23
24
25
26
27
28
29

39
40
41
42
43
44

Least Privilege Access for Persistent Storage Mechanisms
in Web Browsers

Anonymous Author(s)

ABSTRACT

Web applications often include third-party content and scripts to
personalize a user’s online experience. These scripts have unre-
stricted access to a user’s private data stored in the browser’s per-
sistent storage like cookies, localstorage and IndexedDB, associated
with the host page. Various mechanisms have been implemented to
restrict access to these storage objects, e.g., content security policy,
the HttpOnly attribute with cookies, etc. However, the existing
mechanisms provide an all-or-none access and do not work in sce-
narios where web applications need to allow controlled access to
cookies and localstorage objects by third-party scripts. If some of
these scripts behave maliciously, they can easily access and modify
private user information that are stored in the browser objects.

The goal of our work is to design a mechanism to enforce fine-
grained control of persistent storage objects. We perform an em-
pirical study of persistent storage access by third-party scripts on
Tranco’s top 10,000 websites and find that 89.84% of all cookie ac-
cesses, 90.98% of all localstorage accesses and 72.49% of IndexedDB
accesses are done by third-party scripts. Our approach enforces
least privilege access for third-party scripts on these objects to
ensure their security by attaching labels to the storage objects that
specify which domains are allowed to read from and write to these
objects. We implement our approach on the Firefox browser and
show that it effectively blocks scripts from other domains, which
are not allowed access based on these labels, from accessing the
storage objects. We show that our enforcement results in some
functionality breakage in websites with the default settings, which
can be fixed by correctly labeling the storage objects used by the
third-party scripts.

ACM Reference Format:

Anonymous Author(s). 2024. Least Privilege Access for Persistent Storage
Mechanisms in Web Browsers. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

Websites use persistent client-side storage mechanisms like cook-
ies [15, 19], web storage (localstorage and sessionstorage) [10] and
IndexedDB [17], as a means to store user- and site-specific data
on the user’s browser [25]. This provides websites the ability to
maintain sessions and identify users over subsequent requests elimi-
nating the need for users to authenticate themselves with the server

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

on every request. This also allows websites to persist other informa-
tion across pages, e.g., e-commerce applications share cart and price
details using cookies between the shopping and payment page.

These storage mechanisms are often used to store private and
sensitive user information (e.g., session tokens); thus, their security
is of paramount importance. Third-party scripts included on a web
page have unrestricted access to this data stored by the host in
the browser [16]. If some of these third-party scripts behave mali-
ciously, they can access and alter the data stored in these persistent
storage mechanisms. For instance, an adversary can get hold of an
authentication cookie, and may use it to impersonate the user and
initiate a session on behalf of the user. Similarly, if the adversary
can replace the user’s authentication cookie with their authentica-
tion cookie, the user would then perform actions on behalf of the
attacker [30].

Browsers include security policies like the same-origin policy
(SOP) [16] and content security policy (CSP) [44] to control the access
of host resources by third-parties. However, SOP treats third-party
scripts included on the host page as belonging to the same domain,
thus providing access to all resources on that page, while CSP only
controls the domains from which the scripts can be loaded on a
page without specifying if/how each of these scripts can access the
host’s storage objects.

Attributes like the HttpOnly flag [22], Secure flag [6] and Same-
Site flag [43] were introduced to control the access of cookies by
JavaScript (JS), sending cookies on unencrypted channels and on
cross-site requests, respectively. Although the HttpOnly flag blocks
all JS (including any third-party scripts) from accessing a cookie
that has this flag set, various cases require cookies to be accessed
by scripts and, in particular, by third-party scripts. For instance,
analytics cookies are set by the host page and then accessed by
third-party scripts such as Google Analytics to track user behaviors
on websites; similarly, consent is generally managed by third-party
consent management platforms (CMPs), which are included as third-
party scripts that set and access the host cookies. Thus, completely
blocking scripts from accessing all cookies is not practical in the
real-world websites. The Secure and SameSite flags only control
the inclusion of cookies sent along with HTTP requests, thereby
allowing all scripts included on the page to access these cookies
(sans the ones which have the HttpOnly flag set).

Objects stored in the web storage or IndexedDB are accessed via
JS only and not included as part of HT TP requests. Unfortunately,
no flags or attributes exist for providing an all-or-none protection
mechanism and controlling the access of these objects by JS. These
objects stored in the browser are freely accessible by any JS included
on the host page without any restrictions making them vulnerable
to confidentiality and integrity violations.

The goal of our work is to design a security mechanism that
provides a fine-grained control of persistent storage objects by
scripts included on a web page.

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

114
115

116


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

To realize this objective, we first analyze how extensively are
storage objects accessed by third-party JS in real-world websites,
and then present an approach to secure these accesses. We per-
form an empirical study of Tranco [34] top 10,000 websites that
involved analyzing the access of persistent storage mechanisms
by JS included on the web page. The use of these objects to store
site-relevant data is very common as we show later in Section 4.
We found that almost 95% of all cookies, 91% of all the localstorage
objects and 74% of IndexedDB objects! in the browser are accessed
by third-party scripts. Third-party accesses (to read or modify) are
widely prevalent, and are 89.84%, 90.98% and 72.49% of all accesses
in the case of cookies, localstorage and IndexedDB, respectively.
Additionally, we found that in at least 16% of these third-party ac-
cesses, the third-party scripts read/modify cookies that are set by
the host page (first-party); for localstorage, this access is around
10%. Section 4 discusses a more detailed analysis of these accesses.

Recent works [11, 12, 26, 35] discuss how some of these storage
objects are being accessed by third-party scripts. However, they
either focus on measurement and analyses of specific cookies used
for tracking [35] or authentication and authorization [26], or on
the use of web storage for tracking [11, 12]. Bahrami et al. [14]
propose isolating cookies in the cookie jar based on the domains
that set them, thereby preventing third-party scripts from accessing
cookies created by the host page. However, as we show in Section 4,
almost 45% of the cookies set by the host pages, in the top 10K
websites, were read or modified by third-party scripts. Additionally,
we observed that cookies created by third-party scripts are being
accessed by the host page scripts (or first-party scripts) in ~5% of
the cases and by other third-parties in almost 38% cases. Thus, a
coarse-grained blocking of access to cookies set by another domain
may result in functionality breakage on the host page. While some
of these accesses may raise security and privacy concerns, we argue
that the responsibility for granting or denying such access should
be with the "owner" of these objects.

