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ABSTRACT

Recent improvements in generative adversarial visual synthesis incorporate real
and fake image transformation in a self-supervised setting, leading to increased
stability and perceptual fidelity. However, these approaches typically involve im-
age augmentations via additional regularizers in the GAN objective and thus spend
valuable network capacity towards approximating transformation equivariance in-
stead of their desired task. In this work, we explicitly incorporate inductive sym-
metry priors into the network architectures via group-equivariant convolutional
networks. Group-convolutions have higher expressive power with fewer sam-
ples and lead to better gradient feedback between generator and discriminator.
We show that group-equivariance integrates seamlessly with recent techniques for
GAN training across regularizers, architectures, and loss functions. We demon-
strate the utility of our methods for conditional synthesis by improving generation
in the limited data regime across symmetric imaging datasets and even find bene-
fits for natural images with preferred orientation.

1 INTRODUCTION

Generative visual modeling is an area of active research, time and again finding diverse and creative
applications. A prevailing approach is the generative adversarial network (GAN), wherein density
estimation is implicitly approximated by a min-max game between two neural networks (Good-
fellow et al., 2014). Recent GANs are capable of high-quality natural image synthesis and scale
dramatically with increases in data and compute (Brock et al., 2018). However, GANs are prone to
instability due to the difficulty of achieving a local equilibrium between the two networks. Frequent
failures include one or both networks diverging or the generator only capturing a few modes of the
empirical distribution. Several proposed remedies include modifying training objectives (Arjovsky
et al., 2017; Jolicoeur-Martineau, 2018), hierarchical methods (Karras et al., 2017), instance selec-
tion (Sinha et al., 2019; 2020), latent optimization (Wu et al., 2019), and strongly regularizing one
or both networks (Gulrajani et al., 2017; Miyato et al., 2018; Dieng et al., 2019), among others. In
practice, one or all of the above techniques are ultimately adapted to specific use cases.

Further, limits on data quantity empirically exacerbate training stability issues more often due to
discriminator overfitting. Recent work on GANs for small sample sizes can be roughly divided into
transfer learning approaches (Wang et al., 2018; Noguchi & Harada, 2019; Mo et al., 2020; Zhao
et al., 2020a) or methods which transform/augment the available training data and provide the dis-
criminator with auxiliary tasks. For example, Chen et al. (2019) propose a multi-task discriminator
which additionally predicts the degree by which an input image has been rotated, whereas Zhang
et al. (2020); Zhao et al. (2020c) incorporate consistency regularization where the discriminator is
penalized towards similar activations for transformed/augmented real and fake images. However,
with consistency regularization and augmentation, network capacity is spent learning equivariance
to transformation as opposed to the desired task and equivariance is not guaranteed.

In this work, we consider the problem of training tabula rasa on limited data which possess global
and even local symmetries. We begin by noting that GANs ubiquitously use convolutional layers
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Figure 1: Several image modalities have no preferred orientation for tasks such as classification. We
improve their generative modeling by utilizing image symmetries within a GAN framework.

which exploit the approximate translation invariance and equivariance of image labels and distri-
butions, respectively. Equivariance to geometric transformations is key to understanding image
representations (Bietti & Mairal, 2019). Unfortunately, other symmetries (e.g., rotations and re-
flections) inherent to modalities such as astronomy and medical imaging where galaxies and cells
can be in arbitrary orientations are not accounted for by standard convolutional layers. To this end,
Cohen & Welling (2016) proposed a group-theoretic generalization of convolutional layers (group-
convolutions) which in addition to translation, exploit other inherent symmetries and increase the
expressive capacity of a network thereby increasing its sample efficiency significantly in detection
(Winkels & Cohen, 2019), classification (Veeling et al., 2018), and segmentation (Chidester et al.,
2019). Importantly, equivariant networks outperform standard CNNs trained with augmentations
from the corresponding group (Veeling et al., 2018, Table 1), (Lafarge et al., 2020a, Fig. 7). See
Cohen et al. (2019); Esteves (2020) for a formal treatment of equivariant CNNs.

Equivariant features may also be constructed via scattering networks consisting of non-trainable
Wavelet filters, enabling equivariance to diverse symmetries (Mallat, 2012; Bruna & Mallat, 2013;
Sifre & Mallat, 2013). Generative scattering networks include Angles & Mallat (2018) where a
standard convolutional decoder is optimized to reconstruct images from an embedding generated
by a fixed scattering network and Oyallon et al. (2019) who show preliminary results using a stan-
dard convolutional GAN to generate scattering coefficients. We note that while both approaches are
promising, they currently yield suboptimal synthesis results not comparable to modern GANs. Cap-
sule networks (Hinton et al., 2011; Sabour et al., 2017) are also equivariant and emerging work has
shown that using a capsule network for the GAN discriminator (Jaiswal et al., 2019; Upadhyay &
Schrater, 2018) improves synthesis on toy datasets. However, capsule GANs and generative scatter-
ing approaches require complex training strategies, restrictive architectural choices not compatible
with recent insights in GAN training, and have not yet been shown to scale to real-world datasets.

In this work, we improve the generative modeling of images with transformation invariant labels by
using an inductive bias of symmetry. We replace all convolutions with group-convolutions thereby
admitting a higher degree of weight sharing which enables increased visual fidelity, especially with
limited-sample datasets. To our knowledge, we are the first to use group-equivariant layers in the
GAN context and to use symmetry-driven considerations in both generator and discriminator archi-
tectures. Our contributions are as follows,

1. We introduce symmetry priors via group-equivariance to generative adversarial networks.
2. We show that recent insights in improving GAN training are fully compatible with group-

equivariance with careful reformulations.
3. We improve class-conditional image synthesis across a diversity of datasets, architectures,

loss functions, and regularizations. These improvements are consistent for both symmetric
images and even natural images with preferred orientation.

2 METHODS

2.1 PRELIMINARIES

Groups and group-convolutions. A group is a set with an endowed binary function satisfying the
properties of closure, associativity, identity, and invertibility. A two-dimensional symmetry group is
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Figure 2: An abbreviated illustration of group-convolutions used in our generator networks.

the set of all transformations under which a geometric object is invariant with an endowed operation
of composition. Given a group G and a map Φ : X → Y between two G-sets X and Y , Φ is said to
be equivariant i.f.f. Φ(g ·x) = g ·Φ(x), ∀x ∈ X, ∀g ∈ G. Colloquially, an equivariant map implies
that transforming an input and applying the map yields the same result as applying the map and then
transforming the output. Analogously, invariance requires that Φ(g · x) = Φ(x), ∀x ∈ X, ∀g ∈ G.
In deep networks, equivariance to a planar symmetry group can be achieved by either transforming
filters (Cohen & Welling, 2016) or feature maps (Dieleman et al., 2016).

Our work utilizes the plane symmetry groups p4 (all compositions of 90-degree rotations and transla-
tions) and p4m (all compositions of 90-degree rotations, reflections, and translations) (Schattschnei-
der, 1978). These groups can be parameterized neatly following Cohen & Welling (2016),

g(r, u, v) =

[
cos( rπ2 ) −sin( rπ2 ) u
sin( rπ2 ) cos( rπ2 ) v

0 0 1

]
; g′(m, r, u, v) =

(−1)mcos( rπ2 ) (−1)m+1sin( rπ2 ) u
sin( rπ2 ) cos( rπ2 ) v

0 0 1


where g(r, u, v) parameterizes p4, g′(m, r, u, v) parameterizes p4m, 0 ≤ r < 4 (the number of 90-
degree rotations),m ∈ {0, 1} (the number of reflections), and (u, v) ∈ Z2 (integer translations). The
group operation is matrix multiplication for both groups. The matrix g(r, u, v) rotates and translates
a point (expressed as homogeneous coordinate vector) in pixel space via left-multiplication. Analo-
gous intuition follows for g′(m, r, u, v).

