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Abstract

We present the Darwin—Godel Discovery Machine (DGDM), a dual-loop system
for risk-aware self-improving Al4Science. The inner Darwinian loop evolves can-
didate solutions—demonstrated here with molecular ligands—yvia reinforcement
learning—guided variation, fitness evaluation, and constraint-based retention, en-
suring chemical validity and incremental improvement. Surrounding this process,
an outer Godelian loop adapts elements of the discovery pipeline itself, using
confidence-based acceptance to regulate potentially harmful modifications. In a
proof-of-concept molecular docking study on four seed ligands, DGDM improves
median binding affinity from —4.457 to —5.422 kcal/mol while maintaining 100%
chemical validity. These results illustrate how bounded-risk inner-loop evolution
can yield scientifically meaningful gains, while highlighting the role of risk-aware
acceptance in stabilizing self-directed discovery pipelines. Although preliminary
in scope, this work demonstrates the feasibility of dual-loop architectures for Al-
driven scientific discovery and motivates future extensions toward more robust and
trustworthy self-improving Al4Science systems. A reproducibility package will be
released upon publication.

1 Introduction

Atrtificial intelligence (AI) has begun to transform scientific discovery, from protein folding [1]] to
climate modeling [2]. Yet a fundamental challenge remains: how can we design Al systems that
not only advance individual tasks but also continuously improve the pipelines that integrate them
into end-to-end scientific discovery? The notion of a Godel Machine [3] provides a theoretical “yes,”
as it guarantees improvement whenever a provably better modification is found—but such proofs
are rarely feasible in practice. By contrast, most existing systems function as fixed pipelines: once
trained, they are applied in a static manner without the capacity for self-improvement. At the other
extreme, unconstrained self-modification can lead to unreliable trajectories of improvement, including
performance degradation, systematic errors, and invalid outputs. The central challenge, therefore, is
to develop Al frameworks capable of self-improvement at both the task and pipeline levels, while
ensuring progress under bounded risk.

Recent advances illustrate both the promise and the limits of current approaches. In molecular discov-
ery, generative models for de novo design [4} 5], reinforcement learning for synthesis and property
optimization [6} 7], and autonomous laboratory platforms for iterative experimentation [8H11]] have
shown the potential of self-directed Al These “self-driving labs” close the loop between hypothesis
generation and wet-lab validation, offering a physical realization of self-improving pipelines. At
the protein level, breakthroughs in structure prediction [1}[12] and structure-conditioned generators
such as ProteinMPNN and Chroma [[13| [14]], together with language-model-based predictors (e.g.,
ESM-2) and diffusion-based docking approaches such as DiffDock [[15}[16]], have expanded the design



space and improved accuracy. Meanwhile, classical docking workflows—including AutoDock Vina,
Vinardo, RDKit, and OpenBabel—remain widely adopted [17H20]. Beyond chemistry, coding-agent
frameworks such as the Darwin Godel Machine [21] illustrate the potential of self-improving agents,
but direct transfer to molecular discovery is challenging due to noisy, continuous chemical spaces
with strict validity and safety requirements. Overall, current systems demonstrate creativity but
still operate within largely fixed pipelines and often lack explicit safeguards against invalid or risky
outcomes.

To address this gap, we propose the Darwin—-Godel Discovery Machine (DGDM), a dual-loop
system for risk-aware self-improvement in Al4Science. DGDM combines two complementary design
principles: a Darwinian inner loop, which evolves candidate solutions—demonstrated here with
molecular ligands—via reinforcement-learning—guided variation and selection to ensure validity and
incremental improvement; and a Godelian outer loop, which governs adaptations to the discovery
pipeline itself through confidence-based acceptance of proposed modifications. Together, these loops
couple creative exploration with explicit risk awareness. While our proof-of-concept focuses on drug
discovery, the design is intended to be illustrative of broader Al-driven scientific workflows.

Contributions. This work makes the following contributions:

1. We introduce a dual-loop system design for risk-aware self-improvement in Al4Science,
illustrating how task-level optimization and pipeline-level adaptation can be coupled.

2. We present a proof-of-concept molecular docking study showing that DGDM improves
median binding affinity across four seed ligands while preserving 100% chemical validity.

3. We discuss a forward-looking design direction for incorporating principled risk-aware
acceptance mechanisms into self-improving scientific pipelines.

