
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

High-Frequency-aware Hierarchical Contrastive Selective Coding
for Representation Learning on Text-attributed Graphs

Anonymous Author(s)

ABSTRACT
We investigate node representation learning on text-attributed

graphs (TAGs), where nodes are associated with text information.

Although recent studies on graph neural networks (GNNs) and

pretrained language models (PLMs) have exhibited their power

in encoding network and text signals, respectively, less attention

has been paid to delicately coupling these two types of models on

TAGs. Specifically, existing GNNs rarely model text in each node in

a contextualized way; existing PLMs can hardly be applied to char-

acterize graph structures due to their sequence architecture. To ad-

dress these challenges, we propose HASH-CODE, aHigh-frequency

Aware Spectral Hierarchical Contrastive Selective Cding method

that integrates GNNs and PLMs into a unified model. Different

from previous “cascaded architectures” that directly add GNN lay-

ers upon a PLM, our HASH-CODE relies on five self-supervised

optimization objectives to facilitate thorough mutual enhancement

between network and text signals in diverse granularities. More-

over, we show that existing contrastive objective learns the low-

frequency component of the augmentation graph and propose a

high-frequency component (HFC)-aware contrastive learning objec-

tive that makes the learned embeddings more distinctive. Extensive

experiments on six real-world benchmarks substantiate the effi-

cacy of our proposed approach. In addition, theoretical analysis

and item embedding visualization provide insights into our model

interoperability.

KEYWORDS
Text Attributed Graph, Graph Neural Networks, Transformer, Con-

trastive Learning

1 INTRODUCTION
Graphs are pervasive in the real world, and it is common for nodes

within these graphs to be enriched with textual attributes, thereby

giving rise to text-attributed graphs (TAGs) [69]. For instance, aca-

demic graphs [41] incorporate papers replete with their titles and

abstracts, whereas social media networks [66] encompass tweets

accompanied by their textual content. Consequently, the pursuit

of learning within the realm of TAGs has assumed significant

prominence as a research topic spanning various domains, e.g.,
network analysis [52], recommender systems [64], and anomaly

detection [33].

In essence, graph topology and node attributes comprise two inte-

gral components of TAGs. Consequently, the crux of representation

learning on TAGs lies in the amalgamation of graph topology and

node attributes. Previous works mainly adopt a cascaded architec-

ture [23, 29, 65, 71] (Figure 1(a)), which entails encoding the textual

attributes of each node with Pre-trained Language Models (PLMs),

subsequently utilizing the PLM embeddings as features to train a

Graph Neural Network (GNN) for message propagation [8, 12, 61].

However, as the modeling of node attributes and graph topology are

Figure 1: (a) An illustration of GNN-cascaded transformer.
(b) An illustration of our proposed contrastive learning-
empowered GNN-nested transformer. The red and green
twines denote the original graph signals and the mixed LFC
and HFC signals from the spectral perspective.

segregated, this learning paradigm harbors conspicuous limitations.

Firstly, the link connecting two nodes is not utilized when gener-

ating their text representations. In fact, linked nodes can benefit

each other regarding text semantics understanding. For example,

given a paper on “LDA” and its citation nodes which are related to

topic modeling, the “LDA” can be more likely interpreted as “Latent

Dirichlet Allocation” rather than “Linear Discriminant Analysis”.

In addition, this paradigm may yield textual embeddings that are

not pertinent to downstream tasks, thereby impeding the model’s

ability to learn node representations suitable for such tasks. More-

over, given that the formation of the graph’s topological structure

is intrinsically driven by the node attribute [69], this paradigm may

adversely affect the comprehension of the graph topology.

Fortunately, recent efforts have been undertaken [1, 22, 37, 60]

to co-train GNNs and LMs within a unified learning framework. For

example, GraphFormers [60] introduces GNN-nested transformers,

facilitating the joint encoding of text and node features. Heter-

former [22] alternately stacks the graph aggregation module and

a transformer-based text encoding module into a cohesive model

to capture network heterogeneity. Despite the demonstrated effi-

cacy of existing methods, they are encumbered by two primary

drawbacks that may undermine the quality of representation learn-

ing. Firstly, these methods typically employ supervised training,

necessitating a substantial volume of labeled data. However, in

numerous scientific domains, labeled data are scarce and expen-

sive to obtain [19, 53]. Secondly, these methods rely exclusively on

limited optimization objectives to learn the entire model. When

GNNs and LMs are jointly trained, the associated parameters are

also learned through the constrained optimization objectives. It has

been observed that such an optimization approach fails to capture

the fine-grained correlations between textual features and graphic

patterns [60, 70]. Consequently, the importance of learning graph

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

representations in an unsupervised or self-supervised manner is

becoming increasingly paramount.

In order to tackle the aforementioned challenges, we draw in-

spiration from the concept of contrastive learning to enhance rep-

resentation learning on TAGs. Contrastive learning [5, 15, 17, 45]

refines representations by drawing positive pairs closer while main-

taining a distance between negative pairs. As data sparsity and

limited supervision signals constitute the two primary learning

obstacles associated with existing co-training methods, contrastive

learning appears to offer a promising solution to both issues: it

capitalizes on intrinsic data correlations to devise auxiliary training

objectives and bolsters data representations with an abundance of

self-supervised signals.

In practice, representation learning on TAGs with contrastive

learning is non-trivial, primarily encountering the following three

challenges: (1) How to devise a learning framework that capitalizes
on the distinctive data properties of TAGs? The contextual informa-

tion within TAGs is manifested in a multitude of forms or vary-

ing intrinsic characteristics, such as tokens, nodes, or sub-graphs,

which inherently exhibit complex hierarchical structures. More-

over, these hierarchies are interdependent and exert influence upon

one another. How to capitalize these unique properties of TAGs

remains an open question. (2) How to design effective contrastive
tasks? To obtain an effective node embedding that fully encapsu-

lates the semantics, relying solely on the hierarchical topological

views of TAGs remains insufficient. Within TAGs, graph topological

views and textual semantic views possess the capacity to mutu-

ally reinforce one another, indicating the importance of exploring

the cross-view contrastive mechanism. Moreover, the hierarchies

in TAGs can offer valuable guidance in selecting positive pairs

with analogous semantics and negative pairs with divergent se-

mantics, an aspect that has received limited attention in existing

research [25, 57]. (3) How to learn distinctive representations? In

developing the contrastive learning framework, we draw inspi-

ration from the recently proposed spectral contrastive learning

method [14], which outperforms several contrastive baselines with

solid theoretical guarantees. However, we demonstrate that, from a

spectral perspective, the spectral contrastive loss primarily learns

the low-frequency component (LFC) of the graph, significantly at-

tenuating the effects of high-frequency components (HFC). Recent

studies suggest that the LFC does not necessarily encompass the

most vital information [2, 7], and would ultimately contribute to the

over-smoothing problem [3, 4, 31, 32], causing node representations

to converge to similar values and impeding their differentiation.

Consequently, more explorations are needed to determine how to

incorporate the HFC to learn more discriminative embeddings.

To this end, we present a novel High-frequency Aware Spectral
HierarchicalContrastive Selective Cding framework (HASH-CODE)
to enhance TAG representation learning. Building upon a GNN and

Transformer architecturee [60, 71], we propose to jointly train the

GNN and Transformer with self-supervised signals (Figure 1(b)

depicts this architecture). The primary innovation lies in the con-

trastive joint-training stage. Specifically, we devise five self-supervised

optimization objectives to capture hierarchical intrinsic data corre-

lations within TAGs. These optimization objectives are developed

within a unified framework of contrastive learning. Moreover, we

propose a loss that can be succinctly expressed as a contrastive

learning objective, accompanied by robust theoretical guarantees.

Minimizing this objective results in more distinctive embeddings

that strike a balance between LFC and HFC. Consequently, the

proposed method is capable of characterizing correlations across

varying levels of granularity or between different forms in a general

manner.

Our main contributions are summarized as follows:

• We propose five self-supervised optimization objectives to maxi-

mize the mutual information of context information in different

forms or granularities.

• We systematically examine the fundamental limitations of spec-

tral contrastive loss from the perspective of spectral domain. We

prove that it learns the LFC and propose an HFC-aware con-

trastive learning objective that makes the learned embeddings

more discriminative.

• Extensive experiments conducted on three million-scale text-

attributed graph datasets demonstrate the effectiveness of our

proposed approach.

2 RELATEDWORK
2.1 Representation Learning on TAGs
Representation learning on TAGs constitutes a significant research

area across multiple domains, including natural language process-

ing [47, 49], information retrieval [50, 58], and graph learning [59,

62]. In order to attain high-quality representations for TAGs, it

is imperative to concurrently harness techniques from both natu-

ral language understanding and graph representation. The recent

advancements in pretrained language models (PLM) and graph neu-

ral networks (GNN) have catalyzed the progression of pertinent

methodologies.

Seperated Training. A number of recent efforts strive to amal-

gamate GNNs and LMs, thereby capitalizing on the strengths inher-

ent in both models. The majority of prior investigations on TAGs

employ a "cascaded architecture" [23, 29, 65, 71], in which the text

information of each node is initially encoded through transformers,

followed by the aggregation of node representations via GNNs.

Nevertheless, these PLM embeddings remain non-trainable during

the GNN training phase. Consequently, the model performance is

adversely impacted by the semantic modeling process, which bears

no relevance to the task and topology at hand.

Co-training. In an attempt to surmount these challenges, con-

certed efforts have been directed towards the co-training of GNNs

and PLMs within a unified learning framework. GraphFormers [60]

presents GNN-nested transformers, facilitating the concurrent en-

coding of text and node features. Heterformer [22] alternates be-

tween stacking the graph aggregation module and a transformer-

based text encoding module within a unified model, thereby cap-

turing network heterogeneity. However, these approaches solely

depend on a single optimization objective for learning the entire

model, which considerably constrains their capacity to discern the

fine-grained correlations between textual and graphical patterns.