We now briefly define G-equivariant convolutions. We note that formally these are correlations and
not convolutions and that the literature uses the terms interchangeably. A G-convolution between a
vector-valued K-channel image f : Z2 → RK and filter ψ : Z2 → RK with f = (f1, f2, . . . , fk)

and ψ = (ψ1, ψ2, . . . , ψk) can be expressed as [f ∗ ψ](g) =
∑
y∈Z2

∑K
k=1 fk(y)ψk(g−1y). For

standard reference, if one considers G to be the translation group on Z2, we have g−1y = y− g and
recover the standard convolution. After the first layer of a G-CNN, we see that (f ∗ ψ) is a function
on G, necessitating that filter banks also be functions on G. Subsequent G-convolutional layers are
therefore defined as [f ∗ ψ](g) =

∑
h∈G

∑K
k=1 fk(h)ψk(g−1h). Finally, for tasks where the output

is an image, it is necessary to bring the domain of feature maps from G back to Z2. We can pool the
feature map for each filter over the set of transformations, corresponding to average or max pooling
over the group of rotations (or roto-reflections as appropriate).

GAN optimization and stability. As we focus on the limited data setting where training instability
is exacerbated, we briefly describe the two major stabilizing methods used in all experiments here.
We regularize the discriminator by using a zero-centered gradient penalty (GP) on the real data as
proposed by Mescheder et al. (2018) of the form, R1 := γ

2Ex∼Preal
[‖∇D(x)‖22], where γ is the

regularization weight, x is sampled from the real distribution Preal, and D is the discriminator. This
GP has been shown to cause convergence (in toy cases), alleviate catastrophic forgetting (Thanh-
Tung & Tran, 2018), and strongly stabilize GAN training. However, empirical work has found that
this GP achieves stability at the cost of worsening GAN evaluation scores (Brock et al., 2018).
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A widely used technique for GAN stabilization is spectral normalization (Miyato et al., 2018), which
constrains the discriminator to be 1-Lipschitz, thereby improving gradient feedback to the generator
(Zhou et al., 2019; Chu et al., 2020). With spectral normalization, each layer is rescaled as, WSN =
W/σ(W ), where W is the weight matrix for a given layer and σ(W ) is its spectral norm. In
practice, σ(W ) is estimated via a power iteration method as opposed to computing the full singular
value decomposition during each training iteration. Finally, applying spectral normalization to both
generator and discriminator empirically improves training significantly (Zhang et al., 2018).

2.2 GROUP EQUIVARIANT GENERATIVE ADVERSARIAL NETWORKS

Here, we outline how to induce a symmetry prior into the GAN framework. Implementations are
available at https://github.com/neel-dey/equivariant-gans. The literature has
developed several techniques for normalization and conditioning of the individual networks, along
with unique architectural choices - we extend these developments to the equivariant setting. We
start by replacing all convolutional layers with group-convolutional layers where filters and feature
maps are functions on a symmetry group G. Batch normalization moments (Ioffe & Szegedy, 2015)
are calculated per group-feature map as opposed to spatial feature maps. Pointwise nonlinearities
preserve equivariance for the groups considered here. Pre-activation residual blocks common to
modern GANs are used freely as the sum of equivariant feature maps on G is also equivariant.

Generator. The generator is illustrated at a high-level in Figure 2. We use a fully connected layer
to linearly project and reshape the concatenated noise vector z ∼ N (0, I) and class embedding
c into spatial feature maps on Z2. We then use spectrally-normalized group-convolutions, inter-
spersed with pointwise-nonlinearities, and nearest-neighbours upsampling to increase spatial extent.
We use upsampling followed by group-convolutions instead of transposed group-convolutions to
reduce checkerboard artefacts (Odena et al., 2016). We further use a novel group-equivariant class-
conditional batch normalization layer (described below) to normalize and class-condition image
generation while also projecting the latent vector z to each level of the group-convolutional hierar-
chy. We finally max-pool over the set of transformations to obtain the generated image x.

Discriminator. The group-equivariant discriminator receives an input x, which it maps to a scalar
indicating whether it is real or fake. We do this via spectrally normalized group-convolutions,
pointwise-nonlinearities, and spatial-pooling layers to decrease spatial extent. After the final group-
convolutional layer, we pool over the group and use global average pooling to obtain an invariant
representation at the output. Finally, we condition the discriminator output via the projection method
proposed by Miyato & Koyama (2018). Importantly, the equivariance of group-convolutions de-
pends on the convolutional stride. Strided convolutions were commonly used for downsampling in
early GANs (Radford et al., 2015). However, stride values must be adjusted to the dataset to preserve
equivariance, which makes comparisons to equivalent non-equivariant GAN architectures difficult.
We therefore use pooling layers over the plane (commonly used in recent GANs) to downsample in
all settings to preserve equivariance and enable a fair comparison.

Spectral Normalization. As the singular values of a matrix are invariant under compositions of 90-
degree rotations, transpositions, and reflections - spectral normalization on a group-weight matrix
preserves equivariance and we use it freely.

Class-conditional Batch Normalization. Conditional batch normalization (Perez et al., 2018) re-
places the scale and shift of features with an affine transformation learned from the class label (and
optionally from the latent vector as well (Brock et al., 2018)) via linear dense layers, and is widely
used in generative networks. We propose a group-equivariance preserving conditional normaliza-
tion by learning the affine transformation parameters per group-feature map, rather than each spatial
feature. As we use fewer group-filters than equivalent non-equivariant GANs, we use fewer dense
parameters to learn conditional scales and shifts.

3 EXPERIMENTS

Common setups. In each subsection, we list specific experimental design choices with full details
available in App. C. For each comparison, the number of group-filters in each layer is divided by
the square root of the cardinality of the symmetry set to ensure a similar number of parameters to
the standard CNNs to enable fair comparison. We skew towards stabilizing training over absolute
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Table 1: A summary of the datasets considered in this paper. The right-most column indicates
whether the dataset has a preferred pose.

Dataset Resolution nclasses ntraining nvalidation Pose Preference
Rotated MNIST (28, 28) 10 12,000 50,000 No

ANHIR (128, 128, 3) 5 28,407 9,469 No
LYSTO (256, 256, 3) 3 20,000 - No

CIFAR-10 (32, 32, 3) 10 50,000 10,000 Yes
Food-101 (64, 64, 3) 101 75,747 25,250 Yes

Table 2: Min. & mean Fréchet distances (lower is better) of generated RotMNIST samples, evalu-
ated at every 1K generator iterations. All evaluations are visualized in Appendix A Figure 6.

