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ABSTRACT

A crucial yet under-appreciated prerequisite in machine learning solutions for
real-applications is data annotation: human annotators are hired to manually label
data according to expert-crafted guidelines. This is often a laborious, tedious,
and costly process. To study methods for automated data annotation based on
expert-crafted annotation guidelines. we introduce a new benchmark AutoExpert,
short for Auto-Annotation from Expert-Crafted Guidelines. In particular, this work
repurposes the well-established nuScenes dataset, commonly used in autonomous
driving research, which provides comprehensive annotation guidelines for labeling
LiDAR point clouds with 3D cuboids across 18 object classes. In the guidelines,
each class is defined by multimodal data: a few visual examples and nuanced
textual descriptions. Notably, no labeled 3D cuboids in LiDAR are provided in
the guidelines. The clear discrepancy between data modalities makes AutoExpert
not only challenging but also novel and interesting. Moreover, the advances
of foundation models (FMs) make AutoExpert especially timely, as FMs offer
promising tools to tackle its challenges. To address AutoExpert, we employ a
conceptually straightforward pipeline that (1) utilizes open-source FMs for object
detection and segmentation in RGB images, (2) projects 2D detections into 3D
using known camera poses, and (3) clusters LiDAR points within the frustum of
each 2D detection to generate a 3D cuboid. Starting with a non-learned solution
that leverages off-the-shelf FMs, we progressively refine key components and
achieve significant performance improvements, boosting 3D detection mAP from
12.1 to 21.9. Nevertheless, AutoExpert remains an open and challenging problem,
underscoring the urgent need for developing LiDAR-based FMs.

1 INTRODUCTION

Foundation Models (FMs) have emerged as powerful backbones that can significantly boost perfor-
mance on downstream tasks when fine-tuned with meticulously annotated task-specific data (Shen
et al., 2025; Liu et al., 2025). Data annotation remains a critical yet costly prerequisite for many real-
world machine learning applications. It essentially starts with expert-crafted annotation guidelines,
which serve as the basis for training human annotators (Caesar et al., 2020). Given the importance
of annotation guidelines and the rapid advancements of FMs, we leverage FMs to investigate the
task of Auto-Annotation from Expert-Crafted Guidelines (AutoExpert): automatically labeling data
based on annotation guidelines crafted by domain experts. In particular, we explore AutoExpert in the
context of 3D detection (see Fig. 1). Addressing the AutoExpert task not only offers practical value
in reducing annotation costs but also provides a compelling benchmark for assessing how effectively
current FMs can facilitate solving highly specialized real-world problems.

Status quo. A variety of machine learning research problems are proposed to reduce the cost of
data labeling, such as active learning (Holub et al., 2008; Settles, 2009; Kirsch et al., 2019; Ren
et al., 2021; Bang et al., 2024) and few-shot learning (FSL) (Snell et al., 2017; Boudiaf et al., 2020;
Bateni et al., 2020; Satorras & Estrach, 2018). Active learning leverages the model being trained
to selectively identify the most informative unlabeled samples for annotation, under the assumption
that human annotators are already trained and familiar with the labeling policies. In contrast, FSL
aims to train models using only a small number of labeled examples. Recent studies begin to explore
FSL from the perspective of data annotation (Madan et al., 2024; Liu et al., 2025), using annotation
guidelines that include few-shot visual examples per class. However, most existing FSL works
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(b) Each class is defined by a few images and 
nuanced textual descriptions without 3D cuboids

(c) 3D annotations shown
in RGB and LiDAR.

(a)Annotation guidelines instruct humans
to label LiDAR points with 3D cuboids.

Bicycle

Human or electric powered 2-wheeled vehicle designed to travel at lower 
speeds either on road surface, sidewalks or bicycle paths.

• If there is a rider, include the rider in the box

• If there is a passenger, include the passenger in the box

• If there is a pedestrian standing next to the bicycle, do NOT include in 
the annotation

Draw 3D bounding boxes around all objects from the label list, and 
label them according to the instructions below.

• Do not apply more than one box to a single object.

• Check every cuboid in every frame, to make sure all points are 
inside the cuboid and look reasonable in the image view.

• For nighttime or rainy scenes, annotate objects as if these are 
daytime or normal weather scenes.

Instructions

nuScenes Annotator Instructions

Figure 1: Screenshots of annotation guidelines released by the nuScenes dataset (Caesar et al., 2020). (a)
The guidelines instruct human annotators to label LiDAR points with 3D cuboids for specific object classes. (b)
Each class is defined with a few visual examples and nuanced textual descriptions (ref. the red box) without 3D
annotations. Human annotators must interpret and apply these guidelines to manually generate 3D cuboids. (c)
We visualize the 3D annotations in both RGB images and the Bird’s-Eye-View (BEV) of the LiDAR point cloud.

focus on relatively simple vision tasks such as image classification (Liu et al., 2025) and object
detection (Madan et al., 2024), typically relying on a single FM. To advance the study of automated
annotation from guidelines, we introduce this new benchmark AutoExpert.

Benchmark. We construct the AutoExpert benchmarking protocol through the lens of 3D detection
in LiDAR data. Specifically , we repurpose the established nuScenes dataset (Caesar et al., 2020)
which releases annotation guidelines designed to train human annotators (Fig. 1). These guidelines
define each object category using only a few visual examples and textual descriptions, without 3D
cuboid annotations. Therefore, AutoExpert can be framed as multi-modal few-shot learning for
3D detection without 3D annotation. Compared to standard FSL tasks, AutoExpert is significantly
more challenging. In particular, it calls for leveraging Large Language Models (LLMs) to interpret
textual annotation guidelines, Vision-Language Models (VLMs) to detect objects defined by textual
descriptions, and Vision Foundation Models (VFMs) for object detection and segmentation. By
combining these capabilities, AutoExpert serves as valuable testbed for evaluating how well diverse
FMs can be applied to complex, real-world annotation tasks.

Challenges. AutoExpert presents unique and interesting challenges. First, its goal is 3D detection
in LiDAR data but the supervision available for training comes from a few visual examples and
textual descriptions without 3D annotations (see Fig. 1). Translating such high-level instructions
into actionable supervision for machines to learn to annotate point clouds with 3D cuboids is non-
trivial. Second, while it might be tempting to leverage open-source FMs, there are currently no
publicly-available LiDAR-based FMs. This makes it challenging to directly apply existing FMs to
LiDAR-based 3D detection. Third, given that the nuScenes annotation guidelines include both visual
examples and textual descriptions, a natural formulation is to cast AutoExpert as a multimodal few-
shot learning problem: leveraging multiple FMs to utilize visual and textual guidance for specialized
3D detection. Yet, developing an effective solution by leveraging proper FMs to address such a
highly-specialized task remains an open problem and under-explored in the literature.

Methodology. By addressing the challenges outlined above, we present a conceptually straightfor-
ward pipeline (Fig. 2) to tackle AutoExpert. Our approach integrates multiple FMs to (1) interpret
annotation guidelines, (2) prompt foundational 2D detectors, and (3) segment object instances in RGB
images. Using synchronized LiDAR and camera sensors, we lift detected object from 2D RGB frames
into 3D space and generate 3D cuboids in the LiDAR point cloud as 3D detections. Further, we
progressively refine key components within the pipeline, greatly boosting 3D detection performance.
Despite these improvements, our comprehensive analysis shows that AutoExpert remains far from a
solved problem. We evaluate each core component and offer insights to inspire future research.

Contributions. Our paper is positioned as a benchmark paper, making three key contributions:
1. We introduce a novel and timely task, AutoExpert, which not only promotes the development of

practical data annotation methods but also facilitates evaluation of FMs in real-world scenarios.
2. We present a benchmarking protocol for studying AutoExpert by repurposing the well-established

nuScenes dataset. Our benchmark includes code, data, metrics, and a suite of baseline models.
3. We address AutoExpert with a conceptually simple yet effective pipeline that integrates multiple

FMs for 2D detection, segmentation, and 3D detection. We improve key components of the
pipeline, greatly boosting performance and offering valuable insights to guide future research.
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training: foundation model adaptation for 2D detection and segmentation

FM adaptation

testing: 3D detection on LiDAR data

2D to 3D

lifting

3D cuboid RGB

LiDAR

Car or Van or SUV

Vehicle designed primarily for personal use, e.g. sedans, 
hatch-backs, wagons, vans, mini-vans, SUVs and jeeps.

• If the vehicle is designed to carry more than 10 people 
label it is a bus.

• If it is primarily designed to haul cargo it is a truck.

frustum

Figure 2: We present a pipeline to solve AutoExpert by adapting open-source foundation models (FMs).
Specifically, over the visual examples and textual descriptions that define object classes of interest, we adapt a
Vision-Language Model (VLM) and a Vision Foundation Model (VFM) for object detection and segmentation.
The adapted FMs produce decent 2D detections on unlabeled RGB frames. With the aligned LiDAR and RGB
frames, we lift each 2D detection to 3D, locate corresponding LiDAR points, and generate a 3D cuboid as the 3D
detection. We propose simple and novel methods to improve FM adaption and 3D cuboid generation (Section 4).