2.2 Contrastive Learning
Empirical Works on Contrastive learning. Contrastive meth-

ods [5, 6, 17] derive representations from disparate views or aug-

mentations of inputs and minimize the InfoNCE loss [36], wherein

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed GraphsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

two views of identical data are drawn together, while views from

distinct data are repelled. The acquired representation can be uti-

lized to address a wide array of downstream tasks with exceptional

performance. In the context of node representation learning on

graphs, DGI [45] constructs local patches and global summaries

as positive pairs. GMI [38] is designed to establish a contrast be-

tween the central node and its local patch, derived from both node

features and topological structure. MVGRL [15] employs contrast

across views and explores composition between varying views.

Theoretical works on Contrastive Learning. The exceptional
performance exhibited by contrastive learning has spurred a series

of theoretical investigations into the contrastive loss. The majority

of these studies treat the model class as a black box, with notable

exceptions being the work of [28], which scrutinizes the learned rep-

resentation with linear models, and the research conducted by [42]

and [54], which examine the training dynamics of contrastive learn-

ing for linear and 2-layer ReLU networks. Most relevant to our

research is the study by [39], which adopts a spectral graph per-

spective to analyze contrastive learning methods and introduces the

spectral contrastive loss. We ascertain that the spectral contrastive

loss solely learns the LFC of the graph.

Different from the existing works, our research represents the

first attempt to contemplate the correlations inherent within the

contextual information as self-supervised signals in TAGs. We en-

deavor to maximize the mutual information among the views of

the token, node, and subgraph, which encompass varying levels of

granularity within the contextual information. Our HFC-aware loss

facilitates the learning of more discriminative data representations,

thereby enhancing the performance of downstream tasks.

3 PRELIMINARIES
In this section, we first give the definition of the text-attributed

graphs (TAGs) and formulate the node representation learning

problem on TAGs. Then, we introduce our proposed HFC-aware

spectral contrastive loss.

3.1 Definition (Text-attributed Graphs)
A text-attributed graph is defined as G = (V, E), where V =

{𝑣1, ..., 𝑣𝑁 } and E denote the set of nodes and edges, respectively.

Let 𝐴 ∈ R𝑁×𝑁 be the adjacency matrix of the graph such that

𝐴𝑖, 𝑗 = 1 if 𝑣 𝑗 ∈ N (𝑣𝑖), otherwise 𝐴𝑖, 𝑗 = 0. Here N(.) denotes the
one-hop neighbor set of a node. Besides, each node 𝑣𝑖 is associated

with text information.

3.2 Problem Statement
Given a textual attibuted graph G = (V, E), the task is to build

a model 𝑓𝜃 : V → R𝐾 with parameters 𝜃 to learn the node em-

bedding matrix 𝐹 ∈ R𝑁×𝐾 , taking network structures and text se-

mantics into consideration, where 𝐾 denotes the number of feature

channels. The learned embedding matrix 𝐹 can be further utilized

in downstream tasks, e.g., link prediction, node classification, etc.

3.3 HFC-aware Spectral Contrastive Loss
An important technique in our approach is the high-frequency

aware spectral contrastive loss. It is developed based on the analysis

of the conventional spectral contrastive loss [14]. Given a node 𝑣 ,

the conventional spectral contrastive loss is defined as:

L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (𝑣, 𝑣+, 𝑣−) = −2 · E𝑣,𝑣+ [𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣+)]

+ E𝑣,𝑣− [(𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣−))2],
(1)

where (𝑣, 𝑣+) is a pair of positive views of node 𝑣 , (𝑣, 𝑣−) is a pair
of negative views, and 𝑓𝜃 is a parameterized function from the node

to R𝐾 . Minimizing L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 is equivalent to spectral clustering on
the population view graph [14], where the top smallest eigenvectors

of the Laplacian matrix are preserved as the columns of the final

embedding matrix 𝐹 .

In Appendix A.1, we demonstrate that, from a spectral perspec-

tive,L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 primarily learns the low-frequency component (LFC)

of the graph, significantly attenuating the effects of high-frequency

components (HFC). Recent studies suggest that the LFC does not

necessarily encompass the most vital information [2, 7], and would

ultimately contribute to the over-smoothing problem [3, 4, 31, 32].

As an alternative of such low-pass filter, to introduce HFC, we

propose our HFC-aware spectral contrastive loss as follows:

L𝐻𝐹𝐶 (𝑣, 𝑣+, 𝑣−) = −2𝛼 · E𝑣,𝑣+ [𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣+)]

+ E𝑣,𝑣− [(𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣−))2],
(2)

where 𝛼 is used to control the rate of HFC within the graph.

Upon initial examination, one might observe that our L𝐻𝐹𝐶 for-

mulation closely aligns with L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 . Remarkably, the primary

distinction lies in the introduction of the parameter 𝛼 . However, this

is not a mere trivial addition; it emerges from intricate mathemati-

cal deliberation and is surprisingly consistent with L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 that
offers a nuanced control of the HFC rate within the graph. Minimiz-

ing our L𝐻𝐹𝐶 results in more distinctive embeddings that strike a

balance between LFC and HFC. Please kindly refer to Appendix A.1

for detailed discussions and proof.

4 METHODOLOGY
4.1 Overview
Existing studies [23, 29, 65, 71] mainly emphasize the effect of se-

quential and graphic characteristics using the supervised optimiza-

tion objective alone. Inspired by recent progress with contrastive

learning [5, 17], we take a different perspective to characterize the

data correlations by contrasting different views of the raw data.

The basic idea of our approach is to incorporate several elabo-

rately designed self-supervised learning objectives for enhancing

the original GNN and PLM. To develop such objectives, we leverage

effective correlation signals reflected in the intrinsic characteris-

tics of the input. As shown in Figure 2, for our task, we consider

the information in different levels of granularity, including token,

node and sub-graph, which are considered as different views of

the input. By capturing the multi-view correlation, we unify these

self-supervised learning objectives with the typical joint learning

training scheme in language modeling and graph mining [60].

4.2 Hierarchical Contrastive Learning with
TAGs

TAGs naturally possess 3 levels in the hierarchy: token-level, node-

level and subgraph-level. Based on the above GNN and PLM model,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Spectral
Contrastive Loss

Sam
pler

Sam
pler

Node - Node

Token - Node

Positive Sample

Node - Subgraph

Subgraph - Subgraph

Corrupted
Samples

Adversarial
Negative Sample

Query Sample Negative Sample

Positive SampleQuery Sample Negative Sample

Positive SampleQuery Sample Negative Sample

Corrupted
Samples

Positive SampleQuery Sample Negative SampleNegative
Candidates

True Negative
Samples

......

Token - TokenToken Hidden State
Node Hidden State

Lo
w

 P
as

s
Fi

lte
r

HFC-aware
Contrastive Loss

B
an

d
Pa

ss
 F

ilt
er

Original Graph Signal

LFC

Mixed LFC & HFC

Figure 2: The overall architecture of HASH-CODE. With GraphFormers as our base model, we incorporate five self-supervised
learning objectives based on the HFC-aware contrastive loss to capture the text-graph correlations in different granularities.
Spectral contrastive loss learns the LFC while our HFC-aware loss achieves the balance between HFC and LFC.

we further incorporate additional self-supervised signals with con-

trastive learning to enhance the representations of input data. We

adopt a joint-training way to construct different loss functions

based on the multi-view correlation.

4.2.1 Intra-hierarchy contrastive learning.
Modeling Token-level Correlations. We first begin with model-

ing the bidirectional information in the token sequence. Inspired

by the masked language model like BERT [10], we propose to use

the contrastive learning framework to design a task that maximizes

the mutual information between the masked sequence represen-

tation and its contextual representation vector. Specifically, for a

node 𝑣 , given its textual attribute sequence 𝑥𝑣 = {𝑥𝑣,1, 𝑥𝑣,2, ..., 𝑥𝑣,𝑇 },
we consider 𝑥𝑣,𝑖:𝑗 and 𝑥𝑣,𝑖:𝑗 as a positive pair, where 𝑥𝑣,𝑖:𝑗 is an n-
grams spanning from i to j and 𝑥𝑣,𝑖:𝑗 is the corresponding sequence

masked at position i to j. We may omit the subscript 𝑣 for notation

simplification when it is not important to differentiate the affiliation

between node and textual sequence.

For a specific query n-gram 𝑥𝑖:𝑗 , instead of contrasting it indis-

criminately with all negative candidatesN in a batch [27], we select

truly negative samples for contrasting based on the supervision

signals provided by the hierarchical structure in TAGs, as shown

in Figure 3. Intuitively, we would like to eliminate those candidates

sharing highly similar semantics with the query, while keeping the

ones that are less semantically relevant to the query. To achieve

this goal, we first define a similarity measure between an n-gram
and a node. Inspired by [30], for a node 𝑣 , we define the seman-

tic similarity between n-gram’s hidden state ℎ𝑥𝑖 :𝑗 and this node’s

hidden state ℎ𝑣 using a node-specific dot product:

𝑠 (ℎ𝑥𝑖 :𝑗 , ℎ𝑣) =
ℎ𝑥𝑖 :𝑗 · ℎ𝑣
𝜏ℎ𝑣

, 𝜏ℎ𝑣 =
Σℎ𝑥𝑖 ∈𝐻𝑣 | |ℎ𝑥𝑖 − ℎ𝑣 | |2
|𝐻𝑣 |𝑙𝑜𝑔(|𝐻𝑣 | + 𝜖)

,

where ℎ𝑥𝑖 is the hidden representation of the token 𝑥𝑖 , 𝐻𝑣 consists

of the hidden representations of the tokens assigned to node 𝑣 , and

𝜖 is a smooth parameter balancing the scale of temperature 𝜏ℎ𝑣
among different nodes.

