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Abstract

We study the reinforcement learning (RL) problem in a constrained Markov deci-
sion process (CMDP), where an agent explores the environment to maximize the
expected cumulative reward while satisfying a single constraint on the expected
total utility value in every episode. While this problem is well understood in the
tabular setting, theoretical results for function approximation remain scarce. This
paper closes the gap by proposing an RL algorithm for linear CMDPs that achieves
Õ(
√
K) regret with an episode-wise zero-violation guarantee. Furthermore, our

method is computationally efficient, scaling polynomially with problem-dependent
parameters while remaining independent of the state space size. Our results sig-
nificantly improve upon recent linear CMDP algorithms, which either violate the
constraint or incur exponential computational costs.

1 Introduction

Safe decision-making is essential in real-world applications such as plant control and finance [19].
Constrained Markov decision process (CMDP) is a mathematical framework for developing decision-
making algorithms with formal safety guarantees [2]. This paper studies the reinforcement learning
(RL) problem in finite-horizon CMDPs, where an agent explores the environment to maximize the
expected cumulative rewards while satisfying a single constraint on the expected total utility value.

Safe exploration has been established in the tabular CMDP settings. Several works [27, 8, 47]
achieve episode-wise zero-violation RL with Õ(

√
K) regret for K number of episodes, ensuring

constraint satisfaction in every episode. Their approach consists of two phases: deploying a known
strictly safe policy πsf and then updating policies via linear programs (LPs), which optimizes an
optimistic objective while satisfying a pessimistic constraint. Deploying πsf is necessary to ensure
feasible solutions for the LPs once enough environmental information is collected.

∗Current affiliation: Institute of Science Tokyo, Tokyo, Japan, and DENSO IT Laboratory, Tokyo, Japan.
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Table 1: Representative CMDP results with K-dependent regrets. See Section 3 for CMDP notations.
Paper Epi.-Wise Safe? Comp. Efficient? Regret

Tabular Yu et al. [47] Yes |S| dependent Õ(ξ−1
√

|S|2|A|H5K)

Linear
Ghosh et al. [18] No No Õ(

√
d3H4K)

Roknilamouki et al. [36] Instantaneous Yes Õ(ξ−1
√
d3H4K)

OPSE-LCMDP (Ours) Yes Yes Õ(ξ−1
√
d5H8K)

Bandit lower bound [32] Yes N/A Ω̃(max{
√

|A|K, ξ−2})*

* The regrets of [47] and ours include an additional Õ(ξ−2) constant. We omit them from the table due to space limitations. [36, 32, 4]
avoid the constant by assuming access to a safe action vector, but they are limited to instantaneous constraints (see Section 2.1). Including
ours, existing safe algorithms [27, 8, 47, 36, 3, 32, 22] incur Õ(ξ−1

√
K) regret. Whether this can be improved to Õ(

√
K) remains open.

While safe exploration is well-established in tabular CMDPs, extending it to large-scale CMDPs
remains a major challenge. LP-based methods are impractical at scale due to their state-dependent
computational cost.2 As a result, even in linear CMDPs, where value functions have linear structure,
episode-wise safe RL has not been achieved. The state-of-the-art linear CMDP algorithm [18], which
achieves the Õ(

√
K) violation regret,3 incurs an exponential computational cost of KH , where H

is the horizon. Several studies achieve safe RL under instantaneous constraints [4, 36],4 a special sub-
class of the episode-wise safety that can be overly conservative (e.g., in drone control, temporary high
energy consumption is tolerable, but full battery depletion is not). Table 1 summarizes representative
algorithms, with additional literature in Appendix B. In short, a fundamental open question remains:

Can we develop a computationally efficient5 linear CMDP algorithm with
sublinear regret and zero episode-wise constraint violation?

Contributions. We propose Optimistic-Pessimistic Softmax Exploration for Linear CMDP (OPSE-
LCMDP), the first algorithm for linear CMDPs that achieves Õ(

√
K)-regret and episode-wise

safety. Our approach builds on the optimistic-pessimistic exploration framework with two key
innovations for large-scale state-space problems: (i) a new deployment rule for πsf , and (ii) a
computationally efficient method to implement optimism for the objective and pessimism for the
constraint within the softmax policy framework [16, 18].

Section 2 first analyzes the linear constrained bandit problem as a “warm-up” for linear CMDPs
(H = 1 with an expected instantaneous constraint), highlighting the key role of the πsf deployment
rule in avoiding linear regret. Previous instantaneous constraint literature limits πsf deployments by
representing the safe action as a vector asf ∈ Rd [32, 33, 22, 3, 4]. However, extending this approach
to episode-wise safety is non-trivial, as the constraint is imposed on policies rather than actions, and
policies may be nonlinear functions (e.g., softmax mapping from value functions) rather than single
vectors. We overcome this challenge by showing that if πsf is deployed only when the agent is
less confident in πsf ’s safety, the number of deployments is logarithmically bounded (Theorem 1).

Section 3 then extends the bandit result to RL in CMDPs. To enable optimistic-pessimistic
exploration in linear CMDPs, OPSE-LCMDP employs the composite softmax policy (Definition 3),
which adjusts optimism and pessimism by controlling a variable λ. OPSE-LCMDP efficiently
searches for the best λ through bisection search, achieving a polynomial computational cost in
problem parameters, independent of state-space cardinality (Remark 2). Overall, our techniques—the
novel πsf deployment rule and softmax-based optimistic-pessimistic exploration—achieve the first
episode-wise safe RL with sublinear regret and computational efficiency in linear CMDPs.

Mathematical notations. The set of probability distributions over a set S is denoted by P(S).
For integers a ≤ b, let Ja, bK := {a, . . . , b}, and Ja, bK := ∅ if a > b. For x ∈ RN , its n-th element
is xn or x(n). The clipping function clip{x, a, b} returns x′ with x′

i = min{max{xi, a}, b} for
each i. We define 0 := (0, . . . , 0)⊤ and 1 := (1, . . . , 1)⊤, with dimensions inferred from the context.
For a positive definite matrix A ∈ Rd×d and x ∈ Rd, we denote ∥x∥A =

√
x⊤Ax. For positive

sequences {an} and {bn} with n = 1, 2, . . ., we write an = O (bn) if there exist C > 0 and N ∈ N
2While some works (e.g., 30) proposed LP methods for unconstrained linear MDPs, they remain unsuitable

for our exploration setting or still incur state-dependent computational costs (see Appendix B).
3Violation regret denotes the total amount of constraint violation during exploration.
4Inst. constraint requires uh(s

(k)
h , a

(k)
h ) ≥ b ∀h, k ∈ J1, HK × J1,KK (see Section 3 for notations).

5An algorithm is comp. efficient if its cost is polynomial with problem parameters, excluding the state space.
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such that an ≤ Cbn for all n ≥ N , and an = Ω(bn) for the reverse inequality. We use Õ(·) and Ω̃(·)
to further hide the polylogarithmic factors. Finally, for x ∈ Rd, we denote its softmax distribution
as SoftMax(x) ∈P(J1, dK) with its i-th component SoftMax(x)i = exp(xi)/(

∑
i exp(xi)).

2 Warm Up: Safe Exploration in Linear Constrained Bandit

To better illustrate the core ideas of our CMDP algorithm, this section introduces a contextual linear
bandit variant based on Pacchiano et al. [32]. All the proofs in this section are provided in Appendix D.
Let A ⊂ Rd be the action space, a compact set of bounded d-dimensional vectors. Without loss of
generality, we assume ∥a∥2 ≤ 1 for any a ∈ A. At each round k, the agent selects a policy π(k) ∈
P(A), samples an action a(k) ∼ π(k), and observes the reward r(k) = θ⊤

r a
(k) + ε

(k)
r and utility

u(k) = θ⊤
u a

(k)+ε
(k)
u . Here, θr,θu ∈ Rd are vectors unknown to the agent such that ∥θr∥2, ∥θu∥2 ≤

B, and ε
(k)
r , ε

(k)
u are R-sub-Gaussian random noises. For any policy π and g ∈ {r, u}, let gπ :=

Ea∼π[⟨θg,a⟩]. We consider a constraint such that the expected utility must be above the threshold
b ∈ R. Formally, let Πsf := {π | uπ ≥ b} denote the set of safe policies. The agent’s goal is to
achieve sublinear regret while satisfying the expected instantaneous constraints defined as follows:

Regret(K) :=
∑K

k=1 rπ⋆ − rπ(k) = o(K) such that π(k) ∈ Πsf ∀k ∈ J1,KK , (1)

where π⋆ ∈ argmaxπ∈Πsf rπ. A sublinear regret exploration is efficient, as its averaged reward
approaches the optimal value, i.e., limK→∞

1
K rπ(K) → rπ⋆ . Finally, we assume access to a strictly

safe policy in Πsf , as deploying arbitrary policies without this assumption risks violating constraints6.

Assumption 1 (Safe policy). We have access to πsf ∈ Πsf and ξ > 0 such that uπsf − b ≥ ξ .

