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High-Frequency-aware Hierarchical Contrastive Selective Coding
for Representation Learning on Text-attributed Graphs

Anonymous Author(s)

ABSTRACT
We investigate node representation learning on text-attributed

graphs (TAGs), where nodes are associated with text information.

Although recent studies on graph neural networks (GNNs) and

pretrained language models (PLMs) have exhibited their power

in encoding network and text signals, respectively, less attention

has been paid to delicately coupling these two types of models on

TAGs. Specifically, existing GNNs rarely model text in each node in

a contextualized way; existing PLMs can hardly be applied to char-

acterize graph structures due to their sequence architecture. To ad-

dress these challenges, we propose HASH-CODE, aHigh-frequency

Aware Spectral Hierarchical Contrastive Selective Cding method

that integrates GNNs and PLMs into a unified model. Different

from previous “cascaded architectures” that directly add GNN lay-

ers upon a PLM, our HASH-CODE relies on five self-supervised

optimization objectives to facilitate thorough mutual enhancement

between network and text signals in diverse granularities. More-

over, we show that existing contrastive objective learns the low-

frequency component of the augmentation graph and propose a

high-frequency component (HFC)-aware contrastive learning objec-

tive that makes the learned embeddings more distinctive. Extensive

experiments on six real-world benchmarks substantiate the effi-

cacy of our proposed approach. In addition, theoretical analysis

and item embedding visualization provide insights into our model

interoperability.

KEYWORDS
Text Attributed Graph, Graph Neural Networks, Transformer, Con-

trastive Learning

1 INTRODUCTION
Graphs are pervasive in the real world, and it is common for nodes

within these graphs to be enriched with textual attributes, thereby

giving rise to text-attributed graphs (TAGs) [69]. For instance, aca-

demic graphs [41] incorporate papers replete with their titles and

abstracts, whereas social media networks [66] encompass tweets

accompanied by their textual content. Consequently, the pursuit

of learning within the realm of TAGs has assumed significant

prominence as a research topic spanning various domains, e.g.,
network analysis [52], recommender systems [64], and anomaly

detection [33].

In essence, graph topology and node attributes comprise two inte-

gral components of TAGs. Consequently, the crux of representation

learning on TAGs lies in the amalgamation of graph topology and

node attributes. Previous works mainly adopt a cascaded architec-

ture [23, 29, 65, 71] (Figure 1(a)), which entails encoding the textual

attributes of each node with Pre-trained Language Models (PLMs),

subsequently utilizing the PLM embeddings as features to train a

Graph Neural Network (GNN) for message propagation [8, 12, 61].

However, as the modeling of node attributes and graph topology are

Figure 1: (a) An illustration of GNN-cascaded transformer.
(b) An illustration of our proposed contrastive learning-
empowered GNN-nested transformer. The red and green
twines denote the original graph signals and the mixed LFC
and HFC signals from the spectral perspective.

segregated, this learning paradigm harbors conspicuous limitations.

Firstly, the link connecting two nodes is not utilized when gener-

ating their text representations. In fact, linked nodes can benefit

each other regarding text semantics understanding. For example,

given a paper on “LDA” and its citation nodes which are related to

topic modeling, the “LDA” can be more likely interpreted as “Latent

Dirichlet Allocation” rather than “Linear Discriminant Analysis”.

In addition, this paradigm may yield textual embeddings that are

not pertinent to downstream tasks, thereby impeding the model’s

ability to learn node representations suitable for such tasks. More-

over, given that the formation of the graph’s topological structure

is intrinsically driven by the node attribute [69], this paradigm may

adversely affect the comprehension of the graph topology.

Fortunately, recent efforts have been undertaken [1, 22, 37, 60]

to co-train GNNs and LMs within a unified learning framework. For

example, GraphFormers [60] introduces GNN-nested transformers,

facilitating the joint encoding of text and node features. Heter-

former [22] alternately stacks the graph aggregation module and

a transformer-based text encoding module into a cohesive model

to capture network heterogeneity. Despite the demonstrated effi-

cacy of existing methods, they are encumbered by two primary

drawbacks that may undermine the quality of representation learn-

ing. Firstly, these methods typically employ supervised training,

necessitating a substantial volume of labeled data. However, in

numerous scientific domains, labeled data are scarce and expen-

sive to obtain [19, 53]. Secondly, these methods rely exclusively on

limited optimization objectives to learn the entire model. When

GNNs and LMs are jointly trained, the associated parameters are

also learned through the constrained optimization objectives. It has

been observed that such an optimization approach fails to capture

the fine-grained correlations between textual features and graphic

patterns [60, 70]. Consequently, the importance of learning graph
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representations in an unsupervised or self-supervised manner is

becoming increasingly paramount.

In order to tackle the aforementioned challenges, we draw in-

spiration from the concept of contrastive learning to enhance rep-

resentation learning on TAGs. Contrastive learning [5, 15, 17, 45]

refines representations by drawing positive pairs closer while main-

taining a distance between negative pairs. As data sparsity and

limited supervision signals constitute the two primary learning

obstacles associated with existing co-training methods, contrastive

learning appears to offer a promising solution to both issues: it

capitalizes on intrinsic data correlations to devise auxiliary training

objectives and bolsters data representations with an abundance of

self-supervised signals.

In practice, representation learning on TAGs with contrastive

learning is non-trivial, primarily encountering the following three

challenges: (1) How to devise a learning framework that capitalizes
on the distinctive data properties of TAGs? The contextual informa-

tion within TAGs is manifested in a multitude of forms or vary-

ing intrinsic characteristics, such as tokens, nodes, or sub-graphs,

which inherently exhibit complex hierarchical structures. More-

over, these hierarchies are interdependent and exert influence upon

one another. How to capitalize these unique properties of TAGs

remains an open question. (2) How to design effective contrastive
tasks? To obtain an effective node embedding that fully encapsu-

lates the semantics, relying solely on the hierarchical topological

views of TAGs remains insufficient. Within TAGs, graph topological

views and textual semantic views possess the capacity to mutu-

ally reinforce one another, indicating the importance of exploring

the cross-view contrastive mechanism. Moreover, the hierarchies

in TAGs can offer valuable guidance in selecting positive pairs

with analogous semantics and negative pairs with divergent se-

mantics, an aspect that has received limited attention in existing

research [25, 57]. (3) How to learn distinctive representations? In

developing the contrastive learning framework, we draw inspi-

ration from the recently proposed spectral contrastive learning

method [14], which outperforms several contrastive baselines with

solid theoretical guarantees. However, we demonstrate that, from a

spectral perspective, the spectral contrastive loss primarily learns

the low-frequency component (LFC) of the graph, significantly at-

tenuating the effects of high-frequency components (HFC). Recent

studies suggest that the LFC does not necessarily encompass the

most vital information [2, 7], and would ultimately contribute to the

over-smoothing problem [3, 4, 31, 32], causing node representations

to converge to similar values and impeding their differentiation.

Consequently, more explorations are needed to determine how to

incorporate the HFC to learn more discriminative embeddings.

To this end, we present a novel High-frequency Aware Spectral
HierarchicalContrastive Selective Cding framework (HASH-CODE)
to enhance TAG representation learning. Building upon a GNN and

Transformer architecturee [60, 71], we propose to jointly train the

GNN and Transformer with self-supervised signals (Figure 1(b)

depicts this architecture). The primary innovation lies in the con-

trastive joint-training stage. Specifically, we devise five self-supervised

optimization objectives to capture hierarchical intrinsic data corre-

lations within TAGs. These optimization objectives are developed

within a unified framework of contrastive learning. Moreover, we

propose a loss that can be succinctly expressed as a contrastive

learning objective, accompanied by robust theoretical guarantees.

Minimizing this objective results in more distinctive embeddings

that strike a balance between LFC and HFC. Consequently, the

proposed method is capable of characterizing correlations across

varying levels of granularity or between different forms in a general

manner.

Our main contributions are summarized as follows:

• We propose five self-supervised optimization objectives to maxi-

mize the mutual information of context information in different

forms or granularities.

• We systematically examine the fundamental limitations of spec-

tral contrastive loss from the perspective of spectral domain. We

prove that it learns the LFC and propose an HFC-aware con-

trastive learning objective that makes the learned embeddings

more discriminative.

• Extensive experiments conducted on three million-scale text-

attributed graph datasets demonstrate the effectiveness of our

proposed approach.

