
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review for LMRL Workshop at ICLR 2025

BEYOND GLOBAL EMBEDDINGS: A NEW APPROACH
TO SINGLE-CELL REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Uncovering the latent structure of high-dimensional data is a fundamental challenge
in single-cell analysis. While many methods seek to structure single-cell data, most
rely on a single global embedding space, which can obscure fine-grained variation.
Here, we introduce Connectorama, a locally adaptive framework that constructs
neighborhoods by aggregating information across overlapping local patches, al-
lowing similarity metrics to adapt to local covariance structures. Applying this
approach to large single-cell RNA sequencing datasets, we recover biologically
meaningful subpopulations that global methods fail to resolve, including distinct
immune cell subsets and hepatocyte populations with specialized gene expression
signatures. By reframing single-cell representation as an ensemble of local views
rather than a single projection, Connectorama offers a powerful framework for
studying cellular diversity at scale.

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) enables high-resolution characterization of cellular hetero-
geneity, driving discoveries across immunology, cancer, and complex diseases (Xiao et al., 2019; Ren
et al., 2021; Azizi et al., 2018; Potter, 2018). A fundamental challenge in analyzing these datasets is
defining cell-cell similarity, which underpins clustering, trajectory inference, and other downstream
tasks. Most pipelines rely on a k-nearest-neighbor (k-NN) graph constructed after dimensionality
reduction, but standard approaches assume that a single global embedding can faithfully capture
biological variation.

To mitigate noise, methods such as PCA (Pearson, 1901), ICA (Comon, 1992), and SCA (DeMeo &
Berger, 2023) reduce dimensionality before computing k-NN graphs. More recent deep learning-
based approaches, including variational autoencoders (Lopez et al., 2018), contrastive learning
(Lotfollahi et al., 2022), and transformer-based models (Cui et al., 2024), learn latent representations
optimized for specific tasks. While these methods extract biologically meaningful features, they
still impose a single global structure, which can obscure fine-grained subpopulations and context-
dependent gene relationships.

We introduce Connectorama, a locally adaptive approach that constructs more accurate k-NN graphs
by aggregating local dimensionality reductions. Instead of enforcing a single embedding, Connec-
torama partitions the dataset into overlapping locales, within which dimensionality reduction is
performed separately. These locale-specific graphs are then stitched together using a principled
topological aggregation method, preserving fine-grained relationships while mitigating distortions
introduced by global projections.

By leveraging local structure, Connectorama provides greater resolution than global embeddings alone.
We demonstrate its advantages in both synthetic and real datasets, showing improved detection of rare
but biologically meaningful populations, including microglia, hepatocyte subtypes, and specialized
immune cells. Because Connectorama refines the k-NN graph itself, it integrates seamlessly into
existing analysis pipelines, providing a robust alternative for single-cell representation learning.
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Figure 1: a: Expression of the leading principal components of the single-cell dataset from
(Hagemann-Jensen et al., 2020). PC1 identifies HEK cells, and PC2 identifies B cells (see fig-
ure 4a). b: Histogram of expression values for the leading principal components. Note that both
principal components introduce noise outside fo the cell types they mark. c: Overview of Connec-
torama. We cover the data with overlapping locales, and generate k-nearest neighbor graphs in each
locale separately. We then aggregate these local k-nearest neighbor graphs into a global one for
downstream analysis, using mean random walk with restart probabilities (Methods).

2 RESULTS

2.1 OVERVIEW OF THE METHOD

Connectorama consists of three main components: (1) the dataset is covered by a set of overlapping
contiguous subsets called locales, ensuring each cell is included in at least C locales; (2) dimen-
sionality reduction is performed within each locale, followed by the construction of locale-specific
k-nearest-neighbor (k-NN) graphs; and (3) these local graphs are merged into a global k-NN graph
through a principled topological aggregation strategy. We detail each step in Figure 1c and below.

Generating Locales: The key requirement in defining locales is that every cell is well-covered by at
least one locale where its neighbors exhibit similar expression profiles. A well-constructed locale
framework must also ensure robust representation of rare cell types, preventing their omission due to
under-sampling.

To achieve this, we adapt the Hopper algorithm (DeMeo & Berger, 2020) to create a representative
sketch of the dataset. This sketch consists of a set of subsampled points that collectively preserve the
global structure of the data, including rare cell types. Locales are then constructed around these sketch
points, with the constraint that each cell is included in at least C locales for some user-specified C.
The result is an overlapping cover of the dataset that ensures all cells, including rare subpopulations,
are included within a well-defined local structure. We describe our locale construction approach in
detail in section section 4.