On such a basis, we conduct negative sampling selection consid-

ering both the token and node hierarchies. Given the query n-gram
𝑥𝑖:𝑗 , we denote its corresponding node 𝑣 ’s representation as ℎ𝑣 . For

a negative candidate, we are more likely to select it if its similarity

Figure 3: Token-level contrastive selective coding.

with ℎ𝑣 is less prominent compared with other negative candidates’

similarities with ℎ𝑣 . Based on such an intuition, the least dissimilar

negative samplesN𝑠𝑒𝑙𝑒𝑐𝑡 (ℎ𝑥𝑖 :𝑗) are produced for the specific query.

By using these refined negative samples, we define the objective

function of token-level contrastive (TC) loss as below:

L𝑇𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑥𝑚,𝑖:𝑗 , 𝑥𝑚,𝑖:𝑗 ,N𝑠𝑒𝑙𝑒𝑐𝑡 (ℎ𝑥𝑚,𝑖 :𝑗)), (3)

where 𝑀 is the size of the representation set and L𝐻𝐹𝐶 is our

proposed HFC-aware spectral contrastive loss.

Figure 4: Modeling node-level correlations.

Modeling Node-level Correlations. Investigating the cross-view

contrastive mechanism is especially important for node represen-

tation learning [53]. As mentioned before, nodes in TAGs possess

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed GraphsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

textual attributes that can indicate semantic relationships in the

network and serve as complementary to structural patterns. As

shown in Figure 4, given a node 𝑣 , we treat its textual attribute

sequence 𝑥𝑣 and its direct connected neighbors 𝑢, for 𝑢 ∈ 𝑁𝑣 as
two different views.

The negative selective encoding strategy used in token-level cor-

relation modeling may select those easy negative samples that con-

tribute less and less during the training process. Inspired by [56],we

propose to adversarially generate the negative samples �̃� in the node-

level contrastive learning process. Specifically, we adopt ProGCL [56]

method to reweight the negative node samples and performing

mixup operation [67] to generate hard negative samples �̃� . There-

fore, we minimize the following Node-level Contrastive (NC) loss:

L𝑁𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑥𝑚,𝑣, 𝑁𝑚,𝑣, 𝑣𝑚) (4)

Modeling Subgraph-level Correlations. Having modeled corre-

lations between a node’s local neighborhood and its textual features,

we further consider modeling the correlations between subgraphs

to cover both of the local and high-order structures of the nodes.

Intuitively, nodes and their regional neighborhoods are more corre-

lated while long-distance nodes hardly influence them. Therefore,

local communities may form with the graph. This assumption is

more reasonable as the size of graphs increases. Therefore, we sam-

ple a series of subgraphs including regional neighborhoods from

the original graph as training data.

The most critical issue now is to sample a context subgraph,

which can provide sufficient structure information for learning a

high-quality representation for the central node. Here we follow

the subgraph sampling based on personalized PageRank algorithm

(PPR) [20] as introduced in [21, 68]. Considering the importance

of different neighbors varies, for a specific node 𝑖 , the subgraph

sampler 𝑆 first measures the importance scores of other neighbor

nodes by PPR. Given the relational information between all nodes

in the form of an adjacency matrix, 𝐴 ∈ R𝑁×𝑁 , the importance

score matrix 𝑆 can be denoted as

𝑆 = 𝛼 · (𝐼 − (1 − 𝛼) · 𝐴),

where 𝐼 is the identity matrix and 𝛼 ∈ [0, 1] is a parameter that is

always set as 0.15. 𝐴 = 𝐴𝐷−1 denotes the colum-normalized adja-

cency matrix, where 𝐷 denotes the corresponding diagonal matrix

with 𝐷 (𝑖, 𝑖) = Σ 𝑗𝐴(𝑖, 𝑗) on its diagonal. 𝑆 (𝑖, :) is the importance

scores vector for node 𝑖 , indicating its correlation with other nodes.

It is noted that the importance scorematrix S can be precomputed

before model training starts. And we implement node-wise PPR to

calculate importance scores to reduce computation memory, which

makes our method more suitable to work on large-scale graphs.

For a specific node 𝑖 , the subgraph sampler 𝑆 chooses top-k

important neighbors to constitute the subgraph 𝐺𝑖 . The index of

chosen nodes can be denoted as

𝑖𝑑𝑥 = 𝑡𝑜𝑝_𝑟𝑎𝑛𝑘 (𝑆 (𝑖, :), 𝑘),

where 𝑡𝑜𝑝_𝑟𝑎𝑛𝑘 is the function that returns the indices of the top

k values and k denotes the size of context graphs.

The subgraph sampler 𝑆 will process the original graph with

the node index to obtain the context subgraph 𝐺𝑖 of node 𝑖 . Its

Figure 5: Modeling subgraph-level correlations.

adjacency matrix 𝐴𝑖 and feature matrix 𝑋𝑖 are as follows:

𝐴𝑖 = 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥,𝑋𝑖 = 𝑋𝑖𝑑𝑥,:,

where .𝑖𝑑𝑥 is an indexing operation. 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥 is the rowwise and

col-wise indexed adjacency matrix corresponding to the induced

subgraph. 𝑋𝑖𝑑𝑥,: is the row-wise indexed feature matrix.

Encoding subgraph. Given the context subgraph 𝐺𝑖 = (𝐴𝑖 , 𝑋𝑖) of
a central node 𝑖 , the encoder E : R𝑁×𝑁 ×R𝑁×𝐹 → R𝑁×𝐹 encodes

it to obtain the latent representations matrix 𝐻𝑖 denoted as

𝐻𝑖 = E(𝐴𝑖 , 𝑋𝑖)

The subgraph-level representation 𝑠𝑖 is summarized by a readout

function, R : R𝑁×𝐹 → R𝐹 :

𝑠𝑖 = R(𝐻𝑖)

.

So far, the representations of subgraphs have been produced. As

shown in Figure 5, to model the correlations in subgraph level, we

treat two subgraphs 𝑠𝑖 and 𝑠𝑖 that sampled from the node ℎ𝑖 and

its most important neighbor node
ˆℎ𝑖 respectively as positive pairs

while the rest of subgraphs �̃� are negative pairs. We minimize the

following Subgraph-level Contrastive (SC) loss:

L𝑆𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑠𝑚, 𝑠𝑚, 𝑠𝑚) (5)

4.2.2 Inter-hierarchy contrastive learning.
Having modeled the intra-hierarchy correlations, we further con-

sider modeling the intra-hierarchy correlations as different hierar-

chies are dependent and will influence each other.

Modeling Token-Node Correlations. To model the token-node

correlation, our intuition is to train the language model to re-

fine the understanding of the text by GNN produced embeddings.

Therefore, the language model is pushed to learn fine-grained

task-aware context information. Specifically, given a sequence

𝑥𝑣 = {𝑥𝑣,1, 𝑥𝑣,2, ..., 𝑥𝑣,𝑇 }, we consider 𝑥𝑣 and its corresponding node
representation ℎ𝑣 as a positive pair. On the other hand, for a set of

node representations, we employ a function, P, to corrupt them to

generate negative samples, denoted as

{ℎ̃1, ℎ̃2, ..., ℎ̃𝑀 } = P{ℎ1, ℎ2, ..., ℎ𝑀 },

where𝑀 is the size of the representation set.P is the random shuffle

function in our experiment. This corruption strategy determines

the differentiation of tokens with different context nodes, which is

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

crucial for some downstream tasks, such as node classification. We

develop the following Token-Node Contrastive (TNC) loss:

L𝑇𝑁𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑥𝑚,𝑣, ℎ𝑚,𝑣,P{ℎ1, ℎ2, ..., ℎ𝑀 }) (6)

Modeling Node-Subgraph Correlations. Intuitively, nodes are
dependent on their regional neighborhoods and different nodes

have different context subgraphs. Therefore, we consider the strong

correlation between central nodes and their context subgraphs to

design a self-supervision pretext task to contrast the real context

subgraph with a fake one. Specifically, for the node representation,

ℎ𝑣 , that captures the regional information in the context subgraph,

we regard the context subgraph representation 𝑠𝑣 as the positive

sample. Similar to the calculation of L𝑇𝑁𝐶 , we employ the random

shuffle function P to corrupt other subgraph representations to

generate negative samples, denoted as

{𝑠1, 𝑠2, ..., 𝑠𝑀 } = P{𝑠1, 𝑠2, ..., 𝑠𝑀 }

We minimize the following Node-Subgraph Contrastive (NSC) loss:

L𝑁𝑆𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (ℎ𝑚,𝑣, 𝑠𝑚,𝑣,P{𝑠1, 𝑠2, ..., 𝑠𝑀 }) (7)

Overall Objective Loss.Our overall objective function is aweighted
combination of the five terms above:

L𝐻𝐴𝑆𝐻−𝐶𝑂𝐷𝐸 = 𝜆𝑇𝐶L𝑇𝐶 + 𝜆𝑁𝐶L𝑁𝐶 + 𝜆𝑆𝐶L𝑆𝐶
+ 𝜆𝑇𝑁𝐶L𝑇𝑁𝐶 + 𝜆𝑁𝑆𝐶L𝑁𝑆𝐶 ,

(8)

where 𝜆𝑇𝐶 , 𝜆𝑁𝐶 , 𝜆𝑆𝐶 , 𝜆𝑇𝑁𝐶 and 𝜆𝑁𝑆𝐶 are hyper-parameters that

balance the contribution of each term. We summarize the workflow

of our proposed HASH-CODE in Appendix B.3.

5 EXPERIMENTS
5.1 Experimental Setup
In this section, we have conducted extensive experiments, and

analyzed the performance of the proposed HASH-CODE method

by addressing the following key research questions as follows:

• RQ1: How does our method perform compared with baseline

methods?

• RQ2: How does each component of our method contribute to

the performance?

• RQ3: How about the efficiency of our proposed model compared

with other baselines?

• RQ4: How does our method perform when facing the issue of

data sparsity?

• RQ5: How do different hyper-parameters affect our method?