Our approach. We propose a fine-grained approach to control the
reading and writing of storage objects by third-party scripts build-
ing on the principle of least-privilege. The central idea, described in
Section 5, is to associate labels or taints with all storage objects to
distinguish the objects set by the host page from the cookies set by
third-party scripts. The labels are, then, used to determine whether
a storage object is accessible by certain scripts or not, based on the
attributes set by the "owners" of these objects.

To study the efficacy of our approach, we modify the Firefox
web browser (Section 5) for carrying the context from JS to the
DOM APIs that operate on the storage objects, and store labels
(that are sets of domains) along with the objects. We enforce checks
on third-party scripts accessing the storage objects by checking
the labels on the objects against the scripts’ domain, and evaluate
this on 100 websites for functionality breakage. We show that with
the default policy in place certain functionalities related to consent
management and analytics do not run as expected. To ensure that
these run correctly, the server needs to explicitly add the labels
allowing access to third-party scripts.

To summarize, the key contributions of our work include: (1) a
comprehensive empirical analysis of accesses to storage objects by

! An IndexedDB object is a key in a particular database

Anon.

both first- and third-party scripts, (2) highlighting the limitations of
the current browser policy providing third-party scripts an all-or-
none access to storage objects, (3) the design and implementation of
our least-privilege access approach and an evaluation of the impact
of our intervention on website functionality breakage.

2 BACKGROUND

2.1 Persistent storage in browsers

Persistent storage objects are key-value pairs stored in the browser
to maintain information across sessions or store site-relevant data.
Cookies [15, 19] provide a mechanism for sharing state between
clients and servers, which is useful in maintaining sessions. Servers
authenticate users and maintain session information in the form
of cookies in the users’ browsers to identify them over subsequent
requests; this eliminates the need for users to authenticate them-
selves with the server on every request. Cookies are also used to
persist information across pages belonging to the same domain,
e.g., e-commerce applications share cart and price details using
cookies between the shopping page and the payment page. These
cookies that are set by the host page are referred to as first-party
cookies. Advertising scripts also use cookies to track a user’s activity
across different domains and display advertisements according to
the user’s behavior.

Web Storage API [10] and IndexedDB [17] were later introduced
to address the size limitations of cookies. While web storage was
originally introduced to store non-sensitive data like themes and
languages [8], with the increase in the restrictions on cookies, devel-
opers have started using web storage to store sensitive information,
as well, like cookie consent. IndexedDB is efficient when the size of
data that needs to be stored is large. Although this makes integra-
tion of features easy, it opens another channel for information leaks
to third-party scripts as these storage objects are shared between
all scripts under the same origin.

The access of these storage objects is subject to certain policies,
which we describe in the rest of this section.

2.2 Browser security policies

The same-origin policy (SOP) [16] is a standard that defines how
documents and scripts of one origin are allowed to interact with
resources belonging to another origin. An origin is identified using
the protocol, hostname (or domain) and the port number, e.g., in
https://eg.com:443, https is the protocol, eg.com is the domain
name and 443 is the port number. SOP prevents resource access by
frames embedded or included in a web page, if they belong to a
different origin (e.g., http://eg.com: 80), thus providing an all-or-
none access control. However, SOP allows certain elements like
images and scripts belonging to a different domain to be included
in the context of the host page that loaded these elements.
Content security policy (CSP) [44] was later introduced for more
fine-grained access control, wherein the server explicitly lists the
domains from which various HTML elements or resources can be
included on the web page, e.g., the following policy only allows
scripts from example.com to be executed while any other dynami-
cally loaded script shall not be executed:
Content-Security-Policy: script-src https://example.com/;
Although CSP allows more fine-grained policies to be specified, it

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

Least Privilege Access for Persistent Storage Mechanisms
in Web Browsers

( Host page o) \

- 'FC | n https://fexample.com |

domain: ad_net.com

tr_uid=022

Advertisement 1

<iframe src="ad net.com/tpl.js">

Advertisement 2

domain: example.com

<script src="ad_net.com/tp2.js">

tr_uid=1234

__consent=True

<script src="example.com/fp.js">

Accept All J)

=

Cookie Jar

Figure 1: Cookie access policies in Web browsers

also allows an all-or-none access only, i.e., either all scripts from
https://example.com/ will be executed or none of them will. Thus,
any third-party source that the host page may trust or include in the
policy can execute on the host page and access any of the resources
(e.g., cookies) without any restrictions.

2.3 Cookie access policies

Accessing cookies is subject to policies that are less restrictive than
SOP, and subject to the values of Domain, Secure [6], HttpOnly [22]
and SameSite [43] attributes. The Domain attribute defines which
domain can access the cookie (irrespective of the protocol and
the port number used); to only allow domains using the HTTPS
protocol, the Secure attribute must be set for the cookie. However,
as third-party scripts (originating from a domain other than the
host page) included on the host page share the same origin as the
host page, they have unrestricted access to the host’s cookies in the
browser. The SameSite attribute allows the developer to specify
the context in which the cookie shall be shared over the network,
which helps protect against cross-site request forgery (CSRF) [30]
attacks. It does not, however, prevent a script from accessing or
modifying the cookie value.

The HttpOnly flag is the only attribute that prevents any Java-
Script code from accessing a cookie, when set to True. Even if the
cookie needs to be accessed by a first-party script, for instance,
when storing consent (Listing 1), the flag needs to be set to False,
thereby restricting scripts belonging to the host domain from using
these cookies, as well, when set to True.

One solution to prevent third-party scripts from accessing host
cookies is to isolate them in iframes [16], but in many cases the
website cannot function as intended unless they are included on the
main page. For example, analytics libraries need to access specific
user interaction metrics, such as mouse movements and clicks,
which cannot be effectively captured if the script is executed within
a separate iframe.

Figure 1 shows how scripts can access cookies in browsers. The
host page example. com includes an advertisement script loaded in
iframe from a third-party domain — ad_net.com. A cookie set by
the script tp1. js (@) would be stored with Domain=ad_net . com.
However, as the script tp2. js is included as a third-party script, the
cookie set by the script () is stored with Domain=example. com;

Conference’17, July 2017, Washington, DC, USA

tp2.Js can also read or modify the cookie __consent set by the
first-party script, fp. js, @.

2.4 Web storage and IndexedDB access policies

Access to web storage objects happen similar to cookies except
that web storage objects do not have any attributes other than the
domain associated with them, i.e., any third-party script included
on the host page can access all localstorage and sessionstorage
objects set by the first-party scripts. The use of web storage as an
alternative to cookies has increased significantly [11], thus allowing
third-party scripts easy access to the data stored by the host page
in the browser. Similarly, third-party scripts can access IndexedDB
objects stored by the host page without any restrictions. While
cookies have flags and attributes associated with them that provide
them some protection, web storage and IndexedDB objects are not
subject to any scrutiny other than the same-origin policy [16].