2.1 Technical Challenge: Zero-Violation with a Safe Policy

The key to efficient and safe exploration is the optimistic-pessimistic exploration, which constructs
an optimistic reward r

(k)
π ≥ rπ and a pessimistic utility u

(k)
π ≤ uπ , and then computes a policy by:

maxπ∈P(A) r
(k)
π such that u

(k)
π ≥ b . (2)

Here, r(k)π and u
(k)
π are designed to quickly approach rπ and uπ as data accumulates for efficient

exploration [1]. However, although Equation (2) can have feasible solutions when uπ ≈ uπ, the
pessimistic constraint may not have any feasible solution in the early stages of exploration.

To ensure that (2) always has a solution, a common bandit approach assumes access to a safe action
asf ∈ A such that θ⊤

u a
sf ≥ b + ξ, and then ensures the feasibility of (2) by leveraging the vector

representation of asf ∈ Rd. For example, [32, 33, 3] designed u
(k)
π using the orthogonal direction(

asf
)⊥

:= asf − asf/
∥∥asf∥∥

2
, while [22] assume asf = 0 ∈ A with a negative constraint threshold

b < 0. Both approaches ensure that a policy playing asf with probability 1 is always feasible in (2).

However, extending this safe action technique to episode-wise safe RL is non-trivial, as the episode-
wise constraint is imposed on policies rather than actions, and policies in linear CMDPs may be
nonlinear functions (e.g., softmax mappings from value functions) rather than single vectors. To ad-
dress this challenge, we first develop a safe bandit algorithm without relying on safe action techniques.

2.2 Algorithm and Analysis

We summarize the proposed Optimistic-Pessimistic Linear Bandit with Safe Policy (OPLB-SP)
in Algorithm 1, which follows the standard linear bandit framework (see Abbasi-Yadkori et al.
[1]). Throughout this section, we analyze Algorithm 1 under the parameters listed in its Input line.

Let θ̂
(k)

r := (Λ(k))−1
∑k−1

i=1 a(i)r(i) and θ̂
(k)

u := (Λ(k))−1
∑k−1

i=1 a(i)u(i) denote the regularized
least-squares estimates of θr and θu, respectively, where Λ(k) := ρI +

∑k−1
i=1 a(i)(a(i))⊤. Let

r̂
(k)
π := Ea∼π[a

⊤θ̂
(k)

r ] and û
(k)
π := Ea∼π[a

⊤θ̂
(k)

u ] be the estimated reward and utility functions.

6The knowledge of ξ is for simplicity. If unknown, we can estimate it by deploying πsf with a little overhead.
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Algorithm 1: Optimistic-Pessimistic Linear Bandit with Safe Policy

Input: Regression coefficient ρ = 1, bonus scalers Cu = B +R
√
d ln 4Kδ−1 and

Cr = Cu(1 + 2Bξ−1), safe policy πsf , and iteration length K ∈ N
1 for k = 1, . . . ,K do
2 Let β(k)

π , r̂(k)π , and û
(k)
π be bonus, estimated reward and utility, respectively (see Section 2.2)

3 if Cuβ
(k)

πsf >
ξ
2

then π(k) := πsf /* Deploy πsf if πsf is unconfident */

4 else π(k) ∈ argmaxπ∈P(A) r̂
(k)
π + Crβ

(k)
π such that û

(k)
π − Cuβ

(k)
π ≥ b

5 Sample an action a(k) ∼ π(k) and observe reward r(k) and utility u(k).

Using the bonus function β
(k)
π := Ea∼π∥a∥(Λ(k))

−1 , with the well-established elliptical confidence

bound argument for linear bandits [1], the following confidence bounds hold:
Lemma 1 (Confidence bounds). For any π and k, with probability (w.p.) at least 1− δ,

rπ + 2Cuβ
(k)
π ≥ r̂(k)π + Cuβ

(k)
π ≥ rπ and uπ ≥ û(k)

π − Cuβ
(k)
π ≥ uπ − 2Cuβ

(k)
π .

Based on Lemma 1, Algorithm 1 solves the following optimistic-pessimistic (Opt-Pes) problem.
The optimistic objective promotes efficient exploration, while the pessimism enforces the constraint
satisfaction:

Opt-Pes (Line 4) π(k) ∈ argmaxπ∈P(A) r̂
(k)
π + Crβ

(k)
π such that û

(k)
π − Cuβ

(k)
π ≥ b . (3)

This is a convex optimization problem when the setA satisfies certain structural assumptions, such as
being discrete or ellipsoidal (see, e.g., Section 19.3 of Lattimore and Szepesvari [26]). To emphasize
our approach to the technical challenge in Section 2.1, this section omits the computational details
of (3) and focuses instead on the core technique for efficient exploration under episode-wise safety.

2.2.1 Zero-Violation and Logarithmic Number of πsf Deployments

Since π(k) is either πsf or the solution to Opt-Pes (if feasible), all deployed policies in Algorithm 1
satisfy the constraint with high probability due to the pessimistic constraint. However, as noted in
Section 2.1, the pessimistic constraint may render Opt-Pes infeasible, requiring Line 4 to wait until
the bonus β(k)

π shrinks sufficiently. Yet, waiting too long overuses the suboptimal πsf , leading to poor
regret. Thus, exploration must keep the number of iterations where Equation (2) is infeasible bounded.

The core technique of Algorithm 1 lies in the πsf deployment trigger based on the confidence of
πsf . Specifically, we solve the optimistic-pessimistic optimization whenever β(k)

πsf ≤ ξ
2Cu

; otherwise,
we correct the data by deploying πsf (see Line 3). Under this trigger, the following Theorem 1
ensures that the number of πsf deployments grows logarithmically with the iteration length K.
Definition 1 (πsf unconfident iterations). Let U be the set of iterations when Algorithm 1 is unconfi-
dent in πsf , i.e., U := {k ∈ J1,KK | β(k)

πsf > ξ/(2Cu)}. Let U∁ := J1,KK \ U be its complement.

Theorem 1 (Logarithmic |U| bound). It holds w.p. at least 1− δ that |U| ≤ O
(
dC2

uξ
−2 ln

(
Kδ−1

))
.

The proof utilizes the well-known elliptical potential lemma [1]. Intuitively, it ensures that the
confidence bounds shrink on average, thereby limiting the number of iterations where the algorithm
remains unconfident in πsf . He et al. [21], Zhang et al. [50] employed a similar technique in linear
bandits to ensure the suboptimality of policies after sufficient iterations.

Moreover, combined with Lemma 1, the following Lemma 2 ensures that, after logarithmic iterations,
policies around πsf will become feasible solutions to Opt-Pes and Line 4.

Lemma 2 (Mixture policy feasibility). Consider k ∈ U∁. Let α(k) :=
ξ−2Cuβ

(k)

πsf

ξ−2Cuβ
(k)

πsf+2Cuβ
(k)

π⋆

. For any

α ∈
[
0, α(k)

]
, the mixture policy πα := (1− α)πsf + απ⋆ satisfies uπα

− 2Cuβ
(k)
πα ≥ b.

Note that the mixture policy πα is introduced only to ensure the feasibility of Opt-Pes; it does not
need to be computed in the algorithm.
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Finally, Lemma 1 and Lemma 2 directly imply the following zero-violation guarantee:

Corollary 1 (Zero-violation). W.p. at least 1− δ, Algorithm 1 satisfies π(k) ∈ Πsf for any k.

2.2.2 Regret Analysis

The remaining task is to ensure sublinear regret. By Theorem 1 and Lemma 1, the regret is
decomposed as:

Regret(K) ≤ Õ
(
dBC2

uξ
−2
)
+ 3Cr

∑
k∈U∁ β

(k)
π 1

+
∑

k∈U∁

(
rπ⋆ − r̂

(k)

π(k) − Crβ
(k)
π

)
2

.

Using the elliptical potential lemma [1], we can bound 1 ≤ Õ(Cr

√
dK).

For the term 2 , when there is no constraint in Opt-Pes, the common strategy is bounding 2 using
rπ⋆ − r̂

(k)

π(k) − Crβ
(k)
π ≤ 0, leveraging the optimism due to Lemma 1 with the maximality of π(k) in

Opt-Pes (see, e.g., Abbasi-Yadkori et al. [1]). However, due to the pessimistic constraint in Opt-Pes,
π⋆ may not be a solution to Opt-Pes, necessitating a modification to this approach.

Recall from Lemma 2 that, for k ∈ U∁, the mixture policy πα(k) := (1− α(k))πsf + α(k)π⋆ satisfies
uπ

α(k)
− 2Cuβ

(k)
π
α(k)
≥ b. For this πα(k) , the following optimism with respect to π⋆ holds:

Lemma 3 (πα(k) optimism). For any k ∈ U∁, it holds rπ
α(k)

+ (2BCuξ
−1)β

(k)
π
α(k)
≥ rπ⋆ .