2 RELATED WORK

Data Annotation is a critical yet costly prerequisite for machine learning solutions in numerous
real-world applications. Abundant works are motivated to reduce annotation cost with human-
in-the-loop (Abad et al., 2017; Heo et al., 2020; Cheng et al., 2021; Qiao et al., 2023) or active
learning (Holub et al., 2008; Settles, 2009; Kirsch et al., 2019; Ren et al., 2021; Bang et al., 2024). But
these works over-simplify the complexity of data annotation by focusing on general object categories
(e.g., car and person) (Ramanan & Forsyth, 2003; Reza et al., 2025; Wu et al., 2024a; Wang et al.,
2006), without considering real-world applications that require labeling task-critical classes defined
with nuanced details (Madan et al., 2024). For instance, for autonomous driving safety, bicycle is
defined differently (Caesar et al., 2020) from what one would have thought (Fig. 1). Even the recent
work (Zhou et al., 2024), which studies annotation in LiDAR with RGB and VLM, also focuses on
general object classes such as car and motorcycle. Hence, it remains an open question whether
one can develop methods to automatically annotate domain-specific data directly from expert-crafted
annotation guidelines. Our work explores this new problem AutoExpert.

Few-Shot Learning (FSL) aims to develop methods to learn from a small number of labeled
examples (Snell et al., 2017; Boudiaf et al., 2020; Bateni et al., 2020; Satorras & Estrach, 2018).
Recent FSL methods propose to adapt a pretrained VLM (Zhang et al., 2022b; 2023c; Lin et al., 2023;
Tang et al., 2024; Silva-Rodriguez et al., 2024; Khattak et al., 2023; Liu et al., 2025). Further, some
recent works point out that FSL is better studied from a data annotation perspective, as annotation
guidelines contain few-shot visual examples and textual descriptions (Madan et al., 2024; Liu et al.,
2025). However, the current FSL literature has largely focused on simple tasks such as image
classification (Madan et al., 2024) and object detection (Liu et al., 2025), and typically employs a
single FM. In contrast, our AutoExpert introduces a more challenging setting that requires developing
multi-modal few-shot learning methods for 3D LiDAR detection without 3D annotation. Beyond
its technical challenges, AutoExpert also holds practical significance as its evaluation protocol is
grounded in real-world annotation practices, making use of authentic, official annotation guidelines.

Foundation Models (FMs) are core to today’s leading AI products such as GPT-4o (Achiam et al.,
2023), Gemini (Team et al., 2023) and Qwen (Bai et al., 2023). As our work focuses on leveraging
open-source Vision-Language Models (VLMs) and Visual Foundation Models (VFMs), we briefly
review them. VLMs are pretrained on large-scale image-text pairs (Radford et al., 2021; Jia et al.,
2021; Liu et al., 2023a;b; Bai et al., 2023), achieving unprecedented results in visual understanding
tasks such as visual grounding, image captioning, and visual question answering. VFMs, by contrast,
are trained primarily on visual data (Chen et al., 2020; Caron et al., 2021; Zhou et al., 2022; Oquab
et al., 2023; Touvron et al., 2022) and excel at perception tasks such as object detection (Zhang
et al., 2022a; Liu et al., 2023b; Ren et al., 2024; Liu et al., 2023b) and segmentation (Kirillov et al.,
2023; Wang et al., 2024). Recent efforts have attempted to transfer the general perception abilities
of VLMs to LiDAR perception by associating VLM output with LiDAR points through geometric
alignment between camera and LiDAR sensors (Khurana et al., 2024; Osep et al., 2024). However,
such approaches fall short in domains like autonomous driving, where object definitions require
nuanced understanding critical to safety (Madan et al., 2024). Therefore, adapting FMs effectively to
address real-world, task-specific challenges is essential (Madan et al., 2024; Liu et al., 2025). Our
work evaluates FMs through the highly-specialized yet widely-studied task: 3D LiDAR detection.
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the optimal prompt

five descriptive terms：
1. Police officer
2. Law enforcement officer
3. Policeman
4. Policeman and Policewoman
5. Traffic policeman

average size for this object class:
• Length: ~0.5 m
• Width: ~0.5 m
• Height: ~1.75 m

Multi-Modal Few-shot 
Finetuning (MMFF)

foundational 
2D detector

foundational 
2D detector

Generate five descriptive terms for objects within the green 
boxes and provide the average length, width, height for this 
category in the real word.  The guideline instruction is: 
“Police Officer: Any type of police officer, regardless 
whether directing the traffic or not.”

generating 
combinations

zero-shot evaluationTextual description and visual examples for class  police-offier

Figure 3: For each class name, we use a pretrained VLM (GPT-4o (Achiam et al., 2023) in this work) to find a
list of terms that match the textual description and visual examples provided in the annotation guidelines. We
select the term or its combination that maximizes the zero-shot detection performance of a foundational object
detector (GroundingDINO (Liu et al., 2023b) in this work) on the validation set. We use the selected terms to
finetune the detector, yielding notable improved performance (Table 1).

Foundation Model Evaluation is usually done through general tasks such as mathematical rea-
soning (Lu et al., 2023), visual understanding (Wu et al., 2023) and language reasoning (Zhong
et al., 2023). Our AutoExpert benchmark extends this evaluation to 3D perception in the context of
autonomous driving, i.e., 3D LiDAR detection, motivated from the perspective of real-world data
annotation practices. To the best of our knowledge, there is currently no FM specifically designed for
LiDAR-based perception. Therefore, the AutoExpert benchmark evaluates the performance of proper
combinations of existing FMs. Through AutoExpert, our extensive experiments reveal significant
room for improving in FM adaptation for 3D LiDAR detection.

3D LiDAR Detection has been extensively studied in autonomous driving research, leading to the
release of several large-scale datasets such as nuScenes (Caesar et al., 2020), KITTI (Geiger et al.,
2013), Waymo (Sun et al., 2020), and Argoverse2 (Wilson et al., 2023). Among them, nuScenes is
the only one that released its official annotation guidelines. On the contrary, others released user
guides to help challenge participants to get familiar with their data. To approach 3D LiDAR detection,
most methods train 3D detectors over massive annotated LiDAR data, optionally with annotated RGB
frames (Yin et al., 2021; Bai et al., 2022; Li et al., 2024); some explore training 3D LiDAR detectors
in an unsupervised manner (Zhang et al., 2023b; Wu et al., 2024b). Notably, till now, these methods
focus on common object classes (e.g., car and cyclist) and neglecting rare but safety-critical
ones (e.g., stroller and wheelchair), although annotation guidelines have defined all such
classes (Peri et al., 2023). In contrast, our AutoExpert benchmark evaluates on all these classes.
Further, per annotation guidelines, AutoExpert does not provide 3D annotations as training data.

3 AUTOEXPERT: PROBLEM FORMULATION AND BENCHMARKING PROTOCOL

Problem Formulation. In plain terms, AutoExpert mimicks human annotators to label LiDAR data
using 3D cuboids. As the annotation guidelines (Fig. 1) contain only textual descriptions and a few
2D visual examples without 3D cuboids references, any developed methods must learn from the visual
and textual information to generate 3D cuboids on the LiDAR data. Mirroring human annotators’
workflow, the developed methods are expected to (1) understand each object class with the help of
textual descriptions and visual examples, (2) detect objects in RGB frames and associate LiDAR
points to them, (3) utilize prior knowledge about objects’ 3D shapes and sizes to generate appropriate
3D cuboids in the LiDAR point cloud. We evaluate methods primarily on 3D LiDAR detection
quality; we also use 2D metrics to assess methods that generate 2D detections as intermediate outputs.

Data preparation. We repurpose the nuScenes dataset (Caesar et al., 2020) which is publicly
available under the CC BY-NC-SA 4.0 license. The dataset provides annotations for 18 object classes.
While its official annotation guidelines contain images to demonstrate each class (Fig. 1), we do not
use them in our benchmark as these images are non-nuScenes images and are likely sourced from the
Internet that potentially have copyright concerns. Therefore, we replacing them with 4-8 selected
nuScenes images per class from the official training set. These selected images clearly capture
visual signatures of objects, simulating iconic visual examples displayed in annotation guidelines.
Importantly, we adhere to annotation guidelines that exclusively demonstrate each class with visual
examples overlaid with annotations only for that class. Therefore, for each selected image, we retain
only the annotations of the target class and discarding those belonging to other classes. For example,
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(b) (c) (d)(a)

Figure 4: Generating a 3D cuboid based on LiDAR points is challenging as points can be from occlusders
and backgrounds. For example, (a) LiDAR points projected on a bicycle can be from background through
wheels; (b) points projected on a car can be from a fence occluding the car; (c-d) points projected on a car
can be background through the windows and windshield of the car.

Fig. 3 shows selected frames for police officer class, where objects like car and traffic
cone are present but not annotated.

Train, validation, and test sets. We consider the images and textual descriptions in the annotation
guidelines as our training set. Notably, AutoExpert follows the nuScenes benchmark to focus on 3D
detection in LiDAR data but the nuScenes annotation guidelines do not provide 3D cuboid annotations
for demonstration. Therefore, our training set does not contain annotated LiDAR data. Moreover,
from the nuScenes’ official validation set (containing 6,019 annotated LiDAR sweeps and 36,114
annotated RGB frames), we sample 570 frames as our validation set for hyperparameter tuning and
model selection. This small validation set simulates the expert-in-the-loop quality control, where
domain experts typically oversee annotation progress and quality. We use the nuScenes’ official
validation set as our test set. We release the data splits in this anonymous GitHub repository.

