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Abstract—Mixed Reality (MR) has recently shown great suc-
cess as an intuitive interface for enabling end-users to teach
robots. Related works have used MR interfaces to communicate
robot intents and beliefs to a co-located human, as well as
developed algorithms for taking multi-modal human input and
learning complex motor behaviors. Even with these successes,
enabling end-users to teach robots complex motor tasks still
poses a challenge because end-user communication is highly task
dependent and world knowledge is highly varied. We propose
a learning framework where end-users teach robots a) motion
demonstrations, b) task constraints, c) planning representations,
and d) object information, all of which are integrated into
a single motor skill learning framework based on Dynamic
Movement Primitives (DMPs). We hypothesize that conveying
this world knowledge will be intuitive with an MR interface, and
that a sample-efficient motor skill learning framework which
incorporates varied modalities of world knowledge will enable
robots to effectively solve complex tasks.

Index Terms—robot learning, mixed reality, human-robot in-
teraction

I. INTRODUCTION

Mixed Reality (MR) has recently garnered interest as an in-
tuitive interface for teaching robots. MR enables bi-directional
human-robot interaction by superimposing visualizations on
the shared environment to communicate robot knowledge and
beliefs to the human, and providing a means for humans
to communicate to the robot via multi-modal channels like
speech, eye-gaze, and hand-gestures. There have been many
recent studies that have demonstrated the efficacy and ease-of-
use of MR interfaces for teaching robots compared to tradi-
tional methods like kinesthetic teaching and keyboard/monitor
setups.

Human communication is varied and task dependent, mak-
ing robot teaching difficult. We identify 4 types of world
knowledge a human may wish to impart: a) motion demon-
strations, b) task constraints, c) planning representations, and
d) object information. We address the research problem of
incorporating this world knowledge into a single motor
skill learning framework with MR.

We propose that a suitable motor skill learning framework
must be sample-efficient (to reduce the teaching burden from
a human), provide guarantees on constraint satisfaction (for
safety), and be adaptable to new goals (to account for novel
task dependent constraints). We propose Constrained Dynamic
Movement Primitives (CDMPs) as an appropriate family of
motor skills for humans to teach using MR (Figure 1). We
will develop an MR interface for users to specify all the
aforementioned types of world knowledge for a peg-in-hole

Fig. 1. A figure describing the types of world knowledge our proposed MR
interface can enable users to provide, and how we propose a single motor
skill learning framework (CDMPs) can leverage that world knowledge. More
details on how each type of world knowledge is communicated with MR and
integrated into the CDMP can be found in Section III

insertion task, and demonstrate that all the information can
effectively be incorporated into a CDMP learning framework
to learn complex motor skills.

II. RELATED WORK

Related works within the VAM-HRI (Virtual, Augmented,
and Mixed Reality for Human-Robot Interaction) have devel-
oped interfaces and learning algorithms for different types of
world knowledge. Here we discuss both related works with
MR interfaces for teaching different types of world knowledge,
and also give background on Constrained DMPs.

A. Mixed Reality for Robot Learning

MR has been used in various contexts for robot learning.
Here we discuss 4 different types of world knowledge humans
have taught robots: motion demonstrations, task constraints,
planning representations, and object information.

Motion demonstrations Spatially-tracked hand controllers
have shown great success as an intuitive interface to teleoper-
ate the pose of a robot’s end effector to perform manipulation



tasks [1]. For robot learning with MR, users typically pro-
vide motion demonstrations by teleoperating the robot with
spatially-tracked controller (often mapped to the end-effector
with Cartesian control), and these teleoperation demonstrations
are used as supervised data within a motor skill learning
framework. [2] demonstrated that commercially-available VR
systems could be used to provide demonstrations of complex
manipulation tasks to support effective imitation learning with
deep neural networks. [3] used an apprenticeship model to
efficiently use a human’s time when teleoperating in VR to
teach a grasping task.

Task constraints Visualizing task constraints and enabling
end-users to easily edit them with MR has recently shown
success for positively augmenting the learning process. [4]
propose an MR system for safety-aware HRI where users’
skeletons are registered and tracked to calculate safety dis-
tances between the human and robot, which are treated as
task constraints that can be visualized to the user. Beyond
visualizing constraints, [5] proposed an AR system to teach
robots motor skills using Concept-Constrained Learning from
Demonstration (CC-LfD), allowing users to see and inter-
act with visualizations of constraints superimposed on the
workspace. [6] expanded on CC-LfD by incorporating the
ability to perform skill maintenance and skill alteration for
different contexts.

Planning representations Tasks are often solved by de-
composing the goal into subgoals, and related works have
investigated creating plans comprised of high-level action
sequences with MR. [7] used an MR system to segment
demonstrations in MR with a key-frame system, and then
fitted different motor policies with each of the sub-trajectories.
[8] developed an AR system for users to specify trajectory
planning information that leverages dynamics modeling to
produce smooth trajectories between initial and end points for
the robot.