Using Lemmas 1 and 3 with Cr = Cu(1 + 2Bξ−1), we have

2 ≤
∑

k∈U∁ r̂π
α(k)

+ Crβ
(k)
π
α(k)
− r̂

(k)

π(k) − Crβ
(k)

π(k) ≤ 0 , (4)

where the second inequality holds since πα(k) is a feasible solution to Opt-Pes and π(k) is its
maximizer. This optimism via a mixture policy technique is adapted from tabular CMDPs [27, 8] to
the linear bandit setup. By combining all the results, Algorithm 1 archives the following guarantees:

Theorem 2. If OPLB-SP is run with the parameters listed in its Input line, w.p. at least 1− δ,

π(k) ∈ Πsf for any k ∈ J1,KK and Regret(K) ≤ Õ(dBC2
uξ

−2 + Cr

√
dK) .

When B = R = 1, the regret bound simplifies to Õ(d2ξ−2 + ξ−1
√
d3K).

In summary, OPLB-SP relies on three components: (i) optimistic-pessimistic updates (Opt-Pes),
(ii) a logarithmic number of πsf deployments (Theorem 1), and (iii) compensation for the pessimism
(Lemma 3). Building on these components, the next section develops a linear CMDP algorithm.

3 Safe Reinforcement Learning in Linear Constrained MDP

A finite-horizon CMDP is defined as a tuple (S,A, H, P, r, u, b, s1), where S is the finite but
potentially exponentially large state space, A is the finite action space (|A| = A),7 H ∈ N is the
episode horizon, b ∈ [0, H] is the constrained threshold, and s1 is the fixed initial state. The reward
and utility functions r, u : J1, HK× S ×A → [0, 1] specify the reward rh(s, a) and constraint utility
uh(s, a) when taking action a at state s in step h. Finally, P·(· | ·, ·) : J1, HK× S ×A× S → [0, 1]
denotes the transition kernel, where Ph(s

′ | s, a) denotes the state transition probability to a new
state s′ from a state s when taking an action a in step h. With a slight abuse of notation, for functions
V : S → R and Ph, we write (PhV )(x, a) =

∑
y∈S V (y)Ph(y | x, a).

Policy and (regularized) value functions. A policy is defined as π·(· | ·) : J1, HK×S×A → [0, 1],
where πh(a | s) gives the probability of taking an action a at state s in step h. The set of all the
policies is denoted as Π. With an abuse of notation, for any policy π and Q : S × A → R, let πh

be an operator such that (πhQ)(s) =
∑

a∈A πh(a | s)Q(s, a). For a policy π, transition kernel P ,

7While Section 2 permits infinite actions, we here restrict to the finite case. Even then, episode-wise safe
exploration in linear CMDP is non-trivial, and infinite actions would further complicate the regret analysis.
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reward function g : J1, HK× S ×A → R, and entropy coefficient κ ≥ 0, let Qπ,g
P,h[κ] : S ×A → R

and V π,g
P,h [κ] : S → R denote the entropy-regularized value functions at step h satisfying:

Qπ,g
P,h[κ] = gh + (PhV

π,g
h+1,P [κ]), V

π,g
P,h [κ] = πh(Q

π,g
P,h[κ]− κ lnπh), and V π,g

H+1,P [κ] = 0 .

For κ = 0, we omit κ, e.g., Qπ,g
P,h := Qπ,g

P,h[0]. We denote hκ := h(1 + κ lnA) for h ∈ J1, HK.

For h ∈ J1, HK, let wπ
P,h ∈ ∆(S ×A) denote the occupancy measure of π in P at step h such that

wπ
P,h(s, a) = P(sh = s, ah = a | π, P ) ∀ (h, s, a) ∈ J1, HK× S ×A , (5)

where the expectation is taken over all possible trajectories, in which ah ∼ πh(· | sh) and
sh+1 ∼ Ph(· | sh, ah). With a slight abuse of notation, we write wπ

P,h(s) =
∑

a∈A wπ
P,h(s, a).

Learning Setup. An agent interacts with the CMDP for K episodes using policies π(1), . . . , π(K) ∈
Π. Each episode k starts from s1. At step h in episode k, the agent observes a state s

(k)
h , selects

an action a
(k)
h ∼ π

(k)
h (· | s(k)h ), and transitions to s

(k)
h+1 ∼ Ph(· | s(k)h , a

(k)
h ). The algorithm lacks

knowledge of the transition kernel P , while r and u are known for simplicity. Extending our setting
to unknown stochastic reward and utility is straightforward (see, e.g., Efroni et al. [13]).

To handle a potentially large state space, we consider the following linear MDP assumption:
Assumption 2 (Linear MDP). We have a known feature map ϕ : S × A → Rd satisfying:
there exist unknown d (signed) measures µh := (µ1

h, . . . ,µ
d
h) ∈ RS×d such that Ph(s

′ | s, a) =

µh(s
′)⊤ϕ(s, a), and known vectors θr

h,θ
u
h ∈ Rd such that rh(s, a) = (θr

h)
⊤
ϕ(s, a) and uh(s, a) =

(θu
h)

⊤
ϕ(s, a). We assume sups,a∥ϕ(s, a)∥2 ≤ 1 and

∥∥V ⊤µh

∥∥
2
≤
√
d for any V ∈ RS such that

∥V ∥∞ ≤ 1.

Let π⋆ ∈ argmaxπ∈Πsf V
π,r
P,1 (s1) be the optimal policy, where Πsf := {π | V π,u

P,1 (s1) ≥ b} is the
set of safe policies. The goal is to achieve sublinear regret under episode-wise constraints:

Regret(K) :=
∑K

k=1 V
π⋆,r
P,1 (s1)− V π(k),r

P,1 (s1) = o(K) such that π(k) ∈ Πsf ∀k ∈ [K] . (6)

Finally, we assume the strictly safe policy similar to Section 2.

Assumption 3 (Safe policy). We have access to πsf ∈ Πsf and ξ > 0 such that V πsf ,u
P,1 (s1)− b ≥ ξ .

3.1 Technical Challenge: Optimistic-Pessimistic Optimization in Linear CMDP

Our linear CMDP algorithm builds on OPLB-SP in Section 2: deploying an optimistic-pessimistic
policy when confident in πsf ; otherwise, it uses πsf . We will logarithmically bound the number of
πsf deployments, similar to Theorem 1, and ensure optimism through a linear mixture of policies,
as in Lemma 2. However, computing an optimistic-pessimistic policy in the linear CMDP setting,
similar to Opt-Pes, presents a non-trivial challenge. This section outlines the difficulties.

Following standard linear MDP algorithm frameworks (e.g., Jin et al. [23], Lykouris et al.
[28]), for each h, k, let β

(k)
h : (s, a) 7→ ∥ϕ(s, a)∥

(Λ
(k)
h )−1 be the bonus, where Λ

(k)
h :=

ρI +
∑k−1

i=1 ϕ(s
(i)
h , a

(i)
h )ϕ(s

(i)
h , a

(i)
h )⊤ and ρ > 0. For any V : S → R, let P̂ (k)

h V be the next-step
value estimation defined as: (P̂ (k)

h V )(s, a) := ϕ(s, a)⊤(Λ
(k)
h )−1

∑k−1
i=1 ϕ(s

(i)
h , a

(i)
h )V (s

(i)
h+1). We

construct the following optimistic and pessimistic value functions for reward and utility, respectively:
Definition 2 (Clipped value functions). Let Cr, Cu, C†, B† > 0. For each k, h, π, and κ ≥ 0, define

Q
π,r

(k),h[κ], Q
π,†
(k),h, Q

π,u

(k),h
: S ×A → R and V

π,r

(k),h[κ], V
π,†
(k),h, V

π,u
(k),h : S → R such that:

Q
π,r

(k),h[κ] := rh + clip{Crβ
(k)
h + P̂

(k)
h V

π,r

(k),h+1[κ], 0, Hκ − hκ}, V
π,r

(k),h[κ] := πh(Q
π,r

(k),h[κ]− κ lnπh) ,

Q
π,†
(k),h := B†β

(k)
h + clip{C†β

(k)
h + P̂

(k)
h V

π,†
(k),h+1, 0, B†(H − h)}, V

π,†
(k),h := πhQ

π,†
(k),h ,

Qπ,u

(k),h
:= uh + clip{−Cuβ

(k)
h + P̂

(k)
h V π,u

(k),h+1, 0, H − h}, and V π,u
(k),h

:= πhQ
π,u

(k),h
.