In the rest of the paper, we discuss examples, approaches and
solutions using cookies, but these extend, without any loss of gen-
erality, to other persistent storage objects, as well.

3 MOTIVATING EXAMPLE

As there is no distinction between first-party and third-party scripts
when accessing persistent storage, third-party scripts can easily
access, modify or share storage objects set by the host domain.
A naive solution to the problem of third-party scripts accessing
persistent storage is to simply block all third-party JS from accessing
any storage objects. While similar approaches have been proposed
for third-party cookies [31], there are instances that require scripts
to access storage objects.

An example that requires third-party scripts on web pages to
access and modify cookies is when managing user consent (to
comply with privacy regulations like GDPR [28, 29]). Web pages
store users’ privacy preferences and consent using storage objects.
These objects are set and updated according to the user preference
using JS, and hence cannot be simply blocked access to in scripts.
Moreover, websites use third-party consent management platforms
(CMPs) like TCF [27], OneTrust [4], TrustArc [42], etc. to maintain
their users’ privacy (as they are easy to integrate and maintain),
each of which require access to first-party cookies.

However, unrestricted access can have negative implications.
Consider, for instance, a website (Listing 1) that contains a con-
sent banner, which provides an option to either accept or decline
cookies. The user’s consent decision is stored in __consent. The
website also includes a third-party script to load an image on the
page, which has access to all first-party cookies and storage objects.
If this third-party script behaves maliciously (as shown in Listing 2),
it can access and modify the __consent cookie as shown in Fig-
ure 2. The script may also modify the localstorage object providing
incorrect analytics information about the user. As discussed in prior
work [45], accessing first-party cookies can lead to confidentiality
and integrity violations, the consequences of which include, but
are not limited to, cross-site scripting (XSS), information leakage,
cross-site request forgery (CSRF), and account hijacking.

Cookie tossing: A compromised or malicious script may also
abuse this feature to perform a cookie tossing attack degrading

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348



362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

/% —mmmmmm example.com/fp.js —-------- */
function showSelected(e) {
if (this.checked) {
document.querySelector('#output').innerText =
'You selected to ${this.value} cookies';
if (this.value=='Decline') {

setCookie('__consent', "false", 30);
} else{

setCookie('__consent', "true", 30);
133

function noOfVisits() {
var cc = parselnt(localStorage.getItem("clickcount™"));
localStorage.setItem("clickcount", ++cc);

}

Listing 1: Cookie and localstorage access in first-party script

/% —mmmmmm ad_net.com/bad. js -------- */
name = getCookie("__consent")
if (name !="")
if (name == "false")
setCookie("__consent", "true", 30);

var img = document.createElement("img");
img.src = "http://ads.bad?count="+
localStorage.getItem("clickcount");

Listing 2: Malicious third-party script

] \{ Some useful functionality e TP Script
Website @ Dedii
Decline consent 3y FP
d script
(2) set-Cookie: __consent=false fp.js
<€
[ (A) Set-Cookie : username=v; #value=true

SameSite=Strict
Cookie
Jar <
<

@ Set-Cookie : __consent=true

i TP script

ad_net.com/bad. js

9 pasiwoidwo)

© Set-Cookie: username=v';
SameSite=None

o

Browser Server

Figure 2: Cookie tossing by malicious third-party script

the security restrictions imposed on existing cookies. For instance,
a cookie whose SameSite [43] attribute is set to “Strict” may be
overwritten by a third-party script setting the SameSite attribute’s
value to “None". Figure 2 shows the workflow of a malicious third-
party script changing host cookie’s SameSite attribute to “None"
(©) Cookie tossing can affect cookies in three scenarios: (1) using
cookies as authentication cookies. In this case, the cookies exploited
are used for authentication and can effect websites which send au-
thentication data through cookies. Some example scenarios include
third-party SSO provider and online payments where sub-sessions
are hijacked by injecting the attacker’s account details; (2) associat-
ing important and session independent states with cookies result
in attacker accessing the website with the user’s account. This
enables the attacker to access/hijack information about the user

Anon.

like shopping history and browsing history. This scenario requires
cookies to store session IDs in cookies which can be exploited by
the attacker; (3) reflecting cookies into HTML involves injecting
malicious script in reflecting cookies which launch an XSS attack
in turn.

In this work, we propose an approach to ensure that none of the
third-party scripts can read or modify cookies and other storage
objects that they have not created, unless they are explicitly granted
access to by their owner.

4 PREVALENCE OF STORAGE ACCESSES IN
REAL-WORLD WEBSITES

To study the prevalence of third-party storage accesses in real-
world websites, we performed a measurement analysis on Tranco
top 10,000 websites?. We modified the Nightly Firefox version 98.0al
(64-bit) browser to crawl these websites, and log the accesses of
cookies, localstorage and IndexedDB objects by scripts included on
the websites. This measurement study was performed in an auto-
mated manner running the Marionette test [9] during the months of
March and April in 2024. For collecting the data, we instrumented
the browser APIs — getCookie, setCookie, getltem, setltem, ID-
BObjectStore.get and IDBObjectStore.put — to capture all storage
accesses in a log file. The logs capture the host’s domain along
with the domain of the origin of the script, extracted based on the
URL from where the script was loaded. As all requests to read and
modify storage objects are handled by these APIs (or their variants),
our approach is able to record all storage object accesses by first-
and third-party scripts. These logs are more comprehensive as com-
pared to some prior techniques [1], which captured only the data
included in HTTP requests and responses.

We then classified the object accesses based on the domain of
the script which access the cookie for the first time and the domain
of scripts in subsequent accesses, and categorize them as:

Created by first-party and accessed by first-party scripts.
Created by first-party and accessed by third-party scripts.
Created by third-party and accessed by first-party scripts.
Created by third-party and accessed by same third-party script.
Created by third-party and accessed by other third-party scripts.

We further filtered the data pertaining to third-party scripts
accessing the storage objects and compared these requests against
some blocklists [3, 13, 41].

4.1 Analysis of scripts accessing storage

Table 1 shows the overall accesses of storage objects by all scripts on
the web page. While 88.32% of cookie reads are done by third-party
scripts, 92.53% of all cookie writes are by third-parties. Similarly, of
all localstorage reads and writes, third-party scripts perform 83.76%
and 98.41% of these operations, respectively; and for IndexedDB
objects, 44.89% and 73.71% of all read and writes are third-party op-
erations. In total, 89.84%, 90.98% and 72.49% of all cookies, localstor-
age and IndexedDB accesses (both read and write), respectively,
are done by third-party JS.