5.1.1 Datasets. We conduct experiments on six datasets (i.e.,DBLP1,
Wikidata5M

2
[51], Beauty, Sports and Toys fromAmazon dataset

3
[35]

and Product Graph) from three different domains (i.e., academic

papers, social media posts, and e-commerce). We leverage three

common metrics to measure the prediction accuracy: Precision@1

(P@1), NDCG, and MRR. Detailed information about the datasets

can be found in Appendix B.1. The statistics of the six datasets are

summarized in Table 1.

1
https://originalstatic.aminer.cn/misc/dblp.v12.7z

2
https://deepgraphlearning.github.io/project/wikidata5m

3
http://snap.stanford.edu/data/amazon/

Table 1: Statistics of datasets after preprocessing.

Dataset Product Beauty Sports Toys DBLP Wiki

#Users 13,647,591 22,363 25,598 19,412 N/A N/A

#Items 5,643,688 12,101 18,357 11,924 4,894,081 4,818,679

#N 4.71 8.91 8.28 8.60 9.31 8.86

#Train 22,146,934 188,451 281,332 159,111 3,009,506 7,145,834

#Valid 30,000 3,770 5,627 3,182 60,000 66,167

#Test 306,742 6,280 9,377 5,304 100,000 100,000

5.1.2 Baselines. We compare HASH-CODE with three types of

baselines: (1) GNN-cascaded transformers, which includes BERT+Ma-

xSAGE [13], BERT+MeanSAGE [13], BERT+GAT [44], TextGNN [71],

and AdsGNN [29]. (2) GNN-nested transformers, which includes

GraphFormers [60], and Heterformer [22]. (3) To verify the impor-

tance of both text and network information in TAGs, we also in-

clude Vanilla GraphSAGE [13], Vanilla GAT [44], Vanilla BERT [10]

and Twin-Bert [34] in comparison. Detailed information about the

baselines can be found in Appendix B.2.

5.1.3 Reproducibility. For all compared models, we adopt the 12-

layer BERT-base-uncased [10] in the huggingface as the backbone

PLM for a fair comparison. The models are trained for at most 100

epochs on all datasets. We use an early stopping strategy on P@1

with a patience of 2 epochs. The size of minimal training batch is

64, learning rate is set to 1𝑒 − 5. We pad the sequence length to 32

for Product, DBLP and Amazon datasets, 64 for Wiki, depending

on different text length of each dataset. Adam optimizer [26] is

employed to minimize the training loss. Other parameters are tuned

on the validation dataset and we save the checkpoint with the best

validation performance as the final model. Parameters in baselines

are carefully tuned on the validation set to select the most desirable

parameter setting.

5.2 Overall Comparison (RQ1)
Following previous studies on network representation learning, we

consider two fundamental tasks: link prediction, node classification.

To save space, we will mainly present the results on link prediction

here and save the node classification part to Appendix C:

Settings. The link prediction experiments are evaluated in terms of

link prediction accuracy, i.e., to predict whether a query node and

key node are connected given the textual features of themselves

and their neighbours. For Product, DBLP and Wiki datasets, in each

testing instance, one query is provided with 300 keys: 1 positive

plus 299 randomly sampled negative cases.

Results. The overall evaluation results are reported in Table 2. We

have the following observations:

For four vanilla textual/graph baselines, the performance order

is consistent across all datasets, i.e., Bert > Twin-Bert > GAT ≈
GraphSAGE. GNN models obtain the worst performance, as they

can only model the node proximity that preserved by the global

structural information, but fail to encode the textual information

that presents rich semantics to characterize the property of each

node. This demonstrates the importance of leveraging the local

textual information of individual nodes. As for the vanilla textual

6

https://originalstatic.aminer.cn/misc/dblp.v12.7z
https://deepgraphlearning.github.io/project/wikidata5m
 http://snap.stanford.edu/data/amazon/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed GraphsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Experiment results of link prediction. The results of the best performing baseline are underlined. The numbers in bold
indicate statistically significant improvement (p < .01) by the pairwise t-test comparisons over the other baselines.

Datasets Metric MeanSAGE GAT Bert Twin-Bert Bert+MeanSAGE Bert+MaxSAGE Bert+GAT TextGNN AdsGNN GraphFormers Heterformer HASH-CODE Improv.

Product

P@1 0.6071 0.6049 0.6563 0.6492 0.7240 0.7250 0.7270 0.7431 0.7623 0.7786 0.7820 0.7967∗ 1.88%

NDCG 0.7384 0.7401 0.7911 0.7907 0.8337 0.8371 0.8378 0.8494 0.8605 0.8793 0.8861 0.9039∗ 2.01%

MRR 0.6619 0.6627 0.7344 0.7285 0.7871 0.7832 0.7880 0.8107 0.8361 0.8430 0.8492 0.8706∗ 2.52%

Beauty

P@1 0.1376 0.1367 0.1528 0.1492 0.1593 0.1586 0.1544 0.1625 0.1669 0.1774 0.1739 0.1862∗ 4.96%

NDCG 0.2417 0.2469 0.2702 0.2683 0.2741 0.2756 0.2726 0.2863 0.2891 0.2919 0.2911 0.3061∗ 4.86%

MRR 0.2558 0.2549 0.2680 0.2638 0.2712 0.2759 0.2720 0.2802 0.2821 0.2893 0.2841 0.3057∗ 5.67%

Sports

P@1 0.1102 0.1088 0.1275 0.1237 0.1330 0.1311 0.1302 0.1421 0.1466 0.1548 0.1534 0.1623∗ 4.84%

NDCG 0.2091 0.2116 0.2375 0.2297 0.2432 0.2478 0.2419 0.2537 0.2582 0.2674 0.2692 0.2775∗ 3.08%

MRR 0.2171 0.2168 0.2319 0.2296 0.2434 0.2471 0.2397 0.2612 0.2653 0.2679 0.2640 0.2754∗ 2.80%

Toys

P@1 0.1342 0.0.1330 0.1498 0.1427 0.1520 0.1536 0.1514 0.1658 0.1674 0.1703 0.1685 0.1767∗ 3.76%

NDCG 0.2015 0.2028 0.2249 0.2206 0.2451 0.2486 0.2413 0.2692 0.2734 0.2859 0.2823 0.2946∗ 3.04%

MRR 0.2173 0.2149 0.2311 0.2276 0.2509 0.2527 0.2476 0.2648 0.2715 0.2803 0.2778 0.2919∗ 4.14%

DBLP

P@1 0.4963 0.4931 0.5673 0.5590 0.6533 0.6596 0.6634 0.6913 0.7102 0.7267 0.7288 0.7446∗ 2.17%

NDCG 0.6997 0.6981 0.7484 0.7417 0.8004 0.8059 0.8086 0.8331 0.8507 0.8565 0.8576 0.8823∗ 2.88%

MRR 0.6314 0.6309 0.6777 0.6643 0.7266 0.7067 0.7300 0.7792 0.7805 0.8133 0.8148 0.8428∗ 3.44%

Wiki

P@1 0.2850 0.2862 0.3066 0.3015 0.3306 0.3264 0.3412 0.3693 0.3820 0.3952 0.3947 0.4104∗ 3.85%

NDCG 0.5389 0.5357 0.5699 0.5613 0.5730 0.5737 0.6071 0.6098 0.6155 0.6230 0.6233 0.6402∗ 2.71%

MRR 0.4411 0.4436 0.4712 0.4602 0.4980 0.4970 0.5022 0.5097 0.5134 0.5220 0.5216 0.5356∗ 2.61%

baselines, the one-tower textual model (BERT) outperforms the two-

tower model (Twin-BERT) as it can incorporate the information

from both sides, while two-tower models can only exploit the data

from a single side. However, one-tower structure has to compute

the similarity between a search query and each ad one-by-one,

which is not suitable for low-latency online scenario. In general,

vanilla textual/graph models perform worse than GNN-cascaded

transformers, which demonstrates the importance of encoding both

text and network signals in text-attributed graphs.

As for GNN-cascaded transformers, Bert+GAT performs better

than Bert+MeanSAGE and Bert+MaxSAGE on Product, DBLP and

Wiki datasets, because the multi-head self-attention mechanism

has a stronger capacity to model attributes. However, the perfor-

mance of GAT is worse than that of MeanSAGE on Beauty, Sports

and Toys datasets. A potential reason is that the multi-head self-

attention may incorporate more noise from the attributes since

they are keywords extracted from the reviews on Amazon Reviews.

In general, GNN-cascaded transformers perform worse than co-

training-based methods, which may be due to the node textual

features are pre-existed and fixed in the training phase, leading to

the limited expression capacity. AdsGNN consistently outperforms

TextGNN on all datasets. This is because compared with TextGNN,

the node-level aggregationmodel AdsGNN can capture the different

roles of queries and keys, demonstrating that the tightly-coupled

structure is more powerful than the loosely-coupled framework in

deeply fusing the graph and textual information.

For GNN-nested transformers, Heterformer yields a larger per-

formance improvement over Graphformers when network is more

dense (i.e., Product and DBLP vs. Amazon datasets). By compar-

ing our approach with all the baselines, it is clear to see that our

HASH-CODE performs consistently better than them with notable

advantages on six datasets. Particularly, it achieves over 2%∼4% rela-

tive improvements over the most competitive baselines (underlined)

on each of the experimental datasets. Different from these baselines,

we adopt the contrastive learning to enhance the representations of

the attribute, and nodes for the representation learning task, which

incorporates five pre-training objectives to model multiple data

correlations by our proposed HFC-aware contrastive objectives.

This result also shows that the contrastive learning approach is

effective to improve the performance of the co-training architecture

for representation learning.

(a) P@1 (b) NDCG

Figure 6: Ablation studies of different components on DBLP
and Products datasets.

5.3 Ablation Study (RQ2)
Our proposed HASH-CODE designs five pre-training objectives

based on the HFC-aware contrastive objective. In this section, we

conduct the ablation study on Product and DBLP datasets to analyze

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Time and memory costs per mini-batch for GraphFormers and HASH-CODE, with neighbour size increased from 3 to
200. HASH-CODE achieve similar efficiency and scalability as GraphFormers.

