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Abstract

Density-based clustering can identify clusters with irregular shapes and has intu-
itive interpretations, but struggles with large-dimensional data due to the curse of
dimensionality. We introduce a graph-based clustering framework called Skeleton
Clustering to adopt density-based clustering idea to multivariate and even high-
dimensional data. The proposed framework constructs a graph representation of the
data as a first step and combines prototype methods, density-based clustering, and
hierarchical clustering. We propose surrogate density measures based on the skele-
ton graph that are less dependent on the dimension and have meaningful geometric
interpretations. We show by empirical studies that the proposed skeleton clustering
method leads to reliable clusters in multivariate and even high-dimensional data
with irregular shapes.

1 Introduction

Density-based clustering [Azzalini and Torelli, 2007, Menardi and Azzalini, 2014, Chacón, 2015] is
a popular framework to group observations into clusters defined based on the underlying probability
density function (PDF). In practice, when the PDF is unknown, it is estimated via the random
sample and the estimated PDF is used to obtain the resulting clusters. Many clustering methods
have been proposed within the framework of density-based clustering. The mode clustering [Li
et al., 2007, Chacón and Duong, 2013, Chen et al., 2016] finds clusters via the local modes of the
underlying PDF. When the kernel density estimator (KDE) is used for density estimation, the mode
clustering can be done easily via the mean-shift algorithm [Fukunaga and Hostetler, 1975, Cheng,
1995, Carreira-Perpinán, 2015]. Another famous density-based clustering approach is the level-set
clustering [Cuevas et al., 2000, 2001, Mason et al., 2009, Rinaldo et al., 2012], which creates clusters
as the connected components of high density regions. The well-known DBSCAN method [Ester et al.,
1996] is also a special case of level set clustering. Moreover, the cluster tree [Stuetzle and Nugent,
2010, Chaudhuri and Dasgupta, 2010, Chaudhuri et al., 2014, Eldridge et al., 2015, Kim et al., 2016]
is a density-based clustering approach combining information from both modes and level-sets. This
method creates a tree structure with each leaf represents a mode and the tree describes the evolution
of level-set clusters at different density levels.

Compared to the classical k-means clustering [Lloyd, 1982, Hartigan and Wong, 1979, Pollard,
1982] and the model-based clustering methods [Fraley and Raftery, 2002], a density-based clustering
approach is capable of finding clusters with irregular shapes and gives an intuitive interpretation
based on the underlying PDF. Furthermore, defining clusters based on the density function makes it
possible to view the clustering problem as an estimation problem: the clusters from the true PDF are
the parameters of interest and the estimated clusters are sample quantities utilized for approximation.
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Although density-based clustering enjoys many advantages, it has a fundamental limitation that, due
to the curse of dimensionality, density estimation does not scale well with the dimension. Specifically,
the convergence rate of a density estimator is OP (n

− 2
4+d ) under usual smoothness conditions [Scott,

2015, Wasserman, 2006], which is slow when d is large. In this work, we learn a graph representation
of the data to overcome the curse of dimensionality when applying density-based clustering approach.
In particular, we merge protoclusters [Peterson et al., 2018, Fred and Jain, 2005, Maitra, 2009, Baudry
et al., 2010, Shin et al., 2019, Hennig, 2010] through graph-based density-aided criterion. Our idea
can be summarized as follows. We first find a large set of protoclusters (called knots) by running
k-means clustering. Nearby knots are then connected by edges to form a graph that we call the
skeleton. The similarities between connected knots are measured based on the skeleton through some
density-aided criteria that are estimable even in high dimensions. Finally, we merge knots according
to a linkage criterion to create the final clusters. Because the construction involves creating a skeleton
representation of the data, we call this method Skeleton Clustering.

To illustrate the limitation of the classical approaches and to highlight the effectiveness of skeleton
clustering, we conduct a simple simulation in Figure 1. It is a d = 200 dimensional data consisted
of five components with non-spherical shapes. The actual structure is in 2-dimensional space as
illustrated in Figure 1. We add Gaussian noises in other dimensions to make it a d = 200 dimensional
data (see Section 5 for more details). Traditional k-means and spectral clustering fail to find the five
components and mean shift algorithm cannot form clusters due to the high dimensionality of the data.
However, our proposed method (bottom-right panel) can successfully recover the underlying five
components.

Figure 1: Yinyang Data with dimension 200. On the bottom-right is the clustering result of the skeleton clustering
with the proposed Voronoi density similarity measure.

2 Skeleton Clustering Framework

In this section we formally introduce the skeleton clustering framework. Let X = {X1, . . . , Xn} be
a random sample from an unknown distribution with density p supported on a compact set X ∈ Rd.
The goal of clustering is to partition X into clusters X1, . . .XS , where S is the final number of
clusters.

Algorithm 1 Skeleton clustering

Input: Observations X1, · · · , Xn, final number of clusters S.
1. Knot construction. Perform k-means clustering with a large number of k; the centers are the
knots (Section 2.1).
2. Edge construction. Apply approximate Delaunay triangulation to the knots (Section 2.2).
3. Edge weights construction. Add weights to each edge using either Voronoi density, Face
density, or Tube density similarity measure (Section 3).
4. Knots segmentation. Use linkage criterion to segment knots into S groups based on the edge
weights (Section 2.4).
5. Assignment of labels. Assign a cluster label to each observation based on which knot-group
the nearest knot belongs (Section 2.5).

A summary of the skeleton clustering framework is provided in Algorithm 1. Figure 2 illustrates the
overall procedure of the skeleton clustering method. Starting with a collection of observations (panel
(a)), we first find knots, the representative points of the entire data (panel (b)). Then we compute the
corresponding Voronoi cells induced by the knots (panel (c)) and the edges associating the nearby
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(a) Data (b) Knots (c) Voronoi Cells (d) Skeleton

(e) Dendrogram (f) Segmentation (g) Clustering

Figure 2: Skeleton Clustering illustrated by Two Moon Data (d=2).

Voronoi cells (panel (d)). For each edge in the graph, we compute a density-aided similarity measure
that quantifies the closeness of each pair of knots. For the next step we segment knots into groups
based on a linkage criterion (single linkage in this example), leading to the dendrogram in panel (e).
Finally, we choose a threshold that cuts the dendrogram into S = 2 clusters (panel (f)) and assign
cluster label to each observation according to the knot-cluster that it belongs to (panel (g)).

In summary, the skeleton clustering consists of the following five steps: (1) Knots construction, (2)
Edges construction, (3) Edge weights construction, (4) Knots segmentation, and (5) Assignment of
labels. In what follows in this section, we provide a detailed description of each step except Step
3. Step 3 is the key step in our clustering framework where we incorporate the information from
the underlying density for clustering in a less dimension-dependent way and we defer the detailed
discussion of Step 3 to Section 3. We include a short analysis on the computational complexity of our
skeleton clustering framework in Appendix B.

2.1 Knots Construction

The knots are constructed as representative points in the data that can help measure similarities
between regions in the later stage. The knots can be viewed as landmarks inside the data where we
can shift our focus from the entire data to these local locations. A simple but reliable approach for
constructing knots is the k-means algorithm. We apply the k-means algorithm with a large number
k ≫ S the desired number of final clusters, and this procedure behaves like overfitting the k-means.
Notably, we do not use k-means procedure to obtain final clustering, but instead we use it as a
intermediate step to find concise representations of the original data.