Min. & Mean Fréchet Distance
Available Training Data

Loss Setting 10% 33% 66% 100%

- Real data 0.6854 0.3208 0.1324 0.1296

R
A

G
A

N CNN in G & D (2.04, 11.40) (1.42, 11.65) (1.20, 11.10) (1.36, 11.68)
CNN in G & G-CNN in D (1.84, 4.26) (0.88, 3.26) (0.52, 2.85) (0.53, 3.12)
G-CNN in G & CNN in D (1.49, 9.75) (1.08, 9.29) (0.90, 8.70) (0.95, 9.62)

G-CNN in G & D (1.61, 4.25) (0.76, 3.40) (0.54, 2.92) (0.53, 2.90)

N
SG

A
N CNN in G & D (1.00, 7.02) (0.74, 8.25) (0.84, 8.07) (0.97, 8.49)

CNN in G & G-CNN in D (2.77, 5.48) (1.02, 3.51) (0.55, 2.85) (0.54, 3.08)
G-CNN in G & CNN in D (1.00, 7.00) (0.96, 7.42) (0.87, 6.83) (0.94, 7.52)

G-CNN in G & D (2.85, 5.67) (1.04, 4.24) (0.82, 3.27) (0.64, 3.32)

W
G

A
N CNN in G & D (3.42, 16.21) (3.90, 18.32) (3.87, 17.81) (4.88, 19.40)

CNN in G & G-CNN in D (2.87, 5.98) (0.76, 4.11) (0.50, 3.57) (0.39, 3.51)
G-CNN in G & CNN in D (2.67, 16.02) (3.40, 17.03) (3.77, 17.76) (3.74, 17.82)

G-CNN in G & D (2.51, 5.67) (0.58, 3.32) (0.56, 3.52) (0.54, 3.76)

performance to compare models under the same settings to obviate extensive checkpointing typically
required for BigGAN-like models. Optimization is performed via Adam (Kingma & Ba, 2014) with
β1 = 0.0 and β2 = 0.9, as in Zhang et al. (2018); Brock et al. (2018). Unless otherwise noted,
all discriminators are updated twice per generator update and employ unequal learning rates for the
generator and discriminator following Heusel et al. (2017). We use an exponential moving average
(α = 0.9999) of generator weights across iterations when sampling images as in Brock et al. (2018).
All initializations use the same random seed, except for RotMNIST where we average over 3 random
seeds. An overview of the small datasets considered here is presented in Table 1.

Evaluation methodologies. GANs are commonly evaluated by embedding the real and gener-
ated images into the feature space of an ImageNet pre-trained network where similarity scores are
computed. The Fréchet Inception Distance (FID) (Heusel et al., 2017) jointly captures sample fi-
delity and diversity and is presented for all experiments. To further evaluate both aspects explicitly,
we present the improved precision and recall scores (Kynkäänniemi et al., 2019) for ablations on
real-world datasets. As the medical imaging datasets (ANHIR and LYSTO) are not represented in
ImageNet, we finetune Inception-v3 (Szegedy et al., 2016) prior to feature extraction for FID cal-
culation as in Huang et al. (2018). For RotMNIST, we use features derived from the final pooling
layer of the p4-CNN defined in Cohen & Welling (2016) to replace Inception-featurization. An
analogous approach was taken in Binkowski et al. (2018) in their experiments on the canonical
MNIST dataset. Natural image datasets (Food-101 and CIFAR-10) are evaluated with the official
Tensorflow Inception-v3 weights. Importantly, we perform ablation studies on all datasets to
evaluate group-equivariance in either or both networks.

We note that the FID estimator is strongly biased (Binkowski et al., 2018) and work around this
limitation by always generating the same number of samples as the validation set as recommended
in Binkowski et al. (2018). An alternative Kernel Inception Distance (KID) with negligible bias has
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Figure 3: Qualitative GAN interpolation (White, 2016) results. (a) Selected spherical interpolations
between generated RotMNIST samples in either latent space (top) or between labels (bottom).
Equivariant GANs interpolate intuitively between samples, whereas standard GANs do not. (b)
Selected inter-label linear interpolations between two staining dyes in synthesized ANHIR images.
The standard model (top) changes both structure and dye between the generated samples, whereas
the equivariant model (bottom) better preserves structure while translating between dyes.

been proposed (Binkowski et al., 2018), yet large-scale evaluation (Kurach et al., 2019) finds that
KID correlates strongly with FID. We thus focus on FID in our experiments in the main text.

3.1 SYNTHETIC EXPERIMENTS: ROTATED MNIST

Rotated MNIST (Larochelle et al., 2007) provides random rotations of the MNIST dataset and is a
common benchmark for equivariant CNNs which we use to measure sensitivity to dataset size, loss
function, and equivariance in either network to motivate choices for real-world experiments. We ex-
periment with four different proportions of training data: 10%, 33%, 66%, and 100%. Additionally,
the non-saturating loss (Goodfellow et al., 2014) (NSGAN), the Wasserstein loss (Arjovsky et al.,
2017) (WGAN), and the relativistic average loss (Jolicoeur-Martineau, 2018) (RaGAN) are tested.
For the equivariant setting, all convolutions are replaced with p4-convolutions. p4m is precluded as
some digits do not possess mirror symmetry. All settings were trained for 20,000 generator iterations
with a batch size of 64. Implementation details are available in Appendix C.2.1.

Results. Fréchet distance of synthesized samples to the validation set is calculated at every thou-
sand generator iterations. As shown in Table 2, we find that under nearly every configuration of loss
and data availability considered, using p4-convolutions in either network improves both the mean
and minimum Fréchet distance. As data availability increases, the best-case minimum and mean
FID scores improve. With {33%, 66%, 100%} of the data, most improvements come from using
a p4-discriminator, with the further usage of a p4-generator only helping in a few cases. At 10%
data, having an equivariant generator is more impactful than an equivariant discriminator. These
trends are further evident from App. A Fig. 6, where we see that GANs with p4-discriminators con-
verge faster than non-equivariant counterparts. The NSGAN-GP and RAGAN-GP losses perform
similarly, with WGAN-GP underperforming initially and ultimately achieving comparable results.
Qualitatively, the equivariant model learns better representations as shown in Figure 3(a). Holding
the class-label constant and interpolating between samples, we find that the standard GAN changes
the shape of the digit in order to rotate it, whereas the equivariant model learns rotation in the latent
space. Holding the latent constant and interpolating between classes shows that our model learns an
intuitive interpolation between digits, whereas the standard GAN transforms the image immediately.

3.2 REAL-WORLD EXPERIMENTS

Datasets. p4 and p4m-equivariant networks are most useful when datasets possess global roto(-
reflective) symmetry, yet have also been shown to benefit generic image representation due to local
symmetries (Cohen & Welling, 2016; Romero et al., 2020). To this end, we experiment with two
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Table 3: FID evaluation (lower is better) of all real-world datasets across ablations and
augmentation-based baseline comparisons. - indicates an inapplicable setting for the method.

Setting ANHIR LYSTO CIFAR-10 Food-101
A

bl
at

io
n CNN in G & D 7.32 7.27 20.89 27.34

G-CNN in G; CNN in D 6.93 6.68 21.20 24.16
CNN in G; G-CNN in D 5.56 5.02 17.09 16.91
G-CNN in G & D 5.54 3.90 17.49 17.73

+
A

ug
. CNN in G & D + Standard Aug. 7.57 6.59 37.41 35.18

CNN in G & D + bCR (Zhao et al., 2020c) 5.86 4.78 19.64 21.18
CNN in G & D + AR (Chen et al., 2019) - - 19.59 20.39
G-CNN in G & D + bCR (Zhao et al., 2020c) 5.19 4.53 17.94 15.55

Figure 4: Selected generated samples using the best performing equivariant models with no aug-
mentation. Random samples are available in App. A. Layout inspired by Karras et al. (2020a).

types of real-world datasets as detailed in Table 1: (1) sets with roto(-reflective) symmetry, such that
the image label is invariant under transformation; (2) natural images with preferred orientation (e.g.,
the boat class of images in CIFAR-10 cannot be upside-down). Briefly, they are:

ANHIR provides high-resolution pathology slides stained with 5 different dyes to highlight different
cellular properties (Borovec et al., 2020; 2018). We extract 128 × 128 foreground patches from
images of different scales, as described in App. C.1.2. We use the staining dye as conditioning.