Zhttps://tranco-list.eu/list/LYLP4/

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464


https://tranco-list.eu/list/LYLP4/

465
466
467
468
469
470
471
472
473

474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492

Least Privilege Access for Persistent Storage Mechanisms
in Web Browsers

Action # host # 3rd-party % 3rd-
script script party

accesses accesses access
Read cookies 282449 2136907 88.32
Write cookies 102576 1271022 92.53
Read localstorage 43938 226733 83.76
Write localstorage 4154 258735 98.41
Read IndexedDB 167 136 44.839
Write IndexedDB 1798 5042 73.71

Table 1: Number of different storage accesses by first- and
third-party scripts on Tranco top 10K websites. The third
column indicates the percentage of storage accesses done by
third-party scripts as compared to total storage accesses.

Table 2 shows the result of script access requests for cookies,
localstorage and IndexedDB, which were initially created by first-
party. On the other hand, Tables 3 and 4 shows detailed results
of requests made to cookies and localstorage objects, which were
initially created by a third-party. We omit results for IndexedDB as
they were not as significant.

Cookies: Out of the 10K websites, 4843 websites had scripts invok-
ing the getCookie or setCookie APIs while the rest of the websites
did not record cookie access by JS when the page was loaded during
the Marionette [9] test. The results are as follows:

e 20.14% of all cookies accessed by third-party scripts are
created by the host page.

e 0.54% of all the cookies created by third-party scripts are
used by first-party scripts.

e 74.3% of all the cookies are shared between different third-
party scripts.

e Only 4.87% of all the cookies are not accessed by third-party
scripts at all.

User cookie consent is a common functionality that may require
sharing cookies between scripts. For instance, OptanonConsent
is a cookie used by the OneTrust CMP to store the user’s con-
sent. We observed that this cookie was being accessed by third-
parties like googletagmanager.com and connect.facebook.com. A
more detailed table with consent related cookies and websites in
included in Table 7 in the Appendix. Some other third-parties in-
volved in reading and modifying consent related cookies included
google-analytics.com, adservice.google.com, securepubads.com, b-
code.liadm.com. These domains are used by marketers and web
developers to track performance, analyze user behavior, and serve
targeted advertising.

Localstorage: The logs captured requests from 3717 out of the
10K websites for accessing localstorage objects when the page was
loaded. To summarize the accesses:

e 76% of all localstorage objects created by first-party scripts
are accessed by third-party scripts.

e 0.14% of all the localstorage objects created by third-party
scripts are used by first-party scripts.

Conference’17, July 2017, Washington, DC, USA

e 14.66% of all the localstorage objects are shared between
third-party scripts.

e 9.2% of all the localstorage objects are not accessed by third-
party scripts.

IndexedDB: On 913 out of the 10K websites, IndexedDB objects
were accessed by JS when the page was loaded. Majority of the
IndexedDB objects, i.e, 74.8%, are accessed by third-party scripts
compared to only 25.2% accessed by first-party. IndexedDB objects
set by first-party scripts are not accessed often by third-party scripts,
as compared to cookies and localstorage objects.

Possible violations: We also found a few instances where third-
party scripts not belonging to the domain of a consent management
provider modified consent-related objects. In particular, localstor-
age objects with keys cookieConsent™ in us.diablo3.blizzard.com
and blizzcon.com are modified by scripts from connect.facebook.net.
Another example of such an access is the item osano_consentman-
ager_" used by grammy.com but modified by a script from secure-
pubads.g.doubleclick.net.

5 LEAST-PRIVILEGE ACCESS

To prevent the unauthorized access of persistent storage objects by
third-party scripts on a web page, we propose an approach based
on the principle of least-privilege using labels.

5.1 Object labels

To monitor the access of storage objects in the browser, we at-
tach labels or taints (similar to decentralized labels [37]) with
cookies and other storage objects when they are stored in the
browser. The labels are represented as a pair of sets of domains —
({r1,r2, ...}, {w1, wa, ...}) — where {r,r, ...} lists the domains hav-
ing read access on the objects and {w1, wa, ...} specifies the domains
whose scripts can modify the object. We additionally store the do-
main of the script that created these objects along with the labels.
Read or write access to each object is subject to checks comparing
the domain of the script accessing the object and the domains con-
tained in the read-set or the write-set, respectively. If the domain is
contained in the set, access is granted. In the default setting when
the read- and write-sets of the label are empty, only the domain to
which the object belongs and the domain that created the object
can access that object while all other scripts are blocked access to
it. We show the implications of this decision in Section 5.6.

As the owner of these objects has the best understanding of
which domains to share these objects with, we rely on the developer
of the scripts for setting their labels. These labels are stored across
sessions (and do not reset in subsequent accesses by the user) until
the objects expire or are manually deleted from the browser. Table 5
shows an example cookie jar with labels, and the respective cookie
access policies.

5.2 Labeling cookies

To populate the labels for cookies in the browser, we introduce addi-
tional cookie attributes that can be sent by the server as part of the
response (in the Set-Cookie header). These attributes specify the
domains that are allowed access to read and modify the cookie. If
these attributes are not specified, the cookie will be labeled with the

523
524
525
526
527
528
529

530

579



592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference’17, July 2017, Washington, DC, USA

Anon.

Accessed by first-party scripts

Accessed by third-party scripts

Type of Access

Get Set

Get Set

Type of storage C LS | IDB C LS

IDB C LS IDB C LS | IDB

No. of websites 332 868 41 675 405

173 628 326 67 195 127 215

Objects accessed | 343 2757 64 1797 | 647

924 641 861 91 2989 179 | 2843

Total accesses 18475 | 27505 | 167

18840 | 3704

1798 | 273209 | 29140 | 136 | 71979 | 2060 | 5042

Table 2: First-party and third-party scripts accessing cookies (C), localstorage (LS) and IndexedDB (IDB) objects,
initially created by the host page

T of First Part Same Different
jzclz?ess 4 Third Party Third Party
Get Set Get Set Get Set

No. ‘Of 493 183 3982 3802 2576 2752
websites

Objects | 499 | 210 | 4747 | 20910 | 2824 | 2752
accessed

Total

263974 | 83736 | 975621 | 735027 | 888077 | 464016

accesses

Table 3: First-party and third-party scripts accessing cookies
initially created by a third-party script

Type of | First Part Same Different
X cIl ess Y| Third Party | Third Party
Get | Set | Get Set Get Set
No. .Of 177 47 2657 1691 1452 653
websites
Objects | 10 | 54 | 16722 | 3889 | 9281 | 1541
accessed
Total
16433 | 450 | 79512 | 16772 | 118081 | 13170
accesses