The number of knots k is a key parameter in the knots construction step. It controls the trade-off
between the quality of the data representation and the reliability of each knot. More knots can give
better representation of the data, but, if we have too many knots, the number of observation per knot
will be small, so the uncertainty in estimation in the later stage will be large. We find that a simple
reference rule for k to be around

√
n works well in our empirical studies (Section D.1). In practice,

it is also advisable to prune knots with a small number of corresponding observations because the
density-aided weights (in Step 3, Section 3) are estimated locally by the data belonging to each pair of
knots. Knots with a few data points can lead to unstable similarity measurements and unreliable final
clustering. Moreover, to take care of observations in the low-density areas that could cause problems
for the k-means clustering, one may first pre-process or denoise the data by removing observations in
the low-density area and then apply the k-means clustering to find out the knots.
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In this work we use overfitting k-means as the default way for knots construction, but there are
alternative approaches to find knots such as subsampling, the coreset construction methods [Bachem
et al., 2017, Turner et al., 2020], and the Self-Organizing Maps (SOM) [Heskes, 2001]. We show in
Appendix D.2 that the SOM can also be used to find knots but requires more careful treatments such
as removing knots with few or even no observations and the performance is slightly worse than that
of the overfitting k-means. The k-medians algorithm can be another alternative method but it gave
an unstable result when the dimension is large. Therefore, we choose to use the overfitting k-means
algorithm in this work and recommend using it in practice.

2.2 Edges Construction

With the constructed knots, our next step is to find the edges connecting them. Let c1, · · · , ck be the
given knots and we use C = {c1, · · · , ck} to denote the collection of them. We add an edge between
a pair of knots if they are neighbors, with the neighboring condition being that the corresponding
Voronoi cells [Voronoi, 1908] share a common boundary. The Voronoi cell, or Voronoi region, Cj ,
associated with a knot cj is the set of all points in X whose distance to cj is the smallest compared to
other knots (See Figure 3). That is,

Cj = {x ∈ X : d(x, cj) ≤ d(x, cℓ) ∀ℓ ̸= j}, (1)

where d(x, y) is the usual Euclidean distance. Therefore, we add an edge between knots (ci, cj) if
Ci ∩Cj ̸= ∅. Such resulting graph is the Delaunay triangulation [Delaunay, 1934] of the set of knots
C and we denote it as DT (C). In a nutshell, the skeleton graph in our framework is given by the
Delaunay triangulation of C.

Figure 3: Voronoi Tessellation as blue
dashed lines and Delaunay Triangula-
tion by red solid lines.

The Delaunay triangulation graph is conceptually intuitive and
is utilized by some clustering methods to identify connected
components [Azzalini and Torelli, 2007, Scrucca, 2016], but
empirically the computational complexity of the exact Delau-
nay triangulation algorithm has an exponential dependence
on the ambient dimension d [Amenta et al., 2007, Chazelle,
1993]. Given our multivariate and even high-dimensional data
setting, exact Delaunay triangulation is empirically unfavorable.
Therefore, in practice, we approximate the exact Delaunay Tri-
angulation with D̂T (C) by examining the 2-nearest knots of the
sample data points. The key observation is that, if the Voronoi
cells of two knots ci, cj share a boundary, there is a non-empty
region of points whose 2-nearest knots are ci, cj . Consequently,
for approximation, we query the two nearest knots for each data
point and have an edge between ci, cj if there is at least one
data point whose two nearest neighbors are ci, cj . The complexity of the neighbor search depends
linearly on the dimension d, which is desirable for high-dimensional setting [Weber et al., 1998], and
this sample-based approximation to the Delaunay Triangulation has reliable empirical performance.

2.3 Edge Weight Construction

Given the constructed edges and knots, we assign each edge a weight that represents the similarity
between the pair of knots. In this work, we propose some novel density-aided quantities as the edge
weights. Since the description of the similarity measures is more involved, we defer the detailed
discussion of the similarity measures to Section 3. It is worth noting here that the similarity measures
proposed in this work are estimated based on surrogates of the underlying density function (hence
density-aided) and the estimation procedure has minimal dependence on the ambient dimension.
Therefore, the estimations of the newly proposed similarity measures are reliable even under high-
dimensional settings.

2.4 Knots Segmentation

Given the weighted skeleton graph, the next step is to partition the knots into the desired number of
final clusters, and we apply hierarchical clustering with the inverses of the similarity measures as the
distance. The choice of linkage criterion for hierarchical clustering may depend on the underlying
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geometric structure of the data. Empirically, single linkage gives reliable clustering results when
the components are well-separated, but average linkage works better when there are overlapping
clusters of approximately spherical shapes. Therefore, in practice, such choice of linkage should be
made base on some exploratory understanding of the data structure, and experimenting with different
linkage methods is computationally tractable as only the knots need to be segmented.

The number of final clusters S is an essential parameter for the hierarchical clustering procedure
but can be unknown. The dendrograms given by hierarchical clustering can be a helpful tool in
this situation, displaying the clustering structure at different resolutions. Consequently, analysts can
experiment with different numbers of final clusters and choose a cut that preserves the meaningful
structures based on the dendrograms, which takes little extra computation. However, it is worth
pointing out that with the presence of noisy data points, setting the final number S to be larger than
the true number of meaningful components may be needed to achieve better clustering results.

2.5 Assignment of Labels

In the previous step, we have created S groups of knots and each group has a cluster label. To pass
the cluster membership to each observation, we assign a hard clustering label to each observation
according to which group its nearest knot belongs. For instance, if an observation Xi is closest to
knot cj and cj belongs to cluster ℓ, we assign cluster membership label ℓ to observation Xi.

3 Density-Aided Edge Weights

To incorporate the information of density into clustering, we calculate the edge weights based on the
underlying density function. However, the conventional notion of PDF is not feasible in multivariate
or even high-dimensional data due to the curse of dimensionality. To resolve this issue, we introduce
three density-related quantities that are estimable even when the dimension is high.

3.1 Voronoi Density

The Voronoi density (VD) measures the similarity between a pair of knots (cj , cℓ) based on the number
of observations whose 2-nearest knots are cj and cℓ. We start with defining the Voronoi density based
on the underlying probability measure and then introduce its sample analog. Given a metric d on Rd,
the 2-Nearest-Neighbor (2-NN) region of a pair of knots (cj , cℓ) is defined as

Ajℓ = {x ∈ X : d(x, ci) > max{d(x, cj), d(x, cℓ)},∀i ̸= j, ℓ}. (2)
In this work we take d(., .) to be usual Euclidean distance and use ||.|| to denote the Euclidean norm.
An example 2-NN region of a pair of knots is illustrated in Figure 4.

Figure 4: Orange shaded area illustrates the
2-NN region of knots 1, 2.

Following the idea of density-based clustering, two knots
cj , cℓ belongs to the same clusters if they are in a con-
nected high-density region, and we would expect the 2-NN
region of cj , cℓ to have a high probability measure. Hence,
the probability P(Ajℓ) = P (X1 ∈ Ajℓ) can measure the
association between cj and cℓ. Based on this insight, the
Voronoi density measures the edge weight of (cj , cℓ) with

SV D
jℓ =

P(Ajℓ)

∥cj − cℓ∥
. (3)

Namely, we divide the probability of in-between region by
the mutual Euclidean distance. The division of the distance
adjusts for the fact that 2-NN regions have different sizes
and provides more weights to edges between knots close
in distance. However, such division makes the Voronoi
density to be in the unit of 1/∥cj−cℓ∥ and hence can be scale-dependent.

In practice we estimate SV D
jℓ by a sample average. Specifically, the numerator P(Ajℓ) is estimated

by P̂n(Ajℓ) =
1
n

∑n
i=1 I(Xi ∈ Ajℓ) and the final estimator for the VD is

ŜV D
jℓ =

P̂n(Ajℓ)

∥cj − cℓ∥
. (4)
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Note that here we are assuming that c1, · · · , ck as given beforehand. In sample version, we replace
them by the sample analog ĉ1, · · · , ĉk and replace the region Ajℓ by Âjℓ.

The Voronoi density can be computed in a fast way. The numerator, which only depends on 2-nearest-
neighbors calculation, can be computed efficiently by the k-d tree algorithm [Bentley, 1975]. For
high-dimensional space, space partitioning search approaches like the k-d tree can be inefficient
but a direct linear search still gives a short run-time [Weber et al., 1998], and with a large number
of observations approximate nearest neighbor algorithms can be incorporated. The denominator
requires distance calculation and can be burdensome in high-dimensional settings, but note that we
only need to calculate the distance for edges present in D̂T (C), which is far less than k(k − 1)/2,
where k is the number of knots. Hence, the calculation of VD can be carried out in a fast way even
for high-dimensional data with a large sample size.

