
Under review as submission to TMLR

Population-based Evaluation in Repeated Rock-Paper-
Scissors as a Benchmark for Multiagent Reinforcement
Learning

Anonymous authors
Paper under double-blind review

Abstract

Progress in fields of machine learning and adversarial planning has benefited significantly
from benchmark domains, from checkers and the classic UCI data sets to Go and Diplo-
macy. In sequential decision-making, agent evaluation has largely been restricted to few
interactions against experts, with the aim to reach some desired level of performance (e.g.
beating a human professional player). We propose a benchmark for multiagent learning
based on repeated play of the simple game Rock, Paper, Scissors along with a population
of forty-three tournament entries, some of which are intentionally sub-optimal. We describe
metrics to measure the quality of agents based both on average returns and exploitability.
We then show that several RL, online learning, and language model approaches can learn
good counter-strategies and generalize well, but ultimately lose to the top-performing bots,
creating an opportunity for research in multiagent learning.

1 Introduction

How should agents be evaluated when learning with other learning agents? One metric is simply the average
return over an agent’s lifetime. Another is the agent’s robustness against a potential nemesis whose goals
are only to minimize the agent’s return. The first is the conventional metric used in the evaluation of
reinforcement learning (RL) agents, while the second is quite common among game-theoretic AI techniques
for imperfect information games. In this paper, we argue our position that neither of these is generally
sufficient in isolation: good agents should both maximize return and be robust to adversarial attacks.

The classical method to demonstrate superior AI performance is head-to-head matches, or direct comparisons
of average return, against the strongest known agents. This method has driven progress of the field since
the beginning: from Samuel’s checkers program, to chess, Go, poker, modern real-time games, and so on.
On the other hand, game-theoretic approaches to learning result in agents that approximately respond to
a population of opponents which are enumerated in hopes that the full strategic complexity of the game
is captured among the set of opponents, and convergence to an approximate Nash equilibrium is obtained.
The extent to which current AI systems are robust to adversarial attacks is unclear. Nevertheless, there is
evidence that even expert level AI agents can be demonstrably susceptible to adversarial behavior (Timbers
et al., 2022; Wang et al., 2022). While current evaluation methodologies over-emphasize the single metric of
cumulative reward or performance against experts, human or AI, we argue that the more important problem
is the lack of benchmarks that prioritize the evaluation of agents in a more general way, where multiple
metrics could lead to a better understanding of an agent’s capabilities.

In this paper, we propose a benchmark based on the classical game of Rock, Paper, Scissors augmented in
two ways: first, it is a repeated game and hence a sequential decision-making problem; second, performance
is measured against a population of agents with varied skill. The simplicity of the stage game is of paramount
importance: it is a well-understood two-player zero-sum game whose game-theoretic optimal strategy is well-
known, and by construction maximizing rewards against fallible opponents naturally leads to behavior that
is potentially exploitable. For learning agents to find exploits in the opponents, they must correctly deduce

1



Under review as submission to TMLR

Player 0

Player 1
R P S

R (0, 0) (1, −1) (−1, 1)
P (1, −1) (0, 0) (−1, 1)
S (−1, 1) (1, −1) (0, 0)

Figure 1: Rock, Paper, Scissors. Player 0 chooses an action assigned to a row, and similarly player 1 for a
column. Each entry shows the reward for player 0, then player 1 respectively.

their strategies from observations. We describe a population of forty-three openly-available hand-crafted
agents that were submitted to competitions and characterize their head-to-head performance, exploitability,
and the extent to which they are predictable (by supervised learning). We then train agents using several
modern approaches with different capabilities, against the population and independently trained against
copies of themselves. These approaches show promise in various ways: out-of-distribution generalization of
exploitative behavior, a clear lack of exploitable behavior, and a good balance between these two metrics.
Ultimately, none of the agents are able to outperform the top two participants in head-to-head matches while
being more robust to exploits, leading to a challenge and opportunity for novel multiagent reinforcement
learning research.

2 Repeated Rock, Paper, Scissors

In this section, we describe the basic notations, the environment, competition and participants, and
population-based evaluation. The environment and population are freely available within OpenSpiel (Lanctot
et al., 2019).

2.1 Notation and Environment Description

A normal-form game has a discrete set of players N = {1, 2, · · · , n}. A matrix game is a two-player game
with a set of actions per player A1 and A2, a joint action set A = A1 × A2, and utility functions for each
player i ∈ N , ui : A → ℜ. A zero-sum game is one where ∀a ∈ A,

∑n
i=1 ui(a).

Rock, Paper, Scissors (RPS), also called RoShamBo, is a two-player zero-sum matrix game described by the
matrix depicted in Figure 1: Rock (R) beats Scissors (S), Paper (P) beats Rock (R), and Scissors (S) beats
Paper (P).

The sequential version is repeated: there are K identical plays of RPS. At state s0, agents simultaneously
decide their actions and agent i receives intermediate reward rt,i by joint action at composed of all agents’
actions combined and payoff matrix in Figure 1. A trajectory is a state and (joint) action sequence of
experience: ρ = (s0, a0, s1, a1, · · · , sK−1, aK−1, sK). In this environment, every episode has length K and
the full (undiscounted) return is defined as G0,i =

∑K−1
t=0 rt,i. We choose K = 1000 as a default from the

competitions described in Section 2.2.

Similarly to previous work in this environment (Hernandez et al., 2019), observations to the agent depend
on the recall, R. With a R = 1, the observation at st includes the most recently executed joint action at−1,
encoded as a 6-bit observation (two one-hot actions). With R = 2, the observation includes the two most
recent join actions, and so on, where R = K includes the full action sequence. For example, when R = 10
there are 910 ≈ 3.5 billion unique observations; a tabular Q-learning agent would a table of 10.5 billion
entries. Unless otherwise noted, use R = 1 as a default value.

Finally, as is standard (Sutton & Barto, 2017), a policy πi is a mapping from an observation to a distribution
over actions used by agent i, and π (without subscripts) is the joint policy used by both agents. In RPS, there
is a large incentive to use stochastic policies because any deterministic policy is fully exploitable (Shoham
& Leyton-Brown, 2009). For simplicity of notation, we denote Gt,i,π = Ea∼π[Gt,i].

2



Under review as submission to TMLR

2.2 Competition and Participants (Bots)

In early 2000s, Darse Billings ran two Repeated Rock, Paper, Scissors (RRPS) competitions (Billings,
2000a;b). In this subsection, we describe the participant entries that were released and still openly accessible,
which have since been integrated into OpenSpiel (Lanctot et al., 2019). In each competition, participants
were asked to submit a bot1 to play RRPS, with K = 1000, all played within a one-second time limit. Each
program had full recall, the entire action sequence in each episode, but nothing more that would identify the
other bots. Participants were told in advance that the population would include some sub-optimal bots.