#N 3 5 10 20 50 100 200

Time: GraphFormers 63.95ms 97.19ms 170.16ms 306.12ms 714.32ms 1411.09ms 2801.67ms

Time: HASH-CODE 67.68ms 105.35ms 180.03ms 324.11ms 754.97ms 1573.29ms 2962.86ms

Mem: GraphFormers 1.33GiB 1.39GiB 1.55GiB 1.83GiB 2.70GiB 4.28GiB 7.33GiB

Mem: HASH-CODE 1.33GiB 1.39GiB 1.55GiB 1.84GiB 2.72GiB 4.43GiB 7.72GiB

the contribution of each objective. We evaluate the performance

of several HASH-CODE variants: (a) No-TT removes the L𝑇𝐶 ; (b)
No-TN removes the L𝑇𝑁𝐶 ; (c) No-NN removes the L𝑁𝐶 ; (d) No-
NS removes the L𝑁𝑆𝐶 ; (e) No-SS removes the L𝑆𝐶 ; (f) No-HFC
replaces the HFC-aware loss with spectral contrastive loss. The

results from GraphFormers are also provided for comparison. P@1

and NDCG@10 are adopted for this evaluation.

From Figure 6, we can observe that removing any contrastive

learning objective would lead to the performance decrease, indi-

cating all the objectives are useful to capture the correlations in

varying levels of granularity in TAGs. Besides, the importance of

these objectives is varying on different datasets. Overall, L𝑇𝐶 is

more important than others. Removing it yields a larger drop of

performance on all datasets, indicating that natural language under-

standing is more important on these datasets. In addition, No-HFC

performs worse than the other variants, indicating the importance

of learning more discriminative embeddings with HFC.

It is clearly seen that all model variants are better than Graph-

Formers, which is trained only with link predication loss.

5.4 Efficiency Analysis (RQ3)
We compare the time efficiency between HASH-CODE, and GNN-

nested Transformers (GraphFormers). The evaluation is conducted

utilizing an Nvidia 3090 GPU. We follow the same setting with [60],

where each mini-batch contains 32 encoding instances; each in-

stance contains one center and #N neighbour nodes; the token

length of each node is 16. We report the average time and memory

(GPU RAM) costs per mini-batch in Table 3.

We find that the time and memory costs associated with these

methods exhibit a linear escalation in tandem with the augmen-

tation of neighboring elements. Meanwhile, the overall time and

memory costs of HASH-CODE exhibit a remarkable proximity to

GraphFormers, especially when the number of neighbor nodes is

small. In light of the above observations, it is reasonable to deduce

that HASH-CODE exhibits superior accuracy while concurrently

maintaining comparable levels of efficiency and scalability when

juxtaposed with GNN-nested transformers.

5.5 In-depth Analysis (RQ4 & 5)
We continue to investigate several properties of the models in the

next couple sections. To save space, we will mainly present the

results here and save the details to the appendix:

• In Appendix D.1, we simulate the data sparsity scenarios by using

different proportions of the full dataset. We find that HASH-

CODE is consistently better than baselines in all cases, especially

in an extreme sparsity level (20%). This observation implies that

HASH-CODE is able to make better use of the data with the

contrastive learning method, which alleviates the influence of

data sparsity problem for representation learning to some extent.

• In Appendix D.2, we investigate the influence of the number

of training epochs on our performance. The results show that

our model benefits mostly from the first 20 training epochs.

And after that, the performance improves slightly. Based on

this observation, we can conclude that the correlations among

different views on TAGs can be well-captured by our contrastive

learning approach through training within a small number of

epochs. So that the enhanced data representations can improve

the performance of the downstream tasks.

• In Appendix D.3, we analyze the impact of neighbourhood size

with a fraction of neighbour nodes randomly sampled for each

center node. We can observe that with the increasing num-

ber of neighbour nodes, both HASH-CODE and Graphform-

ers achieve higher prediction accuracies. However, the mar-

ginal gain is varnishing, as the relative improvement becomes

smaller when more neighbours are included. In all the testing

cases, HASH-CODEmaintains consistent advantages over Graph-

Formers, which demonstrates the effectiveness of our proposed

method.

• In Appendix D.4, we visualize the input node embeddings for dif-

ferent target classes by t-SNE [43] to intuitively study the impact

of our HFC-loss. We find that our L𝐻𝐹𝐶 helps the model learn

more discriminative node embeddings compared with L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 .

6 CONCLUSION
In this paper, we introduce the problem of node representation

learning on TAGs and propose HASH-CODE, a hierarchical con-

trastive learning architecture to address the problem. Different from

previous “cascaded architectures”, HASH-CODE utilizes five self-

supervised optimization objectives to facilitate thorough mutual

enhancement between network and text signals in different granu-

larities. We also propose a HFC-aware spectral contrastive loss to

learn more discriminative node embeddings. Experimental results

on various graph mining tasks, including link prediction and node

classification demonstrate the superiority of HASH-CODE. More-

over, the proposed framework can serve as a building block with

different task-specific inductive biases. It would be interesting to see

its future applications on real-world TAGs such as recommendation,

abuse detection and tweet-based network analysis.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed GraphsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Shuxian Bi, Chaozhuo Li, Xiao Han, Zheng Liu, Xing Xie, Haizhen Huang,

and Zengxuan Wen. 2021. Leveraging Bidding Graphs for Advertiser-Aware

Relevance Modeling in Sponsored Search. In Findings of the Association for
Computational Linguistics: EMNLP 2021. 2215–2224.

[2] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency

information in graph convolutional networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, Vol. 35. 3950–3957.

[3] Chen Cai and Yusu Wang. 2020. A note on over-smoothing for graph neural

networks. arXiv preprint arXiv:2006.13318 (2020).
[4] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the

topological view. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 3438–3445.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[6] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Improved baselines

with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020).

[7] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yannis Kalantidis, Marcus

Rohrbach, Shuicheng Yan, and Jiashi Feng. 2019. Drop an octave: Reducing

spatial redundancy in convolutional neural networks with octave convolution.

In Proceedings of the IEEE/CVF International Conference on Computer Vision. 3435–
3444.

[8] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Ol-

gica Milenkovic, and Inderjit S Dhillon. 2021. Node feature extraction by self-

supervised multi-scale neighborhood prediction. arXiv preprint arXiv:2111.00064
(2021).

[9] Fan RK Chung. 1997. Spectral graph theory. Vol. 92. American Mathematical

Soc.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805 (2018).
[11] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another

of lower rank. Psychometrika 1, 3 (1936), 211–218.
[12] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,

Doug Downey, and Noah A Smith. 2020. Don’t stop pretraining: Adapt language

models to domains and tasks. arXiv preprint arXiv:2004.10964 (2020).
[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[14] Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. 2021. Provable guar-

antees for self-supervised deep learning with spectral contrastive loss. Advances
in Neural Information Processing Systems 34 (2021), 5000–5011.

[15] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-

resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[16] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman.

2009. The elements of statistical learning: data mining, inference, and prediction.
Vol. 2. Springer.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-

mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[18] Kaiming He, Jian Sun, and Xiaoou Tang. 2012. Guided image filtering. IEEE
transactions on pattern analysis and machine intelligence 35, 6 (2012), 1397–1409.

[19] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[20] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceed-
ings of the 12th international conference on World Wide Web. 271–279.

[21] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong

Zhu. 2020. Sub-graph contrast for scalable self-supervised graph representation

learning. In 2020 IEEE international conference on data mining (ICDM). IEEE,
222–231.

[22] Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. 2022. Heterformer: A Transformer

Architecture for Node Representation Learning on Heterogeneous Text-Rich

Networks. arXiv preprint arXiv:2205.10282 (2022).
[23] Di Jin, Xiangchen Song, Zhizhi Yu, Ziyang Liu, Heling Zhang, Zhaomeng Cheng,

and Jiawei Han. 2021. Bite-gcn: A new GCN architecture via bidirectional

convolution of topology and features on text-rich networks. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining. 157–165.

[24] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[25] Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021. Self-guided contrastive

learning for BERT sentence representations. arXiv preprint arXiv:2106.07345
(2021).

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[27] Lingpeng Kong, Cyprien de Masson d’Autume, Wang Ling, Lei Yu, Zihang Dai,

and Dani Yogatama. 2019. A mutual information maximization perspective of

language representation learning. arXiv preprint arXiv:1910.08350 (2019).
[28] Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. 2021. Predicting what

you already know helps: Provable self-supervised learning. Advances in Neural
Information Processing Systems 34 (2021), 309–323.

[29] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi

Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. 2021. Adsgnn: Behavior-graph

augmented relevance modeling in sponsored search. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 223–232.

[30] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. 2020. Prototypical con-

trastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966
(2020).

[31] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In Thirty-Second AAAI
conference on artificial intelligence.

[32] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards deeper graph neural

networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining. 338–348.

[33] Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. 2019. Fine-

grained fact verification with kernel graph attention network. arXiv preprint
arXiv:1910.09796 (2019).

[34] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. Twinbert: Distilling knowledge to

twin-structured compressed bert models for large-scale retrieval. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
2645–2652.

[35] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[36] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[37] Bochen Pang, Chaozhuo Li, Yuming Liu, Jianxun Lian, Jianan Zhao, Hao Sun,

Weiwei Deng, Xing Xie, and Qi Zhang. 2022. Improving Relevance Modeling via

Heterogeneous Behavior Graph Learning in Bing Ads. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 3713–3721.

[38] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph representation learning via graphical

mutual information maximization. In Proceedings of The Web Conference 2020.
259–270.

[39] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, San-

jeev Arora, Sham Kakade, and Akshay Krishnamurthy. 2022. Understanding

contrastive learning requires incorporating inductive biases. In International
Conference on Machine Learning. PMLR, 19250–19286.