3.2 Face Density

Here we present another density-based quantity to measure the similarity between two knots. Since
the Voronoi cell of a knot describes the associated region, a natural way to measure the similarity
between two knots is to investigate the shared boundary of the corresponding Voronoi cells. If
two knots are highly similar, we would expect the boundary to lie in a high-density region and to
be surrounded by many observations. Based on this idea, we define the Face Density (FD) as the
integrated PDF over the “face” (boundary) region. Note that, although the density is involved in FD,
by integrating over the face region the problem reduces to a 1-dimensional density estimation task
regardless of the dimension of the ambient space. Formally, let the face region between two knots
cj , cℓ be Fjℓ = Cj ∩ Cℓ. At the population level, the FD is defined as

SFD
jℓ =

∫
Fjℓ

p(x)µd−1(dx) =

∫
Fjℓ

dP(x), (5)

where µm(dx) denotes the m-dimensional volume measure.

To estimate the FD, we utilize the idea of kernel smoothing in combination with data projection. By
the construction of the Voronoi diagram, the boundary of two Voronoi cells is orthogonal to the line
passing through the two corresponding knots (called the ‘central line’) and intersects the central line
at the middle point regardless of the dimension of the data (see Figure 3 for reference). Therefore,
we estimate the FD by first projecting the observations onto the central line and then using the
1-dimensional kernel density estimator(KDE) to evaluate the density at the midpoint. Specifically, fix
two knots cj , cℓ, let Cj ,Cℓ be the corresponding Voronoi cells, and denote Πjℓ(x) as the projection
of x ∈ X onto the central line passing through cj and cℓ, we define the estimator ŜFD

jℓ to be

ŜFD
jℓ =

1

nh

∑
Xi∈Cj∪Cℓ

K

(
Πjℓ(Xi)− (cℓ + cj)/2

h

)
(6)

where K is a smooth, symmetric kernel function (e.g. Gaussian kernel) and h > 0 is the bandwidth
that controls the amount of smoothing. It is noteworthy that, while the conventional kernel smoothing
suffers from the curse of dimensionality [Chen, 2017, Chacón et al., 2011, Wasserman, 2006], the
kernel estimator in equation (6) bypasses it.

While FD is conceptually appealing, the characterization of the face between two Voronoi cells could
be challenging since the shapes of the boundaries can be irregular. We propose a measure similar to
the Face density measure but has a predefined regular shape and discuss it in detail in Appendix A.

4 Asymptotic Theory of Edge Weight Estimation

In this section, we focus on the theoretical properties of the similarity measures to theoretically
explain the effectiveness of the newly proposed density-aided similarity measures. We assume the set
of knots C = {c1, . . . , ck} is given and non-random to simplify the analysis because (1) it is hard
to quantify k-means uncertainty, and (2) with large k, it is extremely likely for k-means to stuck
within the local minimum. Note that this implies the corresponding Voronoi cells C = {C1, . . . ,Ck}
and the 2-NN regions {Ajℓ}j,ℓ=1,...,k,j ̸=ℓ (Equation 2) of all pairs of knots are fixed as well. We
allow k = kn to grow with respect to the sample size n. Theoretical results for Voronoi density are
described in this section with proofs included in Appendix C.
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4.1 Voronoi Density Consistency

We start with the convergence rate of the VD. We consider the following condition:

(B1) There exists a constant c0 such that the minimal knot size min(j,ℓ)∈E P(Ajℓ) ≥ c0
k and

min(j,ℓ)∈E ∥cj − cℓ∥ ≥ c0
k1/d .

where (j, ℓ) ∈ E means that there is an edge between knots cj , cℓ in the Delaunay Triangulation.
Condition (B1) is a condition requiring that no Voronoi cell Ajℓ has a particularly small size and all
edges have sufficient length. This condition is mild because when the dimension of data d is fixed,
the total number of edges in the Delaunay triangulation of k points scale at rate O(k). Because the
volume shrinks at rate O(k−1), the distance is expected to shrink at rate O(k−1/d).
Theorem 1 (Voronoi Density Convergence). Assume (B1). Then for any pair j ̸= ℓ that shares an
edge, the similarity measure based on the Voronoi density satisfies∣∣∣∣∣ ŜV D

jℓ

SV D
jℓ

− 1

∣∣∣∣∣ = Op

(√
k

n

)
, (7)

max
j,ℓ

∣∣∣∣∣ ŜV D
jℓ

SV D
jℓ

− 1

∣∣∣∣∣ = Op

(√
k

n
log k

)
, (8)

when n → ∞, k → ∞, n
k → ∞.

Theorem 1 provides the convergence rates of the sample-based Voronoi density to the population
version Voronoi density. This result is reasonable because when the knots C are given, the randomness
in the sample-based Voronoi density is just the empirical proportion in each cell, so it is a square-root-
rate estimator based on the effective local sample size n/k. Consequentially, Theorem 1 suggests
that estimating the Voronoi density is easy in multivariate case when the knots are given–there is
no dependency with respect to the ambient dimension. The extra log k factor in the uniform bound
(Equation 8) comes from the Gaussian concentration bounds.

4.2 Performance Guarantee for Voronoi Density

We provide below a performance guarantee in terms of the adjusted Rand Index [Rand, 1971,
Hubert and Arabie, 1985] for skeleton clustering with Voronoi density edge similarity. To simplify
the problem, we define the true clusters as the connected components of the skeleton graph with
edges having true Voronoi density similarities SV D

jℓ over a known threshold τ > 0. We show below
that cutting the skeleton graph based on estimated edge similarities at the same threshold τ recovers
the true clustering with a high probability. Since the knots are fixed, the clustering error comes from
partitioning knots into the wrong groups, so we will focus on the adjusted Rand Index of clustering
the knots. Let the true partition of the knots be L∗ = {L∗

ℓ}ℓ=1,...,L, where L∗
ℓ contains all the knot

indices belonging to the partition ℓ. Let the partition based on estimated edge similarities be L̂. We
assume that

(P1) The true partition L∗ under the threshold τ remains the same when the thresholding level is
within (τ(1− ε), τ(1 + ε)) for some ε > 0.

This is a mild assumption because when we vary the threshold level τ , only a finite number of value
will create a change in the partition. So (P1) holds under almost all values of τ except for a set of
Lebesgue measure 0. Let ARI(L∗, L̂) denotes the adjusted Rand Index of the estimated partition.
Theorem 2 (Adjusted Rand Index Guarantee). Assume (B1) and (P1) and let pmin = minj,ℓ P(Ajℓ),
then

P
{
ARI(L∗, L̂) < 1

}
≤ k(k − 1) exp

(
−

1
2ε

2pminn

(1− pmin) +
1
3ε

)
(9)

Theorem 2 shows that we have a good chance of recovering the “true” clusters defined by the actual
Voronoi density. The above bound is derived from the uniform concentration bound of the Voronoi
density.
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Figure 5: Knots chosen by k-means on Yinyang data and the Dendrogram for single linkage hierarchical
clustering with similarity measured by Voronoi density.

5 Simulations

To study the effectiveness of skeleton clustering as a clustering method, we conduct several Monte
Carlo experiments. In this section, we present some empirical results to illustrate the performance
of skeleton clustering in multivariate and high-dimensional settings (with additional data examples
in Appendix E). Generally, our framework with the Voronoi density similarity measure is superior
among all the compared clustering methods. We include some additional simulations to support some
choices within our framework in Appendix D.

Experimental Setup For the simulations in this section and in Appendix E, when using the skeleton
clustering methods, the number of knots is set to be k = [

√
n] and the knots are chosen by k-means

with 1000 random initialization. We select smoothing bandwidth by the normal scale bandwidth
selector for the FD and TD, and the radius of TD is set to be the same for all edges with the value
chosen as described in Section A. We use single linkage hierarchical clustering when merging knots
into final clusters with the true number of final clusters S being provided.