Local Dimensionality Reduction: Within each locale, we seek to identify the most informative
features for distinguishing between local cells. This is achieved by applying dimensionality reduction
restricted to the locale. Our framework is agnostic to the choice of dimensionality reduction technique,
allowing flexibility based on dataset characteristics. However, linear projections are a natural choice
for their simplicity, interpretability and widespread use. In our experiments, we evaluate Principal
Component Analysis (PCA), Independent Component Analysis (ICA), and Surprisal Component
Analysis (SCA).
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Figure 2: Results on synthetic, hierarchical data. a: Construction of the synthetic dataset. Clusters are related
in a binary tree structure, with different sets of features defining each split. We then add noise to the resulting
dataset to simulate dropouts and variable capture rate. b: UMAP plots with k-nearest-neighbor graphs computed
downstream of global PCA, ICA, and SCA (top), and local version (bottom), colored according to cluster.
Connectorama consistently produces better separation between clusters. c: Adjusted mutual information (AMI)
of Leiden clusterings downstream of each method with the true cluster labels. Connectorama gives higher AMI
than global dimensionality reductions, even with as many as 200 global components.

A key advantage of our localized approach is that even simple linear methods (e.g., PCA) perform
well. Since each locale captures only a subset of cellular variation, the axes of variation within a
locale are more biologically meaningful than those derived from a single global decomposition. In
contrast, traditional global reductions force a single set of latent axes across the dataset, potentially
discarding signals relevant to rare or context-dependent cell states. By analyzing locales separately,
Connectorama preserves local gene relationships that may be masked in a global embedding space.

Once reduced representations are computed, we construct a k-NN graph within each locale using
Euclidean distance in the reduced space. This ensures that similarity metrics are tailored to the local
structure rather than being dictated by global characteristics.

Topological Stitching: After constructing locale-specific k-NN graphs, we integrate them into
a single global k-NN graph. Since locales overlap, a given cell may have different neighbor sets
across the locales to which it belongs. The challenge is to reconcile these local graphs into a cohesive
structure that accurately reflects cellular relationships.

We achieve this through a mean random walk with restart (RWR) probability approach (section 4).
Given two points i and j that co-occur in multiple locales, their similarity is computed as the mean
RWR probability of reaching j from i across all shared locales. This approach ensures that points
that are consistently well-connected in multiple local embeddings have high similarity in the final
global graph.

By leveraging RWR-based aggregation rather than naı̈ve averaging of local distances, Connectorama
avoids discontinuities and better preserves hierarchical structure. This allows for improved separation
of fine-grained subpopulations, overcoming the limitations of global distance metrics that fail to
capture local variation.

The final output of Connectorama is a refined global k-NN graph that integrates local structure
while mitigating the distortions of a single global embedding space. This improved graph structure
enhances the accuracy of downstream tasks, such as clustering, trajectory inference, and differential
expression analysis.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review for LMRL Workshop at ICLR 2025

2.2 CONNECTORAMA RESOLVES CLASSES IN SYNTHETIC DATA

To test Connectorama ’s ability to resolve fine-grained structure, we created a synthetic dataset in
which clusters are hierarchically arranged in a binary tree (Figure 2a). At each level, different sets
of features define divisions, mimicking real biological heterogeneity. Gaussian noise and random
dropout events were introduced to simulate realistic single-cell data.

Traditional global reductions struggle with this dataset because broad-classifying features introduce
noise at deeper levels. We applied Connectorama with 20 locales (coverage of 3 per cell), using PCA,
ICA, or SCA for local embedding, and RWR for aggregation.

Compared to global methods, Connectorama significantly improved cluster separability, as visualized
in UMAP embeddings (Figure 2b). Adjusted Mutual Information (AMI) scores showed that Connec-
torama better preserved the hierarchy, achieving 0.953, 0.903, and 0.999 with local PCA, ICA, and
SCA, respectively, compared to a maximum of 0.816 for global methods (Figure 2c). These results
highlight how local structure enhances fine-grained resolution.

2.3 APPLICATION TO THE TABULA MURIS DATASET

The Tabula Muris Consortium compiled a comprehensive mouse single-cell dataset covering over
100,000 cells from 20 organs (Consortium et al., 2018). Their analysis applied PCA followed by
Louvain clustering separately for each tissue, manually refining clusters and assigning cell types
based on differentially expressed genes. Given the dataset’s diversity, we hypothesized that applying
Connectorama jointly to all tissues would recover known populations in a single pass while potentially
revealing novel subpopulations.