Table 4: First-party and third-party scripts accessing
localstorage objects initially created by a third-party script

default labels having empty read- and write-sets, i.e., ({}, {}). For
instance, if the domain fp.com wants to set a cookie that cmp.com
has to read from, it sends the following Set-Cookie header:

Set-Cookie: sid=123; Domain=fp.com; Reader={cmp.com}; Writer={}

A cookie created on the client-side by any of the scripts is added to
the cookie store of the host page with the script’s domain having
read-write access to the cookie as the owner of the cookie. For shar-
ing these cookies with other third-party scripts, the script needs to
set the proper attributes for that cookie failing which the cookie
will only be accessible by the host page and the creator-script’s do-
main. For instance, if a domain cmp. com wants to share the cookie
__consent with the script from domain tkr.com, it can execute
the following statement:

document.cookie = "__consent=TRUE; Reader={tkr.com}"

and if it needs to provide both read-write access to tkr.com, it can
include the statement:

document.cookie = "tid=567; Reader={tkr.com}; Writer={tkr.com}"

We do not allow the owner of the cookie to be changed through JS.

5.3 Labeling web storage and IndexedDB objects

As other storage objects are set only through JS, we only allow
scripts creating the object to specify the readers and writers of a
particular object by exposing additional APIs — setReaders (key,
list_of_domains) and setWriters (key, list_of_domains). Without
these set, the objects are only accessible as per the default label of
({}, {}), by the script’s domain other than the host page.

Note that to label all storage objects correctly via JS, the complete
list of readers or writers needs to be specified, i.e., the label setting
options do not append the domains to the existing sets but overwrite
them with the updated values. This allows the host page to reset
the labels easily without requiring an additional API to replace the
existing labels.

5.4 Example enforcement

Recall the example in Listing 1 where the first-party script uses
localstorage to store clickcount. This value can be accessed and mod-
ified by any third-party script as shown in Listing 2. The malicious
script reads the value (which may also contain sensitive data) and
sends it back to the server. In our proposed framework, to ensure
that clickcount is only read by the analytics script, the developer
could call the API setReaders(clickcount, {analytics.com}). Thus,
when the script from ad_net.com tries to access clickcount, it will
return an empty string as its value. Similarly, when the malicious
script tries to access __consent cookie, it will receive the empty
string.

Table 5 shows an example cookie jar (the first six columns) with
the additional attributes. The cookie session_id can only be read by
cmp.com other than the host domain. The cookie __consent can be
read and modified by cmp.com as it is the creator of the cookie and
only be read by tracker.com assuming that cmp.com has specified
a policy allowing it to read the cookie. The third cookie tracker_id
can be read and modified by all three domains as cmp.com has
specified a policy allowing tracker.com to read and write.

5.5 Prototype implementation

We have implemented our approach on Firefox browser> to evaluate
its efficacy. We modified the data structures and files related to
cookies, localstorage and IndexedDB, and introduce new attributes
for each of these storage objects. We modified (and added) around
1200 lines of code that set and check labels to control access through
the different APIs. We verified that the attributes were properly
set both through response headers and the JS APIs by hosting test

3We will publicly release the instrumented browser and the dataset upon acceptance.

639

640

641

642

643

644

645

646

647

648

649

650

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721

725
726
727
728
729

730

Least Privilege Access for Persistent Storage Mechanisms
in Web Browsers

Conference’17, July 2017, Washington, DC, USA

Name Value | Domain | Owner | Reader label | Writer label Script Domains
fp.com | cmp.com | tracker.com
session_id | 123 fp.com fp.com {cmp.com} { RW R -
__consent | TRUE | fp.com | cmp.com | {tracker.com} { RW RW R
tracker_id | 567 fp.com | cmp.com | {tracker.com} | {tracker.com} RW RW RW

Table 5: Labels for controlling access of cookies by scripts belonging to different domains. The first three columns are part of
the current cookie store while the next three columns are added by our approach to the cookie store. The last three columns
indicate the privilege that the scripts from each of the three domains have for different cookies based on their labels. R
indicates that the script has read access to the cookie in the row; similarly, RW and - indicate read-write and no access.

HTML pages, ele- | Functionality # sites
ments and scripts
analytics.js JavaScript library used to mea- | 40
sure user activity on websites
activityi.html Advertisement 17
aframe.html Recaptcha functionality 10
dest5.html Marketing 5
OneTrust banner Cookie consent banner and | 11
policy of cookie usage

Table 6: Scripts and HTML elements missing in the
manually analyzed 100 websites in the instrumented
browser compared to the vanilla browser

servers and sending requests to them through our instrumented
browser.

We manually analyzed the effect of our solution for 100 websites
where third-party scripts access the host-page cookies with the
default policy, i.e., the readers and writers are the empty set. For
this analysis, we manually saved the top 100 websites in the list
of websites that contained at least one third-party script accessing
cookies set by the host-page. We then compare the functionality
results from the instrumented browser with the unmodified browser
using the comparison tool Meld [7]. We discuss these results next.

5.6 Functionality breakage

With the default policy, in the instrumented browser, the third-
party scripts are denied access to the cookies that are created or set
by the host servers or the host-page scripts. We observed that the
most affected functionality was the usage of cookie consent man-
agement platforms. While the number of advertisements decreased
significantly, indicating better user privacy, utility (functionality)
was also affected. Some recurring instances of these are listed in
Table 6.

We believe that strict measures on the client-side are required
for servers to add these labels as part of the Set-Cookie header sent
to the client (or set them via JS). Once adopted, this approach would
provide the host pages fine-grained control over how third-party
scripts can access persistent storage objects.

6 RELATED WORK

Next, we briefly describe some of the related works in the areas of
securing cookies and web-storage, and user privacy.

6.1 Third-party tracking and user privacy

Third-party cookies [5] have been an integral part of the user track-
ing, and have been used to track the online browsing behavior
of users across different websites. These cookies are stored when
the host page receives responses for requests to third-party do-
mains, which unlike third-party scripts store cookies in the store of
the third-party domain. The same third-party cookie can be used
across multiple hosts to track the user activity across different host
pages. Both Firefox and Chrome [2], recently introduced the idea of
state partitioning [23] to prevent such stateful tracking. The main
idea here is that if a.com and b.com both request content from
ad.com, then a cookie from ad.com shall be saved separately for
both a.com and b.com. State partitioning separates the third-party
storage so that it differs for every first-party. Jueckstock et al. [31]
proposed to temporarily save the third-party cookies so that it is
not shared for user tracking. Our work, on the other hand, proposes
a labeling-based approach for protecting first-party cookies from
unauthorized scripts.

