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Abstract

CLIP, a foundational vision-language model, has emerged as
a powerful tool for open-vocabulary semantic segmentation.
While freezing the text encoder preserves its powerful embed-
dings, recent studies show that fine-tuning both the text and
image encoders jointly significantly enhances segmentation
performance, especially for classes from open sets. In this
work, we explain this phenomenon from the perspective of
hierarchical alignment, since during fine-tuning, the hier-
archy level of image embeddings shifts from image-level to
pixel-level. We achieve this by leveraging hyperbolic space,
which naturally encoders hierarchical structures. Our key
observation is that, during fine-tuning, the hyperbolic ra-
dius of CLIP’s text embeddings decreases, facilitating better
alignment with the pixel-level hierarchical structure of vi-
sual data. Building on this insight, we propose HyperCLIP, a
novel fine-tuning strategy that adjusts the hyperbolic radius
of the text embeddings through scaling transformations. By
doing so, HyperCLIP equips CLIP with segmentation capa-
bility while introducing only a small number of learnable
parameters. Our experiments demonstrate that HyperCLIP
achieves state-of-the-art performance on open-vocabulary
semantic segmentation tasks across three benchmarks, while
fine-tuning only approximately 4% of the total parameters
of CLIP. More importantly, we observe that after adjustment,
CLIP’s text embeddings exhibit a relatively fixed hyperbolic
radius across datasets, suggesting that the granularity re-
quired for this segmentation task might be quantified using
the hyperbolic radius.

1. Introduction
The goal of open-vocabulary semantic segmentation is to
develop a segmentation model capable of labeling each pixel
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Figure 1. Visualization of hyperbolic space by a Poincaré ball
model: The height of points reflects the hierarchical level of input
data. The black segments refer to the shortest path between the
points in the Poincaré ball model. The red arrow line denotes the
hyperbolic radius of text embeddings. Embeddings closer to the
center have a smaller radius, representing low-level visual informa-
tion (e.g., pixels), while points farther from the center have a larger
radius, representing high-level visual information (e.g., images).
During fine-tuning, the hyperbolic radius of text embeddings is ad-
justed to match the radius associated with pixels, thereby endowing
CLIP with segmentation ability (Best viewed in color).

in an image with categories that extend beyond a predefined
closed set, based on textual descriptions. Vision-language
foundation models [5, 8, 9, 11, 13–16, 18–21, 23, 26, 27, 29,
33–35, 40], particularly CLIP [29], are frequently employed
to provide open-vocabulary recognition capabilities. Conse-
quently, open-vocabulary semantic segmentation fundamen-
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tally involves transferring these vision-language foundation
models, originally trained with image-level supervision, to
achieve pixel-level predictions.

Current methods [6, 37, 39, 42] typically fine-tune
CLIP on a closed set with segmentation annotations, i.e.,
COCO [3], to equip it with the segmentation capability. A
prevailing opinion is that simply freezing CLIP’s text en-
coder maximally preserves the powerful text embeddings
of a vast array of classes, which is believed to be beneficial
for good generalization on open sets. Many studies follow
this opinion [17, 22, 39]. However, recent studies [6, 25, 37]
offer an alternative perspective on fine-tuning: simultane-
ously fine-tuning both the image and text encoders results
in superior segmentation performance on open sets com-
pared to former approaches. To explain and resolve this
seemingly paradoxical phenomenon, we first leverage a non-
Euclidean manifold—specifically, hyperbolic space [4]—to
understand why fine-tuning the text encoder appears to im-
prove segmentation performance on open sets. Building on
this understanding, our objective is to design an explainable
fine-tuning strategy with a minimal number of introduced
tunable parameters, which is able to equip CLIP with strong
segmentation performance while minimizing the loss of its
generalization ability.

Existing research [1] has found that images inherently
exhibit hierarchical structures, consisting of multiple levels:
pixels, patches, objects, entire scenes, etc. Given that, in
open-vocabulary semantic segmentation, CLIP’s image em-
beddings transition from image level to pixel level, we infer
that the performance improvement brought by the recent
studies [6, 37] could be attributed to adjusting CLIP’s text
embeddings from their original hierarchical level to better
align with the level represented by pixels, thereby enhancing
cross-modal alignment. However, most existing fine-tuning
methods operate in Euclidean space, which makes it chal-
lenging to quantify such a transition through different hier-
archical levels. Hyperbolic spaces have gained significant
interest in recent years, owing to their ability to naturally
and compactly encode hierarchical structures [30, 31, 36],
as shown in Fig. 1. The hyperbolic radius, defined as the
distance from a point to the center in hyperbolic space, rep-
resents its hierarchical level [32]. Points closer to the center
(smaller radius) correspond to low-level visual embeddings,
e.g., those from pixels, while points near the edge (larger ra-
dius) correspond to high-level visual embeddings, e.g., those
from images.