LYSTO is a multi-organ pathology benchmark for the counting of immunohistochemistry stained
lymphocytes (Ciompi et al., 2019). We re-purpose it here for conditional synthesis at a higher
resolution of 256 × 256. As classification labels are not provided, we use the organ source as class
labels. The use of organ sources as classes is validated in App. C.1.1. The high image resolution in
addition to the limited sample size of 20,000 make LYSTO a challenging dataset for GANs.

CIFAR-10 is a natural image vision benchmark of both small resolution and sample size (Krizhevsky
et al., 2009). Previous work (Weiler & Cesa, 2019; Romero et al., 2020) finds that equivariant-
networks improve classification accuracy on CIFAR-10 and we include here it as a GAN benchmark.

Food-101 is a small natural image dataset of a 101 categories of food taken in various challenging
settings of over/under exposure, label noise, etc. (Bossard et al., 2014). Further, datasets with a high
number of classes are known to be challenging for GANs (Odena, 2019). Importantly, even though
the objects in this dataset have a preferred pose due to common camera orientations, we speculate
that roto-equivariance may be beneficial here as food photography commonly takes an en face or
mildly oblique view. We resize the training set to 64× 64 resolution for our experiments.
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Figure 5: Top: Improved Precision and Recall (Kynkäänniemi et al., 2019) analysis of ablations
for all snapshots of trained models in each setting (closer to top-right is better). Bottom: GAN
convergence (FID vs. generator updates) of standard GANs vs. our proposed models for all datasets.
For visual clarity, we show only a subset of comparisons with convergence plots for all methods
provided in App. A Fig. 7. Readers are encouraged to zoom-in for better inspection.

Baseline architecture. To produce a strong non-equivariant baseline, we face several design
choices. State-of-the-art GANs follow either BigGAN (Brock et al., 2018) or StyleGAN2 (Karras
et al., 2020b) in design. As StyleGAN2 has not yet been demonstrated to scale to conditional gen-
eration with a large number of classes (to our knowledge), we follow a BigGAN-like construction
despite the stability of StyleGAN2. For our small datasets, we make the following modifications:
(1) we use fewer channels; (2) we do not use orthogonal regularization; (3) we do not use hierarchi-
cal latent projection as we find in early testing that projecting the entire latent to each normalization
layer achieves similar results; (4) we do not use attention as equivariant attention is an area of active
research (Romero & Hoogendoorn, 2019; Romero et al., 2020) but currently has prohibitively high
memory requirements and may not yet scale to GANs. Further details are available in App. C.2.

We then modify either generator (G) and/or discriminator (D) as in Section 2.2 to obtain the corre-
sponding equivariant settings. We note that a discriminator invariant to roto-reflections would assign
the same amount of realism to an upright natural image versus a rotated/reflected copy of the same
image, allowing the generator to synthesize images at arbitrary orientations. Therefore, for CIFAR-
10 and Food-101 we pool over rotations before the last residual block to enable the discriminator to
detect when generated images are not in their canonical pose while maintaining most of the bene-
fits of equivariance as studied in Weiler & Cesa (2019). We use p4m-equivariance for ANHIR and
LYSTO and p4-equivariance for CIFAR-10 and Food-101 to reduce training time.

Comparisons. A natural comparison would be against standard GANs using augmentations drawn
from the same group our model is equivariant to. However, augmentation on the real images alone
would lead to the augmentations “leaking” into the generated images, e.g., vertical flip augmentation
may lead to generated images being upside-down. Zhao et al. (2020c) propose balanced consistency
regularization (bCR) for augmentations of both real and generated samples to alleviate this issue,
and we thus use it as a comparison. We restrict the augmentations used in bCR to 90-degree rotations
or 90-degree rotations and reflections as appropriate to enable a fair comparison against equivari-
ant GANs. Using additional augmentations would help all methods across the board. We further
compare against auxiliary rotations (AR) GAN (Chen et al., 2019) where real and fake images are
augmented with 90-degree rotations and the discriminator is tasked with predicting their orientation.
We do not use AR for ANHIR and LYSTO as they have no canonical orientation. For completeness,
we also evaluate standard augmentation (reals only) for all datasets.

Results. Quantitative FID results of ablations and comparisons against baselines are presented in Ta-
ble 3. Equivariant networks (G-CNNs) outperform methods which use standard CNNs with or with-
out augmentation across all datasets. For ANHIR and LYSTO, we find that p4m-equivariance in ei-
ther network improves FID evaluation, with the best results coming from modifying both networks.

8



Published as a conference paper at ICLR 2021

However, for the upright datasets CIFAR-10 and Food-101, we find that having a p4-equivariant
discriminator alone helps more than having both networks be p4-equivariant. We speculate that this
effect is in part attributable to their orientation bias. With bCR and AR GANs, we find that standard
CNNs improve significantly, yet are still outperformed by equivariant nets using no augmentation.
We include a mixture of equivariant GANs and bCR for completeness and find that for ANHIR and
Food-101, they have an additive effect, whereas they do not for LYSTO and CIFAR-10, indicating
a dataset-sensitivity. Of note, we found that bCR with its suggested hyperparameters lead to im-
mediate training collapse on ANHIR, LYSTO, and CIFAR-10, which was fixed by decreasing the
strength of the regularization substantially. This may be due to the original work using several dif-
ferent types of augmentation and not just roto-reflections. Standard augmentation (i.e., augmenting
training images alone) lead to augmentation leakage for CIFAR-10 and Food-101.

Qualitatively, as class differences in ANHIR should be stain (color) based, we visualize inter-class
interpolations between synthesized samples in Figure 3(b). We find that our model better pre-
serves structure while translating between stains, whereas the non-equivariant GAN struggles to
do so. In our ablation study in terms of precision and recall in Figure 5, using p4m-equivariance
in G and D achieves consistently higher recall for ANHIR and LYSTO. For Food-101, we find
that G-CNN in G and D achieves higher precision, whereas CNN in G and G-CNN in D
achieves higher recall. For CIFAR-10 precision and recall, we find no discernable differences be-
tween the two settings with lowest FID. Interestingly, for CIFAR-10 adding p4-equivariance to G
but not D worsens FID but noticeably improves precision. These observations are consistent with
our FID findings as FID tends to correlate better with recall (Karras et al., 2020a). Finally, we plot
FID vs. generator updates in Figure 5, finding that the proposed framework converges faster than
the baseline as a function of training iterations (for all datasets except ANHIR). Convergence plots
for all datasets and all methods compared can be found in App. A Figure 7, showing similar trends.

4 DISCUSSION

Future work. We present improved conditional image synthesis using equivariant networks, open-
ing several potential future research directions: (1) As efficient implementations of equivariant at-
tention develop, we will incorporate them to model long-range dependency; (2) Equivariance to
continuous groups may yield further increased data efficiency and more powerful representations.
However, doing so may require non-trivial modifications to current GAN architectures as memory
limitations could bottleneck continuous group-equivariant GANs at relevant image sizes. Further,
adding more discretizations beyond 4 rotations on a continuous group such has SE(2) may show
diminishing returns (Lafarge et al., 2020a, Fig.7); (3) In parallel to our work, Karras et al. (2020a)
propose a differentiable augmentation scheme for limited data GANs pertaining to which transfor-
mations to apply and learning the frequency of augmentation for generic images, with similar work
presented in Zhao et al. (2020b). Our approach is fully complementary to these methods when em-
ploying transformations outside the considered group and will be integrated into future work; (4)
Contemporaneously, Lafarge et al. (2020b) propose equivariant variational autoencoders allowing
for control over generated orientations via structured latent spaces which may be used for equivari-
ant GANs as well; (5) The groups considered here do not capture all variabilities present in natural
images such as small diffeomorphic warps. Scattering networks may provide an elegant framework
to construct GANs equivariant to a wider range of symmetries and enable higher data-efficiency.

