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Recent biotechnological advances led to growing numbers of single-cell studies, which reveal
molecular and phenotypic responses to large numbers of perturbations [1,2]. However, analysis
across diverse datasets is typically hampered by differences in format, naming conventions, data
filtering and normalization. To facilitate development and benchmarking of computational methods
in systems biology, we collect a set of 44 publicly available single-cell perturbation-response datasets
with molecular readouts, including RNA, proteins and chromatin accessibility (Figure Panel A). We
apply uniform pre-processing and quality control pipelines and harmonize feature annotations. The
resulting information resource enables efficient development and testing of computational analysis
methods, and facilitates direct comparison and integration across datasets. 32 RNA datasets in this
resource were perturbed using CRISPR and 9 were perturbed with drugs (Figure Panel B). We also
include three scATAC datasets, as well as three CITE-seq datasets with protein and RNA counts
separately downloadable. For each scRNA-seq dataset we supply count matrices, where each cell
has a perturbation annotation, quality control metrics including gene counts and mitochondrial read
percentage. Quality control plots for each dataset are also available on the scPerturb website. Notably,
more than 8000 CRISPR perturbations are shared across multiple datasets. We anticipate this data
resource being useful for developing machine learning models for perturbation responses across
datasets and other tasks.

To compare and evaluate perturbations within each dataset, we demonstrate the application of a
distance measure between high-dimensional point clouds to quantify perturbation similarity and
strength. The E-distance (short for energy distance, [3,4]) contextualizes the notion that two such
point clouds are distinguishable if they are far apart compared to the width of both clouds, providing
intuition about the signal-to-noise ratio in a dataset.

Let x1, ..., xN ∈ Rd and y1, ..., yN ∈ Rd be samples from two distributions X,Y , corresponding to
two sets of N and M cells, respectively.
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Figure 1: Diverse single-cell perturbation-response datasets profiled with E-distances.
(A,B) The majority of included datasets are scRNA-seq data with CRISPR (DNA cut, inhibition or
activation) perturbations using cell lines derived from various cancers. The studies performed on
cells from primary tissues generally use drug perturbations. (C) E-distances between perturbed and
unperturbed cells in [5], log+1 scaled. Color indicates significant difference to unperturbed cells
according to E-test. UMAP embeddings of cells from top and bottom perturbations w.r.t. E-distance
to unperturbed exemplify the connection between E-distance and similarity of point clouds
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and σY defined accordingly. Intuitively, δXY is the mean distance between cells from the two
distributions, while σX describes the mean distance between a cell from X to another cell from X .
The E-distance between X and Y is defined as:

E(X,Y ) := 2δXY = σX − σY

We computed the E-distance in PCA space between each group of perturbed cells and the unperturbed
cells for our collected datasets. This results in a distribution of E-distances for each perturbation in
a dataset, exemplarily shown for one selected dataset (Figure Panel C, upper portion). The more
a perturbation is on the right side of this distribution, the more distinctive its effect on the cells is
captured in the data. We also used the E-distance as a test statistic for a Monte Carlo permutation test
(“E-test”), robustly testing whether the distinctiveness is statistically significant. To visualize what a
high or low E-distance to unperturbed cells means, we select the three closest / furthest perturbations
in the example dataset and calculate a UMAP embedding for the cells of these perturbations jointly
with the unperturbed cells (Figure Panel C, lower portion). The top three furthest perturbations are
easily distinguishable from the gray unperturbed cells, while the bottom three closest perturbations
form a single, uniform cloud

This work provides an information resource and guide for researchers working with single-cell
perturbation data and highlights conceptual considerations for new experiments. The scPerturb data
collections is publicly available and is described in further detail in an associated preprint.

2



Acknowledgments and Disclosure of Funding

The data collection, scPerturb, is publicly available at scperturb.org. Further detail is available in our
preprint (doi:10.1101/2022.08.20.504663).
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