To highlight the importance of density-aided similarity measures, we include a similarity measure
called the average distance (AD) for comparison. AD measures the similarity between cj and cℓ
using the inverse of the average Euclidean distances between all pairs of observations in the two
corresponding Voronoi cells. All simulations are repeated 100 times to obtain the distribution of the
empirical performances.

5.1 Yinyang Data Results

The Yinyang dataset is an intrinsically 2-dimensional data containing 5 components: a big outer
circle with 2000 uniformly distributed data points, two inner semi-circles each with 200 data points
generated as 2D Gaussian with standard deviation 0.1, and two clumps each with 200 data points
(generated with the shapes.two.moon function with default parameters in the clusterSim library
in R [Walesiak and Dudek, 2020]). The total sample size is n = 3200 and according to our reference
rule we choose k = [

√
3200] = 57 knots for the skeleton clustering procedure. To make the data

high-dimensional, we include additional variables from a Gaussian distribution with mean 0 and
standard deviation 0.1, and we increase the dimension of noise variables so that the total dimensions
are d = 10, 100, 500, 1000. We present results with larger standard deviations for the noisy variable
in Appendix D.7. We empirically compare the following clustering approaches: direct single-linkage
hierarchical clustering (SL), direct k-means clustering (KM), spectral clustering (SC), skeleton
clustering with average distance density (AD), skeleton clustering with Voronoi density (Voron),
skeleton clustering with Face density (Face), and skeleton clustering with Tube density (Tube). Since
this is a simulated data, we know that there are exactly 5 clusters and we know which cluster an
observation belongs to. The true number of clusters is provided to all the clustering algorithms. We
use the adjusted Rand Index to measure the performance of each clustering method.

The results are given in Figure 6. We observe that when dimension increases, traditional methods (SL,
KM, SC) fail to give good clustering results while skeleton clustering can generate nearly perfect
clustering. Across all the data dimensions, the Voronoi density, the simplest measure among the
three proposed similarity measures, gives the best performance in skeleton clustering framework.
Average distance density becomes problematic in high-dimensional settings but still gives better
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Figure 6: Comparison of the final clustering performance in terms of adjusted Rand Index with different
clustering methods on Yinyang Data with dimension 10, 100, 500, and 1000.

performance compared to the classical methods. The fact that all skeleton clustering methods perform
better than the traditional methods highlights the effectiveness of using the skeleton clustering
framework. Moreover, all three density-aided similarity measures outperform the average distance,
which illustrates the power of using density-aided weights in clustering.

6 Conclusion and Discussion

In this work, we introduce the skeleton clustering framework that can handle multivariate and even
high-dimensional clustering problems with complex, manifold-based cluster shapes. Our method
adopts the density-based clustering idea to the high dimensional regime. The key to bypass the
curse of dimensionality is the use of density surrogates such as Voronoi density, Face density, and
Tube density that are less sensitive to the dimension. We use empirical analysis to illustrate the
effectiveness of the skeleton clustering procedure.

Despite the established results, future works can improve the proposed framework. First, we have
some preliminary theoretical results justifying the proposed framework but we need to better account
for the randomness of the knots. The randomness of knots can affect the clustering performance
because the location of knots directly impact the Voronoi cells, which changes the value of the
similarity measures and consequently the cluster label assignments. In particular, observations on the
boundary of clusters will be more sensitive to any perturbations on the location of knots. Currently,
there are two technical challenges when dealing with random knots. First, the randomness of knots
may be correlated with the randomness of estimated edge weight, so the calculation of rates is much
more complicated. Second, while there are established theories for k-means algorithm [Graf and
Luschgy, 2000, 2002, Hartigan and Wong, 1979], these results only apply to the global minimum
of the objective function. In reality, we are unlikely to obtain the global minimum, but instead, our
inference is based on a local minimum. It is unclear how to properly derive a theoretical statement
based on local minima, so we leave this as future work.

For future directions, the proposed skeleton clustering framework has the potential on anomaly and
noise detection and on boundary detection. Other works in graph learning literature can also be
incorporated into the proposed framework. Overall, skeleton clustering framework is flexible, and
potentially using some new methods at different steps can provide new insights for different data sets
even when the data are high-dimensional and large in scale.
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Appendix

A Tube Density

Figure 7: The disk area centered
at x with a radius R and a direc-
tion ν.

While FD is conceptually appealing, the characterization of the face between
two Voronoi cells could be challenging since the shapes of the boundaries
can be irregular. Here we propose a measure similar to the Face density
measure but has a predefined regular shape. For a point x, we define the
Disk Area centered at x with radius R and normal direction ν (see Figure
7 for an illustration) as

Disk(x,R, ν) = {y : ||x− y|| ≤ R, (x− y)T ν = 0} (10)

To measure the similarity between knots cj and cℓ, we examine the inte-
grated density within the disk areas along the central line. In more details,
the central line can be expressed as {cj + t(cℓ − cj) : t ∈ [0, 1]}, and any
point on the central line can be written as cj + t(cℓ − cj) for some t. For
a point cj + t(cℓ − cj), we define the integrated density in the disk region
(called Disk Density) as

pDiskjℓ,R(t) = P (Disk(cj + t(cℓ − cj), R, cℓ − cj)) =

∫
Disk(cj+t(cℓ−cj),R,cℓ−cj)

p(x)dx. (11)

The Tube Density (TD) measures the similarity between cj and cℓ as the minimal disk density along the central
line, i.e.,

STD
jℓ = inf

t∈[0,1]
pDiskjℓ,R(t) (12)
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In other words, with given cj , cℓ, we survey all Disk Density along the central line and retrieve the infimum as
the similarity measure between two knots.

In this work, we set R based on the root mean squared distances within each Voronoi cell. Specifically, for knot
cj and the corresponding Voronoi cell Cj , we calculate

Rj =

√√√√ 1

|Cj | − 1

∑
Xℓ∈Cj

∥Xℓ − cj∥2 (13)

where |Cj | denotes the size of set Cj . With the uniform radius paradigm where the radius is the same for all
pairs of knots, we set R = 1

k

∑k
j=1 Rj . Our empirical studies show that this rule leads to good clustering

performances.

Note that the radius may also be chosen adaptively for each pair: we set the disk radius at cj to be Rj for all
knots and set the disk radius along the edge to be the linear interpolation of the radii at the two connected knots.
The comparison between the uniform and adaptive R is presented in Appendix D.6, and similar clustering
performance is observed for the two approaches. Hence we use uniform R by default for simplicity.

Similar to the FD, we estimate the TD by a projected KDE. Let Πjℓ(x) be the projection of a point x on the line
through cj , cℓ. We first estimate the pDisk via

p̂Diskjℓ,R(t) =
1

nh

n∑
i=1

K

(
Πjℓ(Xi)− cj − t(cℓ − cj)

h

)
I(||Xi −Πjℓ(Xi)|| ≤ R) (14)

and then estimate the TD as
ŜTD
jℓ = inf

t∈[0,1]
p̂Diskjℓ,R(t). (15)

where the infimum is approximated by grid search.

The estimations of the FD and the TD involve the use of the projected kernel density estimation, and we discuss
the choices of kernel and the bandwidth selections for kernel density estimations in Appendix D.3. By default,
we use the Gaussian kernel with the normal scale bandwidth selector (NS) [Chacón et al., 2011] for the best
empirical results.

B Computational Complexity

Knots construction. The first step of skeleton clustering is choosing knots, and in this work we take overfitting
k-means as the default method. The k-means algorithm of Hartigan and Wong [Hartigan and Wong, 1979] has
time complexity O(ndkI), where n is the number of points, d is the dimension of the data, k is the number
of clusters for k-means, and I is the number of iterations needed for convergence. When using overfitting
k-means to chooses knots, the reference rule is k =

√
n, and hence the complexity is O(n3/2dI). This is a

time consuming step of our clustering framework, and the complexity increases linearly with d. Therefore,
preprocessing the data with dimension reduction techniques or using subject knowledge to choose knots can be
helpful to speed up this process.