Data Processing and Locale Construction: We obtained raw counts from GEO accession
GSE109774 and followed standard preprocessing, including transcript-per-million normalization and
log transformation. To remove confounding effects of donor sex, we excluded five sex-linked genes
(XIST, TSIX, DDX3Y, EIF2S3Y, and UTY).

Locales were constructed using Hopper on a 50-dimensional PCA embedding, ensuring each cell was
assigned to at least three locales. Dimensionality reduction was performed within locales using PCA,
ICA, or SCA, followed by 15-nearest-neighbor graphs constructed using Euclidean distance. These
local graphs were aggregated into a global 15-nearest neighbor graph using mean random walk with
restart (RWR) similarity with a restart probability of 1% (Methods). For comparison, we generated
k-NN graphs using global PCA, ICA, or SCA embeddings with 50, 100, or 200 components. Leiden
clustering (resolution 3.0) and UMAP visualization were applied to assess clustering resolution.

Improved Resolution of Rare and Specialized Cell Types: UMAP plots suggest that Connectorama
provides a more granular representation of cellular identity, yielding stronger separation of annotated
cell types compared to global approaches (Figure 3a). To quantify this, we evaluated whether Leiden
clusters derived from different k-NN graphs successfully recovered known cell types. We computed
F1 scores by identifying the Leiden clusters with maximal overlap with known cell annotations
(Methods).

Connectorama improved the resolution of multiple rare cell types, including:

• Bergmann glial cells, a specialized class of astrocytes involved in cerebellar function.
• Myofibroblasts, contractile cells crucial for wound healing and fibrosis.
• Natural killer (NK) cells, innate lymphocytes with cytotoxic and immunoregulatory roles.
• Pancreatic D cells, a minor islet cell type secreting somatostatin, a regulator of in-

sulin/glucagon secretion.

These populations were poorly resolved by global methods but emerged distinctly under Connec-
torama (Figure 3f), highlighting the power of local representations for enhancing rare cell detection.

Discovery of Microglial and Hepatocyte Subpopulations Beyond rare cell detection, Connectorama
revealed finer-grained subpopulations within known lineages.

For example, microglia exhibited a previously unrecognized subset marked by CLEC7A, a receptor
promoting immune activation, and GAS2L3, a cytoskeletal regulator implicated in mitotic stability
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Figure 3: Performance of Connectorama on the Tabula Muris Consortium data (Schaum et al., 2018). a: UMAP
plots of the entire dataset downstream of PCA, ICA, SCA reductions (top), or locally-computed neighborhood
graphs aggregated with Connectorama. b: Dotplot of differentially-expressed genes among the microglial Leiden
clusters, where clusters are computed downstream of the Connectorama neighborhood graph on the whole
dataset. c: Dotplot of differentially-expressed genes among the hepatocyte Leiden clusters. d: UMAP plots of
microglia using neighborhoods computed globally (top), or using Connectorama (bottom), colored by Leiden
clusters computed downstream of Connectorama. e: UMAP plots of hepatocytes using various neighborhood
graphs, colored by Leiden cluster. f: F1 Scores for recovery of known cell types from Leiden clusters computed
from different kNN-graph-generating strategies. Cell types for which all methods achieve F1 score greater than
0.8 are excluded; F1 scores for these types are shown in Figure
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Figure 4: Running Connectorama on cellular populations from (Hagemann-Jensen et al., 2020). a:
UMAP plots downstream of PCA, ICA, SCA, and their local versions computed with Connectorama.
b: F1 scores for recovery of the gamma-delta and MAIT populations using Leiden clusterings
downstream of each method. c: UMAP plots of the cytotoxic T subset of the data, colored by
TRDV2, a marker gene for gamma-delta T-cells. d: UMAP plots of the cytotoxic T subset colored by
SLC4A10, a MAIT marker gene.

(Figure 3b). These markers suggest an actively proliferating microglial state, possibly engaged in
immune surveillance or neuroinflammation.

Within hepatocytes, Connectorama resolved distinct functional groups (Figure 3e):

• Cluster 116 lacked CD302 but highly expressed excision repair genes (ERCCs), suggesting
a DNA-damage repair state (McWhir et al., 1993).

• Cluster 119 exhibited strong cytochrome P450 (CYP2B9, CYP2B13) expression, indicating
specialized roles in xenobiotic metabolism (Villeneuve & Pichette, 2004).