[40] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. 2013. The emerging field of signal processing on graphs: Extend-

ing high-dimensional data analysis to networks and other irregular domains.

IEEE signal processing magazine 30, 3 (2013), 83–98.
[41] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-

netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. 990–998.

[42] Yuandong Tian. 2022. Deep contrastive learning is provably (almost) principal

component analysis. arXiv preprint arXiv:2201.12680 (2022).
[43] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using

t-SNE. Journal of machine learning research 9, 11 (2008).

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[45] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep Graph Infomax. ICLR (Poster) 2, 3 (2019), 4.
[46] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and

computing 17, 4 (2007), 395–416.

[47] Chenguang Wang, Yangqiu Song, Haoran Li, Ming Zhang, and Jiawei Han.

2016. Text classification with heterogeneous information network kernels. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.
[48] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun

Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation

in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 839–848.

[49] Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. 2016. Linked docu-

ment embedding for classification. In Proceedings of the 25th ACM international
on conference on information and knowledge management. 115–124.

[50] Wenlin Wang, Chenyang Tao, Zhe Gan, Guoyin Wang, Liqun Chen, Xinyuan

Zhang, Ruiyi Zhang, Qian Yang, Ricardo Henao, and Lawrence Carin. 2019.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Improving textual network learning with variational homophilic embeddings.

Advances in Neural Information Processing Systems 32 (2019).
[51] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu,

Juanzi Li, and Jian Tang. 2021. KEPLER: A unified model for knowledge embed-

ding and pre-trained language representation. Transactions of the Association for
Computational Linguistics 9 (2021), 176–194.

[52] XiaoWang, Houye Ji, Chuan Shi, BaiWang, Yanfang Ye, Peng Cui, and Philip S Yu.

2019. Heterogeneous graph attention network. In The world wide web conference.
2022–2032.

[53] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised heteroge-

neous graph neural network with co-contrastive learning. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining. 1726–1736.

[54] Zixin Wen and Yuanzhi Li. 2021. Toward understanding the feature learning

process of self-supervised contrastive learning. In International Conference on
Machine Learning. PMLR, 11112–11122.

[55] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

2016. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144 (2016).
[56] JunXia, LirongWu, GeWang, Jintao Chen, and Stan Z Li. 2022. Progcl: Rethinking

hard negative mining in graph contrastive learning. In International Conference
on Machine Learning. PMLR, 24332–24346.

[57] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. 2021. Self-

supervised graph-level representation learning with local and global structure.

In International Conference on Machine Learning. PMLR, 11548–11558.

[58] Zenan Xu, Qinliang Su, Xiaojun Quan, and Weijia Zhang. 2019. A deep neural

information fusion architecture for textual network embeddings. arXiv preprint
arXiv:1908.11057 (2019).

[59] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.

Network representation learning with rich text information.. In IJCAI, Vol. 2015.
2111–2117.

[60] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal,

Amit Singh, Guangzhong Sun, and Xing Xie. 2021. GraphFormers: GNN-nested

transformers for representation learning on textual graph. Advances in Neural
Information Processing Systems 34 (2021), 28798–28810.

[61] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. 2022. LinkBERT: Pretraining

LanguageModels with Document Links. In Proceedings of the 60th AnnualMeeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 8003–
8016.

[62] Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srini-

vasan, and Dragomir Radev. 2017. Graph-based neural multi-document summa-

rization. arXiv preprint arXiv:1706.06681 (2017).
[63] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[64] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
793–803.

[65] Chuxu Zhang, Ananthram Swami, and Nitesh V Chawla. 2019. Shne: Representa-

tion learning for semantic-associated heterogeneous networks. In Proceedings of
the twelfth ACM international conference on web search and data mining. 690–698.

[66] Chao Zhang, Guangyu Zhou, Quan Yuan, Honglei Zhuang, Yu Zheng, Lance

Kaplan, Shaowen Wang, and Jiawei Han. 2016. Geoburst: Real-time local event

detection in geo-tagged tweet streams. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Retrieval.
513–522.

[67] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.

mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[68] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert:

Only attention is needed for learning graph representations. arXiv preprint
arXiv:2001.05140 (2020).

[69] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and

Jian Tang. 2022. Learning on Large-scale Text-attributed Graphs via Variational

Inference. arXiv preprint arXiv:2210.14709 (2022).
[70] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,

Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning

for sequential recommendation with mutual information maximization. In Pro-
ceedings of the 29th ACM international conference on information & knowledge
management. 1893–1902.

[71] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi

Yang, Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. 2021. Textgnn: Improving

text encoder via graph neural network in sponsored search. In Proceedings of the
Web Conference 2021. 2848–2857.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed GraphsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A THEORETICAL ANALYSIS OF HFC
A.1 Background: Spectral Clustering
Given a graph G = (V, E), with adjacency matrix 𝐴, the Lapla-

cian matrix of the graph is defined as 𝐿 = 𝐷 − 𝐴, where 𝐷 =

𝑑𝑖𝑎𝑔(𝑑1, ..., 𝑑𝑁) is the diagonal degree matrix (𝑑𝑖 = Σ 𝑗𝐴𝑖, 𝑗). Then
the symmetric normalized Laplacian matrix is defined as 𝐿𝑠𝑦𝑚 =

𝐷−
1

2 𝐿𝐷−
1

2 . As 𝐿𝑠𝑦𝑚 is real symmetric and positive semidefinite,

therefore it can be diagonalized as 𝐿 = 𝑈Λ𝑈𝑇 [9]. Here 𝑈 ∈
R𝑁×𝑁 = [𝑢1, ..., 𝑢𝑁], where 𝑢𝑖 ∈ R𝑁 denotes the 𝑖-th eigenvector

of 𝐿𝑠𝑦𝑚 and Λ = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑁) is the corresponding eigenvalue
matrix. To partition the graph, spectral clustering [16, 46] computes

the first K eigenvectors and creates a feature vector 𝑓𝐾,𝑣 ∈ R𝐾 for

each node 𝑣 : ∀𝑘 ∈ [1, 𝐾], 𝑓𝐾,𝑣 (𝑘) = 𝑢𝑘 (𝑣), which is in turn used to

obtain K clusters by K-means or hierarchical clustering, etc.

An analogy between signals on graphs and usual signals [40]

suggests to interpret the spectrum of 𝐿𝑠𝑦𝑚 as a Fourier domain for

graphs, hence defining filters on graphs as diagonal operators after

change of basis with𝑈 −1. It turns out that the features 𝑓𝐾,𝑣 can be

obtained by ideal low-pass filtering of the Delta function 𝛿𝑎 (local-

ized at node a). Indeed, let 𝑙𝐾 be the step function where 𝑙𝐾 (𝜆) = 1

if 𝜆 < 𝜆𝐾 and 0 otherwise. We define 𝐿𝐾 the diagonal matrix for

which 𝐿𝐾 (𝑖, 𝑖) = 𝑙𝐾 (𝜆𝑖). Then we have: 𝑓𝐾,𝑣 = 𝐿𝐾𝑈
−1𝛿𝑣 ∈ R𝐾 ,

where we fill the last 𝑁 − 𝐾 values with 0’s. Therefore, spectral

clustering is equivalent to clustering using low-pass filtering of the

local descriptors 𝛿𝑣 of each node 𝑣 of the graph G.

A.2 Spectral Contrastive Loss Revisited
To introduce spectral contrastive loss [14], we give the definition

of population view graph [14] first.

Population View Graph. A population view graph is defined as

G = (X,W), where the set of nodes comprises all augmented views

X of the population distribution, with𝑤𝑥𝑥 ′ ∈ W the edge weights

of the edges connecting nodes 𝑥, 𝑥
′
that correspond to different

views of the same input datapoint. The core assumption made is

that this graph cannot be split into a large number of disconnected

subgraphs. This set-up aligns well with the intuition that in order

to generalize, the contrastive notion of “similarity” must extent be-

yond the purely single-instance-level, and must somehow connect

distinct inputs points.

Spectral Contrastive Loss. Using the concept of population view

graph, spectral contrastive loss is defined as:

L(𝑥, 𝑥+, 𝑥−, 𝑓𝜃) = −2 · E𝑥,𝑥+ [𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥+)]

+ E𝑥,𝑥− [(𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥−))2],
(9)

where (𝑥, 𝑥+) is a pair of views of the same datapoint, (𝑥, 𝑥−) is
a pair of independently random views, and 𝑓𝜃 is a parameterized

function from the data to R𝑘 . Minimizing spectral contrastive loss

is equivalent to spectral clustering on the population view graph,

where the top smallest eigenvectors of the Laplacian matrix are

preserved as the columns of the final embedding matrix 𝐹 .

A.3 HFC-aware Spectral Contrastive Loss
As discussed in Appendix A.2, the spectral contrastive loss only

learns the low-frequency component (LFC) of the graph from a spec-

tral perspective, where the effects of high-frequency components

(HFC) are much more attenuated. Recent studies have indicated

that the LFC does not necessarily contain the most crucial infor-

mation; while HFC may also encode useful information that is

beneficial for the performance [2, 7]. In this regard, merely using

the spectral contrastive loss cannot adequately capture the varying

significance of different frequency components, thus constraining

the expressiveness of learned representations and producing subop-

timal learning performance. How to incorporate the HFC to learn

a more discriminative embedding still requires explorations.

In image signal processing, the Laplacian kernel is widely used

to capture high-frequency edge information for various tasks such

as image sharpening and blurring [18]. As its counterpart in Graph

Signal Processing (GSP) [40], we can multiply the graph Laplacian

matrix 𝐿 with the input graph signal 𝑥 ∈ R𝑁 , (i.e., ℎ = 𝐿𝑥) to

characterize its high-frequency components – the frequencies that

carry sharply varying signal information across edges of graph. On

the contrary, when highlighting the LFC, we would subtract the

term 𝐿𝑥 which emphasizes more on HFC from the input signal 𝑥 ,

i.e., 𝑧 = 𝑥 − 𝐿𝑥 .
It should be noted that the above operation corresponds to a

fixed low-pass filter in the spectral domain, where higher weights

are specified for LFC. However, in practice, LFC may not always

be useful, and HFC can also provide complementary insights for

learning [2, 7], especially when the label information is not smooth

across edges. Additionally, the HFC of the input graph signal would

be unavoidably too much weakened compared with the lower ones

with fixed filters, leading to the well-known over-smoothing prob-

lem [31]. As discussed in Appendix A.1, spectral clustering is equiv-

alent to clustering using a low-pass filter on each node of the graph.