Metrics. We evaluate methods w.r.t both 2D detection and 3D detection metrics:
• 2D metrics. Following (Lin et al., 2014), we report mean Average Precision which is the mean of

per-class AP at IoU=0.5. We denote this metric as mAP2D.

• 3D metrics. Following nuScenes (Caesar et al., 2020), we first report mean Average Precision over
per-class AP at different ground-plane distance thresholds, [0.5, 1.0, 2.0, 4.0] in meters. We denote
this metric as mAP3D. We also report the nuScenes Detection Score (NDS), which summarizes
translation error, scale error, orientation error, velocity error, and attribute error. Appendix E
provides more results w.r.t these specific metrics.

4 METHODOLOGY: LIFTING 2D DETECTIONS TO 3D

To address and understand the challenges of the new problem AutoExpert, we present an intuitive
framework in which we leverage proper FMs rather than proposing sophisticated methods, as
illustrated in Fig. 2. The pipeline has two key components: (1) 2D object detection on RGB frames,
and (2) 3D cuboid generation for 2D detection. We describe them with our methods in Section 4.1
and 4.2 respectively, and a few more technical enhancements in Section 4.3.

4.1 2D DETECTION BY MULTI-MODAL FEW-SHOT FINETUNING

For 2D detection on RGB frames, we exploit the open-source foundational detector Ground-
ingDINO (Liu et al., 2023b). Foundational detectors yield impressive zero-shot detection performance
on natural images but they are not tailored to specific tasks (Madan et al., 2024). For example, for
autonomous driving as in nuScenes, bicycle is defined differently from commonsense (Fig. 1):
annotators should include the existing rider in the box annotation for driving safety concerns. We
improve GroundingDINO with novel techniques described below.

Prompt Engineering designs prompts that can lead to better zero-shot performance (Parashar et al.,
2023; 2024). This is often done manually, but in this work, we present an automated method to
generate better prompts for object detection (Fig. 3). Specifically, for each object class, we prompt a
VLM to find five descriptive terms that fit the textual descriptions and visual examples provided in the
guidelines. Then, we test the term and their combinations to prompt GroundingDINO for zero-shot

5
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3D-2D 

projection

2D-3D 

lifting

3D-2D 

projection

2D-3D 

lifting

(a) low point coverage in BEV

low IoU in image plane

3D-2D 

projection

2D-3D 

lifting

(c) low point coverage in BEV

high IoU in image plane

(d) high point coverage in BEV

high IoU in image plane

3D-2D 

projection

2D-3D 

lifting

(b) high point coverage in BEV

low IoU in image plane

Figure 5: For each 2D detection on an image, we generate a 3D cuboid via Multi-Hypothesis Testing (MHT).
Specifically, in the frustum projected from the 2D detection, we locate the LiDAR points that lie within the mask
of the detected object once projected to the image plane. Next, for the detected object (the car displayed as an
example), we use the size prior obtained by prompting GPT-4o (ref. Fig. 2) to fit the LiDAR points in 3D. We
pre-define a list of rotation and translation step sizes to measure their point coverage in BEV and IoU on the
image plane, and find the best-fitting one that yields the highest point coverage and IoU. Despite its simplicity,
our MHT method outperforms previous approaches of zero-shot 3D LiDAR detection and self-supervised
learning for 3D LiDAR proposal detection (Table 2).

detection. We pick the terms that yield the highest 2D detection precision on the validation set. We
use the selected terms for all the classes to prompt GroundingDINO for zero-shot object detection.

Multi-Modal Few-Shot Finetuning. As a small amount of images are available in the annotation
guidelines, we use them as few-shot training examples (which have box annotations as ground-
truth labels) to finetune the foundational detector (Fig. 3). It is worth noting visual examples in
the guidelines are annotated in a federated way, i.e., all objects belonging to the focused class are
annotated while others are not. Therefore, when finetuning on the few-shot images, we compute
the loss over training images pertaining to the specific classes without treating detections of other
classes as false positives. Importantly, finetuning with the selected terms (as presented in the previous
paragraph) performs better than original class names (Table 1).

4.2 3D CUBOID GENERATION BY MULTI-HYPOTHESIS TESTING

For each detection box in the 2D image obtained above, we construct a frustum using camera
parameters and identify LiDAR points therein (ref. bottom-right of Fig. 2). To generate a proper 3D
cuboid for this detection, we design a baseline that uses size prior based on the predicted class (ref.
Fig. 3) to determine the size of the 3D cuboid. Below, we describe how to place this 3D cuboid.

Background Points Removal via Foreground Segmentation. LiDAR points within the detection
box may include background points, particularly near the box boundaries. To address this, we
perform foreground segmentation to precisely segment the object within the detection box. We
use the foundational segmentation model SAM (Kirillov et al., 2023) by prompting it with the 2D
detection box. Fig. 4 and 5 display decent segmentation results by SAM, indicating the effectiveness in
refining LiDAR point selection. In fact, previous works have explored LiDAR points and foreground
segmentation to lift 2D detections to 3D (Wu et al., 2024a; Khurana et al., 2024; Zhou et al., 2024)
but have not address notable critical challenges — the remaining LiDAR points can be from occluders
(e.g., a fence in front of a vehicle) and background artifacts (e.g., points on a wall visible through a
vehicle’s windshield and windows), as shown in Fig. 4. Below, we present a method to mitigate these
issues via Multiple Hypotheses Testing (MHT) (Shaffer, 1995).

3D Cuboid Generation via MHT. Following the nuScenes annotation guidelines, human annotators
manually fit 3D cuboids to LiDAR points belonging to objects identified in 2D images. We automate
this process through an MHT-based approach (Fig. 5). For a 2D detection, we first initialize a cuboid
that covers LiDAR points within the frustum. We determine its dimensions based on its identified
class by the 2D detector and the size prior obtained from GPT-4o (Fig. 3). We translate and rotate this
cuboid within the frustum w.r.t predefined step sizes. We select the most desirable cuboid that has (1)
maximal coverage of LiDAR points within the cuboid, and (2) highest Intersection-over-Union (IoU)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

2D det. on image projected 3D det. onto image 3D det. in BEV

E
x

am
p

le
 1

E
x

am
p

le
 2

E
x

am
p

le
 4

E
x

am
p

le
 3

2D det. on image projected 3D det. onto image 3D det. in BEV

Figure 6: Visualization of detection results on four testing examples. For each example, we display 2D
detections, and 3D detections (i.e., the generated 3D cuboids) projected onto the RGB image and the BEV of
LiDAR data. Results show that our method decently detects objects that are in far field and small in size, which
are usually challenging to detect (Peri et al., 2023; Gupta et al., 2023). Appendix F contains more visual results.

between the original 2D detection box and the projected 2D box of the 3D cuboid. We discuss the
time cost of this MHT method and provide implementation details in Appendix D.

4.3 TECHNIQUES FOR PERFORMANCE ENHANCEMENT

We present a few more techniques to improve 3D cuboid generation, elaborated below.

LiDAR Sweep Aggregation. As a single LiDAR sweep can be too sparse to precisely localize
objects in 3D, we aggregate multiple sweeps. While existing 3D detection methods have explored
aggregating history sweeps at a given timestamp, AutoExpert additionally allows aggregating “future”
sweeps to facilitate data annotation. We analyze per-category 3D detection performance w.r.t different
aggregation strategies (Table 3) and find that aggregation strategies significantly impact detection
accuracy for certain classes, depending on the object size and moving speed of each class.

3D Cuboid Scoring with Geometric Cues. We score each generated 3D cuboid using both the
2D detection confidence S2D and 3D geometric information. To capture 3D geometric cues, we
compute an occupancy rate (Wu et al., 2024b) based on LiDAR point distribution within the cuboid.
Specifically, we (1) project the 3D cuboid onto the ground plane, obtaining a BEV rectangle, (2)
discretize this rectangle into a 7×7 grid, (3) count grid cells (N ) that contain at least one project
LiDAR point, and (4) compute the occupancy rate as S3D = N/49. The final cuboid score combines
these metrics through weighted summation: S2D and S3D, i.e., S = α ∗ S2D + (1− α) ∗ S3D, where
the weighting parameter α is optimized to maximize 3D detection precision on the validation set.

Tracking-Based Score Refinement. To refine the scores of generated 3D cuboids at a given
timestamp, we leverage temporal information by “tracking” objects across LiDAR sweeps. Concretely,
we adopt a heuristic approach to associate 3D cuboids which have the same class labels (predicted by
the 2D detector) and are spatially close. For all the 3D cuboids belong to the same track, we replace
their individual scores with their mean score. Despite its simplicity, this method remarkably improves
3D detection performance (Table 4).

5 EXPERIMENTAL RESULTS AND ANALYSIS

We conduct a series of experiments to validate the effectiveness (Fig. 6) of our methods and demon-
strate the challenges in AutoExpert. We start by introducing important implementation details.

Implementations. FMs exploited in this work contain the GPT-4o (Achiam et al., 2023) for annotation
guidelines understanding, the VLM GroundingDINO as a 2D detector (Liu et al., 2023b), and the
VFM SAM (Kirillov et al., 2023) for object segmentation. When operating with FMs, we use an
NVIDIA A6000 GPU. We use Python and PyTorch in experiments. We provide more details about
FM adaptation in Appendix L and release our code and models anonymously at GitHub.

