
Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert

Demonstrations

Niklas Freymuth 1 Philipp Dahlinger 1 Tobias Würth 2 Philipp Becker 1 Aleksandar Taranovic 1

Onno Grönheim 3 Luise Kärger 2 Gerhard Neumann 1

Abstract

Many engineering systems require accurate sim-

ulations of complex physical systems. Yet, an-

alytical solutions are only available for simple

problems, necessitating numerical approxima-

tions such as the Finite Element Method (FEM).

The cost and accuracy of the FEM scale with

the resolution of the underlying computational

mesh. To balance computational speed and ac-

curacy meshes with adaptive resolution are used,

allocating more resources to critical parts of the

geometry. Currently, practitioners often resort to

hand-crafted meshes, which require extensive ex-

pert knowledge and are thus costly to obtain. Our

approach, Adaptive Meshing By Expert Recon-

struction (AMBER), views mesh generation as an

imitation learning problem. AMBER combines a

graph neural network with an online data acquisi-

tion scheme to predict the projected sizing field

of an expert mesh on a given intermediate mesh,

creating a more accurate subsequent mesh. This

iterative process ensures efficient and accurate im-

itation of expert mesh resolutions on arbitrary new

geometries during inference. We experimentally

validate AMBER on heuristic 2D meshes and

3D meshes provided by a human expert, closely

matching the provided demonstrations and outper-

forming a single-step CNN baseline.

1. Introduction

Simulating complex physical systems is an integral part of

most engineering disciplines. These simulations build on

fundamental laws of physics, such as conservation of mass

1Autonomous Learning Robots, Karlsruhe Institute of Tech-
nology, Karlsruhe, Germany 2Institute of Vehicle Systems Tech-
nology, Karlsruhe Institute of Technology, Karlsruhe 3EVAGO
GmbH, Leonberg, Germany. Correspondence to: Niklas Freymuth
<niklas.freymuth@kit.edu>.

Proceedings of the ICML 2024 AI for Science worksop, Vienna,
Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

and energy, and are often expressed through Partial Differen-

tial Equations (PDEs). Due to their complexity, these PDEs

are analytically intractable, requiring numerical approxima-

tions such as the Finite Element Method (FEM) (Brenner

& Scott, 2008; Reddy, 2019; Anderson et al., 2021). In

the FEM, a continuous problem geometry is partitioned into

a mesh, i.e., a set of finite and simple elements. Such a mesh

allows efficient approximations of the PDE solution, with

cost and accuracy scaling with the number of elements.

For problems of realistic complexity, naively constructed

meshes are often insufficient and adaptive meshes are re-

quired. Those can have varying element sizes allowing for

a finer resolution in regions of interest and coarser resolu-

tion in areas that are simpler to simulate. To find appro-

priate meshes Adaptive Mesh Refinement (AMR) methods

can refine existing meshes by allocating elements based on

heuristics. Similarly, Adaptive Mesh Generation (AMG)

creates meshes based on the problem geometry and initial

conditions, often omitting the need for intermediate solu-

tions. Yet, both approaches are limited in efficiency and

adaptability (Mukherjee, 1996; Kita & Kamiya, 2001; Yano

& Darmofal, 2012; Cerveny et al., 2019; Wallwork, 2021)

and the required heuristics are often costly (Giles & Pierce,

2000; Giannakoglou & Papadimitriou, 2008). Due to these

challenges of existing tools, generating meshes for real-

world applications still requires tedious manual labor and

extensive domain knowledge.

Several recent approaches have explored AMR with ma-

chine learning. One popular paradigm uses Reinforcement

Learning (RL) (Sutton & Barto, 2018) to frame AMR as

a sequential decision-making process (Yang et al., 2023a;

Foucart et al., 2023; Freymuth et al., 2023). While promis-

ing, these RL approaches rely on application-specific and

complex reward functions (Foucart et al., 2023) or ex-

pensive, fine-grained uniform reference meshes (Freymuth

et al., 2023). These factors, together with other constraints,

such as a maximum refinement depth of the reference

meshes (Freymuth et al., 2023) limit the practical applica-

bility of these approaches. Alternatively, recent supervised

approaches aim to learn from expert meshes, using stan-

dard Convolutional Neural Networks (CNNs) (Huang et al.,

2021) or Multilayer Perceptrons (MLPs) (Zhang et al., 2020;

1

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

GNN Sizing Field
Prediction

Mesh Generator

Projected Expert
Sizing Field Projection

MSE

Inference

Training

Both

Expert Mesh

Figure 1: Schematic overview of Adaptive Meshing By Expert Reconstruction (AMBER). During inference, AMBER takes

an initial mesh M0, predicts a sizing field per element, and combines this with the underlying geometry in a mesh generator

which produces an improved mesh. This process is repeated until a final mesh MT is obtained. When training, AMBER is

tasked to predict the projected sizing field of an expert mesh for samples from a replay buffer, adding samples to this buffer

to maintain a large and accurate distribution of training meshes.

Lock et al., 2024) to predict the target mesh. However, these

approaches are limited by the inherent properties of CNNs,

such as a fixed resolution or missing rotational equivariance.

In this work, we instead frame AMG as an imitation learn-

ing problem, aiming to create a mesh that matches expert

behavior by iteratively predicting a sizing field on an inter-

mediate mesh to create a more accurate next mesh. Our

approach, AMBER, uses a Graph Neural Network (GNN)

that consumes a graph representation of the current mesh

and outputs a piecewise-constant sizing field on the mesh

elements. During inference, it then takes a geometry and

a coarse initial mesh and iteratively improves this mesh by

predicting a sizing field that is used to create the next mesh.

During training, this predicted sizing field is trained to be

close to a sizing field that is projected from the expert mesh

using a simple regression loss. As the algorithm can create

arbitrary intermediate meshes during inference, we maintain

a replay buffer (Lin, 1992; Fedus et al., 2020) during train-

ing, regularly adding meshes produced by our algorithm to

this buffer and training on them. Training on these buffered

meshes instead of only using the initial meshes ensures there

is no distribution shift between the simple regression during

training and the iterative mesh generation procedure dur-

ing inference. We automatically label these intermediate

meshes by projecting the expert sizing field onto them. This

process resembles the DAgger (Ross et al., 2011) in which

an expert relabels out of distribution samples. In AMBER,

we implement a similar approach, however, we use an oracle

for re-labeling. Figure 1 provides a schematic overview.

We experimentally validate our approach against a CNN

baseline on heuristic expert meshes generated on a series of

2D Poisson Equations on randomly generated L-Shaped ge-

ometries. Additionally, we experiment on a set of complex

real-world 3D geometries with meshes created by a human

expert. We find that AMBER is particularly well-suited for

highly adaptive meshes and produces accurate imitations

of both heuristic and human expert behavior, regardless of

the underlying mesh resolution. We further show the effec-

tiveness of AMBER’s individual design choices through a

series of ablations.1

To summarize our contributions, we (i) propose AMBER,

a novel imitation learning approach that generates expert-

like meshes through a series of sizing field predictions,

(ii) introduce challenging 2D and 3D datasets consisting

of heuristic and human expert meshes and corresponding

geometries, and (iii) evaluate our method on these datasets,

demonstrating high similarity to the provided expert meshes

and outperforming a strong CNN-based baseline.

