performance.
Therefore, FAT achieved the best natural performance (3.11%− 6.13% improvement with ResNet-18
and 1.90%− 5.70% improvement with WRN-32-10), while its robustness against adversaries seems
inadequate (2.97%− 8.45% decline with ResNet-18 and 3.81%-10.07% decline with WRN-32-10).
Moreover, in adopting LPS as the geometric measurement, GAIRAT performed well regarding PGD
and AGPD attacks, while the adversarial robustness on CW and AA attacks were pretty low. In
comparison, we retained the supremacy on PGD-based attacks (i.e., PGD and APGD) as in GAIRAT
and revealed promising results regarding CW and AA attacks. For example, in Table 2, we achieved
0.44%-8.47% improvements on PGD attack, 0.47%-6.52% on APGD attack, 0.59%-13.03% on CW
attack, and 1.63%-16.68% on AA attack.

MAIL-AT performed well on PGD-based methods, while MAIL-TRADES was good at CW and
AA attacks. It suggests that the robustness depends on adopted learning objectives, coinciding with
the previous conclusion [40]. In general, we suggest using MAIL-TRADES as a default choice, as
it reveals promising results regarding AA while keeping a relatively high performance regarding
PGD-based attacks. Besides, comparing the results in Table 2 and Table 3, the overall accuracy
had a promising improvement in employing models with a much large capacity (i.e., WRN-32-10),
verifying the fact that deep models have insufficient network capacity in fitting adversaries [47].

5 Conclusion

In this paper, we focus on boosting adversarial robustness by reweighting adversarial data during
training, where data closer to the current decision boundaries are more critical and thus require
larger weights. To measure the closeness, we suggest the use of probabilistic margin (PM), which
relates to the multi-class margin in the probability space of model outputs (i.e., the estimated class-
posterior probabilities). Without any involvement of the PGD iterations, PM is continuous and
path-independent and thus overcomes the drawbacks of previous works (e.g., LPS) efficaciously.
Moreover, we consider several types of PMs with different geometric properties, and propose a general
framework termed MAIL. Experiments demonstrated that PMs are more reliable measurements than
previous works, and our MAIL revealed its superiority against state-of-the-art methods, independent
of adopted (basic) learning objectives. In the future, we will delve deep into the mechanism in
instance-reweighted adversarial learning, theoretically study the contribution of individuals for the
final performance, and improve the methodology in using geometric characteristics of data.
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