We set V
π,r

(k),H+1[κ] = V
π,†
(k),H+1 = V π,u

(k),H+1 = 0. For κ = 0, omit κ, e.g., Q
π,r

(k),h := Q
π,r

(k),h[0].
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Algorithm 2: Optimistic-Pessimistic Softmax Exploration for Linear CMDP

Input: Regr. coeff. ρ = 1, bonus scalers Cr = Õ(dH), Cu = Õ(dH), C† = Õ(d2H3ξ−1),
B† = Õ

(
dH2ξ−1

)
, entropy coeff. κ = Ω̃

(
ξ3H−4d−1K−0.5

)
, search length T = Õ(H),

λ-threshold Cλ = Õ
(
dH4ξ−2

)
, safe policy πsf , and iter. length K ∈ N

1 for k = 1, . . . ,K do
2 Let V π,u

(k),h be value function (Definition 2) and π(k),λ be softmax policy (Definition 3)
/* πsf trigger is implicitly tied to πsf confidence (Lemma 5) */

3 if V π(k),Cλ ,u
(k),1 (s1) < b then Set π(k) := πsf

4 else if V π(k),0,u
(k),1 (s1) ≥ b then Set π(k) := π(k),0

5 else /* Do bisection-search to find safe π(k),λ with small λ */

6 Set λ(k,1) := 0 and λ
(k,1)

:= Cλ. Let λ(k,t) := (λ(k,t) + λ
(k,t)

)/2
7 for t = 1, . . . , T do

8 if V π(k),λ(k,t)
,u

(k),1 (s1) ≥ b then λ(k,t+1) := λ(k,t) and λ
(k,t+1)

:= λ(k,t)

9 else λ(k,t+1) := λ(k,t) and λ
(k,t+1)

:= λ
(k,t)

10 Set π(k) := π(k),λ
(k,T )

11 Sample a trajectory (s
(k)
1 , a

(k)
1 , . . . , s

(k)
H , a

(k)
H ) by deploying π(k)

We will utilize Q
π,†
(k),h and V

π,†
(k),h to compensate for the pessimism, similar to the bandit proof in

(4).8 Entropy regularization in Q
π,r

(k),h[κ] is for the later analysis. The clipping operators are essential
to avoid the propagation of unreasonable value estimates [48].

Using these value functions, one might consider extending Opt-Pes to linear CMDPs by solving:

maxπ∈Π V
π,r

(k),1(s1) + V
π,†
(k),1(s1) such that V π,u

(k),1(s1) ≥ b . (7)

However, solving this (7) is challenging due to (i) the large state space in the linear CMDP setting
(|S| ≫ 1) and (ii) the clipping operators in Q

π,r

(k),h, Q
π,†
(k),h, and Qπ,u

(k),h
.

In tabular CMDPs with small |S|, Liu et al. [27] and Bura et al. [8] used linear programming (LP)
to solve similar optimistic-pessimistic optimization problems, achieving zero violation. However,
the computational cost of LP scales with |S|, making it impractical for linear CMDPs.

Another option is the Lagrangian method, which reformulates the constrained optimization as
a min-max optimization: minλ≥0 maxπ∈Π V

π,r

(k),1(s1) + V
π,†
(k),1(s1) + λ(V π,u

(k),1(s1) − b). When

the value functions are exact, i.e., V
π,†
(k),h + V

π,r

(k),h + V π,u
(k),h = V

π,r+B†β
(k)+λu

P,h , this min-max is
equivalent to (7), and the inner maximization reduces to a standard policy optimization [2]. Both
favorable properties arise due to the linearity of the value function in the occupancy measure (see,
e.g., Paternain et al. [34]). However, due to clipping, the value functions in Definition 2 may not
be representable via occupancy measures, making the Lagrangian approach inapplicable.

To address this large-scale optimization challenge, instead of directly solving (7), we realize
optimism and pessimism through a novel adaptation of the recent softmax policy technique for linear
CMDPs [18, 16], combined with the πsf deployment technique from Section 2.

3.2 Algorithm and Analysis

We summarize the proposed OPSE-LCMDP in Algorithm 2 and analyze it under the parameters in
its Input line. All formal theorems and proofs in this section are in Appendix E. A key component of
our algorithm is the composite softmax policy, which balances optimism and pessimism via λ ≥ 0:

8Increasing Cr and clip-threshold could offer similar compensation, but separated values simplify analysis.
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Definition 3 (Composite softmax policy). For λ ≥ 0, κ > 0, let π(k),λ ∈ Π be a policy such that

π
(k),λ
h (· | s) = SoftMax

(
1

κ

(
Q

π(k),λ,†
(k),h (s, ·) +Q

π(k),λ,r

(k),h [κ](s, ·) + λQπ(k),λ,u

(k),h
(s, ·)

))
.

π(k),λ can be computed iteratively in a backward manner for h = H, . . . , 1. For this π(k),λ, using the
Lipschitz continuity of SoftMax(·) (see Ghosh et al. [16]), the following confidence bounds hold:
Lemma 4 (Confidence bounds). For any (k, h), λ ∈ [0, Cλ], π ∈ {π(k),λ, πsf}, w.p. at least 1− δ,

V π,r
P,h ≤ V

π,r
(k),h ≤ V π,r+2Crβ

(k)

P,h , V
π,B†β

(k)

P,h ≤ V
π,†
(k),h ≤ V

π,(B†+2C†)β
(k)

P,h , V π,u−2Cuβ(k)

P,h ≤ V π,u
(k),h ≤ V π,u

P,h .

Using Lemma 4, analogous to Section 2.2.1, we next establish the zero-violation guarantee.

3.2.1 Zero-Violation and Logarithmic Number of πsf Deployments

In the softmax policy (Definition 3), λ balances optimism and pessimism: a small λ promotes
exploration, while a large λ prioritizes constraint satisfaction. Building on this, Algorithm 2 conducts
a bisection search to find the smallest feasible λ while ensuring the pessimistic constraint holds
(Line 4 to Line 10). If a large λ = Cλ fails to satisfy the constraint, the algorithm assumes no
feasible pessimistic policy exists and deploys πsf (Line 3). Since the softmax policy is only deployed
for λ satisfying V π(k),λ,u

(k),1 (s1) ≥ b, Lemma 4 implies the following zero-violation guarantees:

Corollary 2 (Zero-violation). W.p. at least 1− δ, Algorithm 2 satisfies π(k) ∈ Πsf for any k.

Next, we bound the number of πsf deployments to achieve sublinear regret. To this end, similar to the
bandit warm-up (Section 2), we relate πsf deployment to πsf uncertainty level and logarithmically
bound the number of uncertain iterations. The following Lemma 5 ensures that, if Algorithm 2 is
confident in πsf and runs with appropriate Cλ and κ, then πsf is not deployed.
Definition 4 (πsf unconfident iterations). Let U be the iterations when Algorithm 2 is unconfident in
πsf , i.e., U := {k ∈ J1,KK | V πsf ,β(k)

P,1 (s1) >
ξ

4Cu
}. Let U∁ := J1,KK \ U be its complement.

Lemma 5 (Implicit πsf deployment trigger). When Cλ ≥ 8H2
κ(B†+1)

ξ and κ ≤ ξ2

32H2
κ(B†+1) , then

w.p. at least 1− δ, it holds that V π(k),Cλ ,u
(k),1 (s1) ≥ b for all k ∈ U∁.

Essentially, the proof of Lemma 5 relies on the following monotonic property of the value function
for the softmax policy: if the value estimation is exact, increasing λ monotonically improves safety.
Lemma 6 (Softmax value monotonicity). For λ ≥ 0, let πλ be a softmax policy such that πλ

h(· |
s) = SoftMax( 1κ (Q

π,r
P,h[κ](s, ·) + λQπ,u

P,h(s, ·))). Then, V πλ,u
P,1 (s1) is monotonically increasing in λ.

While the true value function enjoys this monotonicity, the estimated value V π(k),λ,u
(k),1 (s1) may not,

as P̂ (k)
h V can take negative values even when V is positive. This complicates the proof of Lemma 5.

To address this, we leverage Lemma 4, which sandwiches the estimated values by some true values.
We prove Lemma 5 by showing that, for sufficiently large Cλ, any sandwiched value satisfies the
constraint under pessimism, implying that the estimated value also satisfies it. This novel result
enables bisection search to adjust λ, making OPSE-LCMDP more computationally efficient than
Ghosh et al. [18]. The detailed proofs of Lemmas 5 and 6 are provided in Appendix E.4.1.

Finally, the following theorem ensures that the number of πsf deployment scales logarithmic to K,
as in Theorem 1. The proof follows from extending the bandit’s proof of Theorem 1 to CMDPs.

Theorem 3 (Logarithmic |U| bound). It holds w.p. at least 1− δ that |U| ≤ O
(
d3H4ξ−2 lnKHδ−1

)
.

3.2.2 Regret Analysis

The remaining task is to ensure sublinear regret. By Theorem 3 and Lemma 4, the regret is
decomposed as:

Regret(K) ≤ Õ
(
d3H4

ξ2

)
+

∑
k∈U∁

V π(k),2Crβ
(k)

P,1 (s1)

1

+
∑
k∈U∁

(
V π⋆,r
P,1 (s1)− V

π(k),r
(k),1 [κ](s1)

)
2

+ κKH lnA ,
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where the last term arises from the entropy regularization (V π,r
P,1 (s1)[κ] − V π,r

P,1 (s1) ≤ κH lnA).
Using the elliptical potential lemma for linear MDPs [23], we obtain 1 ≤ Õ(CrH

√
dK).