Motivated by this, we project the text embeddings into hy-
perbolic space and visualize the changes in their radii before
and after fine-tuning, as shown in Fig. 2. This fine-tuning
is realized using the state-of-the-art method provided in [6].
Specifically, one can observe that the radius after fine-tuning
is smaller than that of pre-trained CLIP. In particular, we
identify a pattern during fine-tuning: the hierarchical level of

Figure 2. Understanding fine-tuning CLIP’s text encoder from
the perspective of hyperbolic radius. We use hyperbolic radius
to illustrate the change in the hierarchical level of 171 classes after
fine-tuning. We observe that the hyperbolic radius of each class
becomes smaller, suggesting that adjusting the hyperbolic radius
equips CLIP with segmentation ability (Best viewed in color).

the text embeddings adjusts in conjunction with the hierarchi-
cal level of the embeddings provided by the image encoder.
Our finding brings a novel perspective for fine-tuning CLIP:
Adjusting the hyperbolic radius of text embeddings from
edge to center endowed CLIP with segmentation ability.

Building on the analysis above, we propose a novel fine-
tuning strategy for CLIP in hyperbolic space, termed Hy-
perCLIP. HyperCLIP aims to directly adjust the hyperbolic
radius of CLIP’s embeddings to facilitate alignment with the
appropriate hierarchical level for segmentation tasks. Specif-
ically, we introduce several block-diagonal scaling matrices.
Multiplying these matrices with CLIP’s feature represen-
tations using a Möbius matrix multiplication operation is
equivalent to performing scaling transformations that adjust
the radius of CLIP’s embeddings. This enables the adjust-
ment of their hierarchical levels, ultimately enhancing the
model’s performance. As a result, HyperCLIP can equip
CLIP with segmentation ability with only a small number of
introduced learnable parameters.

Extensive experiments demonstrate that our method sets
new state-of-the-art results in open-vocabulary semantic seg-
mentation across three benchmarks, while fine-tuning only
approximately 4% of the total parameters of CLIP. More
importantly, we observe that after adjustment, CLIP’s text
embeddings maintain a relatively fixed hyperbolic radius
across different datasets. This suggests that the granularity
of the segmentation task might be quantified using the hyper-
bolic radius, warranting further exploration. The full version
of this work is [28].

2. Methodology

In this section, we introduce HyperCLIP for open-vocabulary
semantic segmentation. HyperCLIP is based on the Poincaré



Model VLM Additional Backbone Fine-tuning Space A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

Partial Fine-Tuning
ZS3Net [2] - ResNet-101 E - - - 19.4 38.3 -
LSeg [17] CLIP ViT-B/32 ResNet-101 E - - - - 47.4 -
OpenSeg [12] ALIGN ResNet-101 E 4.4 7.9 17.5 40.1 - 63.8
ZegFormer [7] CLIP ViT-B/16 ResNet-101 E 4.9 9.1 16.9 42.8 86.2 62.7
ZSseg [38] CLIP ViT-B/16 ResNet-101 E 7.0 - 20.5 47.7 88.4 -
OVSeg [22] CLIP ViT-B/16 ResNet-101c E 7.1 11.0 24.8 53.3 92.6 -
ZegCLIP [44] CLIP ViT-B/16 - E - - - 41.2 93.6 -

Selective Fine-Tuning
SED [37] CLIP ConvNeXt-B - E 11.4 18.6 31.6 57.3 94.4 -
CAT-Seg [6] CLIP ViT-B/16 - E 12.0 19.0 31.8 57.5 94.6 77.3

Parameter-efficient Fine-Tuning
SAN [39] CLIP ViT-B/16 Side Adapter E 10.1 12.6 27.5 53.8 94.0 -
Ours CLIP ViT-B/16 - H 12.3 19.2 32.1 58.5 95.6 78.9

Table 1. Comparison with state-of-the-art methods on standard benchmarks. The best-performing results are presented in bold, while
the second-best results are underlined. “E”: Euclidean Space. “H”: Hyperbolic Space.

ball model, which aims to adjust the hyperbolic radius of
CLIP’s embeddings, thereby equipping CLIP with segmen-
tation ability.