Henceforth, the feature vectors learned by the spectral contrastive

loss is LFC of the population view graph. In this regard, the fixed

low-pass filters largely limit the fitting capability of contrastive

learning and its variants for learning discriminative node repre-

sentations. As a consequence, it is vital to capture the varying

importance of frequencies in the filter to preserve more useful

information and alleviate over-smoothing issues.

As an alternative of the traditional low-pass filter, a simple and

elegant solution to introduce HFC is to assign a single parameter

to control the rate of high-frequency substraction.

𝑧 = 𝑥 − 𝛼𝐿𝑥 = (𝐼 − 𝛼𝐿)𝑥,

where 𝐼 is the identity matrix. We thus obtain the kernel 𝐼 −𝛼𝐿 that

contains HFC.

Following [14], we consider the following matrix factorization

based objective for eigenvectors:

min

𝐹 ∈R𝑁 ×𝐾
L𝑚𝑓 (𝐹) = | | (𝐼 − 𝛼𝐿) − 𝐹𝐹𝑇 | |2𝐹

= ((1 − 𝛼)𝐼 + Σ𝑖, 𝑗 (
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥 𝑗
− 𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗)))2,

(10)

where𝑤𝑥 = Σ𝑥 ′ ∈X𝑤𝑥𝑥 ′ is the total weights associated to view 𝑥 . By
the classical low-rank approximation theory (Eckart-Young-Mirsky

theorem [11]), minimizer 𝐹 possesses eigenvectors of HFC-aware

kernel 𝐼 − 𝛼𝐿 as columns and thus contains both the LFC and HFC

of the population view graph.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Lemma 1. (HFC-aware spectral contrastive loss.) Denote 𝑝𝑥 is the
𝑥-th row of 𝐹 . Let 𝑝𝑥 = 𝑤

1/2
𝑥 𝑓𝜃 (𝑥). Then, the loss function L𝑚𝑓 (𝐹)

is equivalent to the following loss function for 𝑓𝜃 , called HFC-aware
spectral contrastive loss, up to an additive constant:

L𝑚𝑓 (𝐹) = L𝐻𝐹𝐶 (𝑓𝜃) + 𝑐𝑜𝑛𝑠𝑡,
where

L𝐻𝐹𝐶 (𝑓𝜃) = −2𝛼E𝑥,𝑥+ [𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥+)]

+ E𝑥,𝑥− [(𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥−))2]
(11)

Proof. We expand L𝑚𝑓 (𝐹) and obtain

L𝑚𝑓 (𝐹) = ((1 − 𝛼)𝐼 + Σ𝑖, 𝑗 (
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥 𝑗
− 𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗)))2

= 𝑐𝑜𝑛𝑠𝑡 − 2Σ𝑖, 𝑗 [(1 − 𝛼)𝐼 +
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥 𝑗
] 𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗)

+ Σ𝑖, 𝑗 (𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗))2

=

𝑐𝑜𝑛𝑠𝑡 − 2Σ𝑖, 𝑗1 − 𝛼 +

𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥𝑗

𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗)

+Σ𝑖, 𝑗 (𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗))2, 𝑖 = 𝑗

𝑐𝑜𝑛𝑠𝑡 − 2Σ𝑖, 𝑗
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥𝑗

𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗)

+Σ𝑖, 𝑗 (𝑓𝜃 (𝑥𝑖)𝑇 𝑓𝜃 (𝑥 𝑗))2, 𝑖 ≠ 𝑗

(12)

In our case two views 𝑥𝑖 and 𝑥 𝑗 are not the same. We thus only

focus on the 𝑖 ≠ 𝑗 case. Ignoring the scaling factor which doesn’t

affect linear probe error, we can hence rewrite the sum of last two

terms of in Equation 12 as Equation 2. □

B NOTES ON THE EXPERIMENTAL SETUP
B.1 Details of Datasets
We conduct experiments on six datasets (i.e.,DBLP4,Wikidata5M

5
[51],

Beauty, Sports and Toys from Amazon dataset
6
[35] and Product

Graph) from three different domains (i.e., academic papers, social

media posts, and e-commerce):

DBLP: is a real-world academic citation graph dataset that contains

the paper citation graph from DBLP up to 2020-04-09. Two papers

are linked if one is cited by the other one. The paper’s title is used

as the textual feature.

Wikidata5M (Wiki): is a public entity graph dataset which contains

the entity graph fromWikipedia. The first sentence in each entity’s

introduction is taken as its textual feature.

Amazon Beauty, Sports and Toys: are obtained from Amazon

review datasets in [35], which contain product ratings and reviews

in 29 categories on Amazon.com and rich textual metadata such as

title, brand, description, etc. We use the version released in the year

2018. Specifically, we select three subcategories: “Beauty”, “Sports

and Outdoors”, and “Toys and Games”, and utilize the brands and

the descriptions of the items as attributes. We treat all the user-

item rating records as implicit feedback and sort them according

to the timestamps to form sequences. Following the common set-

tings [24], we filter out users and items with less than five interac-

tion records. For each user, we use the last clicked item for testing,

4
https://originalstatic.aminer.cn/misc/dblp.v12.7z

5
https://deepgraphlearning.github.io/project/wikidata5m

6
http://snap.stanford.edu/data/amazon/

the penultimate one for validation, and the remaining clicked items

for training.

Product Graph (Product): is an even larger dataset of online

products collected by a world-wide search engine. In this dataset,

the users’ web browsing behaviors are tracked for the targeted prod-

uct webpages (e.g., Amazon webpages of Nike shoes). The user’s

continuously browsed webpages within a short period of time (e.g.,

30 minutes) is called a “session”. The products within a common

session are connected in the graph (which is a common way of

graph construction in e-commerce scenarios [48, 63]). Each product

has its unique textual description, which specifies information like

the product name, brand, and saler, etc.

The textual features of all the datasets are in English. We make

use of uncased WordPiece [55] to tokenize the input text.

B.2 Details of Baselines
To thoroughly examine the effectiveness of our proposed method

and substantiate its validity, we contrast three types of competitive

methods:

First, to verify the importance of both text and network informa-

tion, we consider the vanilla textual/graph models that only exploit

partial observed information (i.e., textual or structural) for node

representation learning.

• Vanilla GraphSAGE [13]: This is a GNN method that employs

the mean function to aggregate information from neighbors for

center node embedding learning. The initial node feature vector

is bag-of-words weighted by TF-IDF. The number of entries in

each attribute vector corresponds to the vocabulary size of the re-

spective dataset, where we retain the most representative 10000,

2000, and 5000 words for DBLP, Wiki, and Product, respectively,

in accordance with the corpus size.

• Vanilla GAT [44]: Simillar with the vanilla GraphSAGE, we em-

ploy the graph attention networks to aggregate the information

from neighbors for center node embedding learning.

• Vanilla BERT [10]: This is a standard PLM pretrained on two

tasks: next sentence prediction and mask token prediction. For

each text-rich node, we use BERT to encode its text and extract

the output of the [CLS] token as node representation.

• Twin-Bert [34]: This is a two-tower BERT-based structure model,

which serves for the efficient retrieval.

Second, the GNN-cascaded transformers which combines the

GNN and PLM in a "cascaded architectute" that learns the node

representation with fixed textual embeddings.

• BERT+MaxSAGE [13]: We combine BERT with MaxSAGE (i.e.,

using the output text representation of BERT as the input node

attribute vector of MaxSAGE). The BERT+MaxSAGE model is

trained in an end-to-end manner. Other BERT+GNN baselines

below have the same cascaded architecture.

• BERT+MeanSAGE [13]: MeanSAGE is a GNNmethod that applies

the mean function during neighbor aggregation for center node

representation learning.

• BERT+GAT [44]: GAT is a GNN method with attention-based

neighbor importance calculation, and the weight of each neigh-

bor during aggregation depends on its importance score.

12

https://originalstatic.aminer.cn/misc/dblp.v12.7z
https://deepgraphlearning.github.io/project/wikidata5m
 http://snap.stanford.edu/data/amazon/

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed GraphsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

• TextGNN [71]: This model incorporates the text and graph infor-

mationwith a node-level aggregator, in which the query encoders

share the same parameters.

• AdsGNN [29]: This model also utilizes a node-level aggregator

to aggregate the graph information at different levels, and intro-

duces domain-specific pre-training and knowledge-distillation

techniques to improve model performance.

Third, the state-of-the-art co-training-based methods that en-

ables the joint encoding of text and node features for the node

representation learning on TAGs.

• GraphFormers [60]: This is the state-of-the-art GNN-nested trans-

former model, which has graph-based propagation and aggrega-

tion in each transformer layer.

• Heterformer [22]: Thismodel alternately stacks the graph-attention-

based neighbor aggregation module and the transformer-based

text and neighbor joint encoding module to facilitate thorough

mutual enhancement between network and text signals.

B.3 Summary of HASH-CODE’s workflow

Algorithm 1 HCL-TAG’s Workflow

Input: The input graphs𝐺 (consist of the center node 𝑣 and its neigh-

bours).