Conclusion. We present a flexible framework for incorporating symmetry priors within GANs. In
doing so, we improve the visual fidelity of GANs in the limited-data regime when trained on sym-
metric images and even extending to natural images. Our experiments confirm this by improving
on conventional GANs across a variety of datasets, ranging from medical imaging modalities to
real-world images of food. Modifying either generator or discriminator generally leads to improve-
ments in synthesis, with the latter typically having more impact. To our knowledge, our work is the
first to show clear benefits of equivariant learning over standard GAN training on high-resolution
conditional image generation beyond toy datasets. While this work is empirical, we believe that it
strongly motivates future theoretical analysis of the interplay between GANs and equivariance. Fi-
nally, improved results over augmentation-based strategies are presented, demonstrating the benefits
of explicit transformation equivariance over equivariance-approximating regularizations.
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A SUPPLEMENTARY RESULTS

Figure 6: Convergence plots of all GAN ablation settings on Rotated MNIST across data availabil-
ities (rows) and loss functions (columns). Fréchet distance to the validation set is evaluated every
1,000 generator iterations, for 20,000 iterations total. Experiments are repeated with 3 different ran-
dom seeds and average trajectories are reported with standard deviation error bars. This figure is
best interpreted alongside Table 2 which lists best performances for each configuration.
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F
I
D

Figure 7: GAN convergence (FID vs. generator updates) for baseline comparisons of the best per-
forming methods (left) and ablations (right) for all datasets. Readers are encouraged to zoom-in for
better inspection.
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Figure 8: Random 64 × 64 Food-101 samples from arbitrarily chosen classes with no truncation
taken from the best performing model snapshot with p4-equivariance (without augmentation) in the
discriminator.
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Figure 9: Random 128 × 128 ANHIR samples with no truncation taken from the best performing
model snapshot with p4m-equivariance in both generator and discriminator (without augmentation).
Selected real samples are shown in the left column for reference.
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Figure 10: Random 256 × 256 LYSTO samples with no truncation taken from the best performing
model snapshot with p4m-equivariance in both generator and discriminator (without augmentation).
Selected real samples are shown in the left column for reference.
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Figure 11: Random samples for RotMNIST (28 × 28) and CIFAR-10 (32 × 32) sampled with
σ = 0.75 truncation trained without augmentation.

Table 4: Kernel Inception Distance results for Map2Sat translation on the Maps dataset. Lower is
better.

Setting KID
Pix2Pix (Isola et al., 2017) 0.1584 ± 0.0026
Pix2Pix (Isola et al., 2017) (optimized) 0.0663 ± 0.0038
CNN in G, G-CNN in D 0.0333 ± 0.0005
G-CNN in G and D 0.0399 ± 0.0024

B IMAGE-TO-IMAGE TRANSLATION

To show the generic utility of equivariance in generative adversarial network tasks, we present a
pilot study employing p4-equivariance in supervised image-to-image translation to learn mappings
between visual domains. Using the popular Pix2Pix model of Isola et al. (2017) as a baseline,
we replace both networks with p4-equivariant models. For completeness, we also evaluate whether
employing p4-equivariance in just the discriminator achieves comparable results to modifying both
networks, as in the natural image datasets in the main text.

We use the 256×256 Maps dataset first introduced in (Isola et al., 2017), consisting of 1096 training
and 1098 validation images of pairs of Google maps images and their corresponding satellite/aerial
view images. As FID has a highly biased estimator, its use for evaluating generation with only 1098
validation samples is contraindicated (Binkowski et al., 2018). We instead use the Kernel Inception
Distance (KID) proposed by Binkowski et al. (2018) which exhibits low bias for small sample sizes
and is adopted in recent image translation studies (Kim et al., 2020). Briefly, as in FID, KID embeds
real and fake images into the feature-space of an appropriately chosen network and computes the
squared maximum-mean discrepancy (with a polynomial kernel) between their embeddings. Lower
values of KID are better. We use the official Tensorflow implementation and weights1.

For baseline Pix2Pix, we use pre-trained weights provided by the authors2. Interestingly, we find
that their architectures can be optimized for improved performance by replacing transposed convolu-
tions with resize-convolutions, reducing the number of parameters by swapping 4× 4 convolutional

1https://github.com/tensorflow/gan/blob/master/tensorflow_gan/python/
eval/inception_metrics.py

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 12: Arbitrarily selected sample translations from input map images (Col. 1) using either base-
line Pix2Pix with publicly available pre-trained weights (Col. 2) or Pix2Pix with a p4-equivariant
discriminator (Col. 3). Real aerial images are shown in Col. 4.

kernels for 3 × 3 kernels, and removing dropout. For equivariant models, we replace convolutions
with p4-convolutions in this optimized architecture and halve the number of filters to keep the num-
ber of parameters similar across settings. Architectures are given in Tables 15 and 16. We leave
all other experimental details identical to Isola et al. (2017) for all models, such as training for 200
epochs with random crops under a cross-entropy GAN loss.

Quantitative results are presented in Table 4 which shows that p4-equivariance in either setting
improves over both original baseline and optimized baseline by a wide margin, with the best results
coming from p4-equivariance in the discriminator alone. Qualitative results are presented in Figure
12 showing improved translation fidelity, further supporting our hypothesis that equivariant networks
benefit GAN tasks generically.
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C EXPERIMENTAL DETAILS

C.1 DATA PREPARATION

C.1.1 LYSTO CLASS CONDITIONING

To validate the assumption of the organ source being a discriminative feature, a suitable test would
be to train a classifier to distinguish between sources. We partition the original training set with
a 60/40 train/test split. The original testing set is not used as it has no publicly available organ
source information. The dataset has 3 classes - colon, breast, and prostate. Holding out 20% of the
new constructed training set for validation, we fine-tune ImageNet-pretrained VGG16 (Simonyan &
Zisserman, 2014) and achieve 98% organ classification test accuracy, thus validating our assumption.

C.1.2 ANHIR PATCH EXTRACTION

To extract patches for image synthesis, we choose the lung-lesion images from the larger AN-
HIR dataset, as these images are provided at different scales and possess diverse staining. The
images were cropped to the nearest multiples of 128, and 128 × 128 patches were then extracted.
Foreground/background masking was performed via K-means clustering, followed by morphologi-
cal dilation. The images were then gridded into 128×128 patches, i.e., there was no overlap between
patches. If a patch contained less than 10% foreground pixels, it was excluded from consideration.

C.2 ADDITIONAL IMPLEMENTATION DETAILS

The following subsections list dataset-specific training strategies. Unless noted, all layers use or-
thogonal initializations. Batch normalization momentum is set to 0.1, and LeakyReLU slopes are
set to 0.2 (if used). Spectral normalization is used everywhere except for the dense layer which
learns the class embedding as specified in the BigGAN PyTorch GitHub repository3.

For ablation studies, as GANs consist of two networks (the generator and discriminator), we replace
group-equivariant layers (convolutional, normalization, and pooling) with the corresponding stan-
dard layers in either generator or discriminator to evaluate which network benefits the most from
equivariant learning. When we remove equivariant layers from both networks, we recover our base-
line comparison. All settings use roughly the same number of parameters, with a very small differ-
ence in parameter count arising from the p4 (or p4m) class-conditional batch normalization layers
requiring fewer affine scale and shift parameters than their corresponding standard normalization
layers. Tangentially, we note that the equivariant networks require higher amounts of computation
time. For example, for a fixed number of training iterations on ANHIR, p4m-equivariant GANs
currently require approximately four times the amount of computation time.