2 RELATEDWORK
2.1 Representation Learning on TAGs
Representation learning on TAGs constitutes a significant research

area across multiple domains, including natural language process-

ing [47, 49], information retrieval [50, 58], and graph learning [59,

62]. In order to attain high-quality representations for TAGs, it

is imperative to concurrently harness techniques from both natu-

ral language understanding and graph representation. The recent

advancements in pretrained language models (PLM) and graph neu-

ral networks (GNN) have catalyzed the progression of pertinent

methodologies.

Seperated Training. A number of recent efforts strive to amal-

gamate GNNs and LMs, thereby capitalizing on the strengths inher-

ent in both models. The majority of prior investigations on TAGs

employ a "cascaded architecture" [23, 29, 65, 71], in which the text

information of each node is initially encoded through transformers,

followed by the aggregation of node representations via GNNs.

Nevertheless, these PLM embeddings remain non-trainable during

the GNN training phase. Consequently, the model performance is

adversely impacted by the semantic modeling process, which bears

no relevance to the task and topology at hand.

Co-training. In an attempt to surmount these challenges, con-

certed efforts have been directed towards the co-training of GNNs

and PLMs within a unified learning framework. GraphFormers [60]

presents GNN-nested transformers, facilitating the concurrent en-

coding of text and node features. Heterformer [22] alternates be-

tween stacking the graph aggregation module and a transformer-

based text encoding module within a unified model, thereby cap-

turing network heterogeneity. However, these approaches solely

depend on a single optimization objective for learning the entire

model, which considerably constrains their capacity to discern the

fine-grained correlations between textual and graphical patterns.

2.2 Contrastive Learning
Empirical Works on Contrastive learning. Contrastive meth-

ods [5, 6, 17] derive representations from disparate views or aug-

mentations of inputs and minimize the InfoNCE loss [36], wherein
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two views of identical data are drawn together, while views from

distinct data are repelled. The acquired representation can be uti-

lized to address a wide array of downstream tasks with exceptional

performance. In the context of node representation learning on

graphs, DGI [45] constructs local patches and global summaries

as positive pairs. GMI [38] is designed to establish a contrast be-

tween the central node and its local patch, derived from both node

features and topological structure. MVGRL [15] employs contrast

across views and explores composition between varying views.

Theoretical works on Contrastive Learning. The exceptional
performance exhibited by contrastive learning has spurred a series

of theoretical investigations into the contrastive loss. The majority

of these studies treat the model class as a black box, with notable

exceptions being the work of [28], which scrutinizes the learned rep-

resentation with linear models, and the research conducted by [42]

and [54], which examine the training dynamics of contrastive learn-

ing for linear and 2-layer ReLU networks. Most relevant to our

research is the study by [39], which adopts a spectral graph per-

spective to analyze contrastive learning methods and introduces the

spectral contrastive loss. We ascertain that the spectral contrastive

loss solely learns the LFC of the graph.

Different from the existing works, our research represents the

first attempt to contemplate the correlations inherent within the

contextual information as self-supervised signals in TAGs. We en-

deavor to maximize the mutual information among the views of

the token, node, and subgraph, which encompass varying levels of

granularity within the contextual information. Our HFC-aware loss

facilitates the learning of more discriminative data representations,

thereby enhancing the performance of downstream tasks.

3 PRELIMINARIES
In this section, we first give the definition of the text-attributed

graphs (TAGs) and formulate the node representation learning

problem on TAGs. Then, we introduce our proposed HFC-aware

spectral contrastive loss.

3.1 Definition (Text-attributed Graphs)
A text-attributed graph is defined as G = (V, E), where V =

{𝑣1, ..., 𝑣𝑁 } and E denote the set of nodes and edges, respectively.

Let 𝐴 ∈ R𝑁×𝑁 be the adjacency matrix of the graph such that

𝐴𝑖, 𝑗 = 1 if 𝑣 𝑗 ∈ N (𝑣𝑖 ), otherwise 𝐴𝑖, 𝑗 = 0. Here N(.) denotes the
one-hop neighbor set of a node. Besides, each node 𝑣𝑖 is associated

with text information.

3.2 Problem Statement
Given a textual attibuted graph G = (V, E), the task is to build

a model 𝑓𝜃 : V → R𝐾 with parameters 𝜃 to learn the node em-

bedding matrix 𝐹 ∈ R𝑁×𝐾 , taking network structures and text se-

mantics into consideration, where 𝐾 denotes the number of feature

channels. The learned embedding matrix 𝐹 can be further utilized

in downstream tasks, e.g., link prediction, node classification, etc.

3.3 HFC-aware Spectral Contrastive Loss
An important technique in our approach is the high-frequency

aware spectral contrastive loss. It is developed based on the analysis

of the conventional spectral contrastive loss [14]. Given a node 𝑣 ,

the conventional spectral contrastive loss is defined as:

L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (𝑣, 𝑣+, 𝑣−) = −2 · E𝑣,𝑣+ [𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣+)]

+ E𝑣,𝑣− [(𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣−))2],
(1)

where (𝑣, 𝑣+) is a pair of positive views of node 𝑣 , (𝑣, 𝑣−) is a pair
of negative views, and 𝑓𝜃 is a parameterized function from the node

to R𝐾 . Minimizing L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 is equivalent to spectral clustering on
the population view graph [14], where the top smallest eigenvectors

of the Laplacian matrix are preserved as the columns of the final

embedding matrix 𝐹 .

In Appendix A.1, we demonstrate that, from a spectral perspec-

tive,L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 primarily learns the low-frequency component (LFC)

of the graph, significantly attenuating the effects of high-frequency

components (HFC). Recent studies suggest that the LFC does not

necessarily encompass the most vital information [2, 7], and would

ultimately contribute to the over-smoothing problem [3, 4, 31, 32].

As an alternative of such low-pass filter, to introduce HFC, we

propose our HFC-aware spectral contrastive loss as follows:

L𝐻𝐹𝐶 (𝑣, 𝑣+, 𝑣−) = −2𝛼 · E𝑣,𝑣+ [𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣+)]

+ E𝑣,𝑣− [(𝑓𝜃 (𝑣)𝑇 𝑓𝜃 (𝑣−))2],
(2)

where 𝛼 is used to control the rate of HFC within the graph.

Upon initial examination, one might observe that our L𝐻𝐹𝐶 for-

mulation closely aligns with L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 . Remarkably, the primary

distinction lies in the introduction of the parameter 𝛼 . However, this

is not a mere trivial addition; it emerges from intricate mathemati-

cal deliberation and is surprisingly consistent with L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 that
offers a nuanced control of the HFC rate within the graph. Minimiz-

ing our L𝐻𝐹𝐶 results in more distinctive embeddings that strike a

balance between LFC and HFC. Please kindly refer to Appendix A.1

for detailed discussions and proof.

4 METHODOLOGY
4.1 Overview
Existing studies [23, 29, 65, 71] mainly emphasize the effect of se-

quential and graphic characteristics using the supervised optimiza-

tion objective alone. Inspired by recent progress with contrastive

learning [5, 17], we take a different perspective to characterize the

data correlations by contrasting different views of the raw data.

The basic idea of our approach is to incorporate several elabo-

rately designed self-supervised learning objectives for enhancing

the original GNN and PLM. To develop such objectives, we leverage

effective correlation signals reflected in the intrinsic characteris-

tics of the input. As shown in Figure 2, for our task, we consider

the information in different levels of granularity, including token,

node and sub-graph, which are considered as different views of

the input. By capturing the multi-view correlation, we unify these

self-supervised learning objectives with the typical joint learning

training scheme in language modeling and graph mining [60].

4.2 Hierarchical Contrastive Learning with
TAGs

TAGs naturally possess 3 levels in the hierarchy: token-level, node-

level and subgraph-level. Based on the above GNN and PLM model,

3
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Figure 2: The overall architecture of HASH-CODE. With GraphFormers as our base model, we incorporate five self-supervised
learning objectives based on the HFC-aware contrastive loss to capture the text-graph correlations in different granularities.
Spectral contrastive loss learns the LFC while our HFC-aware loss achieves the balance between HFC and LFC.

we further incorporate additional self-supervised signals with con-

trastive learning to enhance the representations of input data. We

adopt a joint-training way to construct different loss functions

based on the multi-view correlation.