Taken together, these contributions position DGDM as a work-in-progress system. In this paper, we
validate the Darwinian inner loop in a molecular docking setting, while the Gédelian outer loop is
presented at the level of system design and risk-aware acceptance principles. A full formal treatment
and extensive empirical validation of outer-loop self-modification are left for future work.
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Figure 1: Conceptual schematic of the Darwin—Godel Discovery Machine (DGDM). The dual-loop
design couples inner-loop solution evolution with outer-loop pipeline adaptation. Molecules are
generated, modified, and optimized under reinforcement-learning—based fitness assessment, while
the pipeline itself can adapt through proposed modifications to models, scoring functions, or search
strategies.

2 Related Work

Protein structure prediction. Breakthroughs in protein structure prediction have significantly
advanced drug discovery. AlphaFold achieves near-atomic accuracy across diverse proteins, while
single-sequence models such as ESMFold leverage protein language models for high-throughput



prediction [1}[12]]. These predictors substantially expand structural availability, providing upstream
inputs that downstream design systems—including ours—can readily integrate.

Generative modeling and docking workflows. Generative Al has broadened both molecular and
protein design spaces. For docking, diffusion-based models such as DiffDock frame pose prediction
as a generative sampling problem, improving accuracy and enrichment [[15} [16]. At the protein
level, transformer-based language models (e.g., ESM-2) and structure-conditioned generators such
as ProteinMPNN and Chroma enable sequence and structure design [[13} [14]. In small-molecule
discovery, reinforcement learning methods such as REINVENT [6] and graph-based approaches
including the Graph Convolutional Policy Network (GCPN) [22] have been used to optimize chemical
properties and synthesizability. Meanwhile, classical docking components—AutoDock Vina, Vinardo
scoring, RDKit, and OpenBabel—remain widely adopted in practice [[17420]. Rather than proposing
a new generator, our approach integrates with existing generative and docking pipelines, introducing
a meta-level control mechanism to regulate and enhance their behavior.

Self-improvement paradigms and cross-domain inspirations. Beyond individual generators, prior
work has explored systems that adapt and optimize the discovery process as a whole. Godel machines
formalize agents that rewrite themselves once a proof guarantees higher expected utility [3]]. While
such proof-based guarantees are infeasible in scientific discovery pipelines, the underlying idea
motivates practical relaxations: proposing modifications, evaluating them empirically, and retaining
only validated improvements. Zhang et al. [21] introduced a Darwinian Godel Machine for software
agents, illustrating how generative backbones and constraint-based filtering can support adaptive
self-evolution. However, direct transfer to molecular discovery is challenging, as chemical design
operates in noisy and continuous spaces with delayed feedback and strict validity requirements. Our
work draws inspiration from these ideas while adapting them to the constraints and uncertainties of
Al-driven scientific discovery.

3 Method

The Darwin—-Godel Discovery Machine (DGDM) is organized into two nested optimization loops
(Figure[T), enabling self-improvement at both the molecular and pipeline levels. The inner Darwinian
loop refines molecules via reinforcement learning—guided evolution, while the outer Gédelian loop
adaptively reconfigures the discovery pipeline under risk-aware statistical safeguards.

3.1 Inner Loop: Reinforcement-Learning—-Guided Molecular Evolution

The inner loop follows a Darwinian cycle with four stages: (1) variation, (2) fitness assessment,
(3) selection, and (4) constraint-based retention. In our conceptual design, reinforcement learning
(RL) biases this process: docking scores and constraint outcomes provide reward signals that guide
exploration.

Variation. Molecular diversity is introduced via perturbations generated by diffusion models,
graph-based generators, or language-model-based chemistry models. RL agents parameterize these
operators, learning which transformations are most productive.

Fitness assessment. Modified ligands are docked against the target receptor. Scoring functions
(e.g., Vinardo in AutoDock Vina) provide approximate binding free energies, while AlphaFold [[1] or
ESMPFold [12] can supply receptor structures when needed. Docking energies serve as quantitative
rewards for RL.

Selection. High-affinity candidates are preferentially retained, maintaining evolutionary pressure
toward stronger binding while preserving structural diversity.

Constraint filtering. Survivors must satisfy chemical validity and drug-likeness checks (e.g.,
Lipinski’s rules, synthetic accessibility, toxicity alerts). Failures provide negative reinforcement,
discouraging unproductive modification strategies.