As anti-tracking mechanisms came into place, other methods
took prominence. A recent work by Cassel et al. [20] discusses user
tracking and browser fingerprinting techniques in mobile and desk-
top browsers for profiling users and as alternative ways to track
the users. They show that there is a trade-off between reducing
tracking and advertisement requests, and being susceptible to fin-
gerprinting. As the defenses against third-party cookies increased,
first-party storage mechanisms were used instead [24]. Munir et
al. [35] also discuss the increase in the use of first-party cookies
when third-party cookies are blocked. Drakonakis et al. [26] show
about 5K domains which do not protect authentication cookies
from JavaScript-based access while simultaneously including em-
bedded, non-isolated, third party scripts that run in the first party’s
origin. Additionally, they detect 9,324 domains where sensitive user
data can be accessed by such scripts (e.g., address, phone number,
password).

6.2 Risks associated with third-party scripts

Previous research has extensively examined the prevalence of third-
party scripts on websites and the associated security risks. For
instance, Lauinger et al. [33] studied over 133K websites and found
that 37% contained at least one script with a known vulnerability.
Musch et al. [36] introduced modifications to the JavaScript envi-
ronment to prevent the accidental introduction of Client-Side XSS
vulnerabilities through third-party scripts. Nikiforakis et al. [38]
analyzed the widespread use of third-party scripts across more than

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

780

798
799
800
801
802
803
804
805
806
807
808
809
810
811

812



813
814
815
816

817

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846

859
860
861
862
863
864
865
866
867
868
869

870

Conference’17, July 2017, Washington, DC, USA

3 million pages from the top 10,000 Alexa sites, reporting that 88.5%
of popular sites incorporated at least one third-party script, often
outside the main frame, and tracked the growing dependence on
these scripts. Steffens et al. [40] explored the security risks by study-
ing DOM-based client-side cross-site attacks, demonstrating how
malicious or vulnerable third-party scripts can manipulate storage
objects like cookies. They used dynamic taint analysis to identify
behaviors leading to client-side XSS attacks, showing that third-
party scripts are inherently untrustworthy. Khodayari et al. [32]
complemented this by conducting a large-scale analysis of Same-
Site cookie usage, examining its role in mitigating XSS-like attacks.
Their work shows that privacy-preserving approaches may affect
essential utilities, and optional protection mechanisms find little
acceptance. These studies highlight the dynamic nature and ques-
tionable trustworthiness of third-party scripts. Hence, in our work,
we focus on providing the server the means to specify what the
third-party script included can do with firs-party storage.

6.3 Securing first-party cookies and webstorage

While we are not aware of any works targeting the security of
IndexedDB objects, we discuss prior works that empirically analyze
cookies and localstorage, and discuss their security.

Chen et al. [21] do a similar analysis as ours of detecting third-
party scripts accessing first-party domain cookies. Their solution
raises an alert on the user side if third-party scripts are tracking the
user across different sites. We, however, do not focus on tracking,
and instead present a generic approach to block unauthorized access
of third-party scripts to all the first-party cookies. HttpOnly is used
to block the same, but this restricts even the first-party scripts
from accessing those cookies to provide any functionality (cookie
consent example). Our approach can easily be extended to update
the server about the first-party cookies changed by third-party
scripts. The server can then decide whether to block them or not.

Only Belloro and Mylonas et al.[18], and Ahmed et al. [11] in
their work analyze other persistent storages like indexedDB, Web
SQL Database, LocalStorage and Session Storage to question the
lack of user control over locally stored data. Ahmed et al. [11] used
dynamic taint tracking to track the information flow from first-
party scripts to third-party scripts in web browsers. Their work
studies the information flows between two scripts and categorizes
these flows as integrity and confidentiality flows, depending on
whether the storage is written to or read by the third-party script,
respectively. They found that 50% of the external (third-party do-
mains) information flows were confidentiality flows and 30% were
integrity flows. While they discuss the prevalence of possible in-
formation leakage to third-parties and the privacy implications of
the same, contrary to our work, they do not discuss a solution for
controlling undesired information flows.

Sanchez et al. [39] conducted an extensive analysis of cookie
behavior, including the exfiltration, overwriting, and deletion of
both script and HTTP cookies, across 1 million websites. In to-
tal, they collected 66.7 million cookies from 74% (738,168) of the
sites they visited. Their findings show that 11% of these cookies
were first-party, 47% were third-party, and 42% were classified as
ghost-written. They also discovered that 13.4% of all cookies were
exfiltrated, 0.19% were overwritten, and 0.08% were deleted by

Anon.

scripts or via Set-Cookie headers in HTTP responses. Additionally,
the study found that cross-domain cookie exfiltration occurred on
28.3% of the sites, while cookie overwriting and deletion due to
collisions took place on 0.7% of the visited websites.

These studies all discuss the prevalence of first-party storage be-
ing written to by third-party scripts. However, they do not provide
a solution for the same. We now discuss the different studies which
propose an approach to control this behavior.

Munir et al. [35] discuss the increase of first-party tracking cook-
ies that are being set by third-party scripts. However, they use a
machine learning-based technique using data from lists such as
EasyList [3], where browsers, browser extensions, or proxy servers
are used to decide if certain first-party cookies may be used in
user tracking by third-party scripts based on the decision given by
the machine learning model. While this technique can be useful in
blocking first-party tracking cookies, false positives exist affecting
utility cookies such as the SSO cookies. Our analysis shows that
only around 50-60% of such cookies were correctly identified and
the number was even lesser in case of localstorage items; the tool
heavily relies on updating these lists for proper functioning. Their
work focuses on anti-tracking than actually controlling access to
first-party cookies.

Bahrami et al. [14] propose a more generalized approach for man-
aging access to first-party cookies by introducing a separate cookie
jar mechanism. This jar keeps a record of the script domain responsi-
ble for setting the cookie and regulates access accordingly, ensuring
that first-party cookies remain secure while maintaining normal
functionality. Unlike the naive approach of outright blocking all
third-party scripts from accessing first-party cookies, their solution
ensures seamless performance. However, our analysis reveals in-
stances where cross-domain interactions. Of the websites where
first-party cookies were accessed (get or set request) by scripts, 45%
were accessed by third-party scripts. We also observed cookies set
by third-party scripts being accessed by first-party in around 5% of
the cases. We also observe websites (38%) where cookies created
by third-party are accessed by other third-parties. This indicates
script accesses involve different domains accessing cookies or web
storage created by others.