4.2.1 Intra-hierarchy contrastive learning.
Modeling Token-level Correlations. We first begin with model-

ing the bidirectional information in the token sequence. Inspired

by the masked language model like BERT [10], we propose to use

the contrastive learning framework to design a task that maximizes

the mutual information between the masked sequence represen-

tation and its contextual representation vector. Specifically, for a

node 𝑣 , given its textual attribute sequence 𝑥𝑣 = {𝑥𝑣,1, 𝑥𝑣,2, ..., 𝑥𝑣,𝑇 },
we consider 𝑥𝑣,𝑖:𝑗 and 𝑥𝑣,𝑖:𝑗 as a positive pair, where 𝑥𝑣,𝑖:𝑗 is an n-
grams spanning from i to j and 𝑥𝑣,𝑖:𝑗 is the corresponding sequence

masked at position i to j. We may omit the subscript 𝑣 for notation

simplification when it is not important to differentiate the affiliation

between node and textual sequence.

For a specific query n-gram 𝑥𝑖:𝑗 , instead of contrasting it indis-

criminately with all negative candidatesN in a batch [27], we select

truly negative samples for contrasting based on the supervision

signals provided by the hierarchical structure in TAGs, as shown

in Figure 3. Intuitively, we would like to eliminate those candidates

sharing highly similar semantics with the query, while keeping the

ones that are less semantically relevant to the query. To achieve

this goal, we first define a similarity measure between an n-gram
and a node. Inspired by [30], for a node 𝑣 , we define the seman-

tic similarity between n-gram’s hidden state ℎ𝑥𝑖 :𝑗 and this node’s

hidden state ℎ𝑣 using a node-specific dot product:

𝑠 (ℎ𝑥𝑖 :𝑗 , ℎ𝑣) =
ℎ𝑥𝑖 :𝑗 · ℎ𝑣
𝜏ℎ𝑣

, 𝜏ℎ𝑣 =
Σℎ𝑥𝑖 ∈𝐻𝑣 | |ℎ𝑥𝑖 − ℎ𝑣 | |2
|𝐻𝑣 |𝑙𝑜𝑔( |𝐻𝑣 | + 𝜖)

,

where ℎ𝑥𝑖 is the hidden representation of the token 𝑥𝑖 , 𝐻𝑣 consists

of the hidden representations of the tokens assigned to node 𝑣 , and

𝜖 is a smooth parameter balancing the scale of temperature 𝜏ℎ𝑣
among different nodes.

On such a basis, we conduct negative sampling selection consid-

ering both the token and node hierarchies. Given the query n-gram
𝑥𝑖:𝑗 , we denote its corresponding node 𝑣 ’s representation as ℎ𝑣 . For

a negative candidate, we are more likely to select it if its similarity

Figure 3: Token-level contrastive selective coding.

with ℎ𝑣 is less prominent compared with other negative candidates’

similarities with ℎ𝑣 . Based on such an intuition, the least dissimilar

negative samplesN𝑠𝑒𝑙𝑒𝑐𝑡 (ℎ𝑥𝑖 :𝑗 ) are produced for the specific query.

By using these refined negative samples, we define the objective

function of token-level contrastive (TC) loss as below:

L𝑇𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑥𝑚,𝑖:𝑗 , 𝑥𝑚,𝑖:𝑗 ,N𝑠𝑒𝑙𝑒𝑐𝑡 (ℎ𝑥𝑚,𝑖 :𝑗 )), (3)

where 𝑀 is the size of the representation set and L𝐻𝐹𝐶 is our

proposed HFC-aware spectral contrastive loss.

Figure 4: Modeling node-level correlations.

Modeling Node-level Correlations. Investigating the cross-view

contrastive mechanism is especially important for node represen-

tation learning [53]. As mentioned before, nodes in TAGs possess

4
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textual attributes that can indicate semantic relationships in the

network and serve as complementary to structural patterns. As

shown in Figure 4, given a node 𝑣 , we treat its textual attribute

sequence 𝑥𝑣 and its direct connected neighbors 𝑢, for 𝑢 ∈ 𝑁𝑣 as
two different views.

The negative selective encoding strategy used in token-level cor-

relation modeling may select those easy negative samples that con-

tribute less and less during the training process. Inspired by [56],we

propose to adversarially generate the negative samples �̃� in the node-

level contrastive learning process. Specifically, we adopt ProGCL [56]

method to reweight the negative node samples and performing

mixup operation [67] to generate hard negative samples �̃� . There-

fore, we minimize the following Node-level Contrastive (NC) loss:

L𝑁𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑥𝑚,𝑣, 𝑁𝑚,𝑣, 𝑣𝑚) (4)

Modeling Subgraph-level Correlations. Having modeled corre-

lations between a node’s local neighborhood and its textual features,

we further consider modeling the correlations between subgraphs

to cover both of the local and high-order structures of the nodes.

Intuitively, nodes and their regional neighborhoods are more corre-

lated while long-distance nodes hardly influence them. Therefore,

local communities may form with the graph. This assumption is

more reasonable as the size of graphs increases. Therefore, we sam-

ple a series of subgraphs including regional neighborhoods from

the original graph as training data.

The most critical issue now is to sample a context subgraph,

which can provide sufficient structure information for learning a

high-quality representation for the central node. Here we follow

the subgraph sampling based on personalized PageRank algorithm

(PPR) [20] as introduced in [21, 68]. Considering the importance

of different neighbors varies, for a specific node 𝑖 , the subgraph

sampler 𝑆 first measures the importance scores of other neighbor

nodes by PPR. Given the relational information between all nodes

in the form of an adjacency matrix, 𝐴 ∈ R𝑁×𝑁 , the importance

score matrix 𝑆 can be denoted as

𝑆 = 𝛼 · (𝐼 − (1 − 𝛼) · 𝐴),

where 𝐼 is the identity matrix and 𝛼 ∈ [0, 1] is a parameter that is

always set as 0.15. 𝐴 = 𝐴𝐷−1 denotes the colum-normalized adja-

cency matrix, where 𝐷 denotes the corresponding diagonal matrix

with 𝐷 (𝑖, 𝑖) = Σ 𝑗𝐴(𝑖, 𝑗) on its diagonal. 𝑆 (𝑖, :) is the importance

scores vector for node 𝑖 , indicating its correlation with other nodes.

It is noted that the importance scorematrix S can be precomputed

before model training starts. And we implement node-wise PPR to

calculate importance scores to reduce computation memory, which

makes our method more suitable to work on large-scale graphs.

For a specific node 𝑖 , the subgraph sampler 𝑆 chooses top-k

important neighbors to constitute the subgraph 𝐺𝑖 . The index of

chosen nodes can be denoted as

𝑖𝑑𝑥 = 𝑡𝑜𝑝_𝑟𝑎𝑛𝑘 (𝑆 (𝑖, :), 𝑘),

where 𝑡𝑜𝑝_𝑟𝑎𝑛𝑘 is the function that returns the indices of the top

k values and k denotes the size of context graphs.

The subgraph sampler 𝑆 will process the original graph with

the node index to obtain the context subgraph 𝐺𝑖 of node 𝑖 . Its

Figure 5: Modeling subgraph-level correlations.

adjacency matrix 𝐴𝑖 and feature matrix 𝑋𝑖 are as follows:

𝐴𝑖 = 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥,𝑋𝑖 = 𝑋𝑖𝑑𝑥,:,

where .𝑖𝑑𝑥 is an indexing operation. 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥 is the rowwise and

col-wise indexed adjacency matrix corresponding to the induced

subgraph. 𝑋𝑖𝑑𝑥,: is the row-wise indexed feature matrix.

Encoding subgraph. Given the context subgraph 𝐺𝑖 = (𝐴𝑖 , 𝑋𝑖 ) of
a central node 𝑖 , the encoder E : R𝑁×𝑁 ×R𝑁×𝐹 → R𝑁×𝐹 encodes

it to obtain the latent representations matrix 𝐻𝑖 denoted as

𝐻𝑖 = E(𝐴𝑖 , 𝑋𝑖 )

The subgraph-level representation 𝑠𝑖 is summarized by a readout

function, R : R𝑁×𝐹 → R𝐹 :

𝑠𝑖 = R(𝐻𝑖 )

.