We now bound 2 . Note that for any k ∈ U∁, due to Lemma 5, π(k) is the softmax policy by Line 10.
To bound 2 , following a similar approach to Lemma 3 in the bandit, we replace π⋆ with a mixture
policy that satisfies the pessimistic constraint. To this end, we utilize the following lemmas.
Definition 5 (Mixture policy). For α ∈ [0, 1], let πα be a mixture policy such that, for any h,
wπα

P,h = (1− α)wπsf

P,h + αwπ⋆

P,h. Such a πα is ensured to exists for any α ∈ [0, 1] [7].

Lemma 7 (Safe and optimistic mixture policy). Let α(k) := ξ

ξ+2V π⋆,2Cuβ(k)

P,1 (s1)
. If B† ≥ 4CuH

ξ , then

for any k ∈ U∁, it holds (i) V πα(k)
,u−2Cuβ

(k)

P,1 (s1) ≥ b and (ii) V πα(k)
,r+B†β

(k)

P,1 (s1) ≥ V π⋆,r
P,1 (s1).

We note that the mixture policy πα(k)

is introduced only for the regret analysis; it is not required in the

actual algorithm. Since λ
(k,T )

is chosen to satisfy V π(k),u
(k),1 (s1) < b and b ≤ V πα(k)

,u−2Cuβ
(k)

P,1 (s1)

holds by Lemma 7,

2 ≤
∑

k∈U∁

(
V

πα(k)
,B†β

(k)

P,1 (s1) + V πα(k)
,r

P,1 [κ](s1) + λ
(k,T )

V πα(k)
,u−2Cuβ(k)

P,1 (s1)

−V
π(k),†
(k),1 (s1)− V

π(k),r
(k),1 [κ](s1)− λ

(k,T )
V π(k),u

(k),1 (s1)
)

 3

+
∑

k∈U∁ V
π(k),†
(k),1 (s1) 4

+ Cλ

∑
k∈U∁

(
V π(k),λ(k,T )

,u
(k),1 (s1)− V π(k),λ(k,T )

,u
(k),1 (s1)

)
5

.

Using Lemma 4, similar to 1 , we have 4 ≤ Õ
(
(B† + C†)H

√
dK
)

. The term 5 is controlled

by the bisection search width (λ
(k,T ) − λ(k,T )) and the following sensitivity of V π(k),λ,u

(k),1 (s1) to λ.

Lemma 8. For any k and λ ∈ [0, Cλ], we have
∣∣∣V π(k),λ,u

(k),1 (s1)− V π(k),λ+ε,u
(k),1 (s1)

∣∣∣ ≤ O((KH)H
)
ε

Ghosh et al. [18] also derived a similar exponential bound (see their Appendix C). Due to the update
rule of the bisection search, setting the search iteration to T = Õ(H) ensures that 5 ≤ Õ(1).

For 3 , using a modification of the so-called value-difference lemma [40], we have

3 =
∑

k∈U∁ V
πα(k)

,f1

P,1 (s1)− V πα(k)
,f2

P,1 (s1)− λ
(k,T )

V πα(k)
,2Cuβ

(k)

P,1 (s1) , (8)

where f1, f2 : J1, HK× S ×A → R are functions such that, for any h,

f1
h=

(
πα(k)

h −π
(k)
h

)(
Q

π(k),†
(k),h +Q

π(k),r
(k),h [κ]+λ

(k)
Qπ(k),u

(k),h

)
−κπα(k)

h lnπα(k)

h +κπ
(k)
h lnπ

(k)
h

and f2
h=

(
Q

π(k),r
(k),h [κ]−rh−PhV

π(k),r
(k),h+1[κ]

)
+λ

(k,T )
(
uh+PhV

π(k),u
(k),h+1

−Qπ(k),u

(k),h

)
+

(
Q

π(k),†
(k),h −B†β

(k)−PhV
π(k),†
(k),h+1

)
.

Our use of the softmax policy with entropy regularization is crucial for bounding 3 . Since
the analytical maximizer of the regularized optimization maxπ∈P(A)

∑
a∈A π(a)(x(a)− κ lnπ(a))

is given by SoftMax
(
1
κx(·)

)
, it follows that f1 is non-positive, implying V πα(k)

,f1

P,1 (s1) ≤ 0.

Additionally, applying Lemma 4, we derive f2
h ≥ −λ

(k,T )
2Cuβ

(k)
h , which leads to−V πα(k)

,f2

P,1 (s1)−

λ
(k,T )

V πα(k)
,2Cuβ

(k)

P,1 (s1) ≤ 0. By substituting these bounds into Equation (8), we obtain 3 ≤ 0.

By combining all the results, Algorithm 2 achieves the following guarantees:

Theorem 4. If OPSE-LCMDP is run with the parameters listed in its Input line, w.p. at least 1− δ,

π(k) ∈ Πsf ∀k ∈ J1,KK and Regret(K) ≤ Õ(H2
√
d3K)

(i)
+ Õ(d3H4ξ−2)

(ii)
+ Õ(H4ξ−1

√
d5K)

(iii)
.

Notably, Theorem 4 is the first linear CMDP result achieving zero episode-wise constraint
violations and sublinear regret. We conclude this section by discussing the regret bound quality
and computational cost of OPSE-LCMDP.
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Remark 1 (Can we do better?). Without the constraint—i.e., removing (ii) and (iii)—our bound
matches the Õ(H2

√
d3K) regret of the fundamental LSVI-UCB algorithm [23]. The ξ−2 term in (ii)

is unavoidable [32]. The ξ−1 dependence in (iii) remains unresolved, yet appears in all the existing safe
RL literature [27, 8, 47, 36, 3, 32, 22]. These observations suggest that the bound is tight in ξ−1 and K.
As for d and H , the term (iii) introduces an extra dH2 factor over (i). Similar deterioration has been
observed in tabular CMDPs [27, 42] and partially mitigated via Bernstein-type bonus analysis [47].
While improvement may be possible, it is unclear whether our

√
d5H8 dependence is overly loose

when compared with existing CMDP regret bounds (e.g.,
√
d3H4 by Ghosh et al. [18]), since none

of the existing results achieve episode-wise safe exploration. In general, regret or sample complexity
bounds under different safety requirements are not directly comparable, even if the problem settings
appear similar. For example, Vaswani et al. [42] shows that the sample complexity lower bound for
tabular CMDPs exhibits a worse dependence on the horizon under a strict safe policy requirement than
when small violations are allowed. Establishing a formal regret lower bound for our setting would
be necessary to assess the tightness of our result, but this is beyond the scope of the current paper.

Remark 2 (Computational cost). Algorithm 2 requires up to T value evaluations (Definition 2) and
policy computation (Definition 3). Using the bisection search, we bound T = Õ(H), reducing the
computational cost per-iteration to Õ(H × [value & policy comp.]). As this cost scales polynomially
with A,H, and d [28], OPSE-LCMDP runs in polynomial time—an improvement over recent Ghosh
et al. [18], which achieves Õ(

√
K) violation regret but incurs an exponential KH cost.

4 Conclusion

This paper proposed OPSE-LCMDP, the first RL algorithm achieving both sublinear regret and
episode-wise constraint satisfaction in linear CMDPs (Theorem 4). Our approach builds on optimistic-
pessimistic exploration with two key innovations: (i) a novel deployment rule for πsf and (ii) a
softmax-based approach for efficiently implementing optimistic-pessimistic policies in linear CMDPs.

Experiments. We numerically evaluate OPSE-LCMDP on several linear CMDP environments to
support our theoretical results. We compare OPSE-LCMDP with the prior state-of-the-art linear
CMDP algorithm of Ghosh et al. [18] and the tabular algorithm called DOPE [8]. Across all
environments, OPSE-LCMDP achieves sublinear regret with zero constraint violation, while Ghosh
et al. [18] shows positive violation regret. These results empirically validate Theorem 4. While
DOPE also achieves zero violation, its use is limited to the tabular settings where S is small. This
highlights the computational tractability of our OPSE-LCMDP in large S, which supports Remark 2.
All the results and details are deferred to Appendix F.

Limitation and future work. OPSE-LCMDP achieves computational efficiency by the bisection
search over λ ∈ [0, Cλ], which works in the single-constraint setting thanks to the monotonicity in
Lemma 6. However, extending our method to the multi-constraint setting is non-trivial, as λ becomes
a vector, requiring a vectorized version of the monotonicity lemma. Nonetheless, all theoretical results
in Table 1 are also limited to single-constraint settings, meaning our work still advances the state of the
art in safety. An efficient and safe algorithm for multi-constraint settings remains open for future work.

Another future direction is to extend the analysis to adversarial initial states s1. This extension is non-
trivial, as our core techniques rely on the fixed-state assumption. For example, we control the number
of safe policy deployments by evaluating the bonus-return function V πsf ,β(k)

P,1 (s1) (Definition 4), which
explicitly depends on s1. The bound on the number of πsf deployments (Theorem 3) and the existence
of optimistic–pessimistic policies (Lemma 7) also depend on this initial state. Extending these anal-
yses to handle adversarial s1 would entail non-trivial technical challenges and is left for future work.
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10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is a primarily theoretical study on the safe reinforcement learning.
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• If the authors answer NA or No, they should explain why their work has no societal
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to particular applications, let alone deployments. However, if there is a direct path to
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No model or data is released.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use any existing code assets, except for standard Python libraries
(e.g., NumPy).
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
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Answer: [NA]
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Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
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tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core of this research is unrelated to LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A List of Symbols

The next list describes several symbols used within this paper.