Output: The embedding for the center node ℎ𝑣 .

for each text 𝑔 ∈ 𝐺 do
𝐻 1

𝑔 ← TRM
0 (𝐻 0

𝑔) ; // Get the initial token-level embeddings.

end for
for 𝑙 = 1, ..., 𝐿 − 1 do
𝑍 𝑙𝑔 ← {𝑧𝑙𝑔 |𝑔 ∈ 𝐺 }; // Gather node-level embeddings to GNN

𝑍 𝑙𝑔 ← GNN(𝑍 𝑙𝑔) ; // Graph aggregation in GNN

for 𝑖 = 1, ..., 5 do
𝑍 𝑙𝑔 ← Contrastive𝑖 (𝑍 𝑙𝑔, 𝐻 𝑙𝑔) ; // Hierarchical contrastive learning
for mutually reinforce the textual and graphic patterns

end for
for each text 𝑔 ∈ 𝐺 do
𝐻 𝑙𝑔 ← Concat(𝑧𝑙𝑔, 𝐻 𝑙𝑔) ; // Get contrastive graph-augmented token-

level embeddings

𝐻 𝑙+1𝑔 ← TRM
𝑙 (𝐻 𝑙𝑔) ; // Text encoding in Transformer

end for
end for
return ℎ𝑣 ← 𝑧𝐿𝑣

C NODE CLASSIFICATION
Settings. In node classification, we train a 2-layer MLP classifier to

classify nodes based on the output node representation embeddings

of each method. The experiment is conducted on DBLP. Follow-

ing [22], we select the most frequent 30 classes in DBLP. Also, we

study both transductive and inductive node classification to under-

stand the capability of our model comprehensively. For transductive

node classification, the model has seen the classified nodes during

representation learning (using the link prediction objective), while

for inductive node classification, the model needs to predict the

label of nodes not seen before. We separate the whole dataset into

train set, validation set, and test set in 7:1:2 in all cases and each

experiment is repeated 5 times in this section with the average

performance reported.

Results. Table 4 demonstrates the results of different methods in

transductive and inductive node classification. We observe that:

(a) our HASH-CODE outperforms all the baseline methods signifi-

cantly on both tasks, showing that HASH-CODE can learn more

effective node representations for these tasks; (b) GNN-nested trans-

formers generally achieve better results than GNN-cascaded trans-

formers, which demonstrates the necessity of introducing graphic

patterns in modeling textual representations; (c) HASH-CODE gen-

eralizes quite well on unseen nodes as its performance on inductive

node classification is quite close to that on transductive node classi-

fication. Moreover, HASH-CODE even achieves higher performance

in inductive settings than the baselines do in transductive settings.

Table 4: Experiment results of transductive and inductive
node classification on DBLP dataset. (HASH-CODE marked
in bold, the best baseline underlined). HASH-CODE outper-
forms all baselines, especially the ones based on GNN-nested
transformers.

Model

Transductive Inductive

P@1 NDCG P@1 NDCG

MeanSAGE 0.5186 0.7231 0.5152 0.7197

GAT 0.5208 0.7196 0.5126 0.7146

Bert 0.5493 0.7506 0.5310 0.7485

Twin-Bert 0.5291 0.7440 0.5248 0.7431

Bert+MeanSAGE 0.6731 0.7637 0.6413 0.7494

Bert+MaxSAGE 0.6705 0.7752 0.6587 0.7599

Bert+GAT 0.6849 0.0.7801 0.6689 0.0.7619

TextGNN 0.6820 0.7753 0.6380 0.7716

AdsGNN 0.6882 0.7790 0.6624 0.7737

GraphFormers 0.6919 0.7929 0.6791 0.7993

Heterformer 0.6924 0.7957 0.6746 0.8079

HASH-CODE 0.7116 0.8198 0.6961 0.8170

Improv. 2.77% 3.03% 2.50% 1.13%

D IN-DEPTH ANALYSIS
D.1 Data Sparsity Analysis
Conventional representation learning methods require a consider-

able amount of training data, thus they are likely to suffer from the

data sparsity issues in real-world applications. This problem can be

alleviated by our method because the proposed contrastive learn-

ing approach can better utilize the data correlation from input. We

simulate the data sparsity scenarios by using different proportions

of the full dataset, i.e., 20%, 40%, 60%, 80%, and 100%.

Figure 7 shows the evaluation results on Product and Sports

datasets. As we can see, the performance substantially drops when

less training data is used. While, HASH-CODE is consistently better

than baselines in all cases, especially in an extreme sparsity level

(20%). This observation implies that HASH-CODE is able to make

better use of the data with the contrastive learning method, which

alleviates the influence of data sparsity problem for representation

learning to some extent.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

100% 80% 60% 40% 20%
Amount of Training Data

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

P@
1(

%
)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(a) Product

100% 80% 60% 40% 20%
Amount of Training Data

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

P@
1(

%
)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(b) Beauty

100% 80% 60% 40% 20%
Amount of Training Data

0.06

0.08

0.10

0.12

0.14

0.16

P@
1(

%
)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(c) Sports

100% 80% 60% 40% 20%
Amount of Training Data

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

P@
1(

%
)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(d) Toys

100% 80% 60% 40% 20%
Amount of Training Data

0.50

0.55

0.60

0.65

0.70

0.75
P@

1(
%

)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(e) DBLP

100% 80% 60% 40% 20%
Amount of Training Data

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

P@
1(

%
)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(f) Wiki

Figure 7: Performance (P@1) comparison w.r.t. different sparsity levels on DBLP and Product datasets. The performance
substantially drops when less training data is used, while HASH-CODE is consistently better than baselines in all cases,
especially in an extreme sparsity level (20%).

D.2 Influence of Training Epochs Number
Our approach consists of co-training with GNNs and Transformers.

During the training stage, our model can learn the enhanced repre-

sentations of the attribute and node for the representation learning

task. The number of training epochs will affect the performance of

the downstream task. To investigate this, we train our model with

a varying number of epochs and fine-tune it on the downstream

task.

Figure 8 presents the results on Product and Sports datasets. We

can see that our model benefits mostly from the first 20 training

epochs. And after that, the performance improves slightly. Based

on this observation, we can conclude that the correlations among

different views (i.e., the graph topology and textual attributes) can

be well-captured by our contrastive learning approach through

training within a small number of epochs. So that the enhanced data

representations can improve the performance of the downstream

tasks.

D.3 Influence of Neighbor Size
We analyze the impact of neighbourhood size with a fraction of

neighbour nodes randomly sampled for each center node (using

DBLP for illustration). The link prediction results are shown in

Figure 9. We can observe that with the increasing number of neigh-

bour nodes, both HASH-CODE and Graphformers achieve higher

prediction accuracies. However, the marginal gain is varnishing,

20 40 60 80 100 120 140
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

P@
1(
%
)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(a) DBLP

20 40 60 80 100 120 140
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

P@
1(
%
)

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(b) Product

Figure 8: Performance (P@1) comparisonw.r.t. different num-
bers of training epochs onDBLP and Product datasets. HASH-
CODE benefits mostly from the first 20 training epochs, thus
the correlations among different views can be well-captured
by our approach through training within a small number of
epochs.

as the relative improvement becomes smaller when more neigh-

bours are included. In all the testing cases, HASH-CODE maintains

consistent advantages over GraphFormers, which demonstrates the

effectiveness of our proposed method.

D.4 HFC-aware Embedding Visualization.
To intuitively study the impact of our HFC-loss, we visualize the

input node embeddings for different target classes by t-SNE [43].

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed GraphsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1 2 3 4 5

Neighbor Size
0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

P@
1

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(a) Product

1 2 3 4 5

Neighbor Size

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

P@
1

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(b) Beauty

1 2 3 4 5

Neighbor Size
0.06

0.08

0.10

0.12

0.14

0.16

P@
1

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(c) Sports

1 2 3 4 5

Neighbor Size
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

P@
1

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(d) Toys

1 2 3 4 5

Neighbor Size

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
P@

1

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(e) DBLP

1 2 3 4 5

Neighbor Size

0.250

0.275

0.300

0.325

0.350

0.375

0.400

P@
1

HASH-CODE
GraphFormers
AdsGNN
TextGNN

(f) Wiki

Figure 9: Impact of neighbor size on DBLP dataset. Enlarging the number of neighbour nodes brings performance improvement
to both models. HASH-CODE maintains consistent advantages over GraphFormers over all test cases.

We conduct the visualization on DBLP with four different target

classes, and each target class has more than 1000 node embeddings.

Figure 10 shows that compared with HFC-aware loss, the spectral

contrastive loss cannot effectively distinguish different types of

sample nodes. Especially in the central part of Figure 10(a), sample

points are almost completely overlapping. It is clear that the HFC-

aware loss learns more discriminative node embeddings.

(a) HASH-CODE-NoHFC (b) HASH-CODE-HFC

Figure 10: Embedding visulization of input nodes belonging
to different target classes. Points with the same color denote
input nodes belonging to the same target class. HFC-aware
loss learns more discriminative embeddings than spectral
contrastive loss.

15

	Abstract
	1 Introduction
	2 Related Work
	2.1 Representation Learning on TAGs
	2.2 Contrastive Learning

	3 Preliminaries
	3.1 Definition (Text-attributed Graphs)
	3.2 Problem Statement
	3.3 HFC-aware Spectral Contrastive Loss

	4 Methodology
	4.1 Overview
	4.2 Hierarchical Contrastive Learning with TAGs

	5 Experiments
	5.1 Experimental Setup
	5.2 Overall Comparison (RQ1)
	5.3 Ablation Study (RQ2)
	5.4 Efficiency Analysis (RQ3)
	5.5 In-depth Analysis (RQ4 & 5)

	6 Conclusion
	References
	A Theoretical Analysis of HFC
	A.1 Background: Spectral Clustering
	A.2 Spectral Contrastive Loss Revisited
	A.3 HFC-aware Spectral Contrastive Loss

	B Notes on the Experimental Setup
	B.1 Details of Datasets
	B.2 Details of Baselines
	B.3 Summary of HASH-CODE’s workflow

	C Node Classification
	D In-depth Analysis
	D.1 Data Sparsity Analysis
	D.2 Influence of Training Epochs Number
	D.3 Influence of Neighbor Size
	D.4 HFC-aware Embedding Visualization.