So far, the representations of subgraphs have been produced. As

shown in Figure 5, to model the correlations in subgraph level, we

treat two subgraphs 𝑠𝑖 and 𝑠𝑖 that sampled from the node ℎ𝑖 and

its most important neighbor node
ˆℎ𝑖 respectively as positive pairs

while the rest of subgraphs �̃� are negative pairs. We minimize the

following Subgraph-level Contrastive (SC) loss:

L𝑆𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑠𝑚, 𝑠𝑚, 𝑠𝑚) (5)

4.2.2 Inter-hierarchy contrastive learning.
Having modeled the intra-hierarchy correlations, we further con-

sider modeling the intra-hierarchy correlations as different hierar-

chies are dependent and will influence each other.

Modeling Token-Node Correlations. To model the token-node

correlation, our intuition is to train the language model to re-

fine the understanding of the text by GNN produced embeddings.

Therefore, the language model is pushed to learn fine-grained

task-aware context information. Specifically, given a sequence

𝑥𝑣 = {𝑥𝑣,1, 𝑥𝑣,2, ..., 𝑥𝑣,𝑇 }, we consider 𝑥𝑣 and its corresponding node
representation ℎ𝑣 as a positive pair. On the other hand, for a set of

node representations, we employ a function, P, to corrupt them to

generate negative samples, denoted as

{ℎ̃1, ℎ̃2, ..., ℎ̃𝑀 } = P{ℎ1, ℎ2, ..., ℎ𝑀 },

where𝑀 is the size of the representation set.P is the random shuffle

function in our experiment. This corruption strategy determines

the differentiation of tokens with different context nodes, which is
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crucial for some downstream tasks, such as node classification. We

develop the following Token-Node Contrastive (TNC) loss:

L𝑇𝑁𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (𝑥𝑚,𝑣, ℎ𝑚,𝑣,P{ℎ1, ℎ2, ..., ℎ𝑀 }) (6)

Modeling Node-Subgraph Correlations. Intuitively, nodes are
dependent on their regional neighborhoods and different nodes

have different context subgraphs. Therefore, we consider the strong

correlation between central nodes and their context subgraphs to

design a self-supervision pretext task to contrast the real context

subgraph with a fake one. Specifically, for the node representation,

ℎ𝑣 , that captures the regional information in the context subgraph,

we regard the context subgraph representation 𝑠𝑣 as the positive

sample. Similar to the calculation of L𝑇𝑁𝐶 , we employ the random

shuffle function P to corrupt other subgraph representations to

generate negative samples, denoted as

{𝑠1, 𝑠2, ..., 𝑠𝑀 } = P{𝑠1, 𝑠2, ..., 𝑠𝑀 }

We minimize the following Node-Subgraph Contrastive (NSC) loss:

L𝑁𝑆𝐶 =
1

𝑀
Σ𝑀𝑚=1L𝐻𝐹𝐶 (ℎ𝑚,𝑣, 𝑠𝑚,𝑣,P{𝑠1, 𝑠2, ..., 𝑠𝑀 }) (7)

Overall Objective Loss.Our overall objective function is aweighted
combination of the five terms above:

L𝐻𝐴𝑆𝐻−𝐶𝑂𝐷𝐸 = 𝜆𝑇𝐶L𝑇𝐶 + 𝜆𝑁𝐶L𝑁𝐶 + 𝜆𝑆𝐶L𝑆𝐶
+ 𝜆𝑇𝑁𝐶L𝑇𝑁𝐶 + 𝜆𝑁𝑆𝐶L𝑁𝑆𝐶 ,

(8)

where 𝜆𝑇𝐶 , 𝜆𝑁𝐶 , 𝜆𝑆𝐶 , 𝜆𝑇𝑁𝐶 and 𝜆𝑁𝑆𝐶 are hyper-parameters that

balance the contribution of each term. We summarize the workflow

of our proposed HASH-CODE in Appendix B.3.

5 EXPERIMENTS
5.1 Experimental Setup
In this section, we have conducted extensive experiments, and

analyzed the performance of the proposed HASH-CODE method

by addressing the following key research questions as follows:

• RQ1: How does our method perform compared with baseline

methods?

• RQ2: How does each component of our method contribute to

the performance?

• RQ3: How about the efficiency of our proposed model compared

with other baselines?

• RQ4: How does our method perform when facing the issue of

data sparsity?

• RQ5: How do different hyper-parameters affect our method?

5.1.1 Datasets. We conduct experiments on six datasets (i.e.,DBLP1,
Wikidata5M

2
[51], Beauty, Sports and Toys fromAmazon dataset

3
[35]

and Product Graph) from three different domains (i.e., academic

papers, social media posts, and e-commerce). We leverage three

common metrics to measure the prediction accuracy: Precision@1

(P@1), NDCG, and MRR. Detailed information about the datasets

can be found in Appendix B.1. The statistics of the six datasets are

summarized in Table 1.

1
https://originalstatic.aminer.cn/misc/dblp.v12.7z

2
https://deepgraphlearning.github.io/project/wikidata5m

3
http://snap.stanford.edu/data/amazon/

Table 1: Statistics of datasets after preprocessing.

Dataset Product Beauty Sports Toys DBLP Wiki

#Users 13,647,591 22,363 25,598 19,412 N/A N/A

#Items 5,643,688 12,101 18,357 11,924 4,894,081 4,818,679

#N 4.71 8.91 8.28 8.60 9.31 8.86

#Train 22,146,934 188,451 281,332 159,111 3,009,506 7,145,834

#Valid 30,000 3,770 5,627 3,182 60,000 66,167

#Test 306,742 6,280 9,377 5,304 100,000 100,000

5.1.2 Baselines. We compare HASH-CODE with three types of

baselines: (1) GNN-cascaded transformers, which includes BERT+Ma-

xSAGE [13], BERT+MeanSAGE [13], BERT+GAT [44], TextGNN [71],

and AdsGNN [29]. (2) GNN-nested transformers, which includes

GraphFormers [60], and Heterformer [22]. (3) To verify the impor-

tance of both text and network information in TAGs, we also in-

clude Vanilla GraphSAGE [13], Vanilla GAT [44], Vanilla BERT [10]

and Twin-Bert [34] in comparison. Detailed information about the

baselines can be found in Appendix B.2.

5.1.3 Reproducibility. For all compared models, we adopt the 12-

layer BERT-base-uncased [10] in the huggingface as the backbone

PLM for a fair comparison. The models are trained for at most 100

epochs on all datasets. We use an early stopping strategy on P@1

with a patience of 2 epochs. The size of minimal training batch is

64, learning rate is set to 1𝑒 − 5. We pad the sequence length to 32

for Product, DBLP and Amazon datasets, 64 for Wiki, depending

on different text length of each dataset. Adam optimizer [26] is

employed to minimize the training loss. Other parameters are tuned

on the validation dataset and we save the checkpoint with the best

validation performance as the final model. Parameters in baselines

are carefully tuned on the validation set to select the most desirable

parameter setting.

5.2 Overall Comparison (RQ1)
Following previous studies on network representation learning, we

consider two fundamental tasks: link prediction, node classification.

To save space, we will mainly present the results on link prediction

here and save the node classification part to Appendix C:

Settings. The link prediction experiments are evaluated in terms of

link prediction accuracy, i.e., to predict whether a query node and

key node are connected given the textual features of themselves

and their neighbours. For Product, DBLP and Wiki datasets, in each

testing instance, one query is provided with 300 keys: 1 positive

plus 299 randomly sampled negative cases.

Results. The overall evaluation results are reported in Table 2. We

have the following observations:

For four vanilla textual/graph baselines, the performance order

is consistent across all datasets, i.e., Bert > Twin-Bert > GAT ≈
GraphSAGE. GNN models obtain the worst performance, as they

can only model the node proximity that preserved by the global

structural information, but fail to encode the textual information

that presents rich semantics to characterize the property of each

node. This demonstrates the importance of leveraging the local

textual information of individual nodes. As for the vanilla textual
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Table 2: Experiment results of link prediction. The results of the best performing baseline are underlined. The numbers in bold
indicate statistically significant improvement (p < .01) by the pairwise t-test comparisons over the other baselines.

Datasets Metric MeanSAGE GAT Bert Twin-Bert Bert+MeanSAGE Bert+MaxSAGE Bert+GAT TextGNN AdsGNN GraphFormers Heterformer HASH-CODE Improv.