Mathematical Notations
P(S) Set of probability distributions over a set S
Ja, bK Set of integers defined by {a, . . . , b}
clip{x, a, b} Clipping function which returns x′ with x′

i = min{max{xi, a}, b} for each i

0, 1 Vectors such that 0 := (0, . . . , 0)⊤ and 1 := (1, . . . , 1)⊤

∥x∥A For a positive definite matrix A ∈ Rd×d and x ∈ Rd, we denote ∥x∥A =
√
x⊤Ax

an = O (bn) There exist constants C > 0 and N ∈ N such that an ≤ Cbn for all n ≥ N

Õ(·) Hide the polylogarithmic factors from O(·)
SoftMax(x) Softmax distribution satisfying SoftMax(x)i = exp(xi)/(

∑
i exp(xi))

dist∞ Distance metric for two functions Q,Q′ : S ×A → R or V, V ′ : S → R (see Definition 7)

dist1 Distance metric for two functions π, π′ : S →P(A) (see Definition 7)

Constrained Bandit
A ⊂ Rd Set of actions

K Round length of the bandit problem

r(k), u(k) Reward and utility at k-th round

θr,θu ∈ Rd Unknown vectors for reward and utility

εr, εu R-sub-Gaussian random noises

rπ, uπ gπ = Ea∼π[⟨θg,a⟩] for both g ∈ {r, u}
Πsf Set of safe policies {π | uπ ≥ b}
πsf Safe policy

ξ > 0 Safety of πsf such that uπsf − b ≥ ξ

Λ(k) Gram matrix defined by Λ(k) := ρI+
∑k−1

i=1 a(i)(a(i))⊤

θ̂
(k)

r , θ̂
(k)

u Estimates of θr and θu

β
(k)
π Bonus function

Cr, Cu Bonus scalers for reward and utility, respectively

U Set of iterations when Algorithm 1 is unconfident in πsf (see Definition 1)

Constrained MDP
K Number of episodes of the CMDP problem

H Horizon

S,A State space and action spaces

P Transition kernel

r, u Reward and utility functions

s1 Initial state

V π,g
P,h [κ] Regularized state value function for a reward function g with an entropy coefficient κ

Qπ,g
P,h[κ] Regularized action value function for a reward function g with an entropy coefficient κ

hκ Shorthand of h(1 + κ lnA)

wπ
P,h Occupancy measure of π in P at step h
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ϕ : S ×A → Rd Feature map of the linear CMDP (see Assumption 2)
µh d-signed measures specifying the transition probabilities (see Assumption 2)
θr
h,θ

u
r ∈ Rd Known vectors specifying the reward and utilitiy functions (see Assumption 2)

Πsf Set of safe policies {π | V π,u
P,1 (s1) ≥ b}

πsf Safe policy
ξ > 0 Safety of πsf such that V π,u

P,1 (π
sf)− b ≥ ξ

Λ
(k)
h Gram matrix defined by Λ

(k)
h := ρI+

∑k−1
i=1 ϕ(s

(i)
h , a

(i)
h )ϕ(s

(i)
h , a

(i)
h )⊤

P̂
(k)
h V Next value estimation: (P̂ (k)

h V )(s, a) := ϕ(s, a)⊤(Λ
(k)
h )−1

∑k−1
i=1 ϕ(s

(i)
h , a

(i)
h )V (s

(i)
h+1)

Q
π,r

(k),h[κ], Q
π,u

(k),h
, Q

π,†
(k),h Clipped value functions defined in Definition 2

Cr, Cu, C†, B† Bonus scalers used in Definition 2
Nε ε-cover of a certain set
U Set of iterations when Algorithm 2 is unconfident in πsf (see Definition 4)

π
(k),λ
h Softmax policy with a parameter λ (see Definition 3)

λ Parameter to balance optimism and pessimism of π(k),λ
h (see Definition 3)

Cλ Maximum value of λ

[λ(k,t), λ
(k,t)

] Search space of the bisection search at iteration t in episode k (see Algorithm 2)
T Iteration length of the bisection search (see Algorithm 2)
Qr,Qu,Q† Function classes for Q-functions defined in Definition 10
Q◦ Function class for the composite of Q-functions defined in Definition 11

Π̃ Class for softmax policies defined in Definition 12
Vr,Vu,V† Function classes for V -functions defined in Definition 13

δπ,r(k) , δ
π,u
(k) , δ

π,†
(k) Discrepancies between the estimated and true Q-functions (see Definition 14)

∆
(k)
r ,∆

(k)
u ,∆

(k)
† Function classes for δπ,r(k) , δ

π,u
(k) , δ

π,†
(k) (see Definition 14)
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B Related Work

B.1 Related Algorithms

Building on the seminal work of Efroni et al. [13], numerous safe RL algorithms for CMDPs have
been developed, broadly categorized into linear programming (LP) approaches and Lagrangian-based
approaches.

Linear programming. LP approaches formulate CMDPs as linear optimization problems [2],
solving them using an estimated transition kernel. Efroni et al. [13] introduced a basic sublinear
regret algorithm, while HasanzadeZonuzy et al. [20] provided (ε, δ)-PAC guarantees, ensuring the
algorithm outputs a near-optimal policy. However, these methods permit constraint violations during
exploration, making them unsuitable for safety-critical applications. Liu et al. [27] and Bura et al.
[8] developed LP-based algorithms that achieve sublinear regret while maintaining episode-wise
zero-violation guarantees by incorporating optimistic-pessimistic estimation into the LP formulation.

LP-based approaches in tabular settings, however, suffer from computational costs that scale with
the size of the state space, making them impractical for linear CMDPs. While several studies propose
LP algorithms for linear MDPs [31, 5, 30, 25, 14], these methods either use occupancy measures
as decision variables—which can be exponentially large for large state spaces—or require a set of
feature vectors that sufficiently cover the state space, which may not be feasible in our exploration
settings. Moreover, as described in Section 3.1, the estimated value functions in linear CMDPs with
exploration require clipping operators, further complicating the use of occupancy-measure-based
approaches like LP methods in our setting.

Lagrangian approach. Lagrangian approaches reformulate the constrained optimization
maxπ{f(π) | h(π) ≥ 0} as a min-max optimization minλ≥0 maxπ{f(π) + λh(π)}, and simultane-
ously optimize both π and λ. When an algorithm gradually updates π and then adjusts λ incrementally,
it is referred to as a primal-dual (PD) algorithm [11]. In contrast, if λ is updated only after fully
optimizing π in the inner maximization, it is known as a dual approach [46]. Since the inner
maximization reduces to standard policy optimization, Lagrangian methods integrate naturally with
scalable methods such as policy gradient and value iteration.

For the tabular settings, Wei et al. [44], Müller et al. [29] develop model-free primal-dual algorithms
with sublinear regret, while Wei et al. [45] extends this approach to the average-reward setting. Zeng
et al. [49], Kitamura et al. [24] propose (ε, δ)-PAC primal-dual algorithms, and Vaswani et al. [42]
achieved the PAC guarantee via dual approach.

Beyond tabular settings, Ding et al. [10] propose PD algorithms with linear function approximation,
achieving sublinear regret guarantees. Ghosh et al. [17] extend this to the average-reward linear
CMDPs. Ghosh et al. [16] take a dual approach, also attaining sublinear regret in the finite-horizon
settings.

These PD and dual algorithms, however, do not ensure episode-wise zero violation. Intuitively, the
key issue lies in their λ-adjustment strategy, which updates λ only incrementally. For example, the
basic PD and dual algorithms by Efroni et al. [13] updates λ using λ(k+1) ← λ(k) + α · [violation],
where α is a small learning rate. Since λ controls constraint satisfaction, if the current policy fails to
satisfy constraints adequately, λ should be increased sufficiently before the next policy deployment.

Following this principle, Ghosh et al. [18] propose a dual approach that searches for an appropriate
λ within each episode, leading to a tighter violation regret guarantee than Ghosh et al. [16]. However,
due to the lack of pessimistic constraint estimation, their method does not ensure episode-wise safety
and allows constraint violations. Like Ghosh et al. [18], our OPSE-LCMDP searches for the best λ in
each episode. However, unlike their approach, OPSE-LCMDP controls λ with pessimism, ensuring
zero violation, and guarantees the existence of a feasible λ by deploying a sufficient number of πsf .

B.2 Related Safety Types

Instantaneous safety. Unlike our episode-wise safety, instantaneous safety defines exploration
as safe if it satisfies uh(s

(k)
h , a

(k)
h ) ≥ b for all h and k [32, 33, 22, 41, 4]. In other words, states and

actions must belong to predefined safe sets, Ssf ×Asf . Instantaneous safety is a special case of the
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episode-wise constraint. Indeed, by defining uh(s, a) = −I{(s, a) /∈ Ssf ×Asf} and setting b = 0,
an episode-wise safe algorithm safeties the instantaneous constraint for all h and k.