To identify a common shared stable hyperparameter configuration for all ablations of our method on
real datasets, a grid search was performed for the ANHIR dataset over learning rates for generator
and discriminator (ηg, ηd) : ({10−4, 4× 10−4}, {5× 10−5, 2× 10−4}), gradient penalty strengths
(γ = {0.01, 0.1, 1.0, 10.0}), and binary choices as to whether to use batch normalization in the
discriminator or not, whether to use average-pooling or max-pooling to reduce spatial extent in the
discriminator, and whether to use a Gaussian latent space or a Bernoulli latent space. We use the
identified hyperparameter configuration as an initial starting point for all datasets, modifying them
as appropriate as described below.

For ANHIR, LYSTO, and Food-101 we use the relativistic average adversarial loss (Jolicoeur-
Martineau, 2018) for its stability and for CIFAR-10 we use the Hinge loss (Lim & Ye, 2017; Tran
et al., 2017) to remain consistent with the literature for that dataset. For our implementation of aux-
iliary rotations GAN (Chen et al., 2019), we use the suggested regularization weights. For balanced
consistency regularization (bCR) (Zhao et al., 2020c), we find that dataset-specific tuning of the
regularization strength was required.

3https://github.com/ajbrock/BigGAN-PyTorch
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C.2.1 ROTMNIST

Given the low resolution of Rotated MNIST, we take a straightforward approach to synthesis with-
out residual connections. In the generator, we sample from a 64D Gaussian latent space, concate-
nate class embeddings, and linearly project as described in Section 2.2. Four spectrally-normalized
convolutional layers are then used with class-conditional batch normalization employed after every
convolution except for the first and last layer. The discriminator uses three spectrally normalized
convolutional layers, with leaky ReLU non-linearities. Average pooling is used to reduce the spatial
extent of the feature maps, with global average pooling and conditional projection used at the end
of the sequence. For NSGAN and RaGAN, we use the R1 GP, conservatively setting γ = 0.1.
For WGAN, we use the GP defined in Gulrajani et al. (2017) to ensure the 1-Lipschitz constraint
with the recommended weight of 10.0. Learning rates were set to ηG = 0.0001 and ηD = 0.0004,
respectively. For the p4-equivariant models, max-pooling over rotations is used after the last group-
convolutional layer in both generator and discriminator to get planar feature maps. Architectures are
presented in Tables 5 and 6.

C.2.2 ANHIR

We sample from a 128D Gaussian latent space with a batch size of 32. The generator consists of
6 pre-activation residual blocks followed by a final convolutional layer to obtain a 3-channel out-
put. We use class-conditional batch normalization after every convolution, except at the final layer.
The discriminator uses 5 pre-activation residual blocks, followed by global average pooling and
conditional projection. In the equivariant settings, we use residual blocks with p4m-convolutions
for roto-reflective symmetries. We train with the relativisitic average loss and use the R1 GP with
γ = 0.1. Learning rates are set to ηG = 0.0001 and ηD = 0.0004. All models were trained for
approximately 60,000 generator iterations. bCR weights for comparison were set to λreal = 0.1
and λfake = 0.05 for roto-reflective augmentations, with higher values collapsing training. Archi-
tectures are presented in Tables 7 and 8.

C.2.3 LYSTO

Implementation for LYSTO is similar to that of App. C.2.2, with some key differences due to the
greater difficulty of training. Due to memory constraints, we use a batch size of 16. We increase
the number of residual blocks to 6 in both generator and discriminator and halve the number of
filters. The equivariant settings used the p4m roto-reflective symmetries. We initially experienced
low sample diversity across a variety of hyperparameter settings. Contrary to recent literature, we
find that using batch normalization in the discriminator in addition to spectral normalization greatly
improves training for this dataset. Further, halving the learning rates for both networks to ηG =
0.00005 and ηD = 0.0002 and increasing the strength of the gradient penalty to 1.0 were necessary
for ensuring training stability. As in App. C.2.2, all models were trained for approximately 60,000
generator iterations and bCR weights were set to λreal = 0.1 and λfake = 0.05 for roto-reflective
augmentations. As test set labels are not publicly available for LYSTO, we evaluate FID, Precision,
and Recall to the training set itself as done in a subset of experiments within Jolicoeur-Martineau
(2018) and Zhao et al. (2020b). Architectures are presented in Tables 9 and 10.

C.2.4 CIFAR-10

For CIFAR-10, we make the following changes to our training parameters to be in accordance
with prior art for BigGAN-like designs for this dataset: (1) layer weights are now initialized from
N (0, 0.02); (2) average pooling is used in the discriminator instead of max pooling; (3) learning
rates ηG and ηD are now equal and set to 0.0002; (4) the discriminator is updated four times per
generator update; (5) architectures are modified as in Tables 11 and 12; (6) we use the Hinge loss
instead of the relativistic average loss. We use a batch size of 64. Karras et al. (2020a) suggest anR1

GP weight of γ = 0.01 for CIFAR-10 which we use here. We train all CIFAR-10 GANs for 100K
generator iterations. bCR weights were set to λreal = 0.1 and λfake = 0.1 for 90-degree rotation
augmentations.

For the p4-equivariant discriminators, we move the pooling over the group to before the last resid-
ual block as stated in the main text. Alternatively, we experimented with using a single additional
standard convolutional layer with 32 filters after the p4-residual blocks as a lightweight alternative
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Figure 13: Residual blocks in the group-equivariant settings used in RGB image generation archi-
tectures. The choice of p4 or p4m is dataset-specific. The generator uses ResBlockG (left) and
the discriminator uses ResBlockD (right). The first residual block in the convolutional sequence in
either network uses z2-p4m group-convolutions for the initial layer. The non-equivariant settings re-
place all group-convolutions and normalizations within the residual blocks with standard techniques.
Visual design inspired by Brock et al. (2018).

to making an entire residual block non-equivariant but this worsened FID evaluation. Interestingly,
we find that substituting Global Average Pooling for Global Sum Pooling in the CIFAR-10 discrim-
inators lead to an improvement of∼5 - 8 in terms of FID across the board. This architectural change
to the ResNet-based GANs from Gulrajani et al. (2017) was originally made in Miyato et al. (2018),
but to our knowledge has not been noted in the literature previously.

C.2.5 FOOD-101

Compared to the residual synthesis models in App. C.2.2 and C.2.3, we make several changes.
We sample from a 64D latent Gaussian to lower the number of dense parameters and substantially
increase the width of the residual blocks to account for the high number of image classes. We find
that an 8× increase in the number of channels for the initial projection from the latent vector and
class embedding improves training significantly. We use 4 residual blocks each in both generator and
discriminator. For the equivariant setting, we use only p4 rotational symmetries to reduce training
time. Importantly, we increase the batch size to 64 and theR1 GP to γ = 1.0, both of which improve
the evaluation of all experimental settings. We train all GANs for ∼45K generator iterations. The
suggested bCR weights of λreal = 10.0 and λfake = 10.0 from Zhao et al. (2020c) were used here
for 90-degree rotation augmentations. However, when bCR with default parameters was combined
with p4-equivariance in G and D, augmentations start to ‘leak’ into the generated images (e.g., G
generating upside-down plates), necessitating lower weights of λreal = 0.5 and λfake = 0.5.