2. Related Work

Meshing for Simulation. The Finite Element Method

(FEM) is a well-established method to numerically approx-

imate physical systems, especially on complex, irregular

geometric problem domains (Brenner & Scott, 2008; Reddy,

2019). The FEM solves a system of equations by divid-

ing the geometry into a mesh consisting of smaller, simple

elements. Here, the simulation cost and accuracy directly de-

pend on the mesh size, often necessitating an adaptive mesh

that focuses more elements on important parts of the ge-

ometry for efficient simulations (Plewa et al., 2005; Huang

& Russell, 2010). Modern meshing approaches can be cat-

1Code and datasets are available at
https://github.com/NiklasFreymuth/AMBER.

2

https://github.com/NiklasFreymuth/AMBER

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

egorized into Adaptive Mesh Refinement (AMR) (Plewa

et al., 2005; Fidkowski & Darmofal, 2011), which adapts a

given mesh, and Adaptive Mesh Generation (AMG) (Yano

& Darmofal, 2012; Remacle et al., 2013; Si, 2008), which

generates a new mesh from an estimated sizing field or re-

lated properties of the geometry. These traditional AMR

approaches rely on heuristics (Zienkiewicz & Zhu, 1992) or

error estimates (Nemec et al., 2008; Bangerth & Rannacher,

2013), which can quickly become inaccurate, unreliable or

computationally expensive (Bangerth & Rannacher, 2013;

Cerveny et al., 2019; Wallwork, 2021).

Learning Based Approaches for Meshing. In recent years,

GNNs (Bronstein et al., 2021), and particularly Message

Passing Networks (MPNs), have become popular architec-

tures for learning to simulate on meshes. These Graph Net-

work Simulators (GNSs) have been applied to mesh-based

deformable (Pfaff et al., 2021; Linkerhägner et al., 2023)

and rigid (Allen et al., 2022; 2023; Lopez-Guevara et al.,

2024) object simulations. We also employ MPNs acting

on meshes to improve the speed and accuracy of physical

simulations. Yet, instead of directly learning to simulate,

we generate application-specific efficient meshes for down-

stream classical FEM solvers, which is more robust and

safe as the actual simulation is done numerically. Here, a

recent suite of RL-based AMR approaches has emerged for

creating adaptive meshes (Foucart et al., 2023; Freymuth

et al., 2023; Yang et al., 2023a). These methods use an

RL policy to iteratively determine which mesh elements to

subdivide. They typically depend on complex and costly

reward functions, which need careful design to handle com-

plex problems (Freymuth et al., 2023). Despite this, the

reward function requires a concrete underlying system of

equations, restricts the maximum mesh resolution (Yang

et al., 2023a; Freymuth et al., 2023) or encodes a specific

refinement criterion (Foucart et al., 2023). These limitations

are sub-optimal for real-world applications, where meshes

often need to be highly locally refined, e.g., due to localized

large gradients (Larson & Bengzon, 2013). We instead learn

to refine based on expert meshes, omitting the need for a

reward function and thus alleviating its limitations.

Other works consider supervised learning for mesh refine-

ment. These approaches use recurrent neural networks to

learn mesh refinement strategies (Bohn & Feischl, 2021),

optimize element stretching ratio and direction from a given

error estimation (Fidkowski & Chen, 2021), and employ

hand-crafted features to directly compute error estimates

to solve an adjoint problem (Roth et al., 2022; Wallwork

et al., 2022). Further work trains a surrogate model with

supervised learning for predicting the solution error (Chen

& Fidkowski, 2021; Zhang et al., 2020; 2021), which in

turn can be used for AMG by setting the sizing field to the

scaled inverse of the error estimation (Zhang et al., 2021).

Other approaches directly predict a sizing field using MLPs

for simulations of magnetic devices (Dyck et al., 1992),

and CNNs for fluid dynamics problem (Huang et al., 2021).

Interactive Imitation Learning. Imitation Learning (IL)

is a common paradigm to learn behavior from expert demon-

strations (Pomerleau, 1988; Osa et al., 2018; Shafiullah et al.,

2022), which is particularly applicable in scenarios where

a reward function is difficult to define or can lead to unde-

sired behavior (Skalse et al., 2024). A major challenge in

IL occurs when the model is confronted with data absent

from the expert data as it diverges from the expert behavior.

Interactive IL methods, such as DAgger (Ross et al., 2011),

address this issue by allowing experts to intervene and label

new data. In some variants of this approach (Menda et al.,

2019; Hoque et al., 2022), the model actively requests new

data from the expert when needed to improve efficiency

further. Similarly, AMBER also actively acquires new data

during learning. However, instead of querying a human for

new expert meshes, we maintain a static expert dataset and

automatically generate and label new intermediate meshes

based on the induced expert sizing fields.

3. Adaptive Meshing by Expert

Reconstruction (AMBER)

AMBER views mesh generation as an iterative imitation

problem aiming to match an expert mesh based on a series

of intermediate meshes. In contrast to previous AMR meth-

ods (Zienkiewicz & Zhu, 1992; Yang et al., 2023a; Freymuth

et al., 2023), we learn directly from meshes optimized for

their respective downstream applications by experts. This

view greatly simplifies the mesh generation process, as our

problem consists of matching an expert rather than optimiz-

ing for problem-specific and potentially complex adaptive

mesh criteria (Larson & Bengzon, 2013; Huang et al., 2021;

Dolejší & May, 2022). We approach this problem by train-

ing a MPN to iteratively predict sizing fields on a series

of intermediate meshes, generating a new mesh from each

prediction. These projections are regressed against a pro-

jected expert sizing field, which is dynamically produced

for meshes that are added to a replay buffer during train-

ing (Ross et al., 2011; Kelly et al., 2019). Figure 1 provides

a schematic overview of AMBER, while the following sec-

tions describe its different aspects in more detail.

3.1. Preliminaries

We are given a training dataset D = {(Ω,M∗)}Nn=1 con-

sisting of pairs of a geometry Ω and a corresponding expert

mesh M∗. Each geometry describes a physical body in 2D

or 3D, and the mesh discretizes this body into a number of

simplical elements M∗
j . We aim to generate a mesh MT

that imitates the expert mesh M∗, i.e., that minimizes a

distance d(MT ,M∗) for unseen meshes during inference.

3

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

t = 0 t = 1 t = 2 t = 5

Expert Mesh

10 2

10 1

Prediction

Figure 2: Intermediate and final AMBER meshes on Poisson’s equation for an expert mesh with 50 reference refinements.

The colorbar on the left denotes the predicted sizing field per element for each intermediate mesh. This prediction is given

to a mesh generator to produce the next mesh. Top: AMBER (Mean) converges in a few generation steps at the cost of

additional elements in intermediate steps. Bottom: AMBER (Max) instead yields more conservative predictions, which take

longer to converge but produce less total mesh elements. In both cases, the mesh generator and the MPN architecture favor

smooth solutions, generating a mesh that closely matches the expert but has less abrupt variations in local element size.