The majority of the entries in the competition were hand-crafted heuristic bots that were developed inde-
pendently by different programmers. A few participants submitted two entries. The resulting population
consists of 43 bots: 25 entrant bots and 18 seed bots from the first competition. Including the winner of the
second competition Andrzej Nagorko’s greenberg, made open-source seperately, and the first competition
winner Dan Egnor’s iocainepowder.

We now summarize the approach taken by most bots. The simplest seed bots do not use their observation
to inform their action. randbot generates an action uniformly at random. rockbot always plays rock.
r226bot plays 20% rock, 20% paper, 60% scissors. rotatebot rotates between R, P, S in that order.
pibot, debruijn81, textbot all play a fixed sequence of actions derived from the digits of pi, De Bruijn
sequences, and the competition rules in base 3, respectively.

Other seed bots have a recall R = 1, i.e. they use only the current observation. switchbot never repeats its’
previous action, and chooses uniformly between the two alternatives. switchalot repeats previous action
with 12% probability; otherwise, chooses uniformly between the two alternatives. copybot plays to beat
the opponent’s previous action. driftbot and adddriftbot2 bias their action by the opponent’s action
or joint-action, respectively, with an increase, or “drift”, in bias over time. foxtrotbot alternates between
playing randomly, and an offset of its’ previous action.

The remaining seed bots used historical observations either directly or through statistical summaries. flat-
bot3 plays a flat distribution. addshiftbot3 biases decision by previous joint action, shifting the bias
if losing. antiflatbot maximally exploits flatbot3. antirotnbot exploits rotations played by the
opponent. freqbot2 plays to beat opponent’s most frequent choice.

The entrant’s bots also used historical observations. robertot uses a voting algorithm informed by ob-
servation counts. predbot, piedra, and sweetrock predict play from action counts. mod1bot models
the opponent as predbot. biopic maintains four prediction models differing in available information.
markov5, markovbails, russrocker4, and halbot inform their prediction with Markov chain models.
phasenbott, peterbot, multibot, and mixed_strategy all switch between a fixed set of policies de-
pending on which is currently the most profitable. inocencio, zq_move, marble, granite, boom, and
shofar also implement complex rule-based decisions informed by summary statistics of the history.

Several bots took very innovative approaches. sunNervebot implemented a “nervous” network reminiscent
of a deep neural network. actr_lag2_decay implemented the cognitive architecture ACT-R (Anderson,
1993).

iocainebot (Egnor, 2000), which won the first competition, works by maintaining a set of predictions about
its opponent, and building a set of strategies from each predictor. Predictions included random guessing,
frequency analysis, and history matching across six different history sizes. From each prediction six strategies
are constructed based on recursive response computations (e.g., triple-guessing). iocainebot then plays
the most historically successful strategy. greenberg, by Andrzej Nagorko, won the second competition by
extending iocainebot to include additional predictors utilizing more advanced history matching algorithms.

2.3 Population-Based Evaluation

We propose several ways to use this population to evaluate agents. We define an agent’s PopulationRe-
turn to be the average return per episode against a bot drawn uniformly at random at the start of the

1In this paper, “bot” always refers to a previous competition participant, whereas “agent” refers to an RRPS player more
generally.

3



Under review as submission to TMLR

 g
re

en
be

rg
 io

ca
in

eb
ot

 p
ha

se
nb

ot
t

 h
al

bo
t

 m
od

1b
ot

 b
io

pi
c

 ro
be

rto
t

 ru
ss

ro
ck

er
4

 b
oo

m
 p

re
db

ot
 sh

of
ar

 g
ra

ni
te

 m
ar

bl
e

 a
ct

r_
la

g2
_d

ec
ay

 p
ie

dr
a

 sw
ee

tro
ck

 su
nN

er
ve

bo
t

 zq
_m

ov
e

 a
nt

iro
tn

bo
t

 m
ixe

d_
st

ra
te

gy
 m

ar
ko

v5
 m

ar
ko

vb
ai

ls
 m

ul
tib

ot
 in

oc
en

cio
 d

eb
ru

ijn
81

 p
ib

ot
 ra

nd
bo

t
 a

dd
dr

ift
bo

t2
 d

rif
tb

ot
 fo

xt
ro

tb
ot

 fl
at

bo
t3

 te
xt

bo
t

 a
dd

sh
ift

bo
t3

 sw
itc

ha
lo

t
 su

nC
ra

zy
bo

t
 sw

itc
hb

ot
 p

et
er

bo
t

 r2
26

bo
t

 fr
eq

bo
t2

 c
op

yb
ot

 ro
ta

te
bo

t
 ro

ck
bo

t
 a

nt
ifl

at
bo

t

greenberg
iocainebot

phasenbott
halbot

mod1bot
biopic

robertot
russrocker4

boom
predbot

shofar
granite
marble

actr_lag2_decay
sweetrock

piedra
sunNervebot

zq_move
antirotnbot

mixed_strategy
markovbails

markov5
multibot

inocencio
debruijn81

pibot
randbot

adddriftbot2
driftbot

foxtrotbot
flatbot3
textbot

addshiftbot3
switchalot

sunCrazybot
switchbot
peterbot
r226bot
freqbot2
copybot

rotatebot
rockbot

antiflatbot

1000 750 500 250 0 250 500 750 1000

Figure 2: RoShamBo bots payoff table. Each cell shows the average return per episode for the row bot
versus the column agent.

episode. Performance against specific bots can also be reported; we compute the cross-table between all bots
in Figure 2 below. The exploitability of an agent i is by how much their nemesis (best response) beats them.
Let −i refer to agent i’s opponent. Then,

Expl(πi) = G0,−i,(πi,b(πi)), where b(πi) ∈ BR(πi), and

BR(πi) = {π−i|G0,−i,(πi,π−i) = maxπ′
−i

{G0,−i,(πi,π′
−i

)}} is the set of best responses to πi. Notice that
exploitability is expressed in the opponent’s return; it is non-negative and its lowest value is zero when
an agent is not exploitable. However, due to the maximization over the entire policy space, it can be
too computationally expensive to compute exactly, so we can approximate it by running several learning
algorithms and taking the maximum achievable value. Another measure of approximate exploitability uses
the bots as exploiters, taking the maximum over the bots, where P is the population:

WithinPopExpl(πi) = max
π−i∈P

Ea∼(πi,π−i)[G0,−i].