Analysis on 2D detection. We analyze 2D detection performance of different finetuning methods
with GroundingDINO. We compare these finetuning methods in Table 1: (1) using the original
class names to prompt GroundingDINO for zero-shot detection (dubbed “GD w/ o-name”), (2)
finetuning GroundingDINO on the few-shot examples with the original class names (dubbed “ft-GD
w/ o-name”), (3) using GPT-4o refined class names to prompt GroundingDINO (dubbed “GD w/
r-name”), and (4) finetunes GroundingDINO on the few-shot examples with the GPT-4o refined
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Table 1: Different 2D detector finetuning methods
yield different 3D detection performance. Here, the
2D detector is GroundingDINO (GD). To report
3D metrics, we generate 3D cuboids for 2D detec-
tions using CM3D (Khurana et al., 2024). Recall
that we refine class names using an off-the-shelf
foundation model (GPT-4o as illustrated in Fig. 3).
When prompting GD for zero-shot detection, us-
ing refined class names (“r-name”) performs better
than using the original class names (“o-name”).
Importantly, finetuning GD (ft-GD) using r-name
performs the best. The Appendix (Table 7 & 10)
presents more results.

GD
o-name

ft-GD
o-name

GD
r-name

ft-GD
r-name

mAP2D 16.9 20.0 18.2 20.8
mAP3D 12.1 16.6 15.7 18.2
NDS 16.6 21.2 22.1 23.1

Table 2: Comparison of methods for 3D detection, i.e.,
3D cuboid generation. Here, we improve the compared
methods Oyster, LISO and CPD with box fitting (Zhang
et al., 2017; You et al., 2022) which refines their 3D detec-
tions. Results demonstrate that our MHT method achieves
superior performance in both mAP3D and NDS metrics
Refer to Table 10 in the Appendix for more metrics.

Method mAP3D NDS

SAM3D (Zhang et al., 2023a) 1.6 6.9
Oyster (Zhang et al., 2023b) 6.3 10.7
Oyster w/ frustum 12.9 15.6
LISO (Baur et al., 2024) 8.9 13.1
LISO w/ frustum 15.7 19.8
CPD (Wu et al., 2024b) 10.1 14.2
CPD w/ frustum 17.9 22.3
CenterPoint (Yin et al., 2021) 3.6 19.0
CM3D (Khurana et al., 2024) 18.2 23.1
MHT 19.2 23.8

class names (dubbed “ft-GD w/ r-name”). Interesting, finetuning with refined class name (“ft-GD w/
r-name”) performs the best: it finds that changing class names such as police-officer to law
enforcement officer facilitate FM adaptation. Refer to Appendix B for more details.

Comparison of 3D LiDAR detection methods. We compare our MHT-based 3D cuboid generation
(Section 4.2) against various existing 3D detection approaches, spanning zero-shot 3D detectors,
self-supervised 3D proposal detectors, and a 3D detector supervised-learned on another dataset.
• SAM3D (Zhang et al., 2023a) is a zero-shot 3D detector that exploits SAM (Kirillov et al., 2023)

to segment objects on BEV images of LiDAR data; it struggles to detect small objects.
• Oyster (Zhang et al., 2023b) and CPD (Wu et al., 2024b) are unsupervised learned models that

were developed and benchmarked on Waymo dataset (which contains only three classes, vehicle,
pedestrian and cyclist); they struggle to detect diverse object classes.

• LISO (Baur et al., 2024) is a self-supervised LiDAR 3D detector on movable objects without
class label prediction. Note that LISO, Oyster and CPD adopt DBSCAN clustering for 3D box
fitting (Zhang et al., 2017; You et al., 2022).

• We also compare the 3D detector CenterPoint (Yin et al., 2021) supervised trained on Argoverse2,
intending to demonstrate the significant gap between LiDAR models (see details in Appendix C).

As many of these methods focus on producing 3D cuboids without predicting class labels, we assign
class labels to their 3D detections: first matching their 3D detections with GroundingDINO’s 2D
detections, then assigning GroundingDINO’s predicted classes to the matched 3D detections. Based
on these 3D proposal approaches, we design their variants by using GroundingDINO: we use Ground-
ingDINO’s 2D detections to not only offer class labels but also define frustums, in which we run
these approaches to produce 3D detections. The frustums provide more targeted searching space that
can improve these methods. We append “w/ frustum” to denote these variants. Refer to Appendix E
for more details of these methods. Table 2 compares their results on 3D detection, demonstrating
the superior performance of our MHT-based method. Moreover, our modifications (marked with “w/
frustum”) for the compared methods notably improves their performance. Interestingly, CenterPoint
achieves quite poor performance, although we carefully tuned hyperparameters and unified Argov-
erse2 LiDAR data format with nuScenes. We find the reason is due to the significant gap between
LiDAR sensors in the two datasets (details in Appendix C). This demonstrates a need of developing
LiDAR-based foundation models.

Analysis of LiDAR sweep aggregation. We report per-class detection precision by applying different
aggregation strategies. Table 3 shows that different aggregations notably improve on certain classes
(refer to Table 14 in Appendix for the full results). Interestingly, results are “asymmetric”, e.g., for
traffic-cone, construction-worker and bicycle, aggregating the future two sweeps
yields significantly better performance than aggregating the past two sweeps; for child, aggregating
the past 6 sweeps is significantly better than other strategies! We conjecture the reason is due to
objects’ motion speed and patterns. It is worth noting that on typical “rare” classes, our method even
outperforms the state-of-the-art supervised approach (Peri et al., 2023), which report 3.4 mAP on
child, whereas ours achieves 5.1 mAP.
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Table 3: Analysis of sweep aggregation strategies on per-class 3D detection performance (mAP3D).
“P+C+F ” denotes aggregating the past P sweeps, the current sweep C, and the future N sweeps; we drop P or
F if not aggregating any past or future sweeps. In each row, we bold the highest number. Somewhat surprisingly,
aggregation strategies greatly impacts performance on certain classes, e.g., for construction-worker,
bicycle and traffic-cone, aggregating the future 2 sweeps yields remarkably better performance than
others. Refer to Table 14 in Appendix for the full results.

Class 10+C 6+C 2+C C C+2 C+6 C+10 1+C+1 3+C+3 5+C+5

bus 11.1 11.9 13.0 14.0 13.1 12.6 12.0 13.3 12.5 11.9
bicycle 22.5 24.9 28.5 30.1 32.4 28.9 26.6 29.3 29.3 28.4
emergency-vehicle 4.5 4.6 4.3 5.4 4.5 4.4 4.1 5.2 4.0 3.9
adult 34.5 43.6 56.1 58.8 59.8 46.5 36.1 60.7 56.3 49.1
child 4.2 5.1 4.6 3.5 2.8 2.6 1.9 3.6 2.9 2.7
construction-worker 13.6 16.3 22.9 25.6 28.6 24.3 20.5 27.9 25.1 22.3
personal-mobility 6.6 9.1 8.8 8.7 9.1 6.9 6.9 10.4 8.6 8.6
traffic-cone 44.3 46.7 50.2 52.0 54.0 51.3 48.4 53.1 52.0 50.1

Table 4: Our proposed techniques improve 3D
cuboid generation (Section 4.2). The first row shows
results of a method that adopts our finetuned Ground-
ingDINO for 2D detection and CM3D (Khurana et al.,
2024) for 3D cuboid generation. MHT standards for
Multi-Hypothesis Testing for 3D cuboid generation;
“SA.” uses class-aware sweep aggregation (Table 3);
S3D incorporates 3D geometric cues to score gener-
ated 3D cuboids; “track” means using 3D tracks to
refine scores of generated cuboids. Results demon-
strate the effectiveness of each technique in improving
3D cuboid generation.

MHT SA. S3D track mAP3D NDS

18.2 23.1
✓ 19.2 23.8
✓ ✓ 20.1 24.3
✓ ✓ ✓ 20.8 24.6
✓ ✓ ✓ ✓ 21.9 25.0

Table 5: Analysis of learning to refine gener-
ated 3D cuboids. Suppose we manually prepare 3D
cuboids on the LiDAR point clouds for the visual ex-
amples provided in the annotation guidelines. We use
them to learn a model that takes as input a generated
3D cuboid and output refined cuboid. The refinement
can translate the cuboid through re-centering, adjust
cuboid size, tune the orientation, and re-score the
cuboid. We tune the model over the validation set. Re-
sults show that learning to refine the size of generated
cuboids on limited examples is beneficial.

center size orientation score mAP3D NDS

21.9 25.0
✓ 20.8 21.9

✓ 21.9 26.4
✓ 21.9 24.7

✓ ✓ 21.9 25.9
✓ 20.3 21.2

Assembling the pieces. We sequentially include the proposed techniques in our pipeline (Fig. 2):
the MHT-based 3D cuboid generation, class-aware sweep aggregation, geometry-aided scoring, and
tracking-based score refinement. Table 4 shows each technique brings 0.7∼1.9 mAP3D gains, and
using them all yields 3.7 mAP3D gains. Despite the remarkable improvements, it is also clear that the
task AutoExpert is quite challenging that the overall 3D mAP (21.9) is notably lower than supervised
learned 3D detectors, e.g., Peri et al. (2023) reports 43.6 mAP on all the 18 classes of nuScenes.