Edges construction. For the edge construction step, we approximate the Delaunay Triangulation with D̂T (C)
by looking at the 2-NN neighborhoods (the Voronoi Density regions in 3.1 ). Hence the main computational
task for our edge construction step is the 2-nearest knot search. We used the k-d tree algorithm for this purpose,
which gives the worst-case complexity of O(ndk(1−1/d)). Notably, the computation complexity at this step is at
the worst linear in d, which is a much better rate than computing the exact Delaunay Triangulation (exponential
dependence on d), and our empirical studies have illustrated the effectiveness of such approximation.

Edge weight construction: VD. Next, we consider the computation complexity of the different edge weights
measurements. For the VD, its numerator can be computed directly from the 2-NN search when constructing the
edges and hence no additional computation is needed. The denominators are pairwise distances between knots
and can be computed with the worst-case complexity of O(dk2) because the number of nonzero edges is less
than k(k−1)

2
. With k =

√
n, we have the total time complexity of computing the VD to be O(nd).

Edge weight construction: FD. For the Face density, we calculate the projected KDE at the middle point for
each pair of neighboring Voronoi cells. The projection of one data point onto one central line can be done by
matrix multiplication with complexity O(d). Recall that we only use data points in local Voronoi cells for FD
calculation, and the local sample size would be at nloc = O(

√
n) under the reference rule k = [

√
n]. Together

it takes O(d
√
n) to calculate the projected data for one edge. With the projected data, KDE calculation has a

time complexity O(c log c) where c = maxj ̸=ℓ{nj + nℓ} for any pair of knot indexes j, ℓ. Again we have c =
O(n/k) = O(

√
n) under the previously mentioned conditions. We need to do KDE for each edge in the skeleton,

which gives the overall time complexity of FD weights to O(k2d
√
n+ k2c log c) = O(n3/2d+ n3/2 logn).
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Edge weight construction: TD. For Tube density, we similarly perform a projected KDE for each edge. Let
η be the maximum number of points in a tube region η = maxj,ℓ |{Xi : ∥Πjℓ(Xi) − Xi∥ ≤ R}|, the data
projection again takes O(ηd) complexity. Suppose the minimum density is obtained by a grid search with m
grid points, the KDE step takes a total of O(mη log η) for one edge. To compute the whole edge weights matrix
with k =

√
n, we have the complexity to be O(nηd+ nmη log η). Under conditions where the tube regions

for TD estimations is also of size η = O(n/k) = O(
√
k), we have the overall complexity for VD weights

calculation to be O(k2d
√
n+ k2c log c) = O(n3/2d+mn3/2 logn), which is larger than that for FD due to

the grid search for minimum density.

Knots segmentation. In this work, we segment the learned weighted skeleton using hierarchical clustering. With
links that can be updated by Lance-Williams update [Lance and Williams, 1967] and satisfies the reducibility
condition [Gordon, 1987], hierarchical clustering can be carried out with computation complexity O(N2),
where N is the number of points to start the algorithm with [Murtagh, 1983]. For our empirical results we
favored single linkage and average linkage, and both satisfy the requirements for efficient hierarchical clustering
algorithm. We perform hierarchical clustering on the k =

√
n knots, and hence the computation complexity for

segmenting the skeleton structure is O(k2) = O(n).

C Proofs

C.1 Voronoi Density Consistency

We restate the assumption:

(B1) There exists a constant c0 such that the minimal knot size min(j,ℓ)∈E P(Ajℓ) ≥ c0
k

and
min(j,ℓ)∈E ∥cj − cℓ∥ ≥ c0

k1/d , where Ajℓ is the 2-NN region of knots cj , cℓ as defined in Equa-
tion 2.

of Theorem 1. For given knots cj , cℓ, the distance ||cj − cℓ|| is also given. We denote the numerator of SV D
jℓ as

pjℓ = P(Ajℓ) = EI(Xi : d(Xi, cm) > max{d(Xi, cj), d(Xi, cℓ), ∀m ̸= j, l})

and note that the numerator of ŜV D
jℓ is

P̂n(Ajℓ) =
1

n

n∑
i=1

I(Xi : d(Xi, cm) > max{d(Xi, cj), d(Xi, cℓ),∀m ̸= j, l}),

which is a sum of binary variables and has variance σ2
jℓ =

pjℓ(1−pjℓ)

n
. By the Chebyshev’s inequality,

∣∣P̂n(Ajℓ)− pjℓ
∣∣ = Op(σ

1/2
jℓ ) = Op

([
pjℓ(1− pjℓ)

n

]1/2)

Note that the region Ajℓ is changing with respect to k. The ratio is then

∣∣∣∣∣ ŜV D
jℓ

SV D
jℓ

− 1

∣∣∣∣∣ =
∣∣∣∣∣ P̂n(Ajℓ)

P(Ajℓ)
− 1

∣∣∣∣∣ = 1

pjℓ
Op

([
pjℓ(1− pjℓ)

n

]1/2)

= Op

([
(1− pjℓ)

npjℓ

]1/2)
= Op

([
(1− c0/k)

nc0/k

]1/2)
= Op

((
k

n

)1/2)

by assumption (B1) that min(j,ℓ)∈E P(Ajℓ) ≥ c0
k

, which completes the proof for Equation 7.
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To get the uniform bound, we first start with the concentration bound. Note that
(
I(Xi ∈ Ajℓ)− pjℓ

)
has zero

mean and |I(Xi ∈ Ajℓ)− pjℓ| ≤ 1. Hence by Bernstein inequalities we have

P

{∣∣∣∣∣ P̂n(Ajℓ)

pjℓ
− 1

∣∣∣∣∣ > ε

}
= P

{∣∣P̂n(Ajℓ)− pjℓ
∣∣ > εpjℓ

}
= P

{∣∣∣∣∣ 1n
n∑

i=1

I(Xi ∈ Ajℓ)− pjℓ

∣∣∣∣∣ > εpjℓ

}

= 2P

{
n∑

i=1

(I(Xi ∈ Ajℓ)− pjℓ) > nεpjℓ

}

≤ 2 exp

{
−

1
2
ε2p2jℓn

2∑n
i=1 E

[
(I(Xi ∈ Ajℓ)− pjℓ)

2]+ 1
3
εpjℓn

}

= 2 exp

{
−

1
2
ε2p2jℓn

2

npjℓ(1− pjℓ) +
1
3
εpjℓn

}

= 2 exp

{
−

1
2
ε2p2jℓn

pjℓ(1− pjℓ) +
1
3
εpjℓ

}

Note that plugging in the pjℓ = Ω
(
1
k

)
rate to above concentration bound we can recover the Op

(√
k
n

)
rate in

Equation 7. Then by union bound we have

P
{

max
(j,ℓ)∈S

|Ŝjℓ/Sjℓ − 1| > ε

}
≤ P

{
max
j,ℓ

|Ŝjℓ/Sjℓ − 1| > ε

}
≤
∑
j,ℓ

P
{
|Ŝjℓ/Sjℓ − 1| > ε

}

≤ k(k − 1)

2
max
j,ℓ

P

{∣∣∣∣∣ P̂n(Ajℓ)

pjℓ
− 1

∣∣∣∣∣ > ε

}

≤ k(k − 1)max
j,ℓ

{
exp

(
−

1
2
ε2p2jℓn

pjℓ(1− pjℓ) +
1
3
εpjℓ

)}

≤ k(k − 1) exp

(
−

1
2
ε2pminn

(1− pmin) +
1
3
ε

)
where pmin = minjℓ pjℓ. Therefore we can derive the uniform error bound that

max
j,ℓ

∣∣∣∣∣ ŜV D
jℓ

SV D
jℓ

− 1

∣∣∣∣∣ = Op

(√
k

n
log k

)
,

when n → ∞, k → ∞, n
k
→ ∞.