7 CONCLUSION AND FUTURE WORK

Third-party scripts included in sites can be a boon or a bane. While
they offer richer features on the website and make the development
more efficient and easier, they may introduce several threats on the
host site, if not handled properly. As they are treated like any other
script and have the same access to the storage objects, we propose
a fine-grained approach to control this access. We introduce labels
on persistent storage objects to control their access by third-party
scripts. We have implemented this approach for handling cookies,
localstorage and IndexedDB objects, and evaluate the enforcement
on 100 websites. With proper labels in place, the instrumented
browser can correctly control the access of these storage objects.
As part of future work, we want to integrate taint-tracking tech-
niques used for information flow control with this new design to
provide a complete solution for tracking data flow in the browsers.

871

873

874

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

928



929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Least Privilege Access for Persistent Storage Mechanisms
in Web Browsers

REFERENCES

[1] Burp suite - application security testing software - portswigger. https://
portswigger.net/burp.

[2] Cookies having independent partitioned state (chips) - chrome developers. https:
//developer.chrome.com/en/docs/privacy-sandbox/chips/.

[3] https://easylist-downloads.adblockplus.org/easylist_noadult.txt. https://easylist-
downloads.adblockplus.org/easylist_noadult.txt.

[4] Myonetrust | cookie consent articles. https://my.onetrust.com/s/topic/
0TO1Q000000ItRyWAK/cookie-consent?language=en_US. (Accessed on
09/01/2024).

[5] Rfc 6265: Http state management mechanism - third party cookies. https://www.
rfc-editor.org/rfc/rfc6265#section-7.1.

[6] Secure cookie attribute | owasp foundation. https://owasp.org/www-community/
controls/SecureCookieAttribute.

[7] Meld - visual diff and merge tool. https://gitlab.gnome.org/GNOME/meld, 2023.

[8] Please stop using local storage - dev community. https://dev.to/rdegges/please-
stop-using-local-storage-1i04, 2023.

[9] Testing — firefox source docs documentation. https://firefox-source-docs.mozilla.
org/testing/marionette/Testing.html, 2023.

[10] Web storage api. https://html.spec.whatwg.org/multipage/webstorage.html, May
2023.

[11] AHMAD, Z., CASARIN, S., AND CALZAVARA, S. What storage? an empirical analysis
of web storage in the wild. In Proceedings of the Workshop on Measurements,
Attacks, and Defenses for the Web (MADWeb) 2022 (April 2022).

[12] AHMAD, Z., CASARIN, S., AND CALZAVARA, S. An empirical analysis of web storage
and its applications to web tracking. ACM Trans. Web 18, 1 (Oct. 2023).

[13] AnubpEkEp. Curated hostfile to block trackers and advertisements. https://github.
com/anudeepND/blacklist.

[14] Baurami, P. N, Fass, A., AND SHAFIQ, Z. Poster: Cookieguard: Isolating first
party cookies using cookieguard. IEEE Symposium on Security and Privacy (2024).

[15] BarTH, A. HTTP State Management Mechanism. RFC 6265, Apr. 2011.

[16] BarTH, A. The Web Origin Concept. RFC 6454, Dec. 2011.

[17] BeLL, ]. Indexed Database API 3.0, Dec 2023.

[18] BELLORO, S., AND MYLONAS, A. [ know what you did last summer: New persistent
tracking mechanisms in the wild. IEEE Access 6 (2018), 52779-52792.

[19] BINGLER, S., WEST, M., AND WILANDER, J. Cookies: HTTP State Management
Mechanism draft-ietf-httpbis-rfc6265bis-15. RFC 6265, July 2024.

[20] CassEL, D., LIN, S.-C., BURAGGINA, A., WANG, W., ZHANG, A., BAUER, L., Hs1a0,
H.-C., J1a, L., AND LIBERT, T. Omnicrawl: Comprehensive measurement of web
tracking with real desktop and mobile browsers. Proc. Priv. Enhancing Technol.
2022, 1 (2022), 227-252.

[21] CHEN, Q. ILIA, P., POLYCHRONAKIS, M., AND KAPRAVELOS, A. Cookie swap party:
Abusing first-party cookies for web tracking. In Proceedings of the Web Confer-
ence 2021 (New York, NY, USA, 2021), WWW °21, Association for Computing
Machinery, p. 2117-2129.

[22] CorporatiON, M. Mitigating cross-site scripting with http-only cookies. http:
//msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx, 2002.

[23] CurtLER, D.]. Cookies Having Independent Partitioned State specification, Nov.
2022.

[24] DEmIr, N., TuEess, D., UrRBAN, T., POHLMANN, N., AND POHLMANN, N. Towards
understanding first-party cookie tracking in the field. In GI SICHERHEIT 2022, Ed.:
C. Wressnegger (2022), vol. P-323 of Lecture Notes in Informatics (LNI), Proceedings
- Series of the Gesellschaft fur Informatik (GI), Gesellschaft fur Informatik (GI),
pp- 19-34.

[25] Docs, M. W. Client-side storage, 2024.

[26] Drakonakis, K., [oANNIDIS, S., AND PoLAKIs, J. The cookie hunter: Automated
black-box auditing for web authentication and authorization flaws. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2020), CCS ’20, Association for Computing Machinery,
p. 1953-1970

[27] Eurork, I Tcf - transparency & consent framework - iab europe. https://
iabeurope.eu/transparency-consent-framework/.

[28] EUROPEAN PARLIAMENT, AND COUNCIL OF THE EUROPEAN UNION. Directive
2002/58/EC of the european parliament and of the council, 2002.

[29] EUROPEAN PARLIAMENT, AND COUNCIL OF THE EUROPEAN UNION. Regulation
(EU) 2016/679 of the European Parliament and of the Council, 2016.

[30] FounpartiON, O. Cross site request forgery (csrf). https://owasp.org/www-
community/attacks/csrf.

[31] JUECKSTOCK, J., SNYDER, P., SARKER, S., KAPRAVELOS, A., AND L1vsHITS, B. Mea-
suring the privacy vs. compatibility trade-off in preventing third-party stateful
tracking. In Proceedings of the ACM Web Conference 2022 (New York, NY, USA,
2022), WWW ’22, Association for Computing Machinery, p. 710-720.

[32] KHODAYARI S., AND PELLEGRINO, G. The state of the samesite: Studying the
usage, effectiveness, and adequacy of samesite cookies. In 2022 IEEE Symposium
on Security and Privacy (SP) (2022), pp. 1590-1607.

[33] LAUINGER, T., CHAABANE, A., ARSHAD, S., ROBERTSON, W., WiLsON, C., AND

Kirpa, E. Thou shalt not depend on me: Analysing the use of outdated javascript

(34]

(35]

(36]

[38

[39

[40

Conference’17, July 2017, Washington, DC, USA

libraries on the web. arXiv preprint arXiv:1811.00918 (2018).