Does few-shot learning for 3D cuboid refinement work? To answer this, we assume access to 3D
cuboid annotations on LiDAR data corresponding to the visual examples in the annotation guidelines.
We train a network on the “few-shot” 3D labeled data, which takes generated 3D cuboids as input
and predicts offsets to refine their location, size, orientation and quality score. Despite careful tuning
of the network architecture and hyperparameters (details in Section F of the Supplement), the model
yields only a small improvement of 1.4 NDS (Table 5). We hypothesize that the scarcity of 3D
labeled data poses significant challenges for training a 3D perception model. The results, together
with Table 2, suggest that a LiDAR-based FM could substantially advance LiDAR perception.

6 CONCLUSION

We introduce AutoExpert, a novel and timely benchmark for Auto-Annotation from Expert-Crafted
Annotation Guidelines. It simulates real-world data annotation pipelines, where human annotators
learn from expert-crafted guidelines to label data. We study AutoExpert through 3D LiDAR detection
by repurposing the nuScenes dataset. To approach AutoExpert, we present a pipeline and several
simple yet effective techniques, including Multi-Modal Few-Shot Finetuning and Multi-Hypothesis
Testing-based 3D cuboid generation, leading to remarkable performance gains over previous ap-
proaches. Nevertheless, our results demonstrate that the AutoExpert benchmark remains far from
solved, highlighting the need for further research, e.g., developing LiDAR-based foundation models.
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Appendix

This document supplements the main paper. Below is the outline of this document.

• Section A makes insightful remarks and discusses broader impacts and limitations.
• Section B provides more implementation details and results of 2D detector finetuning.
• Section C details CenterPoint training on Argoverse2 and discusses its performance degra-

dation.
• Section D provides more details and analyses of our MHT-based 3D cuboid generation.
• Section E introduces the compared 3D detection methods in more detail and present their

results w.r.t more metrics.
• Section F studies whether supervised learning a 3D cuboid refinement model on few-shot

3D annotations improves 3D detection performance.
• Section G analyzes the performance of our 3D cuboid generation for occluded and far-field

objects.
• Section H analyzes the computational efficiency of our MHT-based 3D cuboid generation

method.
• Section I provides full results of different LiDAR sweep aggregation strategies.
• Section J displays more visual results.
• Section K provides image examples available in the expert-crafted annotation guidelines.
• Section L provides open-source code and more experimental details.

A REMARKS, BROADER IMPACTS AND LIMITATIONS

Remarks on Class Imbalance. Datasets sourced from the real world often exhibit a class imbalance,
containing both common object classes (e.g., vehicle and pedestrian) and infrequent ones
(e.g., stroller and wheelchair). Consequently, supervised learning methods for 3D detection
must be designed to handle this distribution imbalance (Peri et al., 2023). In contrast, AutoExpert
itself does not inherently introduce class imbalance, as expert-crafted annotation guidelines provide a
similar number of visual examples for each class. However, because foundation models leveraged
to solve AutoExpert are pretrained on massive real-world data which follows imbalanced distribu-
tions (Parashar et al., 2024), the methods developed for AutoExpert can still inherit data imbalance,
leading to biased predictions.

Remarks on Expert-in-the-loop vs. human-in-the-loop. AutoExpert does not necessarily mean
fully automated annotation without human intervention. Instead, it requires “expert-in-the-loop”, e.g.,
experts design not only the guidelines but also the pipeline for exploiting FMs towards automated
data annotation. This is different from human-in-the-loop, which typically means that ordinary
human annotators are involved in data annotation. Our work reveals that achieving AutoExpert (or
completing highly specialized tasks) requires expert-in-the-loop, i.e., experts must design methods to
adapt FMs to improve 2D detection and segmentation, and design geometric constraints.

Remarks on Datasets and Annotation Guidelines. Annotation guidelines are rarely made publicly
available along with datasets. For instance, neither KITTI (Geiger et al., 2013) nor Argoverse (Wilson
et al., 2021) released their annotation guidelines but user guide for challenge competitions; the Waymo
Open Dataset (Sun et al., 2020) provides a file called “labeling specifications” which, however, cover
only four classes (“vehicle”, “pedestrian”, “cyclist”, and “traffic sign”) with only one visual example
for each class. These resources serve as user guides for challenge participants to get familiar with
their data. It is worth noting that, even the Croissant protocol (Akhtar et al., 2024) has not called
dataset contributors to release annotation guidelines. Therefore, we would like to call out for the
community to release annotation guidelines in future dataset release.

Broader Impacts. Although we commonly believe that pretraining on large-scale data will be
the key enabler for generalization to open-world applications, understanding how to appropriately
benchmark such methods and pretrained foundation models (FMs) remains challenging. FMs have
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been benchmarked in various ways through general tasks such as reasoning, math, open question
answering, and physical rule understanding. Our AutoExpert benchmark offers a new venue where
various FMs can be accessed in multiple aspects with the final goal of 3D LiDAR detection, e.g.,
understanding textual descriptions in annotation guidelines, summarizing core information from
texts and visual examples, generalizing to specific object classes for precise detection, etc. Our
benchmark can facilitate the development of methods for automating data annotation by learning
from expert-crafted guidelines. The developed methods can benefit real-world applications which
adopt machine learning solutions, where data annotation is typically a prerequisite. Such applications
span industry, health care, interdisciplinary research, etc. In the meanwhile, insights, philosophical
thoughts and techniques delivered in this work may potentially inspire dataset curation and methods
for malicious attacks for specific applications. These could be negative impacts.

Limitations. We note several limitations. First, while our pipeline demonstrates promising results,
its real-world applicability for data annotation requires further comprehensive validation. Second, our
methods do not leverage unlabeled data, which could be exploited through semi-supervised learning
to enhance FM adaptation for AutoExpert. Third, we rely on per-category size priors; adapting these
priors to individual instances could further improve performance. Fourth, our tracking-based score
refinement focuses on cuboid confidence but could also be used for optimizing cuboid orientation or
velocity, which are key factors for autonomous driving and evaluation metrics like NDS. Fifth, our 3D
cuboid generation operates on isolated object instances, but incorporating contextual and proxemic
relationships between objects could yield additional gains. Finally, our work does not attempt to
build a LiDAR-based foundation model, a critical yet underexplored direction for future research.

B MORE DETAILS OF 2D DETECTOR FINETUNING

Prompt Refinement to Improve Zero-Shot Detection. We improve prompts towards better zero-
shot 2D detection performance with GroundingDINO (Fig. 2). First, we use GPT-4o to generate
five synonyms and object size prior for each object class using the prompt template: “Generate five
descriptive terms for objects within the green boxes and provide the average length, width, and height
for this category in the real world. The guideline instruction is: [instruction].”, where [instruction]
is replaced by actual guideline descriptions. Fig. 7 displays a screenshot of this step. Second, we
use each term and their combinations to test GroundingDINO’s zero-shot 2D detection performance
on the validation set. Third, we select the best term or combination that yields the highest detection
precision for each class. Table 6 summarizes the selected terms for each of the 18 nuScenes classes.
In our work, we also tested using Qwen (Bai et al., 2023) other than GPT-4o to search for synonyms
and object size prior, but we find it produces similar results as GPT-4o. This is likely because certain
terms are more frequent in the real world for a given class name that FMs are more familiar with
them, so FMs prefer to use these frequent terms to achieve better zero-shot performance (Parashar
et al., 2024).

Few-Shot Finetuning. With the limited amounts of visual examples available in the annotation
guidelines, we finetune GroundingDINO. We test using the original class names and refined names
(described the the last paragraph). Refer to the next paragraph for detailed results. We also adopt
data augmentation strategies such as random rotation and cropping. Recall that each training image
is exclusively annotated with only one class. Hence, when finetuning GroundingDINO, for each
training image, we compute the loss only on the focused class and do not count detections of other
classes as false positives. We use the validation set for model selection and hyperparameter tuning.
The validation set can be thought of as a simulation of expert intervention in real-world annotation
scenarios, where experts are overseeing annotation progress and quality, offering timely intervention
when needed.

Detailed Results. Table 1 in the main paper summarizes comparisons of using different prompts
in the off-the-shelf and finetuned GroundingDINO detectors. Here, we provide the full results
of these methods in Table 7. The finetuned GroundingDINO (ft-GD) using refined class names
(r-name) yields the best results on 12 out of 18 categories w.r.t 3D mAP metric, achieving significant
improvements over the zero-shot baseline “GD (o-name)”, e.g., on adult (from 54.4 to 58.8),
personal-Mobility (from 0.0 to 9.4), motorcycle (from 42.0 to 50.0), and traffic-cone
(from 44.2 to 52.0).
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Five Descriptive Terms for Objects in Green Boxes :  
1. Construction Worker 
2. Laborer  
3. Builder  
4. Hard Hat
5. Mason
Average Real-World Dimensions:  
- Length : 0.5 meters  
- Width: 0.5 meters  
- Height : 1.75 meters 

Generate five descriptive terms for objects within the green 
boxes and provide the average length, width, height for this 
category in the real word. The guideline instruction is 
“construction worker: A human in the scene whose main 
purpose is construction work”.