Product

P@1 0.6071 0.6049 0.6563 0.6492 0.7240 0.7250 0.7270 0.7431 0.7623 0.7786 0.7820 0.7967∗ 1.88%

NDCG 0.7384 0.7401 0.7911 0.7907 0.8337 0.8371 0.8378 0.8494 0.8605 0.8793 0.8861 0.9039∗ 2.01%

MRR 0.6619 0.6627 0.7344 0.7285 0.7871 0.7832 0.7880 0.8107 0.8361 0.8430 0.8492 0.8706∗ 2.52%

Beauty

P@1 0.1376 0.1367 0.1528 0.1492 0.1593 0.1586 0.1544 0.1625 0.1669 0.1774 0.1739 0.1862∗ 4.96%

NDCG 0.2417 0.2469 0.2702 0.2683 0.2741 0.2756 0.2726 0.2863 0.2891 0.2919 0.2911 0.3061∗ 4.86%

MRR 0.2558 0.2549 0.2680 0.2638 0.2712 0.2759 0.2720 0.2802 0.2821 0.2893 0.2841 0.3057∗ 5.67%

Sports

P@1 0.1102 0.1088 0.1275 0.1237 0.1330 0.1311 0.1302 0.1421 0.1466 0.1548 0.1534 0.1623∗ 4.84%

NDCG 0.2091 0.2116 0.2375 0.2297 0.2432 0.2478 0.2419 0.2537 0.2582 0.2674 0.2692 0.2775∗ 3.08%

MRR 0.2171 0.2168 0.2319 0.2296 0.2434 0.2471 0.2397 0.2612 0.2653 0.2679 0.2640 0.2754∗ 2.80%

Toys

P@1 0.1342 0.0.1330 0.1498 0.1427 0.1520 0.1536 0.1514 0.1658 0.1674 0.1703 0.1685 0.1767∗ 3.76%

NDCG 0.2015 0.2028 0.2249 0.2206 0.2451 0.2486 0.2413 0.2692 0.2734 0.2859 0.2823 0.2946∗ 3.04%

MRR 0.2173 0.2149 0.2311 0.2276 0.2509 0.2527 0.2476 0.2648 0.2715 0.2803 0.2778 0.2919∗ 4.14%

DBLP

P@1 0.4963 0.4931 0.5673 0.5590 0.6533 0.6596 0.6634 0.6913 0.7102 0.7267 0.7288 0.7446∗ 2.17%

NDCG 0.6997 0.6981 0.7484 0.7417 0.8004 0.8059 0.8086 0.8331 0.8507 0.8565 0.8576 0.8823∗ 2.88%

MRR 0.6314 0.6309 0.6777 0.6643 0.7266 0.7067 0.7300 0.7792 0.7805 0.8133 0.8148 0.8428∗ 3.44%

Wiki

P@1 0.2850 0.2862 0.3066 0.3015 0.3306 0.3264 0.3412 0.3693 0.3820 0.3952 0.3947 0.4104∗ 3.85%

NDCG 0.5389 0.5357 0.5699 0.5613 0.5730 0.5737 0.6071 0.6098 0.6155 0.6230 0.6233 0.6402∗ 2.71%

MRR 0.4411 0.4436 0.4712 0.4602 0.4980 0.4970 0.5022 0.5097 0.5134 0.5220 0.5216 0.5356∗ 2.61%

baselines, the one-tower textual model (BERT) outperforms the two-

tower model (Twin-BERT) as it can incorporate the information

from both sides, while two-tower models can only exploit the data

from a single side. However, one-tower structure has to compute

the similarity between a search query and each ad one-by-one,

which is not suitable for low-latency online scenario. In general,

vanilla textual/graph models perform worse than GNN-cascaded

transformers, which demonstrates the importance of encoding both

text and network signals in text-attributed graphs.

As for GNN-cascaded transformers, Bert+GAT performs better

than Bert+MeanSAGE and Bert+MaxSAGE on Product, DBLP and

Wiki datasets, because the multi-head self-attention mechanism

has a stronger capacity to model attributes. However, the perfor-

mance of GAT is worse than that of MeanSAGE on Beauty, Sports

and Toys datasets. A potential reason is that the multi-head self-

attention may incorporate more noise from the attributes since

they are keywords extracted from the reviews on Amazon Reviews.

In general, GNN-cascaded transformers perform worse than co-

training-based methods, which may be due to the node textual

features are pre-existed and fixed in the training phase, leading to

the limited expression capacity. AdsGNN consistently outperforms

TextGNN on all datasets. This is because compared with TextGNN,

the node-level aggregationmodel AdsGNN can capture the different

roles of queries and keys, demonstrating that the tightly-coupled

structure is more powerful than the loosely-coupled framework in

deeply fusing the graph and textual information.

For GNN-nested transformers, Heterformer yields a larger per-

formance improvement over Graphformers when network is more

dense (i.e., Product and DBLP vs. Amazon datasets). By compar-

ing our approach with all the baselines, it is clear to see that our

HASH-CODE performs consistently better than them with notable

advantages on six datasets. Particularly, it achieves over 2%∼4% rela-

tive improvements over the most competitive baselines (underlined)

on each of the experimental datasets. Different from these baselines,

we adopt the contrastive learning to enhance the representations of

the attribute, and nodes for the representation learning task, which

incorporates five pre-training objectives to model multiple data

correlations by our proposed HFC-aware contrastive objectives.

This result also shows that the contrastive learning approach is

effective to improve the performance of the co-training architecture

for representation learning.

(a) P@1 (b) NDCG

Figure 6: Ablation studies of different components on DBLP
and Products datasets.

5.3 Ablation Study (RQ2)
Our proposed HASH-CODE designs five pre-training objectives

based on the HFC-aware contrastive objective. In this section, we

conduct the ablation study on Product and DBLP datasets to analyze
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Table 3: Time and memory costs per mini-batch for GraphFormers and HASH-CODE, with neighbour size increased from 3 to
200. HASH-CODE achieve similar efficiency and scalability as GraphFormers.

#N 3 5 10 20 50 100 200

Time: GraphFormers 63.95ms 97.19ms 170.16ms 306.12ms 714.32ms 1411.09ms 2801.67ms

Time: HASH-CODE 67.68ms 105.35ms 180.03ms 324.11ms 754.97ms 1573.29ms 2962.86ms

Mem: GraphFormers 1.33GiB 1.39GiB 1.55GiB 1.83GiB 2.70GiB 4.28GiB 7.33GiB

Mem: HASH-CODE 1.33GiB 1.39GiB 1.55GiB 1.84GiB 2.72GiB 4.43GiB 7.72GiB

the contribution of each objective. We evaluate the performance

of several HASH-CODE variants: (a) No-TT removes the L𝑇𝐶 ; (b)
No-TN removes the L𝑇𝑁𝐶 ; (c) No-NN removes the L𝑁𝐶 ; (d) No-
NS removes the L𝑁𝑆𝐶 ; (e) No-SS removes the L𝑆𝐶 ; (f) No-HFC
replaces the HFC-aware loss with spectral contrastive loss. The

results from GraphFormers are also provided for comparison. P@1

and NDCG@10 are adopted for this evaluation.

From Figure 6, we can observe that removing any contrastive

learning objective would lead to the performance decrease, indi-

cating all the objectives are useful to capture the correlations in

varying levels of granularity in TAGs. Besides, the importance of

these objectives is varying on different datasets. Overall, L𝑇𝐶 is

more important than others. Removing it yields a larger drop of

performance on all datasets, indicating that natural language under-

standing is more important on these datasets. In addition, No-HFC

performs worse than the other variants, indicating the importance

of learning more discriminative embeddings with HFC.

It is clearly seen that all model variants are better than Graph-

Formers, which is trained only with link predication loss.

5.4 Efficiency Analysis (RQ3)
We compare the time efficiency between HASH-CODE, and GNN-

nested Transformers (GraphFormers). The evaluation is conducted

utilizing an Nvidia 3090 GPU. We follow the same setting with [60],

where each mini-batch contains 32 encoding instances; each in-

stance contains one center and #N neighbour nodes; the token

length of each node is 16. We report the average time and memory

(GPU RAM) costs per mini-batch in Table 3.

We find that the time and memory costs associated with these

methods exhibit a linear escalation in tandem with the augmen-

tation of neighboring elements. Meanwhile, the overall time and

memory costs of HASH-CODE exhibit a remarkable proximity to

GraphFormers, especially when the number of neighbor nodes is

small. In light of the above observations, it is reasonable to deduce

that HASH-CODE exhibits superior accuracy while concurrently

maintaining comparable levels of efficiency and scalability when

juxtaposed with GNN-nested transformers.