• Clusters 124 and 129 expressed cytochrome genes distinct from clusters 116 and 119,
implying further functional heterogeneity (Figure 3c).

These hepatocyte and microglial subpopulations were not explicitly characterized in the original
study, demonstrating how Connectorama enhances biological resolution.

Implications for Large-Scale Single-Cell Analysis: By analyzing all tissues simultaneously, Con-
nectorama identified cross-tissue relationships that were missed when treating organs independently.
For example, activated pancreatic stellate cells emerged within the broader myofibroblast niche,
marked by ACTA2 and MYL9 expression (Apte et al., 1999). These cells, sparse in pancreatic samples
alone, were clearly distinguishable in a multi-tissue setting, suggesting that joint analysis improves
detection of shared functional states.

Overall, Connectorama refines cell-type classification by preserving local relationships lost in global
embeddings, making it a powerful tool for large-scale, heterogeneous single-cell datasets.
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2.4 APPLICATION TO HUMAN IMMUNE CELL PROFILING

The human immune system consists of highly specialized cell types that coordinate responses to
pathogens and disease (Cillo et al., 2020; Ren et al., 2021). Immunotherapies increasingly target
immune subtypes to treat conditions ranging from cancer to autoimmune disorders (Azizi et al., 2018;
Ren et al., 2021; Xiao et al., 2019). However, single-cell techniques often struggle to resolve subtle
distinctions among immune subtypes, particularly in large datasets (Potter, 2018). We hypothesized
that Connectorama could improve immune cell discrimination by adapting to local transcriptional
variation rather than imposing a single global embedding.

Enhanced Resolution of Immune Subpopulations: As before, we computed global PCA, ICA,
and SCA embeddings with 10–200 components, constructing k-NN graphs using Euclidean distance.
In parallel, we applied Connectorama using 30 locales, ensuring each cell belonged to at least three
locales. Local 15-nearest-neighbor graphs were computed in 10-dimensional PCA, ICA, or SCA
space and aggregated via mean random walk with restart (RWR) similarity (restart probability 0.1).
UMAP plots downstream of each network-construction strategy are shown in Figure 4a.

Compared to global embeddings, Connectorama improved separation between immune subtypes,
particularly within the cytotoxic T-cell compartment. Further examination revealed that these
substructures corresponded to gamma-delta T-cells and mucosal-associated invariant T (MAIT)
cells, functionally distinct but closely related populations. Gamma-delta T-cells are an evolutionarily
conserved T-cell lineage involved in rapid responses to stressed or infected cells. These cells
were distinguished by expression of the delta T-cell receptor gene TRDV2 (Figure 4c). MAIT cells
specialize in antimicrobial immunity by detecting microbial metabolites and play key roles in mucosal
defense (Le Bourhis et al., 2010). These were identified by strong expression of SLC4A10 (Figure 4d).

These subsets were visually indistinct in global embeddings but emerged clearly under Connectorama,
indicating that local graph construction better preserves fine-grained immune variation.

Quantitative Assessment of Immune Subtype Recovery: To quantify improvements, we applied
Leiden clustering (resolution 2.0) and evaluated F1 scores for recovering gamma-delta and MAIT
cells. We annotated cells expressing at least two of TRDV2, TRGV9, and TRDC as gamma-delta
T-cells; and cells expressing either SLC4A10 or LTK as MAIT cells.

Connectorama combined with SCA yielded the highest F1 scores, significantly outperforming global
methods (Figure 4b). These results reinforce that Connectorama effectively preserves immune
heterogeneity, making it a valuable tool for refining immune cell atlases.

3 DISCUSSION

Extracting meaningful biological signal from high-dimensional data is a central challenge in modern
biological analysis. k-nearest-neighbor (k-NN) graphs provide a concise summary of cellular
relationships and serve as the foundation for clustering, integration, and trajectory inference. However,
standard methods construct these graphs using global embeddings, which impose rigid geometric
assumptions that can obscure fine-grained biological variation.

Connectorama reframes this problem by leveraging local embeddings, sidestepping the need to
embed an entire dataset into a single embedding space. This approach aligns with the fundamental
principle that while global embeddings may distort underlying relationships, local patches remain
well-approximated in Euclidean space. By aggregating local structure, Connectorama achieves
both fine-grained resolution and global coherence, offering a robust alternative for structuring high-
dimensional biological data.