This RL-augmented Darwinian cycle balances stochastic exploration (via generative perturbations)
with directed exploitation (via docking and constraints), producing progressively higher-quality
ligands across generations.



3.2 Outer Loop: Godelian Pipeline Self-Adaptation

The outer loop adapts the pipeline configuration—the sequence and parameters of operators control-
ling molecular search. Inspired by the Godel Machine [3], it introduces meta-level self-modification,
but replaces infeasible proof-based guarantees with tractable risk-aware statistical safeguards.

Proposal generation. Candidate modifications are generated, e.g., by large language models (LLMs)
augmented with retrieval-augmented generation (RAG). Examples include inserting refinement steps
or altering filtering thresholds.
Risk-aware acceptance test. Define the paired improvement (gain) for replicate i as

Y;:= Ry, — R1,; (larger is better),
so that negative values correspond to degradation. Let

i=1
denote the empirical mean improvement across n paired runs. Assuming each Y; € [a, b] (enforced by
clipping), we evaluate proposed pipeline modifications using paired experimental runs and compute

L.

A modification is accepted only if a conservative lower-confidence estimate remains non-negative:
[ — margin(n, d) > 0,

where margin(n, §) increases as the number of paired runs decreases and as the risk tolerance §

becomes smaller. This criterion provides a practical safeguard against adopting pipeline changes that
appear beneficial due to noise or limited sampling.

In practice, we use paired t-tests as an exploratory check of statistical significance, while the risk-
aware acceptance rule offers a simple and interpretable mechanism for regulating self-modification.

3.3 Loop Interaction

The inner loop evolves ligands under a fixed pipeline until convergence or stagnation is observed,
A; < e for K generations,

or until a maximum computational budget 7}, is reached. The resulting outcomes are aggregated and
passed to the outer loop, which then determines whether to accept a proposed pipeline modification. A
single outer-loop update typically relies on multiple inner-loop cycles, grounding meta-level decisions
in empirically stable evidence.

Note that A denotes the median docking score difference per ligand within an inner-loop cycle,
whereas fi in the outer loop refers to the mean improvement computed across paired pipeline runs.

3.4 Evaluation Setup

To ensure reproducibility, each ligand’s binding score was reported as the median across three docking
poses. Baseline (R0) and modified (R1) pipelines were run under identical frozen settings. Metrics
include:

* Binding affinity: docking energies (kcal/mol) from Vinardo.
* Score improvement: A = R1 median — RO median (negative A indicates improvement).
* Pass rate: proportion of ligands satisfying chemical validity and drug-likeness constraints.

* Trajectory analysis: qualitative tracing of molecular modifications leading to observed
improvements.

Note: We report A = R1 — RO (negative A indicates improvement), while the risk-aware acceptance
rule operates on the paired gain Y := RO—R1 = —A so that larger values correspond to improvement.

All runs used fixed seeds and parameter settings; full environment manifests and scripts are provided
as part of the reproducibility package. While evaluated here in a molecular docking setting, DGDM
is presented as an illustrative example of how risk-aware self-improvement can be integrated into
Al-driven scientific workflows.



Figure 2: Docked pose of DGDM-optimized Aspirin_mut2 (green) in the target pocket (teal).

4 Experiments

We conducted a proof-of-concept (PoC) study to examine whether DGDM can improve docking-
based binding affinity predictions under conservative constraints. Four seed ligands (Aspirin, LIG3,
LIG4, and Pyridine) were selected to span diverse scaffolds and pharmacophores. Each ligand was
evaluated in two stages: a baseline run (R0) and an optimized run (R1), in which DGDM-generated
variants were filtered and re-docked under identical conditions.

4.1 Setup

Docking was performed using AutoDock Vina with the Vinardo scoring function, with exhaustive-
ness fixed at 12. For each ligand, three poses were sampled and the median score reported. Constraint
filters (Lipinski rules, synthetic accessibility, and toxicity/reactivity alerts) enforced chemical validity;
invalid candidates were discarded and penalized. Docking scores are interpreted as relative indicators
of binding propensity, consistent with prior work.

4.2 Metrics

We report four metrics: (1) median docking affinity (kcal/mol); (2) improvement A (R1-R0, with
negative values indicating stronger binding); (3) chemical validity pass rate; and (4) qualitative
trajectory analysis of modifications contributing to observed changes.