This generation is done using out-of-the-box approaches. In

this work, we use the Frontal Delaunay algorithm imple-

mented in gmsh (Geuzaine & Remacle, 2009). The mesh

generator consumes a sizing field and a geometry and re-

turns a mesh that conforms to this sizing field. It additionally

optimizes the mesh with respect to certain element criteria,

such as the element’s aspect ratio, which results in a smooth

transition between element sizes. In turn, the sizing field is

a function Ω → R that describes the average desired edge

length of the mesh’s elements in space. We can thus pre-

cisely a given mesh by the piece-wise constant sizing field

that is induced by its elements. Given the volume V (Mi) of

the d-dimensional simplical element Mi, its corresponding

sizing field is given as the average edge length

f(Mi) =

(

V (Mi)
d!√
d+ 1

)
1

d

.

To obtain a graph representation, we view the mesh elements

as nodes V and their neighborhood relations as edges E ⊆
V × V . We then construct a bidirectional graph GΩt = G =
(V, E ,xV ,xE) using node features xV and edge features xE .

We process the graph using a MPN (Pfaff et al., 2021), a

type of GNN (Bronstein et al., 2021). MPNs encompass the

function class of several classical PDE solvers (Brandstetter

et al., 2022), making them a popular choice for learning

representations on meshes (Pfaff et al., 2021; Linkerhägner

et al., 2023; Würth et al., 2024). Appendix A provides

details for the MPN architecture.

3.2. Mesh generation with AMBER

When generating a mesh for a given geometry, AMBER

starts with a coarse uniform initial mesh M t for t = 0. It

then encodes the current mesh M t as a graph and feeds it

through an MPN to predict a target size per mesh element.

The combination of these target sizes forms a piece-wise

constant sizing field, which together with the underlying

geometry is given to a mesh generator, which produces a

new mesh M t+1. This process is iterated over T steps,

resulting in a final mesh MT .

This iteration is necessary, as the current mesh limits the

resolution of the predicted sizing field in every step. As we

can only learn one target size for each current element of

M t, the corresponding finer resolution elements in M t+1

will all have roughly the same size. However, by iterating

this process, the final mesh converges to an appropriate

mesh, even for problems with highly non-uniform meshes.

3.3. Training AMBER

AMBER’s iterative mesh generation process necessitates

a specialized training procedure. To compute the target

sizing field for an element M t
i ⊆ M t of an intermediate

mesh M t, we first determine all expert elements M∗
j ∈ M∗

whose midpoints pM∗

j
lie in M t

i , and then aggregate over

the sizing fields induced by these elements, i.e.,

y(M t
i) =

⊗

j

I(pM∗

j
∈ M t

i)f(M
∗
j).

4

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

Easy (25 Refs.) Medium (50 Refs.) Hard (75 Refs.)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Solution

Figure 3: Exemplary AMBER (Mean) refinements for Poisson’s Equation trained on expert meshes with (Left) 25, (Middle)

50, and (Right) 75 refinement steps. We plot the solution of Poisson’s Equation as a color plot. The right figure includes a

zoom on the concave edge of the domain.

Here,
⊗

is a permutation-invariant aggregation function

and we consider using either a maximum or a mean oper-

ator. This results in two variants, called AMBER (Mean)

and AMBER (Max.). Intuitively, we thus set each element’s

target element size to either the average or the maximum

size of all of the expert elements it contains. As the mean

target size is always smaller or equal to the maximum tar-

get size, AMBER (Mean) tends to refine more aggressively

than AMBER (Max) resulting in faster convergence while

producing more and potentially unnecessary elements in the

process. In both cases, the target sizes for each element of

the intermediate mesh will be smaller than their actual size,

and iterating this process converges to the expert mesh.

If an element in M t to contains no midpoint pM∗

j
, we set

its target sizing field to that of the element in the expert

mesh that contains their midpoint. Further, different meshes

may approximate the same underlying geometry differently,

leading to elements in one mesh that lie outside of the other.

We thus assign elements in the expert mesh that lie outside

of the intermediate mesh to their nearest neighbor in the

intermediate mesh. This approximation ensures that all

elements in the fine mesh contribute to the target sizing field

of the intermediate mesh, and becomes more accurate the

more closely the two meshes align. Once the targets sizing

field are obtained, we use them to train on a simple node-

level Mean Squared Error (MSE) loss. This training scheme

allows us to equally apply AMBER to both problem-specific

meshes optimized for a given PDE, and general-purpose

meshes intended for different downstream analyses.

AMBER produces a series of intermediate meshes in an

auto-regressive fashion during inference, but only trains on

individual sizing field predictions. To prevent distribution

shifts during the iterative mesh generation, we thus maintain

a replay buffer (Lin, 1992; Fedus et al., 2020) over AMBER-

generated intermediate meshes during training. This replay

buffer contains a fixed set of one coarse initial mesh per

provided training sample. Every k training steps, we sample

a mesh from the replay buffer, predict its projected sizing

field, generate a new mesh from this prediction, project the

expert field onto this new mesh to generate its labels, and

store this new pair of meshes and labels in the buffer. To

stabilize the training process, we assign each intermediate

mesh a ‘depth’ that corresponds to the number of generating

steps it has gone through, and store an equal amount of

meshes for each depth up to a maximum. Each training

step consists of randomly drawing a number of meshes from

the buffer. Since the meshes greatly vary in size, we fill a

batch until a number of nodes is reached, rather than using a

fixed number of graphs. Appendix B provides details on the

stratified replay buffer and the batch generation process.

4. Experiments

Setup. To use an MPN for meshes, we set the node features

to the corresponding element’s volume and the edge features

xE are to the Euclidean distance between element midpoints.

MPNs are permutation-equivariant by design and as we only

provide Euclidean distances as spatial information, we addi-

tionally obtain equivariance to the Euclidean group (Bron-

stein et al., 2021). Since the sizing field’s values are always

positive we apply a softplus transformation to the MPN

outputs, which greatly stabilizes training. Similarly, we

normalize the input graph features using the statistics of the

replay buffer. Appendix E provides further details of the

architecture, training procedure, and hyperparameters.

We repeat all methods for 4 random seeds. We evaluate on

a set of unseen test geometries, and evaluate the quality of

each generated mesh by comparing it to a reference expert

mesh on this geometry. For this comparison, we use the

Density-Aware Chamfer Distance (DCD) (Wu et al., 2021)

5

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

AMBER (Max) Expert CNN baseline

Figure 4: Zoom-in of a final generated meshes for an unseen test domain on the Console task. AMBER (Left) closely

matches the expert mesh (Middle), producing finer elements near the hole and coarser elements on the upper border of the

mesh. In comparison, the CNN baseline (Right), which acts on a 64× 64× 64 3D image of the domain, has less variation

in the element size and matches the expert less closely.

over the sets of element midpoints of both meshes. The

DCD is defined as a symmetric, exponentiated Chamfer dis-

tance with normalization factors to account for elements in

one set that match multiple elements in the other. Intuitively,

it measures the closest exponential distance of every mid-

point in one mesh to the other mesh, weighting this distance

by the number of matches. It is bound in [0, 1], and 0 if and

only if both sets are the same. We provide a mathematical

description of the DCD in Appendix C. We also explore an

alternate metric that numerically integrates the difference in

element volumes between the two meshes.

Poisson’s Equation. We consider problem-specific meshes

using Poisson’s Equation with a load function f(x) and test

function v(x), given as
∫

Ω

∇u · ∇vdx =

∫

Ω

fvdx ∀v ∈ V .