LE PocHAT, V., VAN GOETHEM, T., TAJALIZADEHKHOOB, S., KORCZYNSKI, M., AND
JooseN, W. Tranco: A research-oriented top sites ranking hardened against
manipulation. In Proceedings of the 26th Annual Network and Distributed System
Security Symposium (Feb. 2019), NDSS 2019.

MUNIR, S., S1BY, S., IoBAL, U., ENGLEHARDT, S., SHAFIQ, Z., AND TRONCOSO, C.
Cookiegraph: Measuring and countering first-party tracking cookies. arXiv
preprint arXiv:2208.12370 (2022).

MuscH, M., STEFFENS, M., ROTH, S., STOCK, B., AND JOoHNS, M. Scriptprotect:
mitigating unsafe third-party javascript practices. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security (2019), pp. 391-402.
MYERS, A. C., AND Liskov, B. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodol. 9, 4 (oct 2000), 410-442.
NikIFORAKIS, N., MEERT, W., YOUNAN, Y., JOHNS, M., AND JoOsEN, W. Session-
shield: Lightweight protection against session hijacking. In International Sympo-
sium on Engineering Secure Software and Systems (2011), Springer, pp. 87-100.
SANCHEZ-ROLA, I, DELL’AMICO, M., BALZAROTTI, D., VERVIER, P.-A., AND BILGE,
L. Journey to the center of the cookie ecosystem: Unraveling actors’ roles
and relationships. In 2021 IEEE Symposium on Security and Privacy (SP) (2021),
pp. 1990-2004

STEFFENS, M., Rossow, C., JouNs, M., AND STock, B. Don’t trust the locals:
Investigating the prevalence of persistent client-side cross-site scripting in the
wild. In 2019 Network and Distributed System Security (NDSS) Symposium (01
2019).

TeaM, A. Adguard content blocking filters. https://github.com/AdguardTeam/
AdGuardFilters.

TruUsTARcC. Cookie consent management software and tool. https://trustarc.
com/products/consent-consumer-rights/cookie- consent-manager/.

WEST, M., AND GooDWIN, M. Same-Site Cookies, June 2016.

WEST, M., AND SARTORI, A. Content security policy level 3. https://w3c.github.
io/webappsec-csp/, 2023.

ZHENG, X., JIANG, J., LIANG, J., DuAN, H., CHEN, S., WAN, T., AND WEAVER, N.
Cookies lack integrity: Real-World implications. In 24th USENIX Security Sympo-
sium (USENIX Security 15) (Washington, D.C., Aug. 2015), USENIX Association,
pp.- 707-721.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044


https://portswigger.net/burp
https://portswigger.net/burp
https://developer.chrome.com/en/docs/privacy-sandbox/chips/
https://developer.chrome.com/en/docs/privacy-sandbox/chips/
https://easylist-downloads.adblockplus.org/easylist_noadult.txt
https://easylist-downloads.adblockplus.org/easylist_noadult.txt
https://my.onetrust.com/s/topic/0TO1Q000000ItRyWAK/cookie-consent?language=en_US
https://my.onetrust.com/s/topic/0TO1Q000000ItRyWAK/cookie-consent?language=en_US
https://www.rfc-editor.org/rfc/rfc6265#section-7.1
https://www.rfc-editor.org/rfc/rfc6265#section-7.1
https://owasp.org/www-community/controls/SecureCookieAttribute
https://owasp.org/www-community/controls/SecureCookieAttribute
https://gitlab.gnome.org/GNOME/meld
https://dev.to/rdegges/please-stop-using-local-storage-1i04
https://dev.to/rdegges/please-stop-using-local-storage-1i04
https://firefox-source-docs.mozilla.org/testing/marionette/Testing.html
https://firefox-source-docs.mozilla.org/testing/marionette/Testing.html
https://html.spec.whatwg.org/multipage/webstorage.html
https://github.com/anudeepND/blacklist
https://github.com/anudeepND/blacklist
http://msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx
https://iabeurope.eu/transparency-consent-framework/
https://iabeurope.eu/transparency-consent-framework/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://github.com/AdguardTeam/AdGuardFilters
https://github.com/AdguardTeam/AdGuardFilters
https://trustarc.com/products/consent-consumer-rights/cookie-consent-manager/
https://trustarc.com/products/consent-consumer-rights/cookie-consent-manager/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-csp/

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

APPENDIX
Cookie name | Website name
notion_check notion.so
_cookie_consent
OptanonConsent| www.eyeota.com, elisaviihde. fi,
WWwWw.razer.com, www.exoclick.com,

www.instructure.com, www.vonage.com,
www.bodybuilding.com,
www.moonpay.com,  www.ledger.com,
www.narrative.io, 74 more

gdpr_consent

www.wufoo.com

_pbjs_userid
_consent_data

www.drugs.com, www.infoseek.co.jp,
drudgereport.com , www.businessinsider.in,
www.timesofisrael.com , www.cityam.com,
www.rogerebert.com, www.aip.org

osano_consent
manager_uuid

www.ada.cx, WWW.0sano.com ,
www.bitcoin.com, buffalonews.com,
shopping.buffalonews.com,
www.linuxfoundation.org, lolesports.com,
www.geotab.com, omaha.com

euconsent- Web.de, www.gmx.net
bypass

gaia_cookie_ www.anu.edu.au
consent-

version

uncode_privacy
[con-
sent_types]

Lifeomic.com

cookiebot- www.avl.com, www.aalto.fi, oscars.org,
consent— fsc.org,

necessary

indg- www.bloombergindustry.com
cookieConsent

lolg_euconsent

www.leagueofgraphs.com

cookie-banner-
consent-
accepted

www.techtudo.com.br

Table 7: Consent related cookies

10

Anon.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160



	Abstract
	1 Introduction
	2 Background
	2.1 Persistent storage in browsers
	2.2 Browser security policies
	2.3 Cookie access policies
	2.4 Web storage and IndexedDB access policies

	3 Motivating Example
	4 Prevalence of Storage Accesses in Real-world Websites
	4.1 Analysis of scripts accessing storage

	5 Least-Privilege Access
	5.1 Object labels
	5.2 Labeling cookies
	5.3 Labeling web storage and IndexedDB objects
	5.4 Example enforcement
	5.5 Prototype implementation
	5.6 Functionality breakage

	6 Related Work
	6.1 Third-party tracking and user privacy
	6.2 Risks associated with third-party scripts
	6.3 Securing first-party cookies and webstorage

	7 Conclusion and Future Work
	References