Object information MR provides an intuitive way for
humans to communicate information about objects to a robot
in a shared environment. [9] proposed an MR interface for
users to build a semantic map of an environment that in-
cluded information such as object pose, semantic attributes
and state, and action-related information like grasp strategies
and approach vectors. [10] propose an AR system for intent
recognition that enables users to directly specify 3D pose
information about objects in the scene, which can be used to
model and infer a human’s intended goal object using Hidden
Markov Models (HMM).

B. Constrained Dynamic Movement Primitives (CDMPs)

Constrained DMPs (CDMPs) were recently introduced
in [11] as an extension of the original DMP formulation
introduced in [12]. The idea in CDMP is to allow constraint
satisfaction for the original DMP by introducing a perturbation
in the learned forcing function. More concretely, the CDMP

Fig. 2. The Kuka Arm and Peg-In-Hole insertion task.

Fig. 3. Insertion Trajectory for Peg in Hole Task

is represented by the following system of equations:ṡż
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where,

f̃(s) =

∑N
i=1(wi − ζi)ψi(s)∑N

i=1 ψi(s)
(2)

where, wi are the weights of the forcing function learned
using the expert demonstration and ζi are the weights learnt
to satisfy the operational constraints by solving a constrained
trajectory optimization problem. Note that the forcing function
presented in [12] consists only of the weights wi that can be
learned from the expert demonstration by solving a locally
weighted regression [12]. In the formulation presented in [11],
constraints could be represented as barrier functions that
guarantee safety or constraint satisfaction if a feasible solution
could be found. These constraints could represent collision
constraints or more complex constraints that could represent



0 1000 2000 3000 4000 5000

300

350

400
x demonstration
x fit dmp

0 1000 2000 3000 4000 5000
0

100

200 y demonstration
y fit dmp

0 1000 2000 3000 4000 5000
200

400
z demonstration
z fit dmp

Fig. 4. Fitted DMP for Peg-in-Hole insertion task.

task-specific constraints. CDMP could be solved using existing
nonlinear programming solvers [13].

III. PROPOSED WORK

Our proposed work is to build an MR interface that is able
to take in the four types of aforementioned world knowledge,
and apply it to the CMDP learning framework for enabling
end-users to teach a robot how to perform a peg-in-hole in-
sertion task (Figure 2). For supplying motion demonstrations,
users will be able to teleoperate the robot’s end effector by
manipulating a spatially-tracked hand controller (Figure 3). We
will use these demonstrations to fit the forcing function of the
CDMP using Locally Weighted Regression (LWR), which is
both sample and computationally efficient (Figure 4). For spec-
ifying task constraints, users will be able to specify and adjust
geometric shapes (for now, spheres and rectangular prisms)
over the workspace marking zones of space where the robot’s
end effector can not enter. The CDMP will incorporate these
task constraints into the motor skill learning by automatically
constructing an inequality using signed distance functions that
respect the spatial constraints specified by the user, which
provide guarantees on constraint satisfaction. For building
plannable representations, users will be able to designate
keypoints within a trajectory where skills begin and end. For
each keypoint, we will segment the trajectory and train a
separate CDMP on each subset trajectory. At inference time,
these CDMPs are stitched together to chain skills and solve
the given task. For specifying object information, users will
be able to generate object models and directly overlay them
on top of their real-world counterparts, and associate different
motor skills with each of the objects. CMDPs will have their
action-space defined in SE(3), and will leverage the specified
object information to determine what frame of references the
action-space is in (either the global work-space or object-
centric), which will in turn define what frame of reference
reparameterized goals are with respect to.

Once we create our propsed MR interface and connect
all the components to a CDMP implementation, we will
conduct a user study to understand how easy it is for users
to communicate these types of world knowledge, and how
sufficient they are for enabling robots to learn complex motor
works. We will have end-users try our robot teaching system
with a peg-in-hole insertion task. This will give us a better
understanding of whether or not there are additional types of
world knowledge that should be incorporated into the learning
framework. After, we can then compare the efficacy of our MR
interface to traditional interface methods (such as kinesthetic
teaching and desktop setups) for enabling end-users to teach
robots a complex task such as peg-in-hole insertion.

IV. CONCLUSION

We have proposed an MR interface and compatible motor
learning framework for enabling end-users to teach robots
manipulation skills. We hypothesize that MR can be an effec-
tive interface for expressing four types of world knowledge:
motion demonstrations, task constraints, plannable representa-
tions, and object information. We suggest that CDMPs are an
appropriate motor skill learning framework for learning these
different types of world knowledge without requiring large
numbers of interactions. Next steps will be to build the MR
interface and connect it to the motor skill learning framework,
and conduct a user study to compare MR against traditional
robot interfaces for teaching peg-in-hole insertion.
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