We enforce zero Dirichlet boundary conditions, i.e.,

u(x) = 0 on ∂Ω. As the training data, we randomly gen-

erate L-shaped geoemtries and employ a Gaussian Mix-

ture Model with three components for the load function.

For this task, we evaluate the load function at each face’s

midpoint and use it as a node feature. Additionally, we

solve the equation for every intermediate mesh and use the

mean and standard deviation of the solution on each ele-

ment’s vertices as additional node features. We generate

the problem-specific expert meshes using an error-based re-

finement heuristic (Binev et al., 2004; Bangerth et al., 2012;

Foucart et al., 2023), which marks all elements for refine-

ment for which err(Mi) > θ ·maxj err(Mj) for 0 < θ < 1.

The error is estimated heuristically based on the load func-

tion and gradient jumps on the element facets. We use 20
randomly drawn systems of equations and corresponding ex-

pert meshes as the training data, and test on a disjoint, fixed

set of 100 unseen system of equations and expert meshes.

We vary the task’s difficulty by adapting the number of re-

finement steps that the heuristic applies, considering easy,

medium, and hard variants with 25, 50, and 75 refinement

steps respectively. Appendix D provides further details of

the dataset creation and the expert heuristic.

Console Task. In the Console task, we use data obtained

from a real-world scenario in the automotive industry. We

have a parameterized family of 3D geometries representing

a car’s seat crossmembers. The geometries are obtained

using Onshape2 and feature various sharp bends as well

as up to 2 circular holes. Tetrahedral meshes for this task

are generated by human experts using ANSA3. The experts

are initially presented with a coarse mesh, on which they

iteratively select regions to refine, specifying the target ele-

ment size of each selected region. The resulting meshes are

optimized for downstream strength and durability analyses,

but our experiments are conducted solely on the meshes

and their underlying geometry. The middle of Figure 6

provides an example close-up of an expert mesh. The final

dataset contains 22 meshes and corresponding geometries.

The meshes range from 6, 284 to 41, 856 elements and are

randomly split into fixed sets of 15 training, 2 evaluation,

and 5 test meshes.

Baselines and Ablations. We compare AMBER to a CNN-

baseline that takes a binary image mask of the geometry

and outputs a pixel-wise sizing field on the geometry. This

baseline is conceptually similar to (Huang et al., 2021), but

with slight adaptations that improve the training stability

and performance. Instead of smoothing the expert sizing

field and evaluating each pixel, we create an auxiliary mesh

with roughly one element per pixel, calculate the target

sizing field on this mesh as done in Section 3.3, and map

2https://www.onshape.com/
3https://www.beta-cae.com/ansa.htm

6

https://www.onshape.com/
https://www.beta-cae.com/ansa.htm

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

0.2

0.25

0.3

0.35

0.4

0.45

Easy (25 Refs.)

N
o
rm

al
iz

ed
D

C
D

Medium (50 Refs.)

Poisson’s Equation

Hard (75 Refs.)

AMBER

Mean

Max

CNN

32 × 32

64 × 64

128 × 128

256 × 256

512 × 512

Figure 5: Mean and quantiles of the normalized DCD for AMBER and the CNN baseline for different input image resolutions.

(Left) Poisson Easy; the resulting meshes are comparatively coarse and can be reproduced well with the CNN baseline.

(Middle) Poisson Medium; the CNN starts to require a higher input resolution for good refinements. (Right) Poisson Hard;

the expert mesh covers elements across multiple scales. Here, the CNN fails to provide good refinements for lower image

resolutions and begins to overfit for higher resolutions. In contrast, AMBER directly acts on intermediate meshes and can

thus dynamically adapt the sampling resolution of the sizing fields it predicts.

the resulting labels to each pixel. Since the CNN does

no iterative generation, we use the mean label projection

method for each pixel. Further, we train the approach on the

logarithm of the sizing field, i.e., set the loss to

LCNN =
1

N

N
∑

i=1

(CNN(xi)− log(yi))
2

, (1)

and subsequentially exponentiate the CNN’s output to re-

cover the predicted sizing field. This change prevents larger

mesh elements from dominating the CNN’s loss. The CNN

can only predict one target element size per pixel and we

thus train separate CNNs on different image resolutions. We

also provide the same input features and normalization as

for AMBER. Since the training sets are relatively small, we

use all images for every training step, performing a total of

25, 600 training steps or equivalently epochs of training.

5. Results

Qualitative Results. Figure 2 visualizes exemplary AM-

BER refinements trained on the Poisson task with 50 or-

acle heuristic refinement steps. On the top row, AMBER

(Mean) converges to a relatively accurate mesh after only

2 prediction steps. However, the approach tends to locally

over-refine some elements, causing potentially unnecessary

refinements in intermediate meshes. AMBER (Max.) is

shown on the bottom row. It produces fewer elements per

step and thus requires more iterations until it converges to

the expert mesh. Figure 3 shows AMBER (Mean) refine-

ments for the same test example when trained on expert

meshes that use 25, 50 and 75 heuristic refinement steps.

Our approach closely matches the expert heuristic, produc-

ing meshes of varying granularity depending on the expert

meshes that it sees during training. Figure 4 compares AM-

BER (Max) and the CNN baseline to an expert mesh on

an exemplary test geometry on the Console task, finding

that AMBER matches the expert’s local element resolution

well, while the CNN produces more uniform meshes and

does not provide accurate sizing field predictions for the

different geometric features. Appendix F provides visual-

izations for AMBER and the CNN baseline for all tasks.

Quantitative Results. We measure mesh quality via the

similarity to the expert mesh using the normalized Density-

Aware Chamfer Distance (DCD) (Wu et al., 2021) for AM-

BER for both mean and max sizing field interpolations and

the CNN baseline for different image resolutions. Figure 5

evaluates Poisson’s Equation for 25, 50 and 75 heuristic

refinement steps of the expert mesh. While the CNN base-

line works well for 25 and even 50 steps, its fixed image

resolution eventually causes issues as the expert meshes be-

come more complex. In contrast, AMBER directly acts on

intermediate meshes of arbitrary resolution. Here, AMBER

works well on all 3 task difficulties, as the method learns to

adapt to the complexity of the expert’s meshes. This trend

is more pronounced on the 3D console task, as shown on

the left side of Figure 6. AMBER naturally generalizes to

the more complex 3D setting as it directly acts on meshes.

Thus, each AMBER forward pass is linear in the number

of mesh elements. In contrast, the CNN baseline quickly

becomes computationally expensive due to cubic scaling

with the number of voxels per dimension. Finally, Figure 6

shows the benefits of AMBER’s iterative mesh generation

process, finding that both AMBER (Mean) and AMBER

(Max) benefit from up to 5 intermediate mesh generation

steps. Appendix C.2 evaluates all tasks on an alternate met-

ric that measures the difference in element volumes between

the two meshes, yielding consistent results.

Further Experiments. Figure 7 shows that AMBER per-

forms slightly worse when trained on the CNN loss (c.f.