Proof. of Theorem 2 (Performance guarantee for Voronoi density) We note that, assuming (P1),

P
{
ARI(L∗, L̂) < 1

}
≤ P {there exists at least one wrongly cut edge}

= P
{

max
(j,ℓ)∈S

|Ŝjℓ/Sjℓ − 1| > ε

}
≤ k(k − 1) exp

(
−

1
2
ε2pminn

(1− pmin) +
1
3
ε

)

by the uniform bound derived above.
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D Additional Data Analysis

D.1 Performance with Different Number of Knots

We analyze how the number of knots would affect the performance of the skeleton clustering. We empirically
test the effect of the number of knots, k, on the final clustering performance on Yinyang data with dimensions
10, 100, 500 and 1000. For each dimension, we simulated the Yinyang data 100 times, and for each simulated
data we carried out the default skeleton clustering procedure with single linkage and different k (other steps
the same as in Section 5.1). Figure 8 displays the median adjusted Rand index given by each method across
different k, where the reference rule with k = 57 is marked by the vertical dash line. We see that as long as k is
sufficiently large, skeleton clustering works well.

Figure 8: Adjusted Rand indexes of different clustering methods against different number of knots on 100
simulated Yinyang data.

D.2 Self-Organizing Map

The Self-Organizing Map (SOM) is another popular prototype clustering method and can be used as an alternative
to k-means clustering in finding knots. Thus, here we conduct a simple experiment to examine the performance
of using SOM to find knots. We examine the performance using Yingyang data with d = 10 to d = 1000. The
identical procedure as in Section 5.1 is applied except that the knots are now detected by the SOM rather than
overfitting k-means. The total number of grid points in the SOM is the total number of knots we obtain and, to
be comparable to k-means with k =

√
n knots, we used ⌈n1/4⌉ breaks for each dimension of the SOM grid,

giving a total of ⌈n1/4⌉2 initial grid points. However, the SOM may return knots with very tiny sample size, on
which the density-aided similarity measures cannot be calculated. Therefore, we remove knots with less than 3
data points and use the remaining ones for skeleton construction.

Figure 9 summarizes the result. The top left panel shows the knots from the SOM (after post-processing), which
are located around the main data structures and are representative to the original data as well. The dendrogram
shows the cluster structure of the SOM knots using Voronoi density on one 100-dimensional Yinyang data. In
the bottom row, we display the adjusted Rand indices from the clustering methods. Compared to the results of
Figure 5, the adjusted Rand indices given by the skeleton clustering with SOM knots are similarly good when
the dimension is not so high (d = 10 and 100). But when the data dimension becomes high (d = 500, 1000),
knots constructed by SOM lead to worse clustering results. Therefore, overfitting k-means is favored in this
work. Another limitation of SOM is that we need to perform some post-processing to remove tiny knots; in the
case of k-means, we do not need such procedure.
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Figure 9: Adjusted Rand indexes using SOM for knots selection on Yinyang data.

Figure 10: Performance of skeleton clustering on Yinyang data d = 10, 100, 500, 1000 with Face and Tube
density by different bandwidth selectors. Voronoi density result is included for comparison.

D.3 Bandwidth Selection Yinyang Data

The estimations of the FD and the TD involve the use of the projected kernel density estimation, for which
the type of kernel and the bandwidth need to be specified. Similar to the usual KDE, the kernel function does
not affect the final performance much, so by default we use the Gaussian kernel in all of our empirical studies.
It is worth noting that using the uniform kernel can save some computation since it has compact support, but
empirically we find using the Gaussian kernel leads to better final clustering results. In what follows, we focus
on the bandwidth selection.

It is known that the bandwidth is a pivotal parameter that can significantly affect the estimation result of a kernel
density estimator. In Figure 10, we conduct a simulation using the Yinyang data with different dimensions of
noisy Gaussian variables (see Section 5.1 for more details) and compare the performance of three common
bandwidth selectors: the normal scale bandwidth (NS) [Chacón et al., 2011], the least-squared cross-validation
(LSCV) [Bowman, 1984, Rudemo, 1982], and the plug-in approach (PI) [Wand and Jones, 1994]. Each edge is
allowed to have its own bandwidth. Voronoi density performance results are also included for comparison. We
found that the NS performs reliably well while the others may have unstable performance. A similar comparison
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of the bandwidth selectors on another dataset is presented in Appendix D.4 and the NS also performs relatively
better than the other bandwidth selectors.. As a result, we recommend using the NS as the default bandwidth
selector. Additionally, since the density estimations are all 1-dimensional, in practice it is possible to examine the
estimated density to assess the degree of oversmoothing or undersmoothing and manually adjust the bandwidth.

In addition to different bandwidth selectors, we also study how the bandwidth should depend on the sample
size for clustering purpose. In 1-dimensional data, the normal scale bandwidth agrees with Silverman’s rule of
thumb [Silverman, 1986] giving the bandwidth as h = 4

3

1/5
σ̂n

−1/5
loc , where σ̂ is the standard deviation of the

sample used in the edge weight calculation, and nloc the number of sample points used. Empirically we tested
the clustering performance with FD and TD calculated under bandwidth with rates on nloc from −1/3 to −1/10
(see Appendix D.5). We found that the clustering performance with FD and TD generally stays stable with
varying bandwidth rates, although a larger bandwidth (slower rate than O

(
n
−1/5
loc

)
) may give better clustering

results with TD when the dimension of the data is high.

D.4 Bandwidth Selection with Mix Mickey

Figure 11: Performance of skeleton clustering on Mix Mickey data d = 10, 100, 500, 1000 with Face and Tube
density by different bandwidth selectors. Voronoi density result is included for comparison.

We present additional results comparing different bandwidth selectors on the Mix Mickey dataset generated the
same way as in Appendix E.2. We use average linkage for all the included skeleton clustering approaches. The
results are presented in Figure 11. The selectors have similar performances on this Mix Mickey dataset, but NS
again seems to perform better with larger dimensions, which corroborates our default choice of using NS for
bandwidth.

D.5 Performance under Different Bandwidth Rate

In this section we present empirical results on how changing the bandwidth rate affects the performance of
clustering. We consider the Yinyang data in Section 5.1 with d = 10, 100, 500, 1000. We compare the Face
and Tube density where the bandwidth is selected by Silverman’s rule of thumb with different rates, ranging
from n

−1/3
loc to n

−1/10
loc . Note that the original Silverman’s rule of thumb will be at rate n

−1/5
loc . We repeat the

experiment 100 times and record the adjust Rand index in Figure 12.

When the dimension is low (top panels), all bandwidth within this range works well. When the dimension is
large (bottom panels), a slower rate (larger bandwidth) seems to be showing a better performance for the TD.
Interestingly, the face density yields a robust result across different rates of bandwidth. Note that for the TD, the
univariate density estimation theory suggests the choice at rate h ≍ n

−1/5
loc is optimal for estimation in large d,

the same rate may not lead to a the optimal clustering performance. Figure 12 bottom-right panel suggests that
the choice h ≍ n

−1/10
loc may have a better clustering performance in this case.
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Figure 12: Adjusted Rand indexes of skeleton clustering with Face and Tube density under different bandwidth
rate on 100 simulated Yinyang datasets. The thick lines indicate the median adjusted Rand index of a given
method.

D.6 Adaptive Radius for Tube Density

Figure 13: Comparison of radius choices on Yinyang data with dimensions 10, 100, 500, 1000.

We compare the clustering performance of Tube density when using fixed radius and that when using adaptive
radius as described in Section A. The data is the same Yinyang data in Section 5.1 and the results are presented
in Figure 13. The two approaches (adaptive and fixed radius) have a similar performance.

D.7 Higher Standard Deviations for Noisy Dimensions

We investigate how does changing the noise level of the added noisy dimensions of our simulation examples
change the clustering performance. Here we simulate Yinyang data with different standard deviations of the
added dimensions. We apply the same analysis procedure as in Section 5.1 is applied. The adjusted Rand indexes
of each clustering methods on 100 simulated datasets with under setting are presented in Figure 14.
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σ = 0.1

σ = 0.2

σ = 0.3

σ = 0.4

Figure 14: Adjusted Rand index performance of clustering methods on Yinyang data with different standard
deviation for added dimensions.