4



Under review as submission to TMLR

Bot Names Pop. Return W.P. Expl Agg. Score
greenberg 288.15 3.65 284.50
iocainebot 255.00 5.00 250.00

biopic 196.36 36.66 159.70
boom 169.11 27.93 141.19

shofar 152.01 16.87 135.14
robertot 177.77 50.16 127.61

phasenbott 232.25 111.71 120.54
mod1bot 203.16 90.16 113.00

sweetrock 146.25 41.21 105.04
piedra 146.08 41.44 104.64

Alg. Names Pop. Return W.P. Expl Agg. Score
PopRL 258.00 10.98 247.02
LLM 201.0 45.8 155.20

ContRM 164.77 16.27 148.51
QL (R = 10) −0.52 8.62 8.10

R-NaD [−10, 5] [20, 40] [−50, −25]

Table 1: Top 10 bots ranked by AggregateScore, and top learning algorithms in each category from
subsections of Section 4.

Head-to-head performance of all bots in the population is visualized in Figure 22. Each cell represents an
average over 1000 episodes. Figure 3 summarizes some properties of the population. First, the population
returns of each bot range from −648.42 to 288.15, achieved by greenberg. greenberg dominates (achieves
higher value against all opponents) five bots, and iocainebot dominates one bot. Second, the within-
population exploitabilities range from 1.2 (randbot) to 1000, with several reaching this upper-bound,
316.1 on average. We then trained several RL algorithms until empirical converges (millions of episodes)
against each bot independently: Q-learning and IMPALA (Espeholt et al., 2018) with R ∈ {1, 3, 5, 10},
and defined the external-learned exploitability of that bot as the maximum value achieved among these
eight. These values range from 4.8 to 1000.0, with an average of 420.3. The within-population exploitability
achieves 75.2% of the external-learned exploitability on average, and varies between 50-100% of the external-
learned exploitability on most bots. Due to this consistency across bots and significantly less computation
requirements, we mainly use within-population exploitability from here on.

One simple way to rank agents under both metrics is to assume they both matter equally:
AggregateScore(πi) = PopulationReturn(πi) − WithinPopExpl(πi). Under this metric, we list
the top 10 bots in Table 6. The complete ranked list is given in Appendix A.1. For reference, we also include
the scores of the best learning algorithm in each category from Secton 4.

3 Predictability of RPS Bots

In order to win at RRPS, the bots must attempt to predict the actions chosen by other bots, while not
becoming predictable themselves by their opponent. In this section, we investigate to what extent the bots
are predictable by a neural network.

To assess how predictable each bot was, we sampled games of RRPS between the bot and each other bot,
including itself. We trained an LSTM per bot to predict that bot’s next action with recall R = 20 (details
in App. A.4). We report the prediction accuracy, i.e. the proportion of the time that the predicted action
matched the bot’s action, shown in Fig. 4.

Some bots are deterministic and easy to predict, e.g. rockbot was predicted correctly 100% of the time.
Stochastic bots, such as randbot, have low predictability, but this comes at the cost of their ability to exploit

2The precise values in this table will be added to OpenSpiel (Lanctot et al., 2019), if accepted for publication.

5



Under review as submission to TMLR

600 400 200 0 200 400 600
Average population return per episode

antiflatbot
rockbot

rotatebot
copybot
freqbot2
r226bot

peterbot
switchbot

sunCrazybot
switchalot

addshiftbot3
textbot
flatbot3

foxtrotbot
driftbot

adddriftbot2
randbot

pibot
debruijn81
inocencio
multibot
markov5

markovbails
mixed_strategy

antirotnbot
zq_move

sunNervebot
piedra

sweetrock
actr_lag2_decay

marble
granite
shofar

predbot
boom

russrocker4
robertot

biopic
mod1bot

halbot
phasenbott
iocainebot
greenberg

Ag
en

t

0 200 400 600 800 1000
Average return per episode

randbot
greenberg
iocainebot

shofar
markovbails

markov5
boom
biopic

sweetrock
piedra

sunNervebot
robertot

antirotnbot
pibot

mixed_strategy
mod1bot

phasenbott
halbot

textbot
actr_lag2_decay

marble
granite
driftbot
predbot

adddriftbot2
debruijn81

multibot
switchalot

addshiftbot3
zq_move
r226bot

foxtrotbot
flatbot3

switchbot
russrocker4

sunCrazybot
inocencio
peterbot
copybot

rotatebot
freqbot2

antiflatbot
rockbot

Ag
en

t

External-learned approximate exploitability
Within-population exploitability

Figure 3: Left: Population Returns for each bot. Right: Approximate exploitabilities for each bots.

other bots. Prediction accuracy for the entrants was substantially greater than for the Nash equilibrium,
but varied substantially from 48% for markovbails to 94% for peterbot.

Successful action prediction reveals the existence of structure within the bot population. In principle, RRPS
is a purely non-transitive game, and there is no such thing as a ‘better’ strategy. Under a unique Nash
equilibrium, an agent’s past actions are not predictive of their future actions. Still, we hypothesize that it is
possible to learn action predictions from a sub-population that generalise to the whole population.

To test this, we sample 30 bots from the population randomly, and generate RPS games between these bots.
We then train the same LSTM model as before to predict the bots’ actions. To succeed at this task, the
agent must identify the strategy a bot is employing to predict the next action as it no longer knows the bot
identities a priori. This also means that if held-out bots employ similar strategies, the agent should be able
to predict their actions too. We repeated the experiment 10 times with different splits of training/testing
bots.

On games between the training bots, the neural network achieved an average accuracy of 69.1%. In games
between the held-out test population, the neural network achieved an accuracy of 55.7%, which is significantly
better than chance, and demonstrates there is learnable structure in the bot behaviours. In Table 2, we break
down accuracy by whether the bot being predicted or the co-player are in the training population. We show
that prediction accuracy drops for either bot or co-player being from the held-out population, but the effect
is larger when the bot being predicted is not in the training set.

4 Learning to Play Repeated RPS

Can an agent learn to earn high population return and not be very exploitable? Here, we show baselines
and RL agent performance on this environment. We evaluate them using the population-based evaluation
(PBE) criteria in Section 2.3.