Figure 7: A screenshot of how we search synonyms and object size prior for a given class name. We use
both visual examples and textual description of a specific class available in annotation guidelines. Here, we use
the construction-worker class as an example.

Table 6: Refined class names for the nuScenes defined classes. Notable combinatorial prompts occur in some
categories, e.g., the best prompt of pushable-pullable is “pushable pullable garbage container” and “hand
truck”.

The original class name The refined class name
car car
truck truck
trailer trailer, container
bus bus
construction-vehicle construction-vehicle
bicycle bicycle bike
motorcycle narrow motorcycle
emergency-vehicle police vehicle, emergency vehicle
adult adult
child single little short youth children
police-officer law enforcement officer
construction-worker construction worker, laborer
stroller stroller
personal-mobility personal-mobility, small kick scooter
pushable-pullable pushable pullable garbage container, hand truck
debris debris, full trash bags
traffic-cone traffic_cone
barrier barrier

C SUPERVISED LEARNED 3D DETECTOR ON A DIFFERENT DATASET

In the main paper, we test a model purposefully trained on another dataset, Argoverse2 (AV2) to
investigate whether LiDAR-based pretrained models can generalize to specific domains of interest.
Concretely, we train a 3D detector CenterPoint (Yin et al., 2021) on the training set of AV2 in a
supervised learning way. But this model exhibits severe performance degradation on the nuScenes
benchmark (its results in Table 2). Below, we provide implementation details and analysis on its
performance.
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Table 7: More detailed (per-category) comparisons of results for different strategies of finetuning foundational
2D detectors yield different 3D detection performances. We report the results of zero-shot detector Detic as a
reference, which is used in (Khurana et al., 2024).

class Detic (o-name) GD (o-name) ft-GD (o-name) GD (r-name) ft-GD (r-name)

mAP2D mAP3D mAP2D mAP3D mAP2D mAP3D mAP2D mAP3D mAP2D mAP3D

car 58.3 31.9 52.6 25.1 56.4 29.1 51.3 26.1 54.2 25.6
truck 37.2 17.6 34.3 14.2 34.4 15.0 36.3 14.1 37.5 12.6
trailer 4.2 0.8 8.5 2.0 7.0 1.3 8.1 1.8 8.5 1.7
bus 59.0 6.4 59.0 5.7 60.2 8.3 59.7 5.3 59.8 6.4
construction-vehicle 11.1 14.7 9.9 9.7 4.5 12.0 10.2 8.9 11.0 9.5
bicycle 28.8 28.6 22.4 22.7 28.5 27.5 22.5 19.6 24.2 29.5
motorcycle 38.1 50.9 21.7 42.0 36.4 48.1 20.8 33.5 31.5 50.0
emergency-vehicle 0.5 0.18 1.6 0.9 4.3 2.4 11.9 1.5 14.2 2.6
adult 10.2 5.6 23.5 54.4 36.9 53.8 23.9 53.8 31.8 58.8
child 0.0 0.00 0.9 0.8 1.1 0.7 6.6 3.2 5.2 3.5
police-officer 0.0 0.1 0.0 1.7 0.3 0.7 0.3 1.0 0.8 2.2
construction-worker 0.4 2.0 5.1 27.8 9.2 28.4 4.2 28.2 5.9 25.7
stroller 1.2 7.0 13.1 27.8 13.5 20.4 14.4 29.3 15.3 21.4
personal-mobility 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.7 10.6 9.4
pushable-pullable 0.0 0.0 2.6 1.2 2.9 1.1 6.1 2.8 5.8 4.8
debris 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
traffic-cone 51.8 50.5 46.2 44.2 52.7 40.1 46.9 43.4 52.5 52.0
barrier 0.8 0.6 3.6 9.7 2.8 8.5 2.8 8.5 5.9 11.4

avg. 16.5 12.1 16.9 16.1 20.0 16.6 18.2 15.7 20.8 18.2
NDS 16.6 21.3 21.2 22.1 23.1

Table 8: Specifics of different LiDAR sensors in nuScenes and Argoverse2 (AV2) for data collection.
Clearly, the LiDAR sensors notably differ in measurement range, horizontal/vertical FOV, point cloud density,
and vertical distribution patterns.

LiDAR Configuration

parameter/feature nuScenes (Caesar et al., 2020) AV2 (Wilson et al., 2021)

LiDAR Model Single HDL-32E Dual VLP-32C
Number of channels 32 32 × 2
Measurement Range Max 100m, Effective 70m Max 200m, Effective 100m
Vertical FOV -30.67◦ to + 10.67◦ -25◦ to + 15◦

Horizontal FOV 360◦ 360◦

Scan Frequency 20Hz 10Hz
Points per Second ∼600k pts/s (20Hz × 30k/frame) ∼1.2M pts/s (10Hz × 120k/frame × 2)
Vertical Resolution 0.4◦ (center), 0.4◦ to 2.08◦ (edge) 0.33◦ (center), 1.0◦ (edge)
Horizontal Resolution 0.32◦ (20Hz) 0.096◦ (10Hz)
Intensity Range 0-255 0-255

CenterPoint Training on the Argoverse2 Dataset. The Argoverse2 (AV2) dataset annotates LiDAR
data with 3D cuboids for 30 object classes. To train a CenterPoint model that can be applied to
nuScenes data, we unify the data format and class vocabulary of AV2 according to nuScenes. Then,
we supervised-learn the 3D LiDAR detector CenterPoint on the training set of AV2. After training, we
apply it to the AutoExpert test-set. Table 2 reports its results, showing that CenterPoint significantly
underperforms our method and existing approaches.

Analysis. We analyze the LiDAR models of the AV2 and nuScenes, finding that they have different
LiDAR sensor parameters (Table 8). As a result, the LiDAR sensors capture data that is different in
(1) measurement range, (2) horizontal/vertical FOV, (3) point cloud density, (4) intensity sensitivity,
(5) acquisition frequency. All these make AV2 LiDAR data different in distribution from the nuScenes
LiDAR data, explaining the poor performance of AV2-trained CenterPoint. This further demonstrates
the challenge and the need of training LiDAR foundation models.

D DETAILS AND ANALYSES OF MHT-BASED 3D CUBOID GENERATION

We provide more details of the proposed 3D cuboid generation method based on Multiple Hypotheses
Testing (MHT). First, for each 2D detection (denoted by B2D) of GroundingDINO, we determine
a cuboid dimension (l0, w0, h0) which is obtained by using GPT-4o (Fig. 7). We also use SAM to
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Table 9: Sensitivity analysis of rotation and translation step size parameters. Based on bolded values, we set the
corresponding translation and rotation step sizes as default, which provide good trade-off between computational
cost and detection performance.

Rotation Step Size (in radian)

Rotation Step π/40 π/30 π/20 π/10 π/5
mAP3D 19.3 19.3 19.2 19.2 18.7
NDS 24.0 23.9 23.8 23.8 23.2

Translation Step Size (in meter)

Translation Step 0.3m 0.5m 0.8m 1.0m 1.5m
mAP3D 19.4 19.2 18.6 18.3 16.4
NDS 23.8 23.8 23.3 22.9 20.9

obtain the object mask. Further, we determine a frustum based on the 2D detection and camera and
LiDAR parameteres. Then, within this frustum, we run DBSCAN (Schubert et al., 2017) to cluster
LiDAR points (denoted in set P ) that are projected onto the foreground mask in the image plane.
Third, we find the largest cluster and place the 3D cuboid with its center being the cluster of the
cluster centroid. Fourth, we carry out MHT detailed below.

We predefine stepsizes w.r.t translation and rotation (analyzed in the next paragraph). Hence, during
MHT, we vary parameters θ = [x, y, z, ψ] (cuboid center location and cuboid orientation) and
compute the point ratio of points falling in the cuboid B3D(θ):

R(θ) =
1

|P |
∑
pi∈P

I(pi ∈ B3D(θ)), (1)

where I(·) is the indicator function. Moreover, we also the intersection-over-union (IoU) between
the projected 3D cuboid on the image plane (denoted as π(B3D(θ))and the 2D box B2D output by
GroundingDINO: IoUθ(π(B3D(θ)), B2D). Lastly, we select a cuboid that maximize the above two
metrics with parameter θ∗:

θ∗ = argmax
θ
R(θ) + IoUθ(π(B3D(θ)), B2D) (2)

Sensitivity analysis. We conduct a comprehensive sensitivity analysis of the rotation and translation
step size parameters in the proposed MHT-based approach. The analysis aims to determine the
optimal parameter values that balance computational efficiency and 3D detection performance.

Table 9 demonstrates that our method is robust to a large range of parameter variations. For rotation
step size, values between π/40 and π/10 radians yield good and similar performance, with π/10
radians selected as the default value owing to its favorable balance between computational efficiency
and detection accuracy. Similarly, for translation step size, values between 0.3m and 0.8m maintain
good and stable performance, with 0.5m chosen as the default value in our experiments. Moreover, the
sensitivity analysis confirms that coarse step sizes (π/5 radians for rotation or 1.0m+ for translation)
lead to significant performance degradation, while excessively fine step sizes offer diminishing returns
and substantially increased computational costs.