C.3 ARCHITECTURES

Architectures for the Rotated MNIST experiments are given in Tables 5 and 6, ANHIR in Tables 7
and 8, and LYSTO in Tables 9 and 10. The residual blocks used in the ANHIR, LYSTO, CIFAR-
10, and Food-101 experiments are given in Figure 13. SN refers to spectral normalization and
(z2− p4), (p4− p4), (z2− p4m), (p4m− p4m) refer to the type of convolution used.
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Generator
Sample z ∈ R64 ∼ N (0, I)

Embed y ∈ {0, ..., 9} into ŷ ∈ R64

Concatenate z and ŷ into h ∈ R128

Project and reshape h to 7× 7× 128
3× 3 ConvSN, 128→ 512

ReLU; Up 2×
3× 3 ConvSN, 512→ 256
CCBN(·, h); ReLU; Up 2×
3× 3 ConvSN, 256→ 128

CCBN(·, h); ReLU
3× 3 ConvSN, 128→ 1

tanh()

Discriminator
Input RGB image x ∈ R28×28×1

3× 3 ConvSN, 1→ 128
LeakyReLU, Avg. Pool

3× 3 ConvSN, 128→ 256
LeakyReLU, Avg. Pool

3× 3 ConvSN, 256→ 512
LeakyReLU, Avg. Pool

Global Average Pool into f
Embed y ∈ {0, ..., 9} into ŷ′

Projection step(ŷ′, f )

Table 5: Architectures used for the standard generator and discriminator in the Rotated MNIST
experiments.

Generator
Sample z ∈ R64 ∼ N (0, I)

Embed y ∈ {0, ..., 9} into ŷ ∈ R64

Concatenate z and ŷ into h ∈ R128

Project and reshape h to 7× 7× 128
3× 3 z2− p4 GConvSN, 128→ 256

ReLU; Up 2×
3× 3 p4− p4 GConvSN, 256→ 128

CCBN(·, h); ReLU; Up 2×
3× 3 p4− p4 GConvSN, 128→ 64

CCBN(·, h); ReLU
3× 3 p4− p4 GConvSN, 64→ 1

p4-Max Pool
tanh()

Discriminator
Input RGB image x ∈ R28×28×1

3× 3 z2− p4 GConvSN, 1→ 64
LeakyReLU, Avg. Pool

3× 3 p4− p4 GConvSN, 64→ 128
LeakyReLU, Avg. Pool

3× 3 p4− p4 GConvSN, 128→ 256
LeakyReLU, Avg. Pool

p4-Max Pool
Global Average Pool into f
Embed y ∈ {0, ..., 9} into ŷ′

Projection step(ŷ′, f )

Table 6: Architectures used for the p4-equivariant generator and discriminator in the Rotated MNIST
experiments.

Generator
Sample z ∈ R128 ∼ N (0, I)

Embed y ∈ {0, ..., 4} into ŷ ∈ R128

Concatenate z and ŷ into h ∈ R256

Project and reshape h to 4× 4× 128
z2− z2 ResBlockG, 128→ 512
z2− z2 ResBlockG, 512→ 256
z2− z2 ResBlockG, 256→ 128
z2− z2 ResBlockG, 128→ 64
z2− z2 ResBlockG, 64→ 32

BN; ReLU
3× 3 ConvSN, 32→ 3

tanh()

Discriminator
Input RGB image x ∈ R128×128×3

z2− z2 ResBlockD, 3→ 32
z2− z2 ResBlockD, 32→ 64
z2− z2 ResBlockD, 64→ 128
z2− z2 ResBlockD, 128→ 256
z2− z2 ResBlockD, 256→ 512

ReLU
Global Average Pool into f
Embed y ∈ {0, ..., 4} into ŷ′

Projection step(ŷ′, f )

Table 7: Architectures used for the standard generator and discriminator in the ANHIR experiments.
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Generator
Sample z ∈ R128 ∼ N (0, I)

Embed y ∈ {0, ..., 4} into ŷ ∈ R128

Concatenate z and ŷ into h ∈ R256

Project and reshape h to 4× 4× 128
z2− p4m ResBlockG, 128→ 181
p4m− p4m ResBlockG, 181→ 90
p4m− p4m ResBlockG, 90→ 45
p4m− p4m ResBlockG, 45→ 22
p4m− p4m ResBlockG, 22→ 11

p4m-BN; ReLU
3× 3 p4m− p4m GConvSN, 11→ 3

p4m-Max Pool
tanh()

Discriminator
Input RGB image x ∈ R128×128×3

z2− p4m ResBlockD, 3→ 11
p4m− p4m ResBlockD, 11→ 22
p4m− p4m ResBlockD, 22→ 45
p4m− p4m ResBlockD, 45→ 90
p4m− p4m ResBlockD, 90→ 181

ReLU
p4m-Max Pool

Global Average Pool into f
Embed y ∈ {0, ..., 4} into ŷ′

Projection step(ŷ′, f )

Table 8: Architectures used for the p4m-equivariant generator and discriminator in the ANHIR
experiments.

Generator
Sample z ∈ R128 ∼ N (0, I)

Embed y ∈ {0, 1, 2} into ŷ ∈ R128

Concatenate z and ŷ into h ∈ R256

Project and reshape h to 4× 4× 128
z2− z2 ResBlockG, 128→ 512
z2− z2 ResBlockG, 512→ 256
z2− z2 ResBlockG, 256→ 128
z2− z2 ResBlockG, 128→ 64
z2− z2 ResBlockG, 64→ 32
z2− z2 ResBlockG, 32→ 16

BN; ReLU
3× 3 ConvSN, 16→ 3

tanh()

Discriminator
Input RGB image x ∈ R256×256×3

z2− z2 ResBlockD-BN, 3→ 16
z2− z2 ResBlockD-BN, 16→ 32
z2− z2 ResBlockD-BN, 32→ 64
z2− z2 ResBlockD-BN, 64→ 128
z2− z2 ResBlockD-BN, 128→ 256
z2− z2 ResBlockD-BN, 256→ 512

ReLU
Global Average Pool into f
Embed y ∈ {0, 1, 2} into ŷ′

Projection step(ŷ′, f )

Table 9: Architectures used for the standard generator and discriminator in the LYSTO experiments.

Generator
Sample z ∈ R128 ∼ N (0, I)

Embed y ∈ {0, 1, 2} into ŷ ∈ R128

Concatenate z and ŷ into h ∈ R256

Project and reshape h to 4× 4× 128
z2− p4m ResBlockG, 128→ 181
p4m− p4m ResBlockG, 181→ 90
p4m− p4m ResBlockG, 90→ 45
p4m− p4m ResBlockG, 45→ 22
p4m− p4m ResBlockG, 22→ 11
p4m− p4m ResBlockG, 11→ 5

p4m-BN; ReLU
3× 3 p4m− p4m GConvSN, 5→ 3

p4m-Max Pool
tanh()

Discriminator
Input RGB image x ∈ R256×256×3

z2− p4m ResBlockD-BN, 3→ 5
p4m− p4m ResBlockD-BN, 5→ 11
p4m− p4m ResBlockD-BN, 11→ 22
p4m− p4m ResBlockD-BN, 22→ 45
p4m− p4m ResBlockD-BN, 45→ 90
p4m− p4m ResBlockD-BN, 90→ 181

ReLU
p4m-Max Pool

Global Average Pool into f
Embed y ∈ {0, 1, 2} into ŷ′

Projection step(ŷ′, f )

Table 10: Architectures used for the p4m-equivariant generator and discriminator in the LYSTO
experiments.
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Generator
Sample z ∈ R128 ∼ N (0, I)

Embed y ∈ {0, ..., 9} into ŷ ∈ R128

Concatenate z and ŷ into h ∈ R256

Project and reshape h to 4× 4× 256
z2− z2 ResBlockG, 256→ 256
z2− z2 ResBlockG, 256→ 256
z2− z2 ResBlockG, 256→ 256

BN; ReLU
3× 3 ConvSN, 256→ 3

tanh()

Discriminator
Input RGB image x ∈ R32×32×3

z2− z2 ResBlockD (avg. pool),
3→ 128

z2− z2 ResBlockD (avg. pool),
128→ 128

z2− z2 ResBlockD (no downsample),
128→ 128

z2− z2 ResBlockD (no downsample),
128→ 128

ReLU
Global Sum Pool into f

Embed y ∈ {0, ..., 9} into ŷ′
Projection step(ŷ′, f )

Table 11: Architectures used for the standard generator and discriminator in the CIFAR-10 experi-
ments.