5.5 In-depth Analysis (RQ4 & 5)
We continue to investigate several properties of the models in the

next couple sections. To save space, we will mainly present the

results here and save the details to the appendix:

• In Appendix D.1, we simulate the data sparsity scenarios by using

different proportions of the full dataset. We find that HASH-

CODE is consistently better than baselines in all cases, especially

in an extreme sparsity level (20%). This observation implies that

HASH-CODE is able to make better use of the data with the

contrastive learning method, which alleviates the influence of

data sparsity problem for representation learning to some extent.

• In Appendix D.2, we investigate the influence of the number

of training epochs on our performance. The results show that

our model benefits mostly from the first 20 training epochs.

And after that, the performance improves slightly. Based on

this observation, we can conclude that the correlations among

different views on TAGs can be well-captured by our contrastive

learning approach through training within a small number of

epochs. So that the enhanced data representations can improve

the performance of the downstream tasks.

• In Appendix D.3, we analyze the impact of neighbourhood size

with a fraction of neighbour nodes randomly sampled for each

center node. We can observe that with the increasing num-

ber of neighbour nodes, both HASH-CODE and Graphform-

ers achieve higher prediction accuracies. However, the mar-

ginal gain is varnishing, as the relative improvement becomes

smaller when more neighbours are included. In all the testing

cases, HASH-CODEmaintains consistent advantages over Graph-

Formers, which demonstrates the effectiveness of our proposed

method.

• In Appendix D.4, we visualize the input node embeddings for dif-

ferent target classes by t-SNE [43] to intuitively study the impact

of our HFC-loss. We find that our L𝐻𝐹𝐶 helps the model learn

more discriminative node embeddings compared with L𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 .

6 CONCLUSION
In this paper, we introduce the problem of node representation

learning on TAGs and propose HASH-CODE, a hierarchical con-

trastive learning architecture to address the problem. Different from

previous “cascaded architectures”, HASH-CODE utilizes five self-

supervised optimization objectives to facilitate thorough mutual

enhancement between network and text signals in different granu-

larities. We also propose a HFC-aware spectral contrastive loss to

learn more discriminative node embeddings. Experimental results

on various graph mining tasks, including link prediction and node

classification demonstrate the superiority of HASH-CODE. More-

over, the proposed framework can serve as a building block with

different task-specific inductive biases. It would be interesting to see

its future applications on real-world TAGs such as recommendation,

abuse detection and tweet-based network analysis.
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A THEORETICAL ANALYSIS OF HFC
A.1 Background: Spectral Clustering
Given a graph G = (V, E), with adjacency matrix 𝐴, the Lapla-

cian matrix of the graph is defined as 𝐿 = 𝐷 − 𝐴, where 𝐷 =

𝑑𝑖𝑎𝑔(𝑑1, ..., 𝑑𝑁 ) is the diagonal degree matrix (𝑑𝑖 = Σ 𝑗𝐴𝑖, 𝑗 ). Then
the symmetric normalized Laplacian matrix is defined as 𝐿𝑠𝑦𝑚 =

𝐷−
1

2 𝐿𝐷−
1

2 . As 𝐿𝑠𝑦𝑚 is real symmetric and positive semidefinite,

therefore it can be diagonalized as 𝐿 = 𝑈Λ𝑈𝑇 [9]. Here 𝑈 ∈
R𝑁×𝑁 = [𝑢1, ..., 𝑢𝑁 ], where 𝑢𝑖 ∈ R𝑁 denotes the 𝑖-th eigenvector

of 𝐿𝑠𝑦𝑚 and Λ = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑁 ) is the corresponding eigenvalue
matrix. To partition the graph, spectral clustering [16, 46] computes

the first K eigenvectors and creates a feature vector 𝑓𝐾,𝑣 ∈ R𝐾 for

each node 𝑣 : ∀𝑘 ∈ [1, 𝐾], 𝑓𝐾,𝑣 (𝑘) = 𝑢𝑘 (𝑣), which is in turn used to

obtain K clusters by K-means or hierarchical clustering, etc.

An analogy between signals on graphs and usual signals [40]

suggests to interpret the spectrum of 𝐿𝑠𝑦𝑚 as a Fourier domain for

graphs, hence defining filters on graphs as diagonal operators after

change of basis with𝑈 −1. It turns out that the features 𝑓𝐾,𝑣 can be

obtained by ideal low-pass filtering of the Delta function 𝛿𝑎 (local-

ized at node a). Indeed, let 𝑙𝐾 be the step function where 𝑙𝐾 (𝜆) = 1

if 𝜆 < 𝜆𝐾 and 0 otherwise. We define 𝐿𝐾 the diagonal matrix for

which 𝐿𝐾 (𝑖, 𝑖) = 𝑙𝐾 (𝜆𝑖 ). Then we have: 𝑓𝐾,𝑣 = 𝐿𝐾𝑈
−1𝛿𝑣 ∈ R𝐾 ,

where we fill the last 𝑁 − 𝐾 values with 0’s. Therefore, spectral

clustering is equivalent to clustering using low-pass filtering of the

local descriptors 𝛿𝑣 of each node 𝑣 of the graph G.

A.2 Spectral Contrastive Loss Revisited
To introduce spectral contrastive loss [14], we give the definition

of population view graph [14] first.

Population View Graph. A population view graph is defined as

G = (X,W), where the set of nodes comprises all augmented views

X of the population distribution, with𝑤𝑥𝑥 ′ ∈ W the edge weights

of the edges connecting nodes 𝑥, 𝑥
′
that correspond to different

views of the same input datapoint. The core assumption made is

that this graph cannot be split into a large number of disconnected

subgraphs. This set-up aligns well with the intuition that in order

to generalize, the contrastive notion of “similarity” must extent be-

yond the purely single-instance-level, and must somehow connect

distinct inputs points.

Spectral Contrastive Loss. Using the concept of population view

graph, spectral contrastive loss is defined as:

L(𝑥, 𝑥+, 𝑥−, 𝑓𝜃 ) = −2 · E𝑥,𝑥+ [𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥+)]

+ E𝑥,𝑥− [(𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥−))2],
(9)

where (𝑥, 𝑥+) is a pair of views of the same datapoint, (𝑥, 𝑥−) is
a pair of independently random views, and 𝑓𝜃 is a parameterized

function from the data to R𝑘 . Minimizing spectral contrastive loss

is equivalent to spectral clustering on the population view graph,

where the top smallest eigenvectors of the Laplacian matrix are

preserved as the columns of the final embedding matrix 𝐹 .

A.3 HFC-aware Spectral Contrastive Loss
As discussed in Appendix A.2, the spectral contrastive loss only

learns the low-frequency component (LFC) of the graph from a spec-

tral perspective, where the effects of high-frequency components

(HFC) are much more attenuated. Recent studies have indicated

that the LFC does not necessarily contain the most crucial infor-

mation; while HFC may also encode useful information that is

beneficial for the performance [2, 7]. In this regard, merely using

the spectral contrastive loss cannot adequately capture the varying

significance of different frequency components, thus constraining

the expressiveness of learned representations and producing subop-

timal learning performance. How to incorporate the HFC to learn

a more discriminative embedding still requires explorations.

In image signal processing, the Laplacian kernel is widely used

to capture high-frequency edge information for various tasks such

as image sharpening and blurring [18]. As its counterpart in Graph

Signal Processing (GSP) [40], we can multiply the graph Laplacian

matrix 𝐿 with the input graph signal 𝑥 ∈ R𝑁 , (i.e., ℎ = 𝐿𝑥) to

characterize its high-frequency components – the frequencies that

carry sharply varying signal information across edges of graph. On

the contrary, when highlighting the LFC, we would subtract the

term 𝐿𝑥 which emphasizes more on HFC from the input signal 𝑥 ,

i.e., 𝑧 = 𝑥 − 𝐿𝑥 .
It should be noted that the above operation corresponds to a

fixed low-pass filter in the spectral domain, where higher weights

are specified for LFC. However, in practice, LFC may not always

be useful, and HFC can also provide complementary insights for

learning [2, 7], especially when the label information is not smooth

across edges. Additionally, the HFC of the input graph signal would

be unavoidably too much weakened compared with the lower ones

with fixed filters, leading to the well-known over-smoothing prob-

lem [31]. As discussed in Appendix A.1, spectral clustering is equiv-

alent to clustering using a low-pass filter on each node of the graph.