4.3 Results

Across all evaluated ligands, DGDM improved median docking affinity while preserving 100%
chemical validity (Table [T). Observed improvements ranged from —0.8 to —1.5 kcal/mol, with
Aspirin showing the largest change (A = —1.27 kcal/mol). These results indicate that the inner-loop
optimization process can identify chemically valid modifications associated with stronger docking
scores under the tested conditions.

4.4 Limitations of the Proof-of-Concept

This study is limited in scope. Evaluation was restricted to a small ligand panel and a single protein
target, and docking scores serve only as approximate surrogates for binding affinity. Moreover,
the present experiments validate only the inner loop of DGDM; empirical evaluation of the outer
loop, which governs pipeline-level adaptation, is left for future work. Accordingly, the reported



Table 1: Proof-of-concept docking outcomes. Negative A indicates improvement.

Ligand RO Median RI1 Median A (R1-R0) Pass Rate (%)

Aspirin -4.752 -6.022 -1.270 100
LIG3 -4.374 -5.181 -0.807 100
LIG4 -4.541 -6.020 -1.479 100
Pyridine -3.428 -4.260 -0.832 100
Median -4.457 -5.422 -0.965 100
Aspirin (RO) ASPIRIN_mut2 (R1) | Vinardo -6.022
0]
(0]
(0]
0 HO 0
HO

Figure 3: Structural comparison of baseline Aspirin (R0) and optimized variant Aspirin_mut2 (R1).
Red highlights the DGDM-induced modification.

results should be interpreted as preliminary and intended to motivate larger-scale benchmarking and
experimental validation.

4.5 Qualitative Insights

Qualitative trajectory analysis revealed chemically interpretable patterns. Optimized variants fre-
quently introduced or repositioned hydrogen-bond donors or acceptors while reducing steric clashes.
The top candidate, Aspirin_mut2 (Figures[2)and 3], achieved a Vinardo score of —6.022 kcal/mol
through a polar substitution that improved complementarity within the binding pocket. Under the
evaluated conditions, no ligand exhibited a degradation relative to its baseline, reflecting the effect of
constraint-based survivor filtering in this proof-of-concept setting.

5 Conclusion

We presented DGDM, a Darwin—-Godel—inspired dual-loop system for molecular design that evolves
candidate structures while enabling adaptive refinement of the optimization process. In a proof-
of-concept study, DGDM improved docking-based binding affinity for the evaluated ligands while
preserving chemical validity, demonstrating the feasibility of bounded-risk generative modification in
this setting.

Looking ahead, scaling DGDM will require integration with more accurate evaluation pipelines,
including rescoring, molecular dynamics, and ultimately wet-lab assays to provide richer empirical
feedback. Responsible deployment in drug discovery will also necessitate transparent benchmarking,
auditable operators, and appropriate governance, reflecting the high standards of safety and repro-
ducibility in this domain. While our experiments focus on molecular design, the ideas explored
here illustrate how risk-aware self-improvement mechanisms may be incorporated into broader
Al-for-Science workflows.
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Appendix 1 Algorithmic Details

Algorithm 1 Outer Loop: Pipeline Self-Adaptation (Conceptual)

Require: Initial configuration 6, generator GG, harness H, max rounds 7'
Ensure: Final configuration 6%, registry R

1: 0 < 6y, R < {(fy,baseline)}

2: fort =1to71 do

3: (C, m) + RUNINNERLOOP(6, H)

4: if STAGNANT(m) then

5: 0" + PROPOSEEDIT(G, 0, R)

6: A + EVALUATEPAIR(H, 0,0',C)

7: if SUFFICIENTIMPROVEMENT(A) then
8: 0+ 0, R+ RU{(#,accepted)}
9: else

10: R+ RU{(¢ ,rejected)}

11: end if

12: end if

13: end for

14: return 6* < 0, R



https://arxiv.org/abs/1806.02473

Algorithm 2 Inner Loop: Ligand Evolution (Illustrative)

Require: Current configuration 6, harness 7, population size M
Ensure: Candidate batch C, survivors S

LC+0, S«0

2: fori = 1to M do

3: x < SAMPLELIGAND(6)
4: x’' <~ MODIFYLIGAND(z)
5: s < EVALUATE(z', H)

6: C+CuU(d,s)

7: if SURVIVES(s) then

8: S+ Sua

9: end if

10: end for

11: return (C,S)
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