E 3D DETECTION METHODS AND THEIR DETAILED RESULTS

Methods. SAM3D (Zhang et al., 2023a) utilizes Bird’s-Eye-View (BEV) images of LiDAR sweeps
as input to the pre-trained SAM model (Kirillov et al., 2023) for segmenting salient objects. When
applied to the nuScenes dataset, it successfully segments sufficiently large objects such as vehicle
but fails to detect small classes such as child and traffic-cone. Oyster (Zhang et al., 2023b)
and CPD (Wu et al., 2024b) are unsupervised learning methods that were developed and benchmarked
on the Waymo dataset (which contains only three classes: vehicle, pedestrian and cyclist). They
struggle to detect diverse object classes. LISO (Baur et al., 2024) is a self-supervised LiDAR 3D
detector on movable objects without class label prediction. Both LISO and CPD generate pseudo-
labels based on geometric priors (e.g., class shape and size) and use these pseudo-labels to train their

5



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 10: Comparison of 3D detection / cuboid generation methods w.r.t diverse metrics. Following nuScenes,
we report results w.r.t metrics including mean Average Precision (mAP3D) and the nuScenes Detection Score
(NDS), along with detailed error metrics: mean Translation Error (mATE), mean Scale Error (mASE), mean
Orientation Error (mAOE), mean Velocity Error (mAVE), and mean Attribute Error (mAAE). The results are
comparable to those in Table 1, 2, and 4. In addition to compared methods, we also list our developed models in
this work (refer to captions of Table 1 and 4 for these models).

Method mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ mAP3D ↑ NDS ↑
SAM3D (Zhang et al., 2023a) 0.812 0.762 1.512 1.312 0.812 0.016 0.069
Oyster (Zhang et al., 2023b) 0.755 0.715 1.451 1.201 0.771 0.063 0.107
Oyster w/ frustum 0.723 0.651 1.563 1.008 0.711 0.129 0.156
LISO (Baur et al., 2024) 0.725 0.679 1.411 1.152 0.733 0.089 0.131
LISO w/ frustum 0.679 0.583 1.429 0.903 0.644 0.157 0.198
CPD (Wu et al., 2024b) 0.718 0.658 1.408 1.108 0.708 0.101 0.142
CPD w/ frustum 0.641 0.549 1.338 0.886 0.590 0.179 0.223
Centerpoint (Yin et al., 2021) 0.971 0.517 0.794 0.546 0.447 0.036 0.190
CM3D (w/ Detic) (Khurana et al., 2024) 0.775 0.587 1.189 1.084 0.579 0.121 0.166

GD w/ o-name + CM3D 0.669 0.568 1.368 0.869 0.566 0.161 0.213
ft-GD w/ o-name + CM3D 0.657 0.564 1.337 0.942 0.550 0.166 0.212
GD w/ r-name + CM3D 0.639 0.548 1.349 0.833 0.551 0.157 0.221
ft-GD w/ r-name + CM3D 0.636 0.543 1.322 0.875 0.548 0.182 0.231
ft-GD w/ r-name + MHT 0.570 0.538 1.130 0.920 0.555 0.192 0.238
ft-GD w/ r-name + MHT + SA 0.567 0.538 1.155 0.924 0.549 0.201 0.243
ft-GD w/ r-name + MHT + SA + S3D 0.559 0.540 1.150 0.928 0.555 0.208 0.246
ft-GD w/ r-name + MHT + SA + S3D + track 0.565 0.537 1.124 0.943 0.554 0.219 0.250

Table 11: Per-category results (mAP3D) of different 3D cuboid generation methods. We list not only our
MHT-based method but also our final method. Our methods resoundingly outperform the compared approaches.

Class SAM3D Oyster Oyster LISO LISO CPD CPD Centerpoint CM3D MHT Our
w/ frustum w/ frustum w/ frustum Final

car 6.2 13.1 20.1 19.0 25.0 20.7 26.5 15.6 25.6 30.0 31.8
truck 5.2 4.1 9.0 7.0 12.8 7.7 13.9 4.1 12.6 15.4 16.7
trailer 0.2 0.4 1.2 0.8 1.4 0.9 1.6 0.2 1.7 1.7 1.9
bus 2.1 2.7 4.6 6.4 11.7 7.2 12.9 2.2 6.4 14.0 15.5
construction-vehicle 0.5 3.1 6.8 4.3 7.9 4.6 8.3 1.0 9.5 9.5 9.9
bicycle 3.3 10.0 21.1 13.7 25.1 14.4 27.8 2.0 29.5 30.1 33.4
motorcycle 4.1 17.1 35.7 23.1 42.3 22.6 42.7 8.4 50.0 50.7 51.2
emergency-vehicle 0.1 0.8 1.9 2.5 4.5 2.5 4.5 0.2 2.6 5.4 5.4
adult 0.9 19.8 42.0 26.7 47.2 27.9 52.3 15.8 58.8 58.8 62.7
child 0.1 1.2 2.5 1.6 2.9 2.5 4.5 0.0 3.5 3.5 5.4
police-officer 0.2 0.9 1.6 1.0 1.8 1.6 3.0 2.0 2.2 2.2 3.6
construction-worker 0.2 8.6 18.4 11.7 21.4 13.3 25.9 3.6 25.7 25.7 31.1
stroller 1.5 6.9 15.3 9.8 17.9 13.1 27.3 0.4 21.4 21.5 32.7
personal-mobility 0.9 3.7 6.7 4.0 7.3 5.9 10.7 0.0 9.4 8.7 12.8
pushable-pullable 0.1 0.1 0.1 0.1 0.1 0.1 4.3 0.0 0.1 0.1 5.2
debris 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1
traffic-cone 1.6 16.9 37.1 23.6 43.3 27.6 47.7 8.7 52.0 52.0 57.2
barrier 1.5 3.9 8.1 5.2 9.6 9.0 14.1 3.7 11.4 11.5 16.9

mAP3D 1.6 6.3 12.9 8.9 15.7 10.1 17.9 3.6 18.2 19.2 21.9
NDS 6.9 10.7 15.6 13.1 19.8 14.2 22.3 19.0 23.1 23.8 25.0

detectors. Note that LISO, Oyster and CPD all adopt DBSCAN clustering for 3D box fitting (Zhang
et al., 2017; You et al., 2022). The 3D detector CenterPoint (Yin et al., 2021) is trained on the
Argoverse2 training set dataset in a supervised way (details in Appendix C).

To adapt the above methods to AutoExpert data for detecting objects of 18 classes, we make necessary
modifications for them. As some of these methods do not predict class labels for detected 3D cuboids,
we use the finetuned GroundingDINO to assign labels. Specifically, for each generated 3D cuboid,
we project it onto the 2D image plane, identify a matched 2D detection by GroundingDINO, and
assign the corresponding class label to this 3D cuboid. Moreover, LISO, Oyster and CPD produce 3D
cuboids directly on LiDAR sweeps; we improve them by exploiting GroundingDINO’s 2D detections
to limit searching space in LiDAR points. Concretely, for each 2D detection, we determine the
frustum and run each of these methods to generate a 3D cuboid. We mark the modified method with “
w/ frustum”. This modification fairly compares our MHT-based 3D cuboid generation method with
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Figure 8: Architecture of the proposed PointNet (Qi et al., 2017) model Pϕ for 3D cuboid refinement. Here,
B denotes the batch size, FC corresponds to a fully connected layer, and BN represents a batch normalization
layer. The input to the model consists of 512 LiDAR points, each represented by a 9-dimensional feature
vector (as defined in Equation 4). If the number of points in the frustum point cloud is fewer than 512, random
oversampling is applied to reach the target count of 512 points. Conversely, if the point cloud contains more than
512 points, random downsampling is performed to reduce the number to 512. The model outputs dimensional
offsets used to refine the size produced by our MHT-based 3D cuboid generation method.

these existing ones, as all the methods exploit GroundingDINO and only differ in the 3D cuboid
generation algorithm. Table 10 compares these methods with out MHT-based methods w.r.t the NDS
metric and more nuanced metrics. Table 11 lists the per-class 3D detection performance of these
methods. The results demonstrate that our MHT-based 3D cuboid generation method resoundingly
outperforms all compared approaches.

F FEW-SHOT SUPERVISED LEARNING OF A 3D REFINEMENT MODEL

Assuming access to 3D annotated LiDAR data for the few-shot visual images available in annotation
guidelines, we study whether training a lightweight model on such data can refine 3D detections.
We design a PointNet network Pϕ (Qi et al., 2017), which takes as input the 3D locations of LiDAR
points and outputs 3D cuboid dimension’s offset (and optionally orientation offset, confidence score,
and cuboid center offset). Fig. 8 illustrates the architecture of this PointNet model.