Equation 1), likely because AMBER already implicitly

weights small elements more strongly as there are more

of them. In contrast, the CNN baseline performs worse

on AMBER’s MSE loss, presumably because the same rela-

7

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
o
rm

al
iz

ed
D

C
D

1 2 3 4 5

0.2

0.3

0.4

Generation Step (t)

N
o
rm

al
iz

ed
D

C
D

AMBER

Mean

Max

CNN

32 × 32 × 32

64 × 64 × 64

Figure 6: Mean and quantiles of normalized DCD for AMBER and the CNN baseline for the Console task. (Left) AMBER

naturally generalizes to the more complex 3D domains of the console task, generating meshes that accurately match that of

the human expert on unseen domains. In contrast, the CNN baseline does not scale well to 3 dimensions, as evaluating the

resulting 3D image quickly becomes prohibitively expensive with an increased image resolution. (Right) For both AMBER

(Mean) and AMBER (Max) mesh quality smoothly increases with more mesh generation steps.

AMBER CNN

Mean 256 × 256

Max MSE Training, Softplus

Mean, CNN Loss MSE (Huang et al., 2021)

Max, CNN Loss Max Aggregation

0.2

0.3

0.4

0.5

0.6

Poisson’s Equation (75 Refs.)

N
o
rm

al
iz

ed
D

C
D

Figure 7: Mean and quantiles of normalized DCD for AM-

BER and the CNN baseline with a 256× 256 resolution for

different loss functions and sizing field interpolation types.

AMBER performs worse when using the CNN loss of Equa-

tion 1. In contrast, the CNN baseline yields worse meshes

when trained on AMBER’s MSE loss. Omitting the softplus

transformation of the predicted outputs results in a method

similar to (Huang et al., 2021), but leads to a significantly

less robust algorithm. Finally, using the maximum expert

sizing field for the labels of the CNN baseline yields worse

results as the target sizing file is too coarse.

tive error makes a larger difference in mesh generation for

pixels responsible for smaller elements when using this loss.

Omitting the softplus transformation of the output on this

loss, which results in a method similar to that of (Huang

et al., 2021), further decreases stability and performance. Fi-

nally, using a maximum operator to project the sizing fields

for the CNN baseline leads to more conservative target es-

timation and thus too few elements, yielding worse results.

We explore additional variants and ablations of AMBER in

Appendix F and find that AMBER benefits from additional

data but provides strong generalization performance to un-

seen scenarios from as few as 5 expert meshes on Poisson’s

Equation. Appendix F validates the effectiveness of normal-

izing the input features, using a softplus transformation to

predict the strictly positive sizing field, and maintaining an

equal number of meshes for each intermediate generation

step instead of randomly adding samples.

6. Conclusion

We introduce Adaptive Meshing By Expert Reconstruction

(AMBER), an iterative adaptive mesh generation algorithm

based on imitation learning. AMBER combines a Message

Passing Graph Neural Network and a replay buffer with

automatically labeled intermediate meshes to learn how to

imitate meshes produced by experts. During mesh genera-

tion, AMBER takes an arbitrary problem geometry and gen-

erates a series of increasingly accurate intermediate meshes

by predicting a sizing field on each mesh and feeding this

sizing field to an out-of-the-box mesh generator. Rather than

optimizing any particular metric, AMBER learns to imitate

an expert’s meshing behavior from examples, enabling it to

create suitable meshes for various engineering applications.

Experimental results on heuristic 2D meshes on Poisson

problems, and human expert meshes on real-world 3D ge-

ometries demonstrate the strong performance of our ap-

proach. AMBER is data efficient and generates highly ac-

curate meshes, significantly outperforming a strong CNN

baseline when evaluated on more complex task setups.

Limitations and Future Work. AMBER requires a dataset

with consistent expert behavior and always produces meshes

that align with this single behavior. We plan to extend AM-

BER to allow conditioning the mesh generation process on

a desired expert behavior, e.g. producing varying numbers

of final elements with the same model (Yang et al., 2023b).

Additionally, we aim to replace the current piece-wise con-

stant sizing field over the elements with a piece-wise linear

sizing field over the mesh’s vertices. This change reduces

the size of the mesh’s graph representation while increasing

the information provided in each sizing field.

8

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

Acknowledgements

NF was supported by the BMBF project Davis

(Datengetriebene Vernetzung für die ingenieurtechnische

Simulation). This work is also part of the DFG AI Re-

sarch Unit 5339 regarding the combination of physics-based

simulation with AI-based methodologies for the fast matu-

ration of manufacturing processes. The financial support by

German Research Foundation (DFG, Deutsche Forschungs-

gemeinschaft) is gratefully acknowledged. The authors

acknowledge support by the state of Baden-Württemberg

through bwHPC, as well as the HoreKa supercomputer

funded by the Ministry of Science, Research and the Arts

Baden-Württemberg and by the German Federal Ministry

of Education and Research.

References

Allen, K. R., Guevara, T. L., Rubanova, Y., Stachenfeld, K.,

Sanchez-Gonzalez, A., Battaglia, P., and Pfaff, T. Graph

network simulators can learn discontinuous, rigid contact

dynamics. Conference on Robot Learning (CoRL)., 2022.

Allen, K. R., Rubanova, Y., Lopez-Guevara, T., Whitney,

W. F., Sanchez-Gonzalez, A., Battaglia, P., and Pfaff,

T. Learning rigid dynamics with face interaction graph

networks. In The Eleventh International Conference on

Learning Representations, 2023.

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier,

J.-S., Cerveny, J., Dobrev, V., Dudouit, Y., Fisher, A.,

Kolev, T., et al. Mfem: A modular finite element methods

library. Computers & Mathematics with Applications, 81:

42–74, 2021.

Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization.

CoRR, abs/1607.06450:21, 2016.

Bangerth, W. and Rannacher, R. Adaptive Finite Element

Methods for Differential Equations. Birkhäuser, 2013.

Bangerth, W., Burstedde, C., Heister, T., and Kronbichler,

M. Algorithms and data structures for massively parallel

generic adaptive finite element codes. ACM Transactions

on Mathematical Software (TOMS), 38(2):1–28, 2012.

Binev, P., Dahmen, W., and DeVore, R. Adaptive finite

element methods with convergence rates. Numerische

Mathematik, 97:219–268, 2004.

Bohn, J. and Feischl, M. Recurrent neural networks as

optimal mesh refinement strategies. Computers & Mathe-

matics with Applications, 97:61–76, 2021.

Brandstetter, J., Worrall, D. E., and Welling, M. Message

passing neural pde solvers. In International Conference

on Learning Representations, 2022.

Brenner, S. C. and Scott, L. R. The mathematical theory of

finite element methods, volume 3. Springer, 2008.

Bronstein, M. M., Bruna, J., Cohen, T., and Velickovic,

P. Geometric deep learning: Grids, groups, graphs,

geodesics, and gauges. CoRR, abs/2104.13478, 2021.

Carstensen, C. An adaptive mesh-refining algorithm allow-

ing for an h 1 stable l 2 projection onto courant finite

element spaces. Constructive Approximation, 20:549–

564, 2004.

Cerveny, J., Dobrev, V., and Kolev, T. Nonconforming mesh

refinement for high-order finite elements. SIAM Journal

on Scientific Computing, 41(4):C367–C392, 2019.

Chen, G. and Fidkowski, K. J. Output-based adaptive aero-

dynamic simulations using convolutional neural networks.

Computers & Fluids, 223:104947, 2021.

Dolejší, V. and May, G. Anisotropic Hp-Mesh Adapta-

tion Methods: Theory, Implementation and Applica-

tions. Nečas Center Series. Springer International Pub-

lishing, Cham, 2022. ISBN 978-3-031-04278-2 978-3-

031-04279-9. doi: 10.1007/978-3-031-04279-9.