Cancel Safety. Cancel safety is another common safety measure in CMDP literature Wei et al.
[44], Ghosh et al. [16]. It allows a strict constraint satisfaction in one episode to compensate for a
violation in another. Formally, cancel safety ensures that the following cumulative cancel violation
regret remains non-positive:

Viocancel(K) :=

K∑
k=1

b− V π(k),u
P,1 (s1) .

Note that the “hard” violation regret Viohard(K) :=
∑K

k=1 max
{
b− V π(k),u

P,1 (s1), 0
}

which con-
siders violations in each individual episode [18, 13, 29], always upper-bounds the cancel regret.
This means cancel regret is a weaker measure. Since episode-wise safety ensures Viohard = 0,
our OPSE-LCMDP always satisfies cancel safety, but cancel safety does not necessarily guarantee
episode-wise safety.

C Useful Lemmas

Definition 6. For a set of positive values {an}Nn=1, we write x = polylog (a1, . . . , aN ) if there
exists an absolute constants {bn}Nn=0 > 0 and {cn}Nn=1 > 0 such that x ≤ b0 + b1(ln a1)

c1 + · · ·+
bN (ln aN )

cN .

Definition 7 (Distance metrics). Let dist∞ be the distance metric such that, for two functions Q,Q′ :
S × A → R, dist∞(Q,Q′) = sup(s,a)∈S×A|Q(s, a)−Q′(s, a)|. Similarly, for two functions
V, V ′ : S → R, dist∞(V, V ′) = sups∈S |V (s)− V ′(s)|. Finally, dist1 denotes the distance metric
such that, for two functions π, π′ : S →P(A), dist1(π, π′) = sups∈S∥π(· | s)− π′(· | s)∥1.

Definition 8 (ε-cover). Let Θ =
{
θ ∈ Rd : ∥θ∥2 ≤ R

}
be a ball with radius R. Fix an ε. An ε-net

Mε ⊂ Θ is a finite set such that for any θ ∈ Θ, there exists a θ′ ∈Mε such that dist
(
θ,θ′) ≤ ε for

some distance metric dist(·, ·). The smallest ε-net is called ε-cover and denoted as Nε. The size of
the ε-net is called the ε-covering number.

Lemma 9 (Lemma 5.2 in Vershynin [43]). The ε-covering number of the ball
Θ =

{
θ ∈ Rd : ∥θ∥2 ≤ R

}
with the distance metric ∥·∥2 is upper bounded by (1 + 2R/ε)d.

Lemma 10 (Danskin’s Theorem [6]). Let f : Rn×Z → R be a continuous function where Z ∈ Rm

is a compact set and g(x) := maxz∈Z f(x, z).
Let Z0(x) := {z̄ | f(x, z̄) = maxz∈Z f(x, z)} be the maximizing points of f(x, z). Assume that
f(x, z) is convex in x for every z ∈ Z . Then, g(x) is convex. Furthermore, if Z0(x) consists of a
single element z̄, i.e., Z0(x) = {z̄}, it holds that ∂g(x)

∂x = ∂f(x,z̄)
∂x .

Lemma 11 (Lemma D.4 in Rosenberg et al. [37]). Let
(
X(k)

)∞
k=1

be a sequence of random variables
with expectation adapted to the filtration

(
F (k)

)∞
k=0

. Suppose that 0 ≤ X(k) ≤ B almost surely.
Then, with probability at least 1− δ, the following holds for all k ≥ 1 simultaneously:

k∑
i=1

E
[
X(i) | F (i−1)

]
≤ 2

k∑
i=1

X(i) + 4B ln
2k

δ

Lemma 12 (Lemma 11 in Abbasi-Yadkori et al. [1]). Let
{
x(k)

}K
k=1

be a sequence in Rd. Let

Λ(k) = ρI+
∑k−1

i=1 x(i)
(
x(i)
)⊤

. If
∥∥x(k)

∥∥
2
≤ B for all k,

K∑
k=1

min

{
1,
∥∥∥x(k)

∥∥∥2
(Λ(k))

−1

}
≤ 2d ln

(
ρd+KB2

ρd

)
.
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Additionally, if
∥∥x(k)

∥∥
2
≤ 1 for all k and ρ ≥ 19, we have

K∑
k=1

∥∥∥x(k)
∥∥∥2
(Λ(k))

−1
≤ 2d ln

(
ρd+K

ρd

)
.

Lemma 13 (Theorem 2 in Abbasi-Yadkori et al. [1]). Let
{
F (k)

}∞
k=0

be a filtration. Let{
ε(k)

}∞
k=1

be a real-valued stochastic process such that ε(k) is F (k)-measurable and ε(k) is con-

ditionally R-sub-Gaussian for some R ≥ 0. Let
{
ϕ(k)

}∞

k=1
be an Rd-valued stochastic pro-

cess such that ϕ(k) is F (k−1) measurable and ∥ϕ(k)∥2 ≤ L for all k. For any k ≥ 0, define

Yk := θ⊤ϕ(k) + εt for some θ ∈ Rd such that ∥θ∥2 ≤ B, Λ(k) := ρI +
∑k

i=1 ϕ
(i)
(
ϕ(i)

)⊤
, and

θ̂
(k)

:=
(
Λ(k)

)−1∑k
i=1 ϕ

(i)Y (i). Then for any δ > 0, with probability at least 1− δ, for all k ≥ 0,
we have ∥∥∥∥θ̂(k)

− θ

∥∥∥∥
Λ(k)

≤ ρ1/2B +R

√
d ln

(
1 + kL2/ρ

δ

)
.

Lemma 14 (Lemma D.4 in Jin et al. [23]). Let
{
s(k)

}∞
k=1

be a stochastic process on state space S
with corresponding filtration

{
F (k)

}∞
k=0

. Let
{
ϕ(k)

}∞

k=0
be an Rd-valued stochastic process where

ϕ(k) is F (k−1)-measurable and
∥∥∥ϕ(k)

∥∥∥ ≤ 1. Let Λ(k) = ρI+
∑k

k=1 ϕ
(k)
(
ϕ(k)

)⊤
and let V be a

class of real-valued function over the state space S such that sups |V (s)| ≤ B for a B > 0. Let NV
ε

be the ε-cover of V with respect to the distance dist∞. Then for any δ > 0, with probability at least
1− δ, for all K ≥ 0, and any V ∈ V , we have:∥∥∥∥∥

K∑
k=1

ϕ(k)
(
V
(
s(k)

)
− E

[
V
(
s(k)

)
| F (k−1)

])∥∥∥∥∥
2

(Λ(k))
−1

≤ 4B2

(
d

2
ln

(
K + ρ

ρ

)
+ ln

|NV
ε |
δ

)
+
8K2ε2

ρ
.

Lemma 15 (Lemma A.1 in Shalev-Shwartz and Ben-David [39]). Let a > 0. Then, x ≥ 2a ln(a)
yields x ≥ a ln(x). It follows that a necessary condition for the inequality x ≤ a ln(x) to hold is that
x ≤ 2a ln(a).

Lemma 16. For any positive real numbers x1, x2, . . . , xn,
∑n

i=1

√
xi ≤

√
n
√∑n

i=1 xi.

Proof. Due to the Cauchy-Schwarz inequality, we have
(∑n

i=1

√
xi

n

)2
≤

∑n
i=1 xi

n . Taking the square
root of the inequality proves the claim.

Lemma 17 (Lemma 1 in Shani et al. [40]). Let π̃, π be two policies, P be a transition kernel, and g

be a reward function. Let Ṽ π
h : S → R be a function such that

Ṽ π
h (s) =

∑
a∈A

π̃h(a | s)Q̃h(s, a) ,

for all h ∈ J1, HK with some function Q̃h : J1, HK×S ×A → R. Then, for any (h, s) ∈ J1, HK×S

Ṽ π̃
h (s)− V π,g

P,h (s) = V π,g1

P,h (s) + V π,g2

P,h (s) ,

where g1 and g2 are reward functions such that

g1h(s, a) =
∑
a∈A

(π̃h(a | s)− πh(a | s))Q̃h(s, a) and g2h(s, a) = Q̃h (s, a)− gh (s, a)−
(
PhṼ

π̃
h+1

)
(s, a) .

9The second argument follows since ∥x∥2Λ−1 ≤ σmax

(
Λ−1

)
∥x∥2 ≤ ρ−1 ≤ 1, where σmax(Λ

−1) denotes
the maximum eigen value of Λ−1.
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Lemma 18 (Regularized value difference lemma). Let κ ≥ 0 be a non-negative value, π, π′ be two
policies, P be a transition kernel, and g be a reward function. Let Ṽ π̃

h [κ] : S → R be a function such
that

Ṽ π̃
h [κ](s) =

∑
a∈A

π̃h(a | s)
(
Q̃h(s, a)− κ ln π̃h(a | s)

)
,

for all h ∈ J1, HK with some function Q̃h : J1, HK×S ×A → R. Then, for any (h, s) ∈ J1, HK×S

Ṽ π̃
h [κ](s)− V π,g

P,h [κ](s) = V π,f1

P,h (s) + V π,f2

P,h (s) ,

where f1 and f2 are reward functions such that

f1
h(s, a) =

∑
a∈A

π̃h(a | s)
(
Q̃h(s, a)− κ ln π̃h(a | s)

)
− πh(a | s)

(
Q̃h(s, a)− κ lnπh(a | s)

)
and f2

h(s, a) = Q̃h(s, a)− gh (s, a)−
(
PhṼ

π̃
h+1[κ]

)
(s, a) .