Henceforth, the feature vectors learned by the spectral contrastive

loss is LFC of the population view graph. In this regard, the fixed

low-pass filters largely limit the fitting capability of contrastive

learning and its variants for learning discriminative node repre-

sentations. As a consequence, it is vital to capture the varying

importance of frequencies in the filter to preserve more useful

information and alleviate over-smoothing issues.

As an alternative of the traditional low-pass filter, a simple and

elegant solution to introduce HFC is to assign a single parameter

to control the rate of high-frequency substraction.

𝑧 = 𝑥 − 𝛼𝐿𝑥 = (𝐼 − 𝛼𝐿)𝑥,

where 𝐼 is the identity matrix. We thus obtain the kernel 𝐼 −𝛼𝐿 that

contains HFC.

Following [14], we consider the following matrix factorization

based objective for eigenvectors:

min

𝐹 ∈R𝑁 ×𝐾
L𝑚𝑓 (𝐹 ) = | | (𝐼 − 𝛼𝐿) − 𝐹𝐹𝑇 | |2𝐹

= ((1 − 𝛼)𝐼 + Σ𝑖, 𝑗 (
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥 𝑗
− 𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 )))2,

(10)

where𝑤𝑥 = Σ𝑥 ′ ∈X𝑤𝑥𝑥 ′ is the total weights associated to view 𝑥 . By
the classical low-rank approximation theory (Eckart-Young-Mirsky

theorem [11]), minimizer 𝐹 possesses eigenvectors of HFC-aware

kernel 𝐼 − 𝛼𝐿 as columns and thus contains both the LFC and HFC

of the population view graph.
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Lemma 1. (HFC-aware spectral contrastive loss.) Denote 𝑝𝑥 is the
𝑥-th row of 𝐹 . Let 𝑝𝑥 = 𝑤

1/2
𝑥 𝑓𝜃 (𝑥). Then, the loss function L𝑚𝑓 (𝐹 )

is equivalent to the following loss function for 𝑓𝜃 , called HFC-aware
spectral contrastive loss, up to an additive constant:

L𝑚𝑓 (𝐹 ) = L𝐻𝐹𝐶 (𝑓𝜃 ) + 𝑐𝑜𝑛𝑠𝑡,
where

L𝐻𝐹𝐶 (𝑓𝜃 ) = −2𝛼E𝑥,𝑥+ [𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥+)]

+ E𝑥,𝑥− [(𝑓𝜃 (𝑥)𝑇 𝑓𝜃 (𝑥−))2]
(11)

Proof. We expand L𝑚𝑓 (𝐹 ) and obtain

L𝑚𝑓 (𝐹 ) = ((1 − 𝛼)𝐼 + Σ𝑖, 𝑗 (
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥 𝑗
− 𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 )))2

= 𝑐𝑜𝑛𝑠𝑡 − 2Σ𝑖, 𝑗 [(1 − 𝛼)𝐼 +
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥 𝑗
] 𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 )

+ Σ𝑖, 𝑗 (𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 ))2

=


𝑐𝑜𝑛𝑠𝑡 − 2Σ𝑖, 𝑗1 − 𝛼 +

𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥𝑗

𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 )

+Σ𝑖, 𝑗 (𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 ))2, 𝑖 = 𝑗

𝑐𝑜𝑛𝑠𝑡 − 2Σ𝑖, 𝑗
𝛼𝑤𝑥𝑖 ,𝑥 𝑗√
𝑤𝑥𝑖
√
𝑤𝑥𝑗

𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 )

+Σ𝑖, 𝑗 (𝑓𝜃 (𝑥𝑖 )𝑇 𝑓𝜃 (𝑥 𝑗 ))2, 𝑖 ≠ 𝑗

(12)

In our case two views 𝑥𝑖 and 𝑥 𝑗 are not the same. We thus only

focus on the 𝑖 ≠ 𝑗 case. Ignoring the scaling factor which doesn’t

affect linear probe error, we can hence rewrite the sum of last two

terms of in Equation 12 as Equation 2. □

B NOTES ON THE EXPERIMENTAL SETUP
B.1 Details of Datasets
We conduct experiments on six datasets (i.e.,DBLP4,Wikidata5M

5
[51],

Beauty, Sports and Toys from Amazon dataset
6
[35] and Product

Graph) from three different domains (i.e., academic papers, social

media posts, and e-commerce):

DBLP: is a real-world academic citation graph dataset that contains

the paper citation graph from DBLP up to 2020-04-09. Two papers

are linked if one is cited by the other one. The paper’s title is used

as the textual feature.

Wikidata5M (Wiki): is a public entity graph dataset which contains

the entity graph fromWikipedia. The first sentence in each entity’s

introduction is taken as its textual feature.

Amazon Beauty, Sports and Toys: are obtained from Amazon

review datasets in [35], which contain product ratings and reviews

in 29 categories on Amazon.com and rich textual metadata such as

title, brand, description, etc. We use the version released in the year

2018. Specifically, we select three subcategories: “Beauty”, “Sports

and Outdoors”, and “Toys and Games”, and utilize the brands and

the descriptions of the items as attributes. We treat all the user-

item rating records as implicit feedback and sort them according

to the timestamps to form sequences. Following the common set-

tings [24], we filter out users and items with less than five interac-

tion records. For each user, we use the last clicked item for testing,

4
https://originalstatic.aminer.cn/misc/dblp.v12.7z

5
https://deepgraphlearning.github.io/project/wikidata5m

6
http://snap.stanford.edu/data/amazon/

the penultimate one for validation, and the remaining clicked items

for training.

Product Graph (Product): is an even larger dataset of online

products collected by a world-wide search engine. In this dataset,

the users’ web browsing behaviors are tracked for the targeted prod-

uct webpages (e.g., Amazon webpages of Nike shoes). The user’s

continuously browsed webpages within a short period of time (e.g.,

30 minutes) is called a “session”. The products within a common

session are connected in the graph (which is a common way of

graph construction in e-commerce scenarios [48, 63]). Each product

has its unique textual description, which specifies information like

the product name, brand, and saler, etc.

The textual features of all the datasets are in English. We make

use of uncased WordPiece [55] to tokenize the input text.

B.2 Details of Baselines
To thoroughly examine the effectiveness of our proposed method

and substantiate its validity, we contrast three types of competitive

methods:

First, to verify the importance of both text and network informa-

tion, we consider the vanilla textual/graph models that only exploit

partial observed information (i.e., textual or structural) for node

representation learning.

• Vanilla GraphSAGE [13]: This is a GNN method that employs

the mean function to aggregate information from neighbors for

center node embedding learning. The initial node feature vector

is bag-of-words weighted by TF-IDF. The number of entries in

each attribute vector corresponds to the vocabulary size of the re-

spective dataset, where we retain the most representative 10000,

2000, and 5000 words for DBLP, Wiki, and Product, respectively,

in accordance with the corpus size.

• Vanilla GAT [44]: Simillar with the vanilla GraphSAGE, we em-

ploy the graph attention networks to aggregate the information

from neighbors for center node embedding learning.

• Vanilla BERT [10]: This is a standard PLM pretrained on two

tasks: next sentence prediction and mask token prediction. For

each text-rich node, we use BERT to encode its text and extract

the output of the [CLS] token as node representation.

• Twin-Bert [34]: This is a two-tower BERT-based structure model,

which serves for the efficient retrieval.

Second, the GNN-cascaded transformers which combines the

GNN and PLM in a "cascaded architectute" that learns the node

representation with fixed textual embeddings.

• BERT+MaxSAGE [13]: We combine BERT with MaxSAGE (i.e.,

using the output text representation of BERT as the input node

attribute vector of MaxSAGE). The BERT+MaxSAGE model is

trained in an end-to-end manner. Other BERT+GNN baselines

below have the same cascaded architecture.

• BERT+MeanSAGE [13]: MeanSAGE is a GNNmethod that applies

the mean function during neighbor aggregation for center node

representation learning.

• BERT+GAT [44]: GAT is a GNN method with attention-based

neighbor importance calculation, and the weight of each neigh-

bor during aggregation depends on its importance score.
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• TextGNN [71]: This model incorporates the text and graph infor-

mationwith a node-level aggregator, in which the query encoders

share the same parameters.