Beyond its practical advantages, Connectorama bridges two perspectives in high-dimensional data
analysis: the geometric view, which assumes an underlying continuous manifold, and the topological
view, which emphasizes point-wise connectivity. Traditional methods define k-NN graphs directly
from a single global embedding, whereas Connectorama constructs them as an ensemble of locally
adaptive representations. This removes the constraints imposed by global coordinate systems and
better reflects the natural complexity of biological data.

Because k-NN graphs underpin a wide range of downstream bioinformatics algorithms—including
clustering (Traag et al., 2019), integration (Hie et al., 2019), and trajectory inference (Moon et al.,
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2019; Haghverdi et al., 2016)—improving their fidelity can have far-reaching implications. As
single-cell datasets continue to grow in scale and complexity, locally adaptive representations such as
Connectorama may provide a critical foundation for high-resolution biological discovery.

4 METHODS

Mathematical Setup: We represent an scRNA-seq dataset as an N ×G matrix X , where each cell
i is a G-dimensional transcript count vector xi ∈ RG. A k-nearest neighbor (k-NN) graph G

(k)
X is

constructed by linking each cell to its k closest neighbors according to a chosen distance function
dX(i, j). Our goal is to construct a high-fidelity k-NN graph by learning an improved distance metric
that better preserves local structure.

Locale Construction: A key challenge in defining similarity in high-dimensional space is that
gene co-expression patterns are context-dependent. Instead of applying a single global metric,
Connectorama partitions the dataset into overlapping locales, where each cell belongs to multiple
neighborhoods. Unlike clusters, which impose hard partitions, locales provide redundant coverage,
ensuring each cell is well-represented in at least one appropriate context.

To construct locales, we employ a modified version of the Hopper algorithm (DeMeo & Berger,
2020) adapted for graph distances (Graph-Hopper). Hopper selects a representative subsample
(sketch) of M points that minimizes the Hausdorff distance to the dataset, ensuring rare cell types are
well-covered. Each cell is then assigned to its C closest locales based on a random walk with restart
(RWR) similarity measure over a preliminary PCA-based k-NN graph. This strategy ensures that
locales reflect the dataset’s intrinsic structure rather than being arbitrarily defined.

Local Dimensionality Reduction: Within each locale, we perform dimensionality reduction
to identify the most informative features for distinguishing local cell states. By restricting the
decomposition to local neighborhoods, we capture context-specific variation that global methods
overlook.

We evaluate Principal Component Analysis (PCA), Independent Component Analysis (ICA), and
Surprisal Component Analysis (SCA) (DeMeo & Berger, 2023) for this step. While PCA is widely
used for noise reduction, it prioritizes variance over biological relevance, which can obscure rare
subpopulations. SCA instead optimizes an information-theoretic objective to emphasize marker genes
over noise. In the PCA-based version of Connectorama, the distance between cells i and j in locale
m is defined as:

dm(i, j) = ||Pmxi − Pmxj ||,

where Pm is the learned projection matrix for the locale. Each locale-specific distance metric induces
a k-NN graph, which we denote Gm.

Stitching Local Graphs into a Global Graph: The final step is integrating local k-NN graphs into
a single global structure. Since each cell belongs to multiple locales, it may have different neighbor
sets across graphs. To reconcile these differences, we use mean random walk with restart (RWR)
similarity, which measures connectivity between nodes by simulating a biased diffusion process.

For cells i and j appearing in c locales with corresponding graphs Gm1
, ..., Gmc

, the similarity score
s(i, j) is computed as:

s(i, j) :=
1

c

c∑
k=1

pRWR(i, j;Gmk
), (1)

where pRWR(i, j;Gmk
) is the steady-state probability of reaching j from i in locale graph Gmk

.
The global k-NN graph is then constructed by connecting each cell to its k most similar neighbors
according to s(i, j):

N
(k)
i = {xj : rank(s(i, j)) ≤ k}. (2)

This final k-NN graph forms the output of Connectorama, preserving both local structure and global
coherence without assuming a single global embedding space.
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MEANINGFULNESS STATEMENT

In current practice, a “meaningful representation” of data often means a low-dimensional embedding
of the data that captures its salient features. Here, we show that this geometric approach is inherently
limited, and introduce Connectorama, a novel method that constructs a global topological represen-
tation by stitching together local embeddings. By adapting to context-dependent gene expression,
Connectorama better captures rare cell types and uncovers novel biology from atlas-scale scRNA-seq
data, moving beyond static embeddings to a more faithful representation of cellular identity and
function.
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