Generator
Sample z ∈ R128 ∼ N (0, I)

Embed y ∈ {0, ..., 9} into ŷ ∈ R128

Concatenate z and ŷ into h ∈ R256

Project and reshape h to 4× 4× 256
z2− p4 ResBlockG, 256→ 128
p4− p4 ResBlockG, 128→ 128
p4− p4 ResBlockG, 128→ 128

p4-BN; ReLU
3× 3 p4− p4 GConvSN, 128→ 3

p4-Max Pool
tanh()

Discriminator
Input RGB image x ∈ R64×64×3

z2− p4 ResBlockD (avg. pool),
3→ 64

z2− p4 ResBlockD (avg. pool),
64→ 64

p4− p4 ResBlockD (no downsample),
64→ 64

p4-Max Pool
z2− z2 ResBlockD (no downsample),

64→ 128
ReLU

Global Sum Pool into f
Embed y ∈ {0, ..., 9} into ŷ′

Projection step(ŷ′, f )

Table 12: Architectures used for the p4-equivariant generator and discriminator in the CIFAR-10
experiments.

Generator
Sample z ∈ R64 ∼ N (0, I)

Embed y ∈ {0, ..., 100} into ŷ ∈ R64

Concatenate z and ŷ into h ∈ R128

Project and reshape h to 4× 4× 1024
z2− z2 ResBlockG, 1024→ 512
z2− z2 ResBlockG, 512→ 384
z2− z2 ResBlockG, 384→ 256
z2− z2 ResBlockG, 256→ 192

BN; ReLU
3× 3 ConvSN, 192→ 3

tanh()

Discriminator
Input RGB image x ∈ R64×64×3

z2− z2 ResBlockD, 3→ 128
z2− z2 ResBlockD, 128→ 256
z2− z2 ResBlockD, 256→ 512
z2− z2 ResBlockD, 512→ 784

ReLU
Global Average Pool into f

Embed y ∈ {0, ..., 100} into ŷ′
Projection step(ŷ′, f )

Table 13: Architectures used for the standard generator and discriminator in the Food-101 experi-
ments.
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Generator
Sample z ∈ R64 ∼ N (0, I)

Embed y ∈ {0, ..., 100} into ŷ ∈ R64

Concatenate z and ŷ into h ∈ R128

Project and reshape h to 4× 4× 1024
z2− p4 ResBlockG, 1024→ 256
p4− p4 ResBlockG, 256→ 192
p4− p4 ResBlockG, 192→ 128
p4− p4 ResBlockG, 128→ 96

p4-BN; ReLU
3× 3 p4− p4 GConvSN, 96→ 3

p4-Max Pool
tanh()

Discriminator
Input RGB image x ∈ R64×64×3

z2− p4 ResBlockD, 3→ 64
p4− p4 ResBlockD, 64→ 128
p4− p4 ResBlockD, 128→ 256

p4-Max Pool
z2− z2 ResBlockD, 256→ 784

ReLU
Global Average Pool into f

Embed y ∈ {0, ..., 100} into ŷ′
Projection step(ŷ′, f )

Table 14: Architectures used for the p4-equivariant generator and discriminator in the Food-101
experiments.

Generator
Input RGB image x ∈ R256×256×3

h1 : z2− z2 DownBlock, 3→ 64
h2 : z2− z2 DownBlock, 64→ 128
h3 : z2− z2 DownBlock, 128→ 256
h4 : z2− z2 DownBlock, 512→ 512
h5 : z2− z2 DownBlock, 512→ 512
h6 : z2− z2 DownBlock, 512→ 512
h7 : z2− z2 DownBlock, 512→ 512
h8 : z2− z2 DownBlock, 512→ 512

z2− z2 UpBlock, 512→ 512; Concatenate h7
z2− z2 UpBlock, 512→ 512; Concatenate h6
z2− z2 UpBlock, 512→ 512; Concatenate h5
z2− z2 UpBlock, 512→ 512; Concatenate h4
z2− z2 UpBlock, 512→ 256; Concatenate h3
z2− z2 UpBlock, 256→ 128; Concatenate h2
z2− z2 UpBlock, 128→ 64; Concatenate h1

Upsample 2×, 3× 3 Conv, 64→ 3
tanh()

Discriminator
Input RGB image x ∈ R256×256×3

Input RGB image y ∈ R256×256×3

Concatenate x and y feature-wise
z2− z2 DownBlock, 3→ 64
z2− z2 DownBlock, 64→ 128
z2− z2 DownBlock, 128→ 256
z2− z2 3× 3 Conv 256→ 512,

BatchNorm, Leaky ReLU
z2− z2 3× 3 Conv 512→ 1,

tanh()

Table 15: Architectures used for the standard generator and discriminator in the Pix2Pix experi-
ments. Each DownBlock consists of a 3 × 3 Convolution, 2× Average Pool, Batch Normalization,
and Leaky ReLU activation. Each UpBlock consists of 2× nearest-neighbors upsampling, 3 × 3
Convolution, Batch Normalization, and Leaky ReLU activation.
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Generator
Input RGB image x ∈ R256×256×3

h1 : z2− p4 DownBlock, 3→ 64
h2 : p4− p4 DownBlock, 64→ 128
h3 : p4− p4 DownBlock, 128→ 256
h4 : p4− p4 DownBlock, 512→ 512
h5 : p4− p4 DownBlock, 512→ 512
h6 : p4− p4 DownBlock, 512→ 512
h7 : p4− p4 DownBlock, 512→ 512
h8 : p4− p4 DownBlock, 512→ 512

p4− p4 UpBlock, 512→ 512; Concatenate h7
p4− p4 UpBlock, 512→ 512; Concatenate h6
p4− p4 UpBlock, 512→ 512; Concatenate h5
p4− p4 UpBlock, 512→ 512; Concatenate h4
p4− p4 UpBlock, 512→ 256; Concatenate h3
p4− p4 UpBlock, 256→ 128; Concatenate h2
p4− p4 UpBlock, 128→ 64; Concatenate h1

Upsample 2×, 3× 3 GConv, 64→ 3
p4-average pool, tanh()

Discriminator
Input RGB image x ∈ R256×256×3

Input RGB image y ∈ R256×256×3

Concatenate x and y feature-wise
z2− p4 DownBlock, 3→ 64
p4− p4 DownBlock, 64→ 128
p4− p4 DownBlock, 128→ 256
p4− p4 3× 3 Conv 256→ 512,

BatchNorm, Leaky ReLU
p4− p4 3× 3 Conv 512→ 1,

p4-average pool
tanh()

Table 16: Architectures used for the p4-equivariant generator and discriminator in the Pix2Pix exper-
iments. Each DownBlock consists of a 3 × 3 p4-convolution, 2× Average Pool, p4-Batch Normal-
ization, and Leaky ReLU activation. Each UpBlock consists of 2× nearest-neighbors upsampling,
3× 3 p4-Convolution, p4-Batch Normalization, and Leaky ReLU activation.
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