We observe that increasing the standard deviation of the noisy dimensions (noise level) has a stronger impact
than adding more noisy variables. For example, increasing σ = 0.1 → 0.2 scales the standard deviation by a
factor of 2 (scales the variance 4 times), but the clustering performance with σ = 0.2, d = 100 is worse than that
with σ = 0.1, d = 500. However, we still observe that the skeleton clustering with Voronoi density similarity
measure can give good clustering performance even under the setting with σ = 0.4 and d = 100.

D.8 Mix Mickey with GMM

We compare the performance of Gaussian Mixture Models (GMMs) to our methods using the Mix Mickey
data same as in Section E.2. Unfortunately, the GMM method from clusterR package in R cannot work with
dimension 500 and 1000 case because of too much noisy dimensions, so we only compare the case of dimension
10 and 100. For the skeleton clustering, we use average linkage for the segmentation step the same as in Section
E.2. Because this data is generated from 3-GMM and we fit the GMM with 3 components, the GMM naturally
has the best performance. However, our proposed approaches may achieve a comparable performance to the
GMM and are capable of handling high dimensional data (d = 500, 1000).

D.9 Graphical Representation of GvHD Data Clusters

We visualize the skeleton structure of the clusters identified on the GvHD dataset in Section F.1. These graph
representations are generated by the igraph package in R. Cluster 6 only has 1 knot with 17 corresponding data
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Figure 15: Comparison of clustering methods on Mix Mickey data d = 10, 100 with GMM included.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4 (e) Cluster 5

(f) Cluster 7 (g) Cluster 8 (h) Cluster 9 (i) Cluster 10 (j) Cluster 11

(k) Cluster 12 (l) Cluster 13 (m) Cluster 14

Figure 16: Skeleton structures of the clusters identified for the GvHD dataset in Section F.1

points and is hence omitted in Figure 16. We observe that most clusters display a hammer-like structure, which
is non-spherical and not favorable for some classical clustering methods. Only Cluster 3 has a spherical shape in
this data.

E Additional Simulated Data Examples

E.1 Mickey Data

The simulated Mickey data is an intrinsically 2-dimensional data consists of one large circular region with
1000 data points and two small circular regions each with 100 data points. As a result, the structures have
unbalanced sizes. The total sample size is n = 1200 and we choose the number of knots to be k = [

√
1200] =

35. We include additional variables with random Gaussian noises to make it a high dimensional data (d =
10, 100, 500, 1000) the same way as in Section 5.1. The left panel of Figure 17 shows the scatter plot of the first
two dimensions.

We perform the same comparisons as done on the Yinyang data with the true number of components S = 3
provided to all the clustering algorithms, and the results are displayed in Figure 18. All methods perform well
when d is small but starting at d = 100, traditional methods fail to recover the underlying clusters. On the other
hand, all methods in the skeleton clustering framework work well even when d = 1000.
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Figure 17: An illustration of the analysis of the Mickey data with dimension 100.

Figure 18: Comparison of adjusted Rand index using different similarity measures on Mickey data with
dimensions 10, 100, 500, 1000.

E.2 Mix Mickey Data

The well-separated structures in the Yingyang data may provide advantages to the single linkage. To investigate
the effect of linkage criteria on the overlapping clusters, we consider a three-Gaussian mixture model in 2D
case that we call it the Mix Mickey data. The large cluster is centered at (0, 0) with the covariance matrix
being a diagonal matrix of 2 and has 2000 points. The two smaller clusters are centered at (3, 3) and (−3, 3)
respectively, and both have a covariance matrix being a diagonal matrix of 1, and each has 600 points. Random
Gaussian variables are added to make the data d = 10, 100, 500, 1000 dimensions via the same way we generate
the Yinyang data. Figure 19 presents a scatter plot of the first two dimensions; the three clusters have a substantial
amount of overlap so that it is difficult for clustering methods to separate them into three distinct clusters. The
results under the same linkages analysis pipeline are shown in Figure 20.
Remark 1. GMM can be favored in this data example but is unstable and cannot work with too many noisy
dimensions. We present some comparisons including GMM in Appendix D.8.

We observe that average linkage gives good performance at S = 3 (the true number of clusters) and single
linkage fails to give a satisfying performance under this scenario, giving non-informative clusters at low S
(only extracting small clusters) and too fragmented clusters at high S. The average linkage is a criterion that
tends to create spherical clusters with similar sizes and hence is better suited for this simulated data. Thus,
our experiment shows that, for data containing overlapping clusters with roughly spherical shapes, the average
linkage criterion in the knots segmentation step is preferred.

Figure 19: First two dimensions of Mix Mickey data.
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Figure 20: Clustering results with different linkage methods across different numbers of final clusters on Mix
Mickey data. The vertical red dashed line indicates the true number of 3 clusters.

E.3 Manifold Mixture Data

In the Yinyang data and the Mix Mickey data experiments, the underlying components are all two-dimensional
structures. Here we consider the data composed of structures of different intrinsic dimensions called the manifold
mixture data. The simulated manifold mixture data, as illustrated in the left panel of Figure 21, consists of
a 2-dimensional plane with 2000 data points, a 3-dimensional Gaussian cluster with 400 data points, and an
essentially 1-dimensional ring shape with 800 data points. There are a total of 3200 observations and we choose
k = [

√
3200] = 57 knots. Similar to the other two simulations, we include Gaussian noise variables to make

the data high-dimensional (d = 10, 100, 500, 1000) and make comparisons between the same set of clustering
methods. The true number of components S = 3 is provided to all the clustering algorithms.

Figure 21: Results on Manifold Mixture data with dimension 100.

Figure 22: Comparison of adjusted Rand index using different similarity measures on Manifold Mixture data
with dimensions 10, 100, 500, 1000.

Figure 22 summarizes the performance of each method. Traditional methods (SL, KM, and SC) do not perform
well when d > 10 while all methods of skeleton clustering perform very well when d ≤ 500. Notably, the
skeleton clustering with VD still has a perfect performance even when d = 1000, whereas skeleton clustering
based on other similarity measures gives satisfying results.
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E.4 Ring Data

The ring data is constructed by a mixture distribution such that with a probability of 1
6

we sample from the
ring structure and with a probability of 5

6
we sample from the central part. The ring structure is generated by a

uniform distribution over the ring {(x1, x2) : x
2
1 + x2

2 = 1} and is corrupted with an additive Gaussian noise
N(0, 0.22I2). The central part is simply a Gaussian N(0, 0.22I2). We generate a total of n = 1200 points
from the above mixture and add the high dimensional noise with the same procedure as in Section 5. The same
skeleton clustering approached are applied as well as the classical approaches, with the final number of clusters
chosen to be 2. The result is displayed in Figure 24. Again, the density-based skeleton clustering methods work
well even when the dimension is large.

Figure 23: Results on Ring data with dimension 1000.

Figure 24: Comparison of the rand index using different similarity measures on Ring data with dimensions 10,
100, 500, 1000. Medium of 100 repetitions.

F Real Data Examples

F.1 GvHD Data

In this section, we apply skeleton clustering to one real data example: the graft-versus-host disease (GvHD) data
[Brinkman et al., 2007]. Additionally, we analyze the Zipcode data [Stuetzle and Nugent, 2010] in Appendix F.2
and the Olive Oil data [Tsimidou et al., 1987] in Appendix F.3.

GvHD is a significant problem in the field of allogeneic blood and marrow transplantation which occurs when
allogeneic hematopoietic stem cell transplant recipients when donor-immune cells in the graft attack the tissues
of the recipient. The data include samples from a patient with GvHD containing n1 = 9083 observations and
samples from a control patient with n2 = 6809 observations. Both samples include four biomarker variables,
CD4, CD8β, CD3, and CD8. Previous studies [Lo et al., 2008, Baudry et al., 2010] have identified the presence
of high values in CD3, CD4, CD8β cell sub-populations as a significant characteristic in the GvHD positive
sample and a major objective of our analysis is to rediscovery this region with the proposed skeleton clustering
methods. In addition, our skeleton clustering procedure shows more information and leads to a novel two-sample
test.