2.1. Fine-tuning in Hyperbolic Space

The core technique in HyperCLIP involves linear transfor-
mations, i.e., scaling, in the hyperbolic space. One of the
primary methods [41] to learn the weights of linear trans-
formations in hyperbolic space is hyperLoRA [41]. Given
a feature embedding z in Euclidean space, this method first
maps z to the hyperbolic space at a local reference point,
typically the center, using a exponential map. Linear trans-
formations with learnable weight matrix W is then applied
to z within the hyperbolic space to obtain the hyperbolic
representation. Then, a logarithmic map is applied to map
the hyperbolic representation back to the Euclidean space.
Formally, in the Poincaré ball model, this process is realized
as:

Wz = logD,c0 (W ⊗c exp
D,c
0 (z)), (1)

where ⊗c is the möbius matrix multiplication operation. The
primary aim of this method [41] is to capture more intricate
hierarchical relationships within hyperbolic space. In con-
trast, our goal is to directly adjust the hyperbolic radius of
CLIP’s embeddings, leading to a scaling transformation.

2.2. Hyperbolic Radius Adjustment

The objective of HyperCLIP is to introduce a scaling trans-
formation to directly adjust the hyperbolic radii of CLIP’s
embeddings in hyperbolic space, thereby equipping CLIP
with segmentation ability. Concretely, it necessitates the
utilization of a diagonal matrix, denoted as S, to scale a
CLIP’s feature embedding z ∈ Rb×d, where d is the feature
dimension of z, b is the spatial dimension of input images
or number of classes. When extending this process to hyper-

bolic space, S can directly adjust the hyperbolic radius of z.
Specifically, we realize the diagonal matrix S in a block-wise
manner,

S = diag(S1,S2, . . . ,SK), (2)

where Sk ∈ Rn×n denotes a square matrix of the k-th block,
and the block number K is calculated by K = d/n. By
adjusting the size of n, we can achieve a transition between
naive scaling transformation (n = 1, i.e., modifying only the
diagonal elements) and arbitrary transformation (n = d, i.e.,
fully fine-tuning in hyperbolic space).
Overall Fine-tuning. During the fine-tuning phase, Hyper-
CLIP introduces a similar process to Eq. 1 is incorporated
into CLIP’s encoder. Specifically, HyperCLIP uses the fol-
lowing forward pass:

Sz = logD,c0 (S⊗c exp
D,c
0 (z)). (3)

Concurrently, the original components of CLIP load their
weights from the pre-trained checkpoint, with their parame-
ters remaining frozen.

3. Experiments
3.1. Experimental Setup

Datasets. Following prior works [6, 37], we use the COCO-
Stuff dataset [3] as our training set. This dataset consists
of around 118,000 densely annotated images, covering 171
distinct semantic categories. For inference, we compare our
method against state-of-the-art approaches across several se-
mantic segmentation benchmarks, including ADE20K [43],
PASCAL VOC [10], and PASCAL-Context [24].

3.2. Comparisons with State-of-the-art Methods

Here, we compare our proposed method with several state-
of-the-art methods, as shown in Table 1, using six test sets



Image SAN [39] CAT-Seg [6] Ours Ground Truth

Figure 3. Comparison of qualitative reults on ADE20K [43] with 847 categories. We compare our method with other two state-of-the-art
methods, i.e., SAN [39] and CAT-Seg [6]. The results show our method performs more precise segmentation in different scenarios.

across three benchmarks. Overall, we achieve the best re-
sults. Most existing open-vocabulary semantic segmentation
methods follow partial fine-tuning strategies, i.e., fine-tuning
CLIP’s image encoder. Although these methods provide suf-
ficient flexibility for aligning with text descriptions generated
by the text encoder, they fail to adjust the text embeddings
to the appropriate hierarchical level for effective text-to-
image alignment, often leading to suboptimal segmentation
performance. Differently, CAT-Seg [6] simultaneously fine-
tunes both the text encoder and image encoder of CLIP,
achieving performance comparable to ours on some of the
datasets. However, its fine-tuning scheme is manually con-
trolled through different layer combinations, necessitating
a careful design to balance generalization and segmenta-
tion ability, while ours does not suffer from such an issue.
Then, compared to SAN [39], another parameter-efficient
fine-tuning method that introduces only a limited number
of tunable parameters, our approach significantly outper-
forms it, achieving improvements of 6.6% on the PC-459
dataset and 4.7% on the PC-59 dataset with ViT-B/16 as
the base model. These results demonstrate the effectiveness
of our method in preserving generalization while mastering
segmentation capability.

Qualitative results. Here, we visualize our method’s rep-
resentative example segmentation results against prevailing
methods, i.e., CAT-Seg [6] and SAN [39], in the A-847
dataset. As shown in Fig. 3, we can observe that our method
can make more accurate predictions on object location and
category. Even if objects are small and the background is
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Figure 4. Visualization on the effect of different average hy-
perbolic radii of text embeddings. The controlling of different
hyperbolic radii is achieved via a mean squared error (MSE) loss
that enforces a constraint between the expected radius and the mean
radius of the text embeddings during fine-tuning.

complicated, our method still performs well.
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