Dyck, D., Lowther, D., and McFee, S. Determining an

approximate finite element mesh density using neural

network techniques. IEEE Transactions on Magnetics,

28(2):1767–1770, March 1992. ISSN 1941-0069. doi:

10.1109/20.124047.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y.,

Larochelle, H., Rowland, M., and Dabney, W. Revisiting

fundamentals of experience replay. In International Con-

ference on Machine Learning, pp. 3061–3071. PMLR,

2020.

Fidkowski, K. J. and Chen, G. Metric-based, goal-oriented

mesh adaptation using machine learning. Journal of Com-

putational Physics, 426:109957, 2021.

Fidkowski, K. J. and Darmofal, D. L. Review of output-

based error estimation and mesh adaptation in compu-

tational fluid dynamics. AIAA journal, 49(4):673–694,

2011.

Foucart, C., Charous, A., and Lermusiaux, P. F. Deep rein-

forcement learning for adaptive mesh refinement. Journal

of Computational Physics, 491:112381, 2023.

Freymuth, N., Dahlinger, P., Würth, T., Reisch, S., Kärger,

L., and Neumann, G. Swarm reinforcement learning for

adaptive mesh refinement. Advances in Neural Informa-

tion Processing Systems, 36, 2023.

Geuzaine, C. and Remacle, J.-F. Gmsh: A 3-d finite element

mesh generator with built-in pre-and post-processing fa-

cilities. International journal for numerical methods in

engineering, 79(11):1309–1331, 2009.

9

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

Giannakoglou, K. C. and Papadimitriou, D. I. Adjoint meth-

ods for shape optimization. Optimization and computa-

tional fluid dynamics, pp. 79–108, 2008.

Giles, M. B. and Pierce, N. A. An introduction to the adjoint

approach to design. Flow, turbulence and combustion,

65:393–415, 2000.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

Hoque, R., Balakrishna, A., Novoseller, E., Wilcox, A.,

Brown, D. S., and Goldberg, K. Thriftydagger: Budget-

aware novelty and risk gating for interactive imitation

learning. In Faust, A., Hsu, D., and Neumann, G. (eds.),

Proceedings of the 5th Conference on Robot Learning,

volume 164 of Proceedings of Machine Learning Re-

search, pp. 598–608. PMLR, 08–11 Nov 2022.

Huang, K., Krügener, M., Brown, A., Menhorn, F., Bun-

gartz, H.-J., and Hartmann, D. Machine learning-based

optimal mesh generation in computational fluid dynamics.

arXiv preprint arXiv:2102.12923, 2021.

Huang, W. and Russell, R. D. Adaptive moving mesh meth-

ods, volume 174. Springer Science & Business Media,

2010.

Kelly, M., Sidrane, C., Driggs-Campbell, K., and Kochen-

derfer, M. J. Hg-dagger: Interactive imitation learning

with human experts. In 2019 International Conference on

Robotics and Automation (ICRA), pp. 8077–8083. IEEE,

2019.

Kita, E. and Kamiya, N. Error estimation and adaptive mesh

refinement in boundary element method, an overview.

Engineering Analysis with Boundary Elements, 25(7):

479–495, 2001.

Larson, M. G. and Bengzon, F. The Finite Element Method:

Theory, Implementation, and Applications, volume 10

of Texts in Computational Science and Engineering.

Springer, Berlin, Heidelberg, 2013. ISBN 978-3-642-

33286-9 978-3-642-33287-6. doi: 10.1007/978-3-642-

33287-6.

Lin, L.-J. Self-improving reactive agents based on reinforce-

ment learning, planning and teaching. Machine learning,

8:293–321, 1992.

Linkerhägner, J., Freymuth, N., Scheikl, P. M., Mathis-

Ullrich, F., and Neumann, G. Grounding graph network

simulators using physical sensor observations. In The

Eleventh International Conference on Learning Repre-

sentations, 2023.

Lock, C., Hassan, O., Sevilla, R., and Jones, J. Predict-

ing the Near-Optimal Mesh Spacing for a Simulation

Using Machine Learning. In Ruiz-Gironés, E., Sevilla,

R., and Moxey, D. (eds.), SIAM International Meshing

Roundtable 2023, volume 147, pp. 115–136. Springer Na-

ture Switzerland, Cham, 2024. ISBN 978-3-031-40593-

8 978-3-031-40594-5. doi: 10.1007/978-3-031-40594-

5_6.

Lopez-Guevara, T., Rubanova, Y., Whitney, W. F., Pfaff, T.,

Stachenfeld, K., and Allen, K. R. Scaling face interac-

tion graph networks to real world scenes. arXiv preprint

arXiv:2401.11985, 2024.

Menda, K., Driggs-Campbell, K., and Kochenderfer, M. J.

Ensembledagger: A bayesian approach to safe imitation

learning. In 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 5041–5048.

IEEE, 2019.

Mukherjee, A. An adaptive finite element code for elliptic

boundary value problems in three dimensions with appli-

cations in numerical relativity. The Pennsylvania State

University, 1996.

Nemec, M., Aftosmis, M., and Wintzer, M. Adjoint-based

adaptive mesh refinement for complex geometries. In

46th AIAA Aerospace Sciences Meeting and Exhibit, pp.

725, 2008.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel,

P., Peters, J., et al. An algorithmic perspective on imita-

tion learning. Foundations and Trends® in Robotics, 7

(1-2):1–179, 2018.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and

Battaglia, P. W. Learning mesh-based simulation with

graph networks. In International Conference on Learning

Representations, 2021.

Plewa, T., Linde, T., Weirs, V. G., et al. Adaptive mesh

refinement-theory and applications. Springer, 2005.

Pomerleau, D. A. Alvinn: An autonomous land vehicle

in a neural network. In Touretzky, D. (ed.), Advances

in Neural Information Processing Systems, volume 1.

Morgan-Kaufmann, 1988.

Reddy, J. N. Introduction to the finite element method.

McGraw-Hill Education, 2019.

Remacle, J.-F., Henrotte, F., Carrier-Baudouin, T., Béchet,

E., Marchandise, E., Geuzaine, C., and Mouton, T. A

frontal delaunay quad mesh generator using the l-infinity

norm. International Journal for Numerical Methods in

Engineering, 94(5):494–512, 2013.

10

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-

volutional networks for biomedical image segmentation.

In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2015: 18th International Confer-

ence, Munich, Germany, October 5-9, 2015, Proceedings,

Part III 18, pp. 234–241. Springer, 2015.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-

tion learning and structured prediction to no-regret online

learning. In Proceedings of the fourteenth international

conference on artificial intelligence and statistics, pp.

627–635. JMLR Workshop and Conference Proceedings,

2011.

Roth, J., Schröder, M., and Wick, T. Neural network guided

adjoint computations in dual weighted residual error esti-

mation. SN Applied Sciences, 4(2):62, 2022.

Shafiullah, N. M., Cui, Z., Altanzaya, A. A., and Pinto, L.

Behavior transformers: Cloning k modes with one stone.

In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,

Cho, K., and Oh, A. (eds.), Advances in Neural Informa-

tion Processing Systems, volume 35, pp. 22955–22968.