The two samples are plotted in the left panel of Figure 25 focusing on the three key variables (CD3, CD4, CD8β)
with blue points from the control sample and the red points from the GvHD positive sample. We observe that, in
addition to the high CD3, CD4, CD8β region, the distribution of the positive sample is different from the control
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Figure 25: Left: 3D scatterplot of the positive sample (red) and the control sample (blue). Right: Final clustering
result of combined GvHD data.

Table 1: Table of the cluster sizes and the weighted proportions of positive observations within each cluster.

Cluster 1 2 3 4 5 6 7
Size 202 948 3881 1859 338 17 812
Prop .458 .343 .008 .296 .341 .000 .934

p-value .30 7× 10−20 0 3×10−63 4×10−8 1× 10−4 6×10−103

Cluster 8 9 10 11 12 13 14
Size 468 6191 251 37 478 402 8
Prop .690 .888 .673 .669 .794 .841 .310

p-value 2×10−13 0 1×10−6 .09 6×10−30 3 ×10−33 .52

A proportion 0.5 indicates that the two sample has equal proportion in the region. The p-value is the simple
proportional test to examine if the two sample has equal proportion in that cluster.

sample also in some region with medium to the low CD3, CD4, and CD8β. Later we will demonstrate that our
clustering framework can identify all such differences in distributions.

To apply the skeleton clustering for a fair comparisons for the two samples, we first construct knots from each
sample separately. Specifically, we apply the k-means method to find k1 = [

√
n1] knots for the positive sample

and find k2 = [
√
n2] knots for the control sample. This ensure that both sample are well-represented by knots.

We then combine the two samples into one dataset and combine the two sets of knots into one set with k1 + k2
knots. We create edges among the combined knots and apply the Voronoi density (VD) to measure the edge
weights. To segment the knots, we use average linkage criterion because the clusters can be overlapping and our
empirical experience suggests average linkage for this scenario. The skeleton clustering result is displayed in the
right panel of Figure 25 with the number of final cluster chosen to be S = 14 [Baudry et al., 2010].

For further insights, we examined the weighted proportion of positive observations in each cluster. A propor-
tionally smaller weight is assigned to each positive observation to accommodate the fact that there are more
positive observations (n1 = 9083 > n2 = 6809). After such normalization a weighted proportion of 0.5 means
that the positive and control observations are balanced in one region. A summary of the weighted proportion
of clusters is presented in Table 1. We note that clusters 7,9,12, and 13 are majorly composed of positive
observations (proportion > 0.75), and clusters 3 and 6 are majorly composed of observations from the control
sample (proportion < 0.25). We also include the p-value for testing if the the proportions equal 0.5. Admittedly,
because we use the data to find clusters and use the same data to do the test, the p-values in Table 1 may tend to
be small.

Clusters with majorly positive observations and clusters with majorly control observations are depicted in the
two panels in Figure 26. Cluster 7 corresponds to the high CD3, CD4, CD8β region identified by previous
works with nearly all data points belonging to the positive patient. Cluster 6 is also scattered in the high CD3,
CD4, CD8β region but has all the observations coming from the control sample. However, the small size (only
17 data points) of Cluster 6 makes unclear if it is a real structure or due to pure randomness. Overall our method
succeed in identifying the CD3+ CD4+ CD8β+ area for the GvHD positive patient like the previous model-based
clustering approaches. Note that the data we are using are two individuals from the original 31 individuals in the
GvHD study, which does not account for the inter-individual variability.
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Figure 26: Clusters with majorly positive observations and majorly control observations

Our clustering approach have some additional findings. Cluster 9, 12, and 13 also have high proportion of
positive samples. These clusters are in mid to low CD3, CD4, CD8β region. For the control case, in addition to
the small Cluster 6, Cluster 3 is a large cluster with nearly all the observations are from the control sample. It is
located in the high CD8β but low CD3 and CD4 region.

Model-based clustering approaches Lo et al. [2008], Baudry et al. [2010] have an advantage for managing this
cytometry data as they can parametrically describe the behaviors of data samples in different regions. The
overlapping between different structures and the overall 4-dimensional feature space are also applicable with
model-based clustering methods. However, the proposed skeleton clustering approach can result in graphical
representation of each clusters that can be visualized for intuitive understanding. We include the skeleton graphs
of the GvHD data clusters from the proposed clustering approach in Appendix D.9. Moreover, model-based
approaches can still be limited to some regular shapes of the clusters in the ambient space, while applying the
proposed clustering method helps identify clusters with complex structures. Cluster 9, for instance, shows a
hammer-like structure based on the skeleton representation (see Figure 16).

Our results suggest a potential procedure for diagnosing GvHD. Biomarkers from a new patient can be divided
into clusters with respect to the learned segmentation, and doctors can mainly focus on the sample points that
fall into regions 3, 7, 9, 12, and 13. If the patient has many points in Clusters 7, 9, 12, and 13, the patient likely
has GvHD. Note that our current result is only based on two individuals and, with a descriptive purpose, is not
accounting for the variability between different individuals and different cases. To use it for practical diagnosis,
a more comprehensive analysis based on a larger and more representative sample is required.

F.2 Zipcode Data

This dataset consists of n = 2000 16× 16 images of handwritten Hindu-Arabic numerals from [Stuetzle and
Nugent, 2010]. We use the overfitting k-means to find k = 45 knots. Similar to the procedure in Section 5, we
consider four similarity measures to obtain the edge weight: VD, FD, TD, and AD. We use single linkage for the
the four skeleton clustering approaches and compare them to three traditional methods: the direct single linkage
hierarchical clustering (SL), the direct k-means clustering (KM), and spectral clustering (SC).

The result is shown in the left panel of Figure 27 with the adjusted Rand index plotted against different number
of total cluster S. The gray vertical line indicates S = 10, which is the actual number of digits. The skeleton
clustering with VD (Voron) gives the best clustering result in terms of adjusted Rand index at the true 10 clusters
and gives good clustering results when the number of clusters is specified to be larger than the truth. However
we note that spectral clustering (SC) and naive k-means clustering (KM) give comparably good results with
small number of clusters.

The right panel of Figure 27 is the “denoised” version of the digits. We estimate the density of each observation
by [

√
n]-nearest-neighbor density estimator and remove the observations with the lowest 10% density. We see

that all clustering results are slightly improved, but such improvement may come from the decreased total sample
size after denoising. Notably, the skeleton clustering with Tube density (Tube) generates significantly better
clustering results after denoising the data, giving adjusted Rand indexes comparable to skeleton clustering with
Voronoi density. This shows skeleton clustering with Tube density can be sensitive to noises in real data but still
has the potential to give insightful clustering results.
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Figure 27: Comparison of different similarity measures on all Zipcode Data.

Figure 28: The clustering performance under different number of final clusters of the Olive oil data.

F.3 Olive Oil Data

We consider another real dataset: the the Olive Oil data [Tsimidou et al., 1987], a popular dataset for cluster
analysis. This data set represents d = 8 chemical measurements on different specimens of olive oil produced
in 9 different regions in Italy (northern Apulia, southern Apulia, Calabria, Sicily, inland Sardinia, and coast
Sardinia, eastern and western Liguria, Umbria) . There are a total of n = 572 observations in the dataset.

Same comparison procedure as in Section F.2 is employed. The performance of different similarity measures is
presented in Figure 28. Different color denotes different similarity measures and the gray vertical line indicates
the actual number of clusters 9. Overall, the skeleton clustering with Voronoi density and Tube density works
well; the spectral clustering also performs well in this case. The fact that average distance fails to capture clusters
in the data highlights the importance of using a density-aided similarity in this case. Note that we also include
the clustering performance on the ‘denoised’ data, in which we remove the 10% observation with the lowest√
n-Nearest-Neighbor density estimate.
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