Proof. Since

Ṽ π̃
h [κ](s) =

∑
a∈A

π̃h(a | s)
(
Q̃h(s, a)− κ ln π̃h(a | s)

)
and V π,g

P,h [κ](s) = V π,g−κ lnπ
P,h (s) ,

using Lemma 17, we have

Ṽ π̃
1 [κ](s1)− V π,g

P,1 [κ](s1) = V π,g1

P,1 (s1) + V π,g2

P,1 (s1) ,

where g1 and g2 are reward functions such that

g1h(s, a) =
∑
a∈A

(π̃h(a | s)− πh(a | s))
(
Q̃h(s, a)− κ ln π̃h(a | s)

)
=
∑
a∈A

π̃h(a | s)
(
Q̃h(s, a)− κ ln π̃h(a | s)

)
− πh(a | s)

(
Q̃h(s, a)− κ lnπh(a | s)

)
+
∑
a∈A

πh(a | s)(κ ln π̃h(a | s)− κ lnπh(a | s))︸ ︷︷ ︸
(a)

and g2h(s, a) = Q̃h(s, a)− gh (s, a)−
(
PhṼ

π̃
h+1[κ]

)
(s, a)−κ ln π̃h(a | s) + κ lnπh(a | s)︸ ︷︷ ︸

(b)

.

The claim holds since the terms (a) and (b) are canceled out in V π,g1

P,h (s) + V π,g2

P,h (s).

Lemma 19. Let Q, Q̃ : A → R be two functions. Let κ > 0 be a positive constant. Define two
softmax distributions π, π̃ ∈ P(A) such that π = SoftMax

(
Q
κ

)
and π̃ = SoftMax

(
Q̃
κ

)
. Then,

∥π − π̃∥1 ≤
8
κ

∥∥∥Q− Q̃
∥∥∥
∞

.

Proof. It holds that
1

2
∥π − π̃∥1

(a)

≤ 2
∑
a∈A

π(a)|lnπ(a)− ln π̃(a)| ≤ 2max
a
|lnπ(a)− ln π̃(a)|

= 2max
a

∣∣∣∣∣ 1κQ(a)− 1

κ
Q̃(a)− ln

∑
a

exp

(
1

κ
Q(a)

)
+ ln

∑
a

exp

(
1

κ
Q̃(a)

)∣∣∣∣∣
≤ 2max

a

∣∣∣∣ 1κQ(a)− 1

κ
Q̃(a)

∣∣∣∣+ 2

∣∣∣∣∣ln∑
a

exp

(
1

κ
Q(a)

)
− ln

∑
a

exp

(
1

κ
Q̃(a)

)∣∣∣∣∣
(b)

≤ 4max
a

∣∣∣∣ 1κQ(a)− 1

κ
Q̃(a)

∣∣∣∣ ,
where (a) uses Theorem 17 in Sason and Verdú [38] and (b) uses the fact that ln

∑
i exp(xi) −

ln
∑

i exp(yi) ≤ maxi(xi − yi) (see, e.g., Theorem 1 in Dutta and Furuichi [12]). This concludes
the proof.
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D Regret Analysis (Linear Constrained Bandit)

Lemma 20 (Good event 1). Suppose Algorithm 1 is run with ρ = 1. Let δ ∈ (0, 1]. Define E1 as the
event where the following inequality holds:

K∑
k=1

Ea∼π(k)∥a∥2(Λ(k))
−1 ≤ 2

K∑
k=1

∥∥∥a(k)∥∥∥2
(Λ(k))

−1
+ 4 ln

2K

δ
.

Then, P(E1) ≥ 1− δ.

Proof. The claim immediately follows from Lemma 11 with ∥a∥2 ≤ 1 and ρ = 1.

Lemma 21 (Good event 2). Define E2 as the event where the following two hold: For any π ∈ Π,
k ∈ J1,KK, ∣∣∣r̂(k)π − rπ

∣∣∣ ≤ Cuβ
(k)
π and

∣∣∣û(k)
π − uπ

∣∣∣ ≤ Cuβ
(k)
π .

Then, if Algorithm 1 is run with ρ = 1 and the value of Cu ≥ B + R
√

d ln 4K
δ , it holds that

P(E2) ≥ 1− δ.

Proof. Using Lemma 13 with ρ = 1, with probability at least 1− δ, for any k ∈ J1,KK and for both
g ∈ {r, u}, we have∣∣∣∣a⊤(θ̂(k)

g − θg

)∣∣∣∣ ≤ ∥∥∥∥θ̂(k)

g − θg

∥∥∥∥
Λ(k)

∥a∥(Λ(k))
−1

(a)

≤

(
B +R

√
d ln

2(1 +K)

δ

)
∥a∥(Λ(k))

−1

≤

(
B +R

√
d ln

4K

δ

)
∥a∥(Λ(k))

−1 ,

where (a) uses Lemma 13. The claim holds by
∣∣∣ĝ(k)π − gπ

∣∣∣ ≤ Ea∼π

∣∣∣∣a⊤(θ̂(k)

g − θg

)∣∣∣∣ for

g ∈ {r, u}.

Lemma 22 (Cumulative bonus bound). Suppose E1 holds. Then,
∑K

k=1 β
(k)

π(k) ≤
√
K
√
2d ln

(
1 + K

d

)
+ 4 ln 2K

δ .

Proof. It holds that

K∑
k=1

β
(k)

π(k)

(a)

≤

√√√√K

K∑
k=1

(
Ea∼π(k)∥a∥(Λ(k))

−1

)2 (b)

≤

√√√√K

K∑
k=1

Ea∼π(k)∥a∥2(Λ(k))
−1

(c)

≤
√
K

√√√√2

K∑
k=1

∥∥a(k)∥∥2(Λ(k))
−1 + 4 ln

2K

δ

(d)

≤
√
K

√
2d ln

(
1 +

K

d

)
+ 4 ln

2K

δ
,

where (a) and (b) use Cauchy–Schwarz inequality, (c) is due to E1, and (d) uses Lemma 12.

Lemma 23 (Restatement of Lemma 1). Suppose E2 holds. Then, for any π ∈ Π and k ∈ J1,KK,

rπ + 2Cuβ
(k)
π ≥ r̂(k)π + Cuβ

(k)
π ≥ rπ and uπ ≥ û(k)

π − Cuβ
(k)
π ≥ uπ − 2Cuβ

(k)
π .

Proof. We have

uπ ≥ û(k)
π −

∣∣∣û(k)
π − uπ

∣∣∣ ≥ û(k)
π − Cuβ

(k)
π ≥ û(k)

π −
∣∣∣û(k)

π − uπ

∣∣∣− Cuβ
(k)
π ≥ uπ − 2Cuβ

(k)
π .

Similarly,

rπ + 2Cuβ
(k)
π ≥ r̂(k)π +

∣∣∣r̂(k)π − rπ

∣∣∣+ Cuβ
(k)
π ≥ r̂(k)π + Cuβ

(k)
π ≥ r̂(k)π +

∣∣∣r̂(k)π − rπ

∣∣∣ ≥ rπ .
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Lemma 24 (Restatement of Lemma 2). Consider k ∈ U∁. For any α ∈
[
0,

ξ−2Cuβ
(k)

πsf

ξ−2Cuβ
(k)

πsf+2Cuβ
(k)

π⋆

]
, a

mixture policy πα := (1− α)πsf + απ⋆ satisfies uπα
− 2Cuβ

(k)
πα ≥ b.

Proof. For any k and α ∈ [0, 1], we have

uπα
− b− 2Cuβ

(k)
πα

= (1− α) (uπsf − b)︸ ︷︷ ︸
≥ξ

+α (uπ⋆ − b)︸ ︷︷ ︸
≥0

−2Cu(1− α)β
(k)

πsf − 2Cuαβ
(k)
π⋆

≥ (1− α)
(
ξ − 2Cuβ

(k)

πsf

)
− 2αCuβ

(k)
π⋆ .

To make (1− α)
(
ξ − 2Cuβ

(k)

πsf

)
− 2αCuβ

(k)
π⋆ ≥ 0, a sufficient condition is

α ≤
ξ − 2Cuβ

(k)

πsf

ξ − 2Cuβ
(k)

πsf + 2Cuβ
(k)
π⋆

, (9)

where the right hand side is non-negative since k ∈ U∁. This concludes the proof.

Lemma 25 (Restatement of Theorem 1). Suppose Algorithm 1 is run with ρ = 1. Assume the event
E1 holds. Then, |U| ≤ 32dC2

uξ
−2 ln

(