Curran Associates, Inc., 2022.

Si, H. Adaptive tetrahedral mesh generation by constrained

delaunay refinement. International Journal for Numerical

Methods in Engineering, 75(7):856–880, 2008.

Skalse, J., Howe, N. H. R., Krasheninnikov, D., and Krueger,

D. Defining and characterizing reward hacking. In

Proceedings of the 36th International Conference on

Neural Information Processing Systems, NIPS ’22, Red

Hook, NY, USA, 2024. Curran Associates Inc. ISBN

9781713871088.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An

introduction. MIT press, 2018.

Wallwork, J. G. Mesh adaptation and adjoint methods

for finite element coastal ocean modelling. PhD thesis,

Imperial College London, 2021.

Wallwork, J. G., Lu, J., Zhang, M., and Piggott, M. D.

E2n: Error estimation networks for goal-oriented mesh

adaptation. arXiv preprint arXiv:2207.11233, 2022.

Wu, T., Pan, L., Zhang, J., Wang, T., Liu, Z., and Lin,

D. Density-aware chamfer distance as a comprehen-

sive metric for point cloud completion. arXiv preprint

arXiv:2111.12702, 2021.

Würth, T., Freymuth, N., Zimmerling, C., Neumann, G., and

Kärger, L. Physics-informed meshgraphnets (pi-mgns):

Neural finite element solvers for non-stationary and non-

linear simulations on arbitrary meshes. arXiv preprint

arXiv:2402.10681, 2024.

Yang, J., Dzanic, T., Petersen, B. K., Kudo, J., Mittal, K.,

Tomov, V., Camier, J.-S., Zhao, T., Zha, H., Kolev, T.,

Anderson, R., and Faissol, D. Reinforcement learning for

adaptive mesh refinement. 26th International Conference

on Artificial Intelligence and Statistics (AISTATS), 2023a.

Yang, J., Mittal, K., Dzanic, T., Petrides, S., Keith, B., Pe-

tersen, B., Faissol, D., and Anderson, R. Multi-agent rein-

forcement learning for adaptive mesh refinement. 22nd In-

ternational Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS), 2023b.

Yano, M. and Darmofal, D. L. An optimization-based frame-

work for anisotropic simplex mesh adaptation. Journal

of Computational Physics, 231(22):7626–7649, 2012.

Zhang, Z., Wang, Y., Jimack, P. K., and Wang, H. Mesh-

ingnet: A new mesh generation method based on deep

learning. In Computational Science–ICCS 2020: 20th

International Conference, Amsterdam, The Netherlands,

June 3–5, 2020, Proceedings, Part III 20, pp. 186–198.

Springer, 2020.

Zhang, Z., Jimack, P. K., and Wang, H. MeshingNet3D:

Efficient generation of adapted tetrahedral meshes for

computational mechanics. Advances in Engineering Soft-

ware, 157–158:103021, July 2021. ISSN 0965-9978. doi:

10.1016/j.advengsoft.2021.103021.

Zienkiewicz, O. C. and Zhu, J. Z. The superconvergent patch

recovery and a posteriori error estimates. part 1: The

recovery technique. International Journal for Numerical

Methods in Engineering, 33(7):1331–1364, 1992.

11

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

A. Message Passing Networks

MPNs iteratively update latent features for the graph nodes and edges over L message-passing steps. Using linear embeddings

x
0
v = xv and x

0
e = xe of the initial node and edge features, each step l builds on the previous one, computing features

x
l+1
e = f l

E(x
l
v,x

l
u,x

l
e), with e = (u, v),

x
l+1
v = f l

V(x
l
v,

⊕

e=(v,u)∈E

x
l+1
e).

The operator
⊕

is a permutation-invariant aggregation, such as sum, mean, or maximum operator. Each f l
· is parameterized

as a learned MLP. The final output of the MPN is a learned representation x
L
v for each node v ∈ V . We feed this

representation into a decoder MLP to yield a scalar value per node that we train to approximate the target sizing field per

mesh element. Each f l
· is a learned function, usually parameterized as a simple MLP. The final output of the MPN is a

learned representation x
L
v for each node v ∈ V .

B. AMBER Training details

B.1. Replay Buffer

To prevent memory issues during training, we only add new meshes to the buffer if their total number of elements does

not exceed a threshold of 1.2 times the largest expert mesh. Additionally, we count the number of generation steps each

intermediate mesh has undergone, setting a maximum depth in the buffer to prevent the replay buffer from eventually filling

up with too-fine meshes. We use this depth parameter to ensure an even distribution over mesh depths in the buffer by

adding new meshes with a stratified mesh generation procedure. Here, we first select a target depth uniformly at random,

and then choose a random mesh from this depth to select the next mesh to refine and add to the buffer.

B.2. Train Batch Construction

As different meshes may have very different sizes, we do not train on a fixed number of meshes in each batch. Instead, we

define our batch size over the maximum number of nodes in a batch of graphs and fill up batches by iteratively adding a

graph without replacement to this batch until the maximum number of nodes is reached. To prevent smaller graphs from

being sampled disproportionally often, we count the number of training steps each graph has been used for, and prefer the

least used graphs in the batch construction if possible.

C. Metrics

C.1. Density-Aware Chamfer Metric

This section describes our primary evaluation metric, the normalized Density-Aware Chamfer Distance (DCD), in more

detail. The DCD is defined as a symmetric, exponentiated Chamfer distance with normalization factors to account for

elements in one set that match multiple elements in the other.

Mathematically, we first define the closest point function

ẑ(z, S) = argmin
w∈S

∥z − w∥2.

Using this function, we define nẑ as the number of matches that z has in the complementary set S:

nẑ = |{w ∈ S | ŵ(w, S) = z}|.

Given a point z ∈ S, let

C(S, z, S) = 1− 1

nẑ

e−∥z−ẑ(z,S)∥2 ,

be the contribution function. The full metric is then defined as

dDCD(S1, S2) =
1

2





1

|S1|
∑

x∈S1

C(S1, x, S2) +
1

|S2|
∑

y∈S2

C(S2, y, S1)



 .

12

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

AMBER Mean Max CNN 32d 64d 128d 256d 512d

0.008

0.01

0.012

0.014

Poisson 25

N
o
rm

al
iz

ed
V

o
lu

m
e

D
if

fe
re

n
ce

0

0.0005

0.001

0.0015

Poisson 50

0.0003

0.0004

0.0005

Poisson 75

0.05

0.1

Console

Figure 8: Normalized Volume Difference for AMBER and the CNN baseline for all considered tasks. The performance on

this metric is largely consistent with that on the DCD across methods and tasks.

To accommodate the inaccuracies of the mesh generator, we report a normalized version of this metric as

dNDCD(M t,M∗) =
dDCD({pMt

i
}, {pM∗

j
})− dDCD({pM0

i
}, {pM∗

j
})

dDCD({p
M̂i

}, {pM∗

j
})− dDCD({pM0

i
}, {pM∗

j
}) ,

where M̂ is the reconstruction of M∗ that we obtain by directly feeding the sizing field of M∗ into the mesh generator.