• AdsGNN [29]: This model also utilizes a node-level aggregator

to aggregate the graph information at different levels, and intro-

duces domain-specific pre-training and knowledge-distillation

techniques to improve model performance.

Third, the state-of-the-art co-training-based methods that en-

ables the joint encoding of text and node features for the node

representation learning on TAGs.

• GraphFormers [60]: This is the state-of-the-art GNN-nested trans-

former model, which has graph-based propagation and aggrega-

tion in each transformer layer.

• Heterformer [22]: Thismodel alternately stacks the graph-attention-

based neighbor aggregation module and the transformer-based

text and neighbor joint encoding module to facilitate thorough

mutual enhancement between network and text signals.

B.3 Summary of HASH-CODE’s workflow

Algorithm 1 HCL-TAG’s Workflow

Input: The input graphs𝐺 (consist of the center node 𝑣 and its neigh-

bours).

Output: The embedding for the center node ℎ𝑣 .

for each text 𝑔 ∈ 𝐺 do
𝐻 1

𝑔 ← TRM
0 (𝐻 0

𝑔 ) ; // Get the initial token-level embeddings.

end for
for 𝑙 = 1, ..., 𝐿 − 1 do
𝑍 𝑙𝑔 ← {𝑧𝑙𝑔 |𝑔 ∈ 𝐺 }; // Gather node-level embeddings to GNN

𝑍 𝑙𝑔 ← GNN(𝑍 𝑙𝑔 ) ; // Graph aggregation in GNN

for 𝑖 = 1, ..., 5 do
𝑍 𝑙𝑔 ← Contrastive𝑖 (𝑍 𝑙𝑔, 𝐻 𝑙𝑔 ) ; // Hierarchical contrastive learning
for mutually reinforce the textual and graphic patterns

end for
for each text 𝑔 ∈ 𝐺 do
𝐻 𝑙𝑔 ← Concat(𝑧𝑙𝑔, 𝐻 𝑙𝑔 ) ; // Get contrastive graph-augmented token-

level embeddings

𝐻 𝑙+1𝑔 ← TRM
𝑙 (𝐻 𝑙𝑔 ) ; // Text encoding in Transformer

end for
end for
return ℎ𝑣 ← 𝑧𝐿𝑣

C NODE CLASSIFICATION
Settings. In node classification, we train a 2-layer MLP classifier to

classify nodes based on the output node representation embeddings

of each method. The experiment is conducted on DBLP. Follow-

ing [22], we select the most frequent 30 classes in DBLP. Also, we

study both transductive and inductive node classification to under-

stand the capability of our model comprehensively. For transductive

node classification, the model has seen the classified nodes during

representation learning (using the link prediction objective), while

for inductive node classification, the model needs to predict the

label of nodes not seen before. We separate the whole dataset into

train set, validation set, and test set in 7:1:2 in all cases and each

experiment is repeated 5 times in this section with the average

performance reported.

Results. Table 4 demonstrates the results of different methods in

transductive and inductive node classification. We observe that:

(a) our HASH-CODE outperforms all the baseline methods signifi-

cantly on both tasks, showing that HASH-CODE can learn more

effective node representations for these tasks; (b) GNN-nested trans-

formers generally achieve better results than GNN-cascaded trans-

formers, which demonstrates the necessity of introducing graphic

patterns in modeling textual representations; (c) HASH-CODE gen-

eralizes quite well on unseen nodes as its performance on inductive

node classification is quite close to that on transductive node classi-

fication. Moreover, HASH-CODE even achieves higher performance

in inductive settings than the baselines do in transductive settings.

Table 4: Experiment results of transductive and inductive
node classification on DBLP dataset. (HASH-CODE marked
in bold, the best baseline underlined). HASH-CODE outper-
forms all baselines, especially the ones based on GNN-nested
transformers.

Model

Transductive Inductive

P@1 NDCG P@1 NDCG

MeanSAGE 0.5186 0.7231 0.5152 0.7197

GAT 0.5208 0.7196 0.5126 0.7146

Bert 0.5493 0.7506 0.5310 0.7485

Twin-Bert 0.5291 0.7440 0.5248 0.7431

Bert+MeanSAGE 0.6731 0.7637 0.6413 0.7494

Bert+MaxSAGE 0.6705 0.7752 0.6587 0.7599

Bert+GAT 0.6849 0.0.7801 0.6689 0.0.7619

TextGNN 0.6820 0.7753 0.6380 0.7716

AdsGNN 0.6882 0.7790 0.6624 0.7737

GraphFormers 0.6919 0.7929 0.6791 0.7993

Heterformer 0.6924 0.7957 0.6746 0.8079

HASH-CODE 0.7116 0.8198 0.6961 0.8170

Improv. 2.77% 3.03% 2.50% 1.13%

D IN-DEPTH ANALYSIS
D.1 Data Sparsity Analysis
Conventional representation learning methods require a consider-

able amount of training data, thus they are likely to suffer from the

data sparsity issues in real-world applications. This problem can be

alleviated by our method because the proposed contrastive learn-

ing approach can better utilize the data correlation from input. We

simulate the data sparsity scenarios by using different proportions

of the full dataset, i.e., 20%, 40%, 60%, 80%, and 100%.

Figure 7 shows the evaluation results on Product and Sports

datasets. As we can see, the performance substantially drops when

less training data is used. While, HASH-CODE is consistently better

than baselines in all cases, especially in an extreme sparsity level

(20%). This observation implies that HASH-CODE is able to make

better use of the data with the contrastive learning method, which

alleviates the influence of data sparsity problem for representation

learning to some extent.
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Figure 7: Performance (P@1) comparison w.r.t. different sparsity levels on DBLP and Product datasets. The performance
substantially drops when less training data is used, while HASH-CODE is consistently better than baselines in all cases,
especially in an extreme sparsity level (20%).

D.2 Influence of Training Epochs Number
Our approach consists of co-training with GNNs and Transformers.

During the training stage, our model can learn the enhanced repre-

sentations of the attribute and node for the representation learning

task. The number of training epochs will affect the performance of

the downstream task. To investigate this, we train our model with

a varying number of epochs and fine-tune it on the downstream

task.

Figure 8 presents the results on Product and Sports datasets. We

can see that our model benefits mostly from the first 20 training

epochs. And after that, the performance improves slightly. Based

on this observation, we can conclude that the correlations among

different views (i.e., the graph topology and textual attributes) can

be well-captured by our contrastive learning approach through

training within a small number of epochs. So that the enhanced data

representations can improve the performance of the downstream

tasks.

D.3 Influence of Neighbor Size
We analyze the impact of neighbourhood size with a fraction of

neighbour nodes randomly sampled for each center node (using

DBLP for illustration). The link prediction results are shown in

Figure 9. We can observe that with the increasing number of neigh-

bour nodes, both HASH-CODE and Graphformers achieve higher

prediction accuracies. However, the marginal gain is varnishing,
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Figure 8: Performance (P@1) comparisonw.r.t. different num-
bers of training epochs onDBLP and Product datasets. HASH-
CODE benefits mostly from the first 20 training epochs, thus
the correlations among different views can be well-captured
by our approach through training within a small number of
epochs.

as the relative improvement becomes smaller when more neigh-

bours are included. In all the testing cases, HASH-CODE maintains

consistent advantages over GraphFormers, which demonstrates the

effectiveness of our proposed method.

D.4 HFC-aware Embedding Visualization.
To intuitively study the impact of our HFC-loss, we visualize the

input node embeddings for different target classes by t-SNE [43].
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Figure 9: Impact of neighbor size on DBLP dataset. Enlarging the number of neighbour nodes brings performance improvement
to both models. HASH-CODE maintains consistent advantages over GraphFormers over all test cases.

We conduct the visualization on DBLP with four different target

classes, and each target class has more than 1000 node embeddings.

Figure 10 shows that compared with HFC-aware loss, the spectral

contrastive loss cannot effectively distinguish different types of

sample nodes. Especially in the central part of Figure 10(a), sample

points are almost completely overlapping. It is clear that the HFC-

aware loss learns more discriminative node embeddings.

(a) HASH-CODE-NoHFC (b) HASH-CODE-HFC

Figure 10: Embedding visulization of input nodes belonging
to different target classes. Points with the same color denote
input nodes belonging to the same target class. HFC-aware
loss learns more discriminative embeddings than spectral
contrastive loss.
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