To prepare such training data, we apply our finetuned GroundingDINO, SAM, and the MHT-based
3D cuboid generation method to the limited amount of training images. Hence, for each 2D detection,
we obtain its corresponding object mask, frustum, and 3D cuboid dimension d0 = [l0; w0; h0], its
center location [x0; y0; z0] and orientation θ0. For this 2D detection, we have the input data to the
PointNet as the set of 3D locations of LiDAR points from the corresponding frustum. Importantly,
we transform these 3D locations (say ptrans = [x; y; z]) depending on the 3D cuboid center location
and orientation:

ptrans =

[
cos θ0 sin θ0 0
− sin θ0 cos θ0 0

0 0 1

]([
x
y
z

]
−

[
x0
y0
z0

])
. (3)

With the transformed coordinates of LiDAR points, for each point, we construct a 9-dim feature f
using below

f =
[
ptrans;d0 − ptrans;d0 + ptrans

]
(4)

The network Pϕ outputs offset ∆d between the ground-truth dimension lgt, wgt, hgt and the dimension
of the initial 3D cuboid in log scale:

∆l = log

(
lgt

l0

)
, ∆w = log

(
wgt

w0

)
, ∆h = log

(
hgt

h0

)
, (5)

When training the network, we adopt a smooth L1 loss with the default beta hyperparameter 1.0.
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Table 12: Comparative analysis of occlusion robustness (mAR3D) and distance performance (mAP3D). Our
MHT method consistently outperforms CM3D, with particularly significant gains for heavily occluded objects
(60-100% visibility) and distant targets (20-30m). The final method incorporating LiDAR aggregation and
tracking-based refinement demonstrates substantial improvements, especially for far-field and occluded objects.

Method mAR3D/Occlusion Level mAP3D/Distance (m)
60-100% 40-60% 20-40% 0-20% 0-10 10-20 20-30 0-50

CM3D (Khurana et al., 2024) 33.5% 49.4% 57.2% 57.6% 24.2 22.1 12.8 18.2

MHT (Ours) 34.1% 51.5% 58.1% 60.9% 26.5 23.0 13.9 19.2
(+0.6%) (+2.1%) (+0.9%) (+3.3%) (+2.3) (+0.9) (+1.1) (+1.0)

Our Final Method 36.5% 54.0% 59.9% 61.9% 26.2 25.7 17.1 21.9
(+3.0%) (+4.6%) (+2.7%) (+4.3%) (+2.0) (+3.6) (+4.3) (+3.7)

G ANALYSIS OF OUR MHT-BASED 3D CUBOID GENERATION FOR
OCCLUDED AND FAR-FIELD OBJECTS

We analyze the performance of our MHT-based 3D cuboid generation method for occluded and
far-field objects. We provide quantitative evaluations using nuScenes’ visibility tags and distance
stratification on the AutoExpert test set. As our method and previous approaches such as CM3D
do not predict occlusion levels, computing Average Precision (AP) for occlusion analysis is not
appropriate. Instead, we report mean Average Recall (mAR3D), following the nuScenes protocol
to average over distance thresholds {0.5, 1.0, 2.0, 4.0} meters across all 18 classes. For distance
analysis, we report mAP3D averaged over these thresholds.

Tabel 12 provides breakdown results of our method and the compared CM3D. Our method consistently
outperforms CM3D across all occlusion levels and distance ranges. Importantly, our final method,
which incorporates LiDAR aggregation and tracking-based refinement, yields particularly large
performance gains for heavily occluded objects (60-100% visibility) and distant targets (20-30m).
These improvements can be attributed to the densification of LiDAR points through aggregation
and refinement techniques, which significantly aid in detecting far-field small objects and occluded
targets. This analysis validates the robustness of our approach in challenging scenarios involving
occlusion and long distance.

H COMPUTATIONAL EFFICIENCY ANALYSIS

One may think our MHT-based 3D cuboid generation method is computationally expensive as it tests
multiple cuboid candidates in order to select the most favorable one. In fact, this method is quite
efficient with our optimized implementation — we have optimized the MHT implementation using
the Numba compiler with GPU parallelization for calculating point coverage, achieving significant
speed improvements. The implementation details are available in our released code. Next, we conduct
the analysis on a single NVIDIA A6000 GPU by comparing against the recent work CM3D. We
report the averaged time cost over sweeps of AutoExpert test set.

Table 13 lists the wall-clock time of our method and the compared CM3D, both of which exploit the
2D detector GroundingDIMO, SAM for foreground segmentation, and their respective 3D cuboid
generation. Clearly, the 2D detection stage constitutes the majority of computation time (1.42 seconds,
34.6% of total), indicating the primary computational bottleneck for both methods. Moreover, our
MHT implementation adds approximately 1.02 seconds overhead in 3D cuboid generation compared
to CM3D, increasing from 1.59 seconds to 2.61 seconds. Despite this increase, the total processing
time of 4.10 seconds per LiDAR sweep remains practical from the perspective of automated data
annotation, which prioritizes accuracy rather than inference speed.

It is worth noting that further optimizations are possible, e.g., (1) replacing the current 2D detector
with more efficient alternatives to reduce the 2D detection time, (2) streamlining the processing
pipeline through batched operations to improve overall throughput.
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Table 13: Wall-clock time comparison for processing a single LiDAR sweep. The 2D detection stage dominates
the computation time, while our MHT approach adds reasonable overhead in the 3D cuboid generation phase.

Method 2D Detection
(seconds)

Segmentation
(seconds)

3D Cuboid
Generation (seconds)

Total
Time (seconds)

CM3D (Khurana et al., 2024) 1.42 0.072 1.59 3.08
MHT (Ours) 1.42 0.072 2.61 4.10

Table 14: Analysis of sweep aggregation strategies on per-class 3D detection performance (mAP3D).
“P+C+F ” denotes aggregating the past P sweeps, the current sweep C, and the future N sweeps; we drop
P or F if not aggregating any past or future sweeps. In each row, we bold the highest number and highlight
it if exceeding other numbers by 0.5 points. Somewhat surprisingly, aggregation strategies greatly impacts
performance on certain classes, e.g., construction-worker, bicycle and traffic-cone, aggregating
the past 2 sweeps yields remarkably better performance than other strategies.

Class 10+C 6+C 2+C C C+2 C+6 C+10 1+C+1 3+C+3 5+C+5

car 25.6 27.4 29.1 30.0 29.8 28.6 27.1 29.9 28.8 28.1
truck 14.0 14.6 15.5 15.4 15.4 15.0 14.3 15.5 15.3 14.9
trailer 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
bus 11.1 11.9 13.0 14.0 13.1 12.6 12.0 13.3 12.5 11.9
construction-vehicle 8.8 9.2 9.5 9.5 9.5 9.4 9.1 9.5 9.6 9.4
bicycle 22.5 24.9 28.5 30.1 32.4 28.9 26.6 29.3 29.3 28.4
motorcycle 37.6 42.2 48.5 50.7 49.6 43.6 38.0 51.2 48.6 45.5
emergency-vehicle 4.5 4.6 4.3 5.4 4.5 4.4 4.1 5.2 4.0 3.9
adult 34.5 43.6 56.1 58.8 59.8 46.5 36.1 60.7 56.3 49.1
child 4.2 5.1 4.6 3.5 2.8 2.6 1.9 3.6 2.9 2.7
police-officer 1.2 1.5 2.2 2.2 2.2 2.0 1.8 2.3 2.0 1.9
construction-worker 13.6 16.3 22.9 25.6 28.6 24.3 20.5 27.9 25.1 22.3
stroller 19.2 20.2 21.5 21.5 23.3 24.1 24.2 21.7 21.5 23.2
personal-mobility 6.6 9.1 8.8 8.7 9.1 6.9 6.9 10.4 8.6 8.6
pushable-pullable 4.6 4.7 4.7 4.8 5.0 4.8 4.8 4.8 4.8 4.8
debirs 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
traffic-cone 44.3 46.7 50.2 52.0 54.0 51.3 48.4 53.1 52.0 50.1
barrier 11.3 11.4 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5

I FULL RESULTS OF DIFFERENT LIDAR SWEEP AGGREGATION STRATEGIES

Table 14 provides with per-clas mAP3D by different LiDAR sweep aggregation strategies, supple-
menting Table 3 in the main paper.

J MORE VISUALIZATIONS

Fig. 9 visualizes more visual results on the nuScenes dataset (Caesar et al., 2020).

K IMAGE EXAMPLES IN GUIDELINES

Fig. 10 illustrates example images of 5 categories from the annotation guidelines (3 examples
visualized per category). The complete set of image examples are provided in the supplementary
material. These image examples serve as training data for finetuning the foundational 2D detector.

L OPEN-SOURCE CODE AND MORE EXPERIMENTAL DETAILS

Open-Source Code. We include our codebase as a part of the supplementary material, refer to the
README.md file for instructions of running the code. We also include the training images (i.e., those
included in annotation guidelines). We do not include model weights in the supplementary material
as they exceed the space limit (100MB). We have made an anonymous GitHub repository to host our
open-source code, data, results, and models under the MIT License.
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Figure 9: More visual results of 2D detection and generated 3D cuboids (i.e., 3D detection) using
our method.

More Experimental Details. The training environment uses Python 3.8.20 with PyTorch 2.4.1+cu121
and 4 compute workers. We employ an AdamW optimizer (lr=0.0001, weight_decay=0.0001) on a
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Figure 10: Images examples in annotation guidelines. We present 5 out of the 18 nuScenes
categories, with 3 example images shown for each category, where the green bounding boxes are
2D annotations for objects of the corresponding classes. It is worth noting the federated annotation:
taking the emergency-vehicle category as an example, even if objects of the car category
appear in the images, no corresponding annotations are provided.

single NVIDIA A6000 GPU with 40GB memory, reaching peak GPU memory usage of 26GB when
training GroundingDINO. The dataset of training GroundingDINO comprises 112 training images (∼
6 per class), 570 validation images (∼ 32 per class), and 36,114 test images (6,019 LiDAR frames ×
6 images). End-to-end training GroundingDINO with online validation takes approximately 2 hours.
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