6



Under review as submission to TMLR

co
py

bo
t

ro
ck

bo
t

ro
ta

te
bo

t
te

xt
bo

t
pi

bo
t

de
br

ui
jn

81
fre

qb
ot

2
an

tif
la

tb
ot

pe
te

rb
ot

zq
_m

ov
e

pr
ed

bo
t

m
ar

bl
e

ad
ds

hi
ftb

ot
3

m
ul

tib
ot

gr
an

ite
an

tir
ot

nb
ot

su
nC

ra
zy

bo
t

in
oc

en
cio

m
od

1b
ot

sw
ee

tro
ck

pi
ed

ra
ha

lb
ot

ro
be

rto
t

fo
xt

ro
tb

ot
ac

tr_
la

g2
_d

ec
ay

ad
dd

rif
tb

ot
2

gr
ee

nb
er

g
m

ixe
d_

st
ra

te
gy

dr
ift

bo
t

bo
om

bi
op

ic
r2

26
bo

t
ru

ss
ro

ck
er

4
su

nN
er

ve
bo

t
io

ca
in

eb
ot

sh
of

ar
fla

tb
ot

3
ph

as
en

bo
tt

sw
itc

hb
ot

m
ar

ko
v5

m
ar

ko
vb

ai
ls

sw
itc

ha
lo

t
ra

nd
bo

t

copybot
rockbot

rotatebot
textbot

pibot
debruijn81

freqbot2
antiflatbot

peterbot
zq_move
predbot
marble

addshiftbot3
multibot
granite

antirotnbot
sunCrazybot

inocencio
mod1bot

sweetrock
piedra
halbot

robertot
foxtrotbot

actr_lag2_decay
adddriftbot2

greenberg
mixed_strategy

driftbot
boom
biopic

r226bot
russrocker4

sunNervebot
iocainebot

shofar
flatbot3

phasenbott
switchbot
markov5

markovbails
switchalot

randbot

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Action prediction accuracy. Cells show the action prediction accuracy for the row bot vs a column
co-player.

co-player
train test

predicted bot train 69.14% 67.35%
test 57.80% 55.65%

Table 2: Action prediction accuracy.

4.1 Baseline Independent RL Results

In this section we report the performance of fixed policies and baseline RL agents. Each individual run
reports the best achieved performance of an fixed agent or one trained by playing against another copy of an
agent of the same type (independent RL). Note that we differentiate this training from “self-play” due to the
agents using the same algorithm but separate networks. We then evaluate the agents against the population
after 700k - 1M episodes of training, with the population return and returns of each bot against the agent

7



Under review as submission to TMLR

Name P. Return W.P. Expl Agg. Score
rock −610.2 1000.0 −1610.2
paper −613.5 999.20 −1612.7

scissors −648.1 1000.0 −1648.1
uniform 0 9.31 −9.31

QL (R = 1) −531.28 994.54 −1525.82
QL (R = 3) −280.65 910.56 −1191.21
QL (R = 5) −89.67 405.89 −495.56
QL (R = 10) −0.52 8.62 8.1

DQN −194.49 693.13 −887.62
BDQN (η = 0.1) −124.52 515.60 −640.12
BDQN (η = 0.5) −19.59 164.25 −183.84
BDQN (η = 1) 18.00 51.93 −33.93
BDQN (η = 2) 12.75 11.20 1.55

A2C 0.18 9.84 −9.66

Table 3: Baseline bots and agent performance.

being averaged over a sliding window of the 50 most recent evaluations. Each reported value represent the
the average over five individual runs using different seeds Table 3.

The fixed players have no hyper-parameters except the seed. For Q-learning, we swept over learning rates
α ∈ {0.001, 0.02, 0.01} and R ∈ {1, 3, 5, 10}. We observed that while different learning rates had differently-
shaped curves, that ultimately the differences were small (with = 0.02 working best); on the other hand, the
amount of recall made a significant difference. Interestingly, the within-population exploitability of uniform
is greater than zero, which is possible to due to maximization over noisy estimates and the deterministic
nature of the random number generators. In addition, we run DQN (Mnih et al., 2015), A2C (Mnih et al.,
2016), and Boltzmann DQN (Cui & Koeppl, 2021) with various temperatures. For DQN and BDQN we
swept over hyper-parameters batch size ∈ {32, 128}, R ∈ {1, 3, 5}, learning rate ∈ {0.02, 0.01, 0.001}, replay
buffer capacity ∈ {105, 106}. For A2C we swept over hyper-parameters R ∈ {1, 3, 5}, λ ∈ {0.99, 0.9, 0.75},
entropy cost ∈ {0.01, 0.003, 0.001}, policy learning rate ∈ {0.0002, 0.0001, 0.00005}, critic learning rate ∈
{0.0001, 0.0002, 0.0005}. In all cases, networks were two-layer MLPs with layers of size (256, 128) and ReLU
activations except the final output layer. Overall we found that the algorithms improve as R increases,
achieving a population return of at most 18, and can be particularly exploitable. The high exploitability is
somewhat mitigated by a sufficiently large (R = 10) table in Q-learning, higher temperature in Boltzman
DQN, and entropy bonuses in A2C. The best achievable aggregate score across these baselines is 8.1.

4.2 Language Model Agent

Large language models (LLMs) have achieved state-of-the-art performance across a wide variety of natural
language processing tasks. This is accomplished by simple token-level training objectives, applied to massive
amounts of text data scraped from the web. LLMs can be further fine-tuned on specific tasks, and have been
successfully utilized as components in game-playing systems, most notably Cicero which achieved human-
level performance in Diplomacy (Meta et al., 2022). Even without fine-tuning, LLMs demonstrate some
game-playing ability like finding legal chess moves, but exhibit poor performance at identifying checkmate-
in-one moves (Srivastava et al., 2022).

Here we benchmark a language model of various sizes (small, medium, large, very large) on the RRPS
task3. We utilize the LLM as a game-playing agent by selecting actions based on the model’s prediction
of what action the opponent will play next. The model is given a zero-shot prompt that plainly states
the task and provides the game history (see Appendix A.2 for full prompt). The model’s prediction of the
opponent’s next action is determined by choosing the max over the logprobs of the tokens {R, P, S}. The
LLM agent then deterministically plays the action that beats the opponent’s predicted action. The true

3The precise LLM used and number of parameters will be revealed in the camera-ready copy, if accepted for publication.

8



Under review as submission to TMLR

actions played are appended to the prompt and the process is repeated. No parameters are fine-tuned at
any point. Methodologies for prompting and fine-tuning LLMs and integrating them into larger systems
are areas of active research, and optimizing the LLM’s performance on RRPS is beyond the scope of this
paper. However, even in this simple zero-shot setting, and despite not having been trained on RRPS, LLMs
demonstrate a surprising ability to to predict opponent actions that improves with model size. The largest
LLM model achieves an average population return of 201.0 and aggregate score of 155.2, placing it fourth
behind only Greenberg, IocaineBot, and Biopic; though, we did notice that size of the model size had a
significant effect on the performance: our smallest model achieves an aggregate score of −212.9 in comparison
(see Appendix A.2 for full results). Domain-specific fine-tuning would likely yield improvements and offers
a promising direction for progress on this benchmark. Moreover, RRPS also offers a measure of an LLM’s
capacity for identifying and adapting to members of a population it interacts with.

4.3 Regularized Nash Dynamics

To minimize the exploitability (i.e. thus converging to a Nash equilibrium), a solution that empirically
scale well is to learn a policy with the Regularized Nash Dynamics (R-NaD) algorithm (Perolat et al.,
2022). In a nutshell, this method repeat a 3 step process: 1) building a reward transformation based on a
regularisation policy, 2) a step where the process converges to a new fixed point of the game and 3) update
the regularization policy with the fixed point found at step 2). With R = 1, R-NaD achieves Pop. Return
in the set [−10, −5], W.P. Expl in the set [20, 40] and an Agg. Score in the set [−50, −25] which is not
far away from what the random policy achieves. The implementation used to produce these results uses
the OpenSpiel implementation of R-NaD (Lanctot et al., 2019). We used the parameters from the open-
source implementation and did a sweep over the following parameters (randomized over 5 seeds): η reward
transform : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], trajectory max : 10, 000, 000, batch size : [64, 128, 256, 512], entropy
schedule size : (20000, ), finetune from : [−1, 300000, 600000].

This algorithm achieves a strategy that is hard to exploit but it will not exploit the other players.

4.4 Contextual Regret Minimization

One natural choice for making decisions in an online learning problem is using an algorithm which minimizes
regret. These algorithms all have theoretical guarantees that their average expected online performance is
close to some optimal baseline, in hindsight. For example, an algorithm which minimises external regret is
expected to do roughly as well any single static action a, if we looked back in time and asked how well we
would have done if we had played a instead.

We look at four different algorithms for bandits with full information feedback, with different regret guar-
antees. Regret Matching (RM) is a simple, parameter-free algorithm which minimises external regret (Hart
& Mas-Colell, 2000). Regret Matching+ (RM+) is a modification of RM that often has better empirical
performance (Tammelin et al., 2015). RM+ also has a weak guarantee with respect to k-switching re-
gret, which compares performance to all possible k-piecewise policies. The strongly adaptive online learner
(SAOL) provides a strong guarantee for non-stationary environments, with a performance bound on any
sub-interval (Daniely et al., 2015). SAOL is a meta-algorithm operating on top of another regret minimizing
algorithm, and we used RM+ for the base algorithm in our implementation. Minimizing swap regret ensures
that an agent would not have wanted to play action a any time in the past when they had played b, for any
actions a and b. For swap regret, we used the meta-algorithm of Ito (Ito, 2020) on top of RM+.

While these four algorithms depend on the history – the historical actions played determine the current policy
– they do not explicitly consider the current context (R = 0). One way to frame RRPS as a contextual
regret minimization problem is to completely separate each possible recalled history for R > 0 into separate
contexts, with independent regret minimizing algorithms running in each context. An agent using this
discrete set of contexts has 9, 81, and 729 independent instances for R = 1, R = 2, and R = 3 respectively.
Another way to add context is to instead augment the environment actions with context experts that suggest
environment actions. For R = 1, we added six experts suggesting the opponent’s last action o, our last action
u, the actions that beat o and u, and the actions that lose to o and u.

9



Under review as submission to TMLR

Agent Pop. Return W.P. Expl Agg. Score
R = 0

RM 48.45 27.39 21.06
SAOL 67.3 34.73 32.57
RM+ 59.66 26.36 33.3

swap-RM+ 62.73 21.96 40.77
R = 1

SAOL 178.08 91.32 86.76
RM 164.75 76.3 88.44

RM+ 169.88 63.99 105.89
swap-RM+ 167.99 48.41 119.58
R = 2

SAOL 171.46 155.39 16.07
RM 175.43 148.89 26.54

RM+ 174.44 121.79 52.65
swap-RM+ 173.52 99.93 73.59
R = 1 history experts

RM 157.55 23.92 133.62
RM+ 157.99 17.51 140.48

swap-RM+ 156.93 15.69 141.24
SAOL 164.77 16.27 148.51

Table 4: Performance of regret minimizing agents.

4.5 IMPALA and Generalization

In this subsection, we try a more modern implementation of a policy gradient algorithm that allows for boot-
strapping and recurrent neural networks: Important-Weighted Actor-Learner Architectures (IMPALA) (Es-
peholt et al., 2018). IMPALA is a synchronous variant of (batched) A2C which uses importance-weighted
corrections for its value function estimates, and has been show to work on visual environments such as the
Atari suite (Bellemare et al., 2013) and at scale.

Specifically, we adapt the implementation provided in Haiku (Hennigan et al., 2020) to online (batched)
agent consistent with the other agent implementations in OpenSpiel. We run two IMPALA agents against
each other, similarly to the baselines in Section 4.1, sweeping over hyper-parameters policy learning weight
∈ {0.001, 0.0004, 0.0001}, entropy cost ∈ {0.01, 0.003, 0.001}, unroll length ∈ {20, 50, 100}, and R ∈ {1, 3, 5}.
For IMPALA we use a basic recurrent network with two hidden layers of size (256, 128) followed by an
LSTM layer of size 256. After 600k episodes of training, the best population return and within-population
exploitability achieved by this agent was 16.43 and 9.3, respectively (in both cases when R = 1) for an
aggregate score of 7.13.

4.5.1 IMPALA as a General Bot Exploiter Agent

Since IMPALA was designed to be a single-agent algorithm and was unable to significantly improve over
the baseline algorithms, we now verify its ability to act as an approximate best response (“exploiter”) agent
when playing against the population. In this setup, a new opponent bot is uniformly sampled at the start
of each episode to play against the IMPALA agent. By using similar hyper-parameter sweeps as before, we
find a small set of good hyper-parameters (learning rate 0.0004, entropy cost 0.003, and vary only the unroll
length ∈ {20, 50}). In this case, we find IMPALA can consistently reach a population return of 220 after
200k episodes, which is significantly higher than the independent RL setting.

One benefit of PBE is the ability to assess the capacity of an agent to generalize. In particular, we evaluate
the ability of an IMPALA exploiter agent against bots that it has not trained to exploit. We apply cross
validation over bot opponents: IMPALA trains against 33 agents, and evaluates only against the left-out
set of 10 agents. We average the performance over 50 distinct sets of 10 left-out opponents. IMPALA

10



Under review as submission to TMLR

0 100000 200000 300000 400000
Training episodes

0

50

100

150

200

250
Ag

gr
eg

at
e 

Sc
or

e

Aggregate Score for PopRL

PopRL (rho = 0.01, p = 0.1)
PopRL (rho = 0.01, p = 0.25)
PopRL (rho = 0.1, p = 0.1)
PopRL (rho = 0.1, p = 0.25)
PopRL (rho = 0.5, p = 0.1)
PopRL (rho = 0.5, p = 0.25)

Figure 5: Aggregate score achieved by PopRL.

consistently reaches an average of 120-130 per episode against the left-out bots, a significant drop compared
to when training and testing opponent distribution are identical.

To investigate whether the generalization ability can be improved, inspired by UNREAL (Jaderberg et al.,
2017), we augment the network and training procedure with an auxiliary task of opponent prediction. A
new output head is added that predicts which specific opponent bot the agent is facing, and a standard
classification loss is added to the combined RL loss with some prediction weight ρ ∈ {0.001, 0.01, 0.1, 0.5}.
The results are shown in Figure 6 (in Appendix A.3). We observe that opponent identification helps, and
improvements get are better with higher ρ. We also measure the average difference of the area-under-the-
curve (interpreted as population return advantage per episode) between ρ = 0.5 and the baseline ρ = 0),
achieving 12.94, 15.81, 13.00, and 11.05 at training episodes 25k, 50k, 100k, and 175k, respectively. The
advantage diminishes slightly over time but maintains a significant positive advantage well into the training
run.

4.5.2 PopRL: A Hybrid Population-Based Training Algorithm

We now propose a new general training algorithm (“Population RL” in constrast to “IndRL”) based on
IMPALA with opponent identification. Inspired by Restricted Nash Response (Johanson et al., 2008) and
game-theoretic population-based approaches (Lanctot et al., 2017; Hernandez, 2022; Strouse et al., 2021),
PopRL mixes between best responding to itself and to population members. Rather than train against the
bot population only, a PopRL agent trains against an augmented population containing the 43 bots and
an identical copy of another PopRL agent that is also independently training (concurrently or alternately).
At the start of each episode, with probability p the opponent is set to be the other PopRL agent, or (with
probability 1 − p) it is set to a uniformly sampled bot. In both cases, the agent uses opponent identification
auxiliary task, but unlike before the number of classes is one greater to include identifying the other PopRL
learning agent (44 instead of 43). The motivation is to leverage the population to train a generalist agent,
while still guarding against being exploited by a similar learning agent. Results are shown in Figure 5. The
best combination of hyper-parameters is able to achieve an aggregate score of 247.02, placing PopRL just
behind IocaineBot and far above Biopic, between second and third ranks. In addition, we show how
the best PopRL agent scores against individual bots compared to Greenberg in Figure 7 (Appendix A.3):

11



Under review as submission to TMLR

while they score similarly on many of the agents in the population, they differ significanlty against several
bots.

5 Conclusion and Future Extensions

We propose repeated Rock, Paper, Scissors, a population of previous tournament bots, and population-based
evaluation as new challenge in sequential decision-making with multiple agents. The bots range widely in
terms of population return, exploitability, and predictability. Several standard Deep RL baseline algorithms,
that have attained human-level performance on various challenge domains, fail to achieve both high reward
and to be robust to a population of RRPS bots.

We show that an LLM agent is able to achieve an aggregate score of 155.2, significantly higher than most
baseline RL algorithms. The best agent trained via self-play (a contextual regret minimizer using SAOL)
achieves an aggregate score of 148.51. When training against the population, IMPALA is able to to leverage
opponent identification to learn general responses, and when combined with population-based training,
achieves a high aggregate score of 247.02; but, even with the added information, it was unable to defeat the
top two bots.

There are several avenues of potential future work. Firstly, different and larger populations (some are openly
available (Knoll et al., 2011)). Secondly, a more complex extension would be to introduce a continual version
of RRPS with a dynamic population that can introduce or remove agents over time. Finally, it could be
interesting to see population-based evaluation methods applied to larger extensive-form games.

References
John R. Anderson. Rules of the Mind. Lawrence Erlbaum Associates, Inc., 1993.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, jun 2013.

Darse Billings. The first international roshambo competition. ICGA Journal, 23(1):42–50, 2000a.

Darse Billings. The Second International RoShamBo Programming Competition, 2000b. https://groups.
google.com/g/comp.ai.games/c/3LgNlV5dsbo. Retrieved Nov 30th, 2022.

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep rein-
forcement learning. In Twenty-Fourth International Conference on Artificial Intelligence and Statistics,
2021.

Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In International
Conference on Machine Learning, pp. 1405–1411, 2015.

Dan Egnor. Iocaine powder. International Computer Games Association Journal, 23(1):33–35, 2000.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable
distributed deep-RL with importance weighted actor-learner architectures. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1407–1416. PMLR, 10–15 Jul 2018. URL https:
//proceedings.mlr.press/v80/espeholt18a.html.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020. URL
http://github.com/deepmind/dm-haiku.

Daniel Hernandez. Opponent awareness at all levels of the multiagent reinforcement learning stack. PhD
thesis, University of York, 2022.

12

https://groups.google.com/g/comp.ai.games/c/3LgNlV5dsbo
https://groups.google.com/g/comp.ai.games/c/3LgNlV5dsbo
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html
http://github.com/deepmind/dm-haiku


Under review as submission to TMLR

Daniel Hernandez, Kevin Denamganaï, Yuan Gao, Peter York, Sam Devlin, Spyridon Samothrakis, and
James Alfred Walker. A generalized framework for self-play training. In 2019 IEEE Conference on Games
(CoG), pp. 1–8, 2019. doi: 10.1109/CIG.2019.8848006.

Shinji Ito. A tight lower bound and efficient reduction for swap regret. Advances in Neural Information
Processing Systems, 33:18550–18559, 2020.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver,
and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In 5th International
Conference on Learning Representations (ICLR), 2017.

Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing robust counter-strategies. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems 20
(NIPS), pp. 721–728, Cambridge, MA, 2008. MIT Press.

Byron Knoll, Daniel Lu, and Jonathan Burdge. Rpscontest, 2011. http://www.rpscontest.com/.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat, David
Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning. In
Thirtieth International Conference on Neural Information Processing Systems, 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien Péro-
lat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill,
Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder, Brennan Saeta, James Brad-
bury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward
Hughes, Ivo Danihelka, and Jonah Ryan-Davis. OpenSpiel: A framework for reinforcement learning in
games. CoRR, abs/1908.09453, 2019. URL http://arxiv.org/abs/1908.09453.

FAIR Meta, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath, Minae
Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya Renduchintala, Stephen Roller,
Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh Zhang, and Markus Zijlstra. Human-
level play in the game of Diplomacy by combining language models with strategic reasoning. Science, 378
(6624):1067–1074, 2022. doi: 10.1126/science.ade9097. URL https://www.science.org/doi/abs/10.
1126/science.ade9097.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
doi: 10.1038/nature14236. URL https://doi.org/10.1038/nature14236.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Thirty-
Third International Conference on Machine Learning, pp. 1928–1937, 2016.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul
Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen McAleer, Romuald Elie, Sarah H.
Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers,
Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan
Omidshafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Remi Munos, David Silver, Satin-
der Singh, Demis Hassabis, and Karl Tuyls. Mastering the game of stratego with model-free multiagent
reinforcement learning. Science, 378(6623):990–996, 2022. doi: 10.1126/science.add4679.

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press, 2009.

13

http://www.rpscontest.com/
http://arxiv.org/abs/1908.09453
https://www.science.org/doi/abs/10.1126/science.ade9097
https://www.science.org/doi/abs/10.1126/science.ade9097
https://doi.org/10.1038/nature14236


Under review as submission to TMLR

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, and over 300 additional authors not shown. Be-
yond the imitation game: Quantifying and extrapolating the capabilities of language models. 2022. URL
https://arxiv.org/abs/2206.04615.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
humans without human data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 14502–
14515. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
797134c3e42371bb4979a462eb2f042a-Paper.pdf.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition, 2017.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit texas hold’em.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid, Neil Burch, Julian Schrit-
twieser, Thomas Hubert, and Michael Bowling. Approximate exploitability: Learning a best response in
large games. In Thirty-First International Conference on Artificial Intelligence, 2022.

Tony Tong Wang, Adam Gleave, Nora Belrose, Tom Tseng, Joseph Miller, Michael D Dennis, Yawen Duan,
Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial policies beat professional-level go ais,
2022. URL https://arxiv.org/abs/2211.00241.

A Additional Results

In this appendix, we give supplemental results referred to in the main text.

A.1 Full Ranking of Bots

The performance and full ranking of bots in the population is given in Table 5.

A.2 Language Model Agent

Language model prompt after two rounds of RRPS:

A repeated game of rock, paper, scissors is being played.
Guess the next move based on the game history.
Game history (player1, player2):
R,P
P,S

Minor variations in the prompt did not significantly impact performance. The scores are shown in Table 6.

A.3 IMPALA Agent

A.4 Behavioral Cloning

To access the extent to which the bots are predictable, we train action-prediction models that predict the
bot’s next action based on the full game history. We investigate three types of action-prediction models:

• Individual: a model trained to clone a single agent’s behavior against the full population.

• Population: a model trained to the full population’s behavior against the full population.

14

https://arxiv.org/abs/2206.04615
https://proceedings.neurips.cc/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf
https://arxiv.org/abs/2211.00241


Under review as submission to TMLR

Rank Bot Name Pop. Return W.P. Expl Agg. Score
1 greenberg 288.153 3.648 284.505
2 iocainebot 255.003 5.006 249.997
3 biopic 196.365 36.665 159.700
4 boom 169.119 27.928 141.191
5 shofar 152.008 16.865 135.143
6 robertot 177.767 50.154 127.613
7 phasenbott 232.245 111.708 120.537
8 mod1bot 203.162 90.158 113.004
9 sweetrock 146.250 41.207 105.043

10 piedra 146.080 41.441 104.639
11 markovbails 111.192 17.601 93.591
12 sunNervebot 138.054 45.490 92.564
13 markov5 111.186 18.720 92.466
14 antirotnbot 121.387 58.616 62.771
15 halbot 212.429 176.229 36.200
16 mixed_strategy 114.131 83.488 30.643
17 randbot 0.234 1.197 −0.963
18 pibot 4.516 81.000 −76.484
19 actr_lag2_decay 146.319 236.865 −90.546
20 marble 148.661 240.988 −92.327
21 granite 149.252 241.840 −92.588
22 predbot 167.112 267.687 −100.575
23 zq_move 124.799 368.744 −243.945
24 multibot 56.057 307.065 −251.008
25 textbot −73.394 185.000 −258.394
26 debruijn81 10.250 301.679 −291.429
27 driftbot −49.499 263.493 −312.992
28 adddriftbot2 −41.855 283.910 −325.765
29 russrocker4 172.334 529.751 −357.417
30 switchalot −82.877 315.612 −398.489
31 addshiftbot3 −78.117 342.420 −420.537
32 foxtrotbot −51.019 407.418 −458.437
33 flatbot3 −71.952 416.524 −488.476
34 inocencio 17.616 579.868 −562.252
35 r226bot −212.619 399.845 −612.464
36 sunCrazybot −83.609 578.089 −661.698
37 switchbot −173.178 497.182 −670.360
38 peterbot −174.238 927.986 −1102.224
39 freqbot2 −341.744 999.000 −1340.744
40 copybot −475.327 997.000 −1472.327
41 rotatebot −602.641 998.121 −1600.762
42 rockbot −610.116 1000.000 −1610.116
43 antiflatbot −648.420 999.002 −1647.422

Table 5: The full ranking of bots in the population.

15



Under review as submission to TMLR

LLM size
BotName 400M 1B 7B 70B
BotName Small Medium Large Very Large

ac_l2_decay −123.3 −1.5 −28.0 −13.1
adddriftbot2 27.5 52.4 82.4 89.7
addshiftbot3 73.5 188.0 222.6 155.5

antiflatbot 995.0 995.6 991.4 992.6
antirotnbot 51.4 55.8 59.4 60.9

biopic −193.5 −63.4 −52.8 −20.0
boom −65.7 10.4 −6.8 9.5

copybot 981.0 981.0 983.0 979.0
debruijn81 −51.0 −11.0 −30.0 −20.0

driftbot 80.3 123.4 182.6 155.4
flatbot3 106.6 148.2 106.5 154.2

foxtrotbot −1.7 57.3 44.8 33.9
freqbot2 598.0 774.0 871.0 919.0

granite −16.8 120.6 156.8 128.6
greenberg −305.9 −121.2 −108.6 −39.8

halbot −300.9 −145.6 −134.9 −8.9
inocencio 449.3 337.6 793.1 382.1

iocainebot −323.0 −144.4 −148.7 −28.6
marble 20.6 141.7 146.1 123.0

markov5 −78.6 3.5 −14.4 −19.3
markovbails −80.4 2.4 −10.9 −21.1
mixed_strat −15.4 31.2 34.0 57.4

mod1bot −206.9 −87.7 −76.2 −25.0
multibot 198.0 211.0 366.0 224.0
peterbot 652.1 815.2 831.0 846.2

phasenbott −315.3 −174.7 −165.4 −45.8
pibot −2.0 −11.0 1.0 9.0

piedra 42.4 42.8 44.4 44.7
predbot −143.2 12.3 24.4 67.6
r226bot 372.4 364.3 370.8 344.4
randbot 1.1 3.4 6.3 −3.7

robertot −94.5 −8.6 3.0 −5.8
rockbot 998.0 998.0 996.0 994.0

rotatebot 983.0 992.0 995.0 1000.0
russrocker4 −234.4 −55.1 −55.8 −14.5

shofar −80.2 −34.5 −23.6 −15.8
sunCrazybot 292.5 389.7 423.2 466.3
sunNervebot −141.3 −45.7 −37.0 −16.5

sweetrock 43.9 49.6 30.8 45.3
switchalot 116.5 123.9 115.1 154.5
switchbot 200.1 230.7 225.1 276.6

textbot 144.0 113.0 129.0 31.0
zq_move 80.4 154.9 196.2 196.1

Pop. Return 110.1 177.2 198.6 201.0
W.P. Expl 323.0 174.7 165.4 45.8
Agg Score −212.9 2.5 33.2 155.2

Table 6: LLM agent performance against bot population (avg over 10 runs).

16



Under review as submission to TMLR

0 25000 50000 75000 100000 125000 150000 175000
Training episodes

40

60

80

100

120

140
Po

pu
la

tio
n 

Re
tu

rn
 o

ve
r H

el
d-

ou
t O

pp
on

en
ts

Average Population Return over 10 Held-out Opponents

IMPALA (rho = 0)
IMPALA (rho = 0.001)
IMPALA (rho = 0.01)
IMPALA (rho = 0.1)
IMPALA (rho = 0.5)

Figure 6: Population return over held-out opponents when IMPALA is trained as an exploiter agent..

• k-Fold: a model trained to clone a fold (nin=30) of the population, and is also evaluated for gener-
alization on the held-out population (nout = 13).

Hereafter, the sub-population being modelled is referred to as the demonstrator population/individual (e.g.,
in the case of the Individual model, it is the singleton bot). Common to all of the models is that the identity
of the bots are never revealed.

Figure 4 shows results for the case in which a separate LSTM is trained per bot. In Figure 8 we compare
average action prediction accuracy of individual LSTM models to a single LSTM model trained to predict
next actions for a randomly sampled bot from the full population of 43 bots.

act
r_la

g2
_de

cay

ad
dd

rift
bo

t2

ad
dsh

iftb
ot3

an
tifl

atb
ot

an
tiro

tnb
ot

bio
pic

bo
om

cop
yb

ot

de
bru

ijn8
1

dri
ftb

ot

fla
tbo

t3

fox
tro

tbo
t

fre
qb

ot2
gra

nit
e

gre
en

be
rg

ha
lbo

t

ino
cen

cio

ioc
ain

eb
ot

marb
le

mark
ov

5

mark
ov

ba
ils

mixe
d_s

tra
teg

y

mod
1b

ot

mult
ibo

t

pe
ter

bo
t

ph
ase

nb
ott pib

ot
pie

dra

pre
db

ot

r22
6b

ot

ran
db

ot

rob
ert

ot

roc
kb

ot

rot
ate

bo
t

rus
sro

cke
r4

sho
far

sun
Craz

yb
ot

sun
Nerv

eb
ot

sw
ee

tro
ck

sw
itc

ha
lot

sw
itc

hb
ot

tex
tbo

t

zq_
mov

e

Opponent

0

200

400

600

800

1000

Re
tu

rn
 v

er
su

s 
op

po
ne

nt

Return of the PopRL Agent/Greenberg vs. each bot (average over 50 episodes)
PopRL agent
Greeberg

Figure 7: Population return of PopRL agent against individual bots compared to Greenberg

17



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Action prediction accuracy

randbot
switchalot

markovbails
markov5

switchbot
phasenbott

flatbot3
shofar

iocainebot
sunNervebot
russrocker4

r226bot
biopic
boom

driftbot
mixed_strategy

greenberg
adddriftbot2

actr_lag2_decay
foxtrotbot

robertot
halbot
piedra

sweetrock
mod1bot
inocencio

sunCrazybot
antirotnbot

granite
multibot

addshiftbot3
marble

predbot
zq_move
peterbot

antiflatbot
freqbot2

debruijn81
pibot

textbot
rotatebot

rockbot
copybot

Pr
ed

ic
te

d 
bo

t

individual models
single model

Figure 8: Average action prediction accuracy comparison between individual LSTM models and a single
LSTM model cloning all bots.

Training The models are trained with a behavioral cloning objective that maximize the action-prediction
model’s likelihood of playing a demonstration action (from the bot). Demonstration data is generated
dynamically by uniformly sampling a demonstrator and co-player. Note, that the co-player is sampled
uniformly from the full population for bot the Individual and Population models, but is sampled only from
the within-fold population for the k-Fold model. Data is generated in parallel by 20 processes populating a
temporary data buffer that is uniformly sampled to prevent correlation in complete batches from the same
strategy profile. The training batches contain 128 sub-trajectories of length 20 providing a limited recall

18



Under review as submission to TMLR

during training, but during evaluation full recall can be maintained within the learned memory. Each model
is trained for 1B frames corresponding to 1M episodes.

Evaluation The trained models are fixed and their predictability is measured by their agreement with a
demonstrator playing 100 episode for each unique profile (across both demonstration- and co-player-bots).
Agreement is measured by average action accuracy across all episodes.

Model Implementation The models are implemented with a 2-layer LSTM with sizes [64, 64]. The
output of final layer of the LSTM is projected into action space by an 3-layer fully-connected neural network
with sizes [64, 32, 3].

19


	Introduction
	Repeated Rock, Paper, Scissors
	Notation and Environment Description
	Competition and Participants (Bots)
	Population-Based Evaluation

	Predictability of RPS Bots
	Learning to Play Repeated RPS
	Baseline Independent RL Results
	Language Model Agent
	Regularized Nash Dynamics
	Contextual Regret Minimization
	IMPALA and Generalization
	IMPALA as a General Bot Exploiter Agent
	PopRL: A Hybrid Population-Based Training Algorithm


	Conclusion and Future Extensions
	Additional Results
	Full Ranking of Bots
	Language Model Agent
	IMPALA Agent
	Behavioral Cloning