C.2. Volume Difference Metric

In addition to the normalized DCD of Section C.1, we evaluate the difference in element volumes between the generated

mesh MT and the expert M∗. Let V (MT
i) be the volume of element MT

i , and pMT
i

be its midpoint. For an index i, we

define j∗(i) as the index of the element M∗
j∗(i) which contains the midpoint pMT

i
. Analogously, we set jT (i) as the index

of the element MT
jT (i) which contains the midpoint pM∗

i
. We then calculate the volume difference between two meshes as

dVD =
∑

{i|MT
i
⊆MT }

|V (MT
i)− V (M∗

j∗(i))|+
∑

{i|M∗

i
⊆M∗}

|V (M∗
i)− V (MT

jT (i))| (2)

Intuitively, this metric numerically approximates the integrated absolute difference in element volumes across the generated

and the expert mesh using the elements of both meshes as integration points.

Figure 8 evaluates the volume difference metric of Equation 2 for all tasks. While the results for the volume difference

metric have more variance than the normalized DCD, they are consistent with that of Figure 3 and Figure 6.

D. Tasks and Data Collection

For Poisson’s equation, we generate random L-shaped geometries, defined as (0, 1)2\(p0 × (1, 1)), where the lower left

corner p0 is sampled from U(0.2, 0.95) in x and y direction. For the load function, we employ a Gaussian Mixture Model

with three components. The mean of each component is drawn from U(0.1, 0.9)2 and re-sampled until it is within the

geometry. We then independently draw diagonal covariances from a log-uniform distribution exp(U(log(0.0001, 0.001)))
and randomly rotate them to yield a full covariance matrix. Component weights are generated from exp(N(0, 1)) + 1 and

subsequently normalized. For this task, we evaluate the load function at each face’s midpoint and use it as a node feature.

Additionally, we solve the equation for every intermediate mesh, and use the mean and standard deviation of the solution on

each element’s vertices as additional node features.

We generate the expert meshes using an error-based heuristic on a refinement threshold θ (Binev et al., 2004; Bangerth et al.,

2012; Foucart et al., 2023), which marks all elements for refinement for which err(Mi) > θ ·maxj err(Mj). The error is

estimated by a heuristic

err(Ωt
i) = h2||f ||2 + h|| [[∇u · n]] ||2,

which assumes high errors in areas with high values of the load function f and with large gradients jumps on the element

edges or facets, respectively. Once elements with a high error are marked, the mesh is processed by a remesher, which

13

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

compute a conforming refined mesh using the red-green-blue refinement method (Carstensen, 2004). We apply Laplacian

smoothing after each refinement step.

E. Network Architectures and Hyperparameters

All methods are trained on an NVIDIA A100 GPU, with each method given a computational budget of up to 48 hours. For

mesh generation, we clip all predicted sizing field to the minimum sizing field of any expert mesh in the training data.

The MPN of AMBER consists of 10 separate message passing steps. Each message passing step uses separate 2-layer MLPs

and LeakyReLU activations for its node and edge updates. We independently apply residual connections (He et al., 2016)

and layer normalization (Ba et al., 2016) to the node and edge updates. The final node features are fed into a 2-layer MLP

decoder. All MLPs use a latent dimension of 64. We provide an overview of AMBER hyperparameters in Table 1.

For the CNN baseline, we use a U-Net (Ronneberger et al., 2015) architecture with 32 initial channels and 4 down- and

up-convolution blocks. Each convolution block consists of 2 convolutions with a kernel size of 3, followed by batch

normalization and a ReLU activation function. After each down-convolution, we use max-pooling with a kernel size and

stride of 2 to halve the image resolution, and double the number of channels. This process is reversed for the up-convolutions,

and we add skip connections between the respective depths. We use 2D and 3D convolutions, batch normalization and

pooling operations for the 2D and 3D tasks, respectively.

Table 1: AMBER hyperparameters and experiment configurations

Parameter Value

Optimizer ADAM

Learning rate 3.0e-4
Latent dimension 64
MPN aggregation function mean

MPN steps 10
MPN activation function Leaky ReLU

MPN edge dropout 0.1
MLP layers 2
Maximum replay buffer depth 5
Maximum buffer size 1 000 meshes

Training steps 128 000
Buffer addition frequency every 8 training steps

AMBER batch size 400 000 graph nodes

AMBER inference steps 5

14

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

F. Extended Results

0.15

0.2

0.25

#Train Meshes

N
o
rm

al
iz

ed
D

C
D

Poisson’s Equation (75 Refs.)

#Meshes

5

10

20 (Default)

50

100

Figure 9: Normalized DCD for AMBER (Max) on Poisson’s Equation with 75 refinement steps for different numbers of

training meshes. A larger number of training meshes consistently improves performance, yet even a training set size of 5
yields strong generalization performance to unseen meshes.

We explore the data efficiency of AMBER in Figure 9. While the approach continuously improves its predictions when

provided with more training data, as few as 5 training meshes and corresponding geometries are sufficient for accurate

mesh generation. This generalization capabilities are likely a results of the local, per-node MSE loss and the MPN network

architecture. Figure 10 explores design choices of AMBER’s training scheme. Both input normalization and transforming

the output predictions improve performance. The stratified sampling of new training data for AMBER’s replay buffer

improves performance, presumably because this ensures an even distribution of training data across mesh generation

iterations, whereas randomly adding new meshes eventually under-represents the early meshes in the training data.

0.15

0.2

0.25

Design Choices

N
o
rm

al
iz

ed
D

C
D

Poisson’s Equation (75 Refs.)

AMBER (Max)

Ours

No Pred. Transform

Random Buffer Sampling

No Observation Norm.

Figure 10: Normalized DCD for AMBER (Max) on Poisson’s Equation with 75 refinement steps for different algorithmic

design choices. Either Omitting the softplus output transformation for the sizing field prediction or not normalizing the

input features yields worse results. Randomly adding intermediate training meshes to the replay buffer instead of adding the

same amount of intermediate meshes for each mesh generation step decreases performance.

F.1. Visualizations

We present the qualitative results of all methods applied to all tasks. Figure 11 displays the results for AMBER (Mean),

Figure 12 shows the results for AMBER (Max), and Figure 13 showcases the predictions for the CNN baseline.

15

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

Poisson 25

Poisson 50

Poisson 75

Console

Step 1 Step 2 Step 5 Expert

Figure 11: Mesh generation steps of AMBER (Mean) for all tasks. Row 1 to 3: Poisson’s Equation with 25/50/75 expert

refinement steps. Row 4: Console task. AMBER (Mean) converges quickly to meshes that match the expert (displayed in

the last column).

16

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

Poisson 25

Poisson 50

Poisson 75

Console

Step 1 Step 2 Step 5 Expert

Figure 12: Mesh generation steps of AMBER (Max) for all tasks. Row 1 to 3: Poisson’s Equation with 25/50/75 expert

refinement steps. Row 4: Console task. AMBER (Max) creates generates more conservative meshes, yet still closely

matches the expert after 5 refinement steps.

17

Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

Poisson 25

Poisson 50

Poisson 75

Console

32d 64d 256d Expert

Figure 13: Meshes generated by the CNN baseline with varying input resolution on all environments. Row 1 to 3: Poisson’s

Equation with 25/50/75 expert refinement steps. Row 4: Console task. Lower image resolutions lead to square-like artifacts

in the output mesh which are not present in the expert meshes. The 256× 256× 256 CNN baseline on the console task

could not be computed due to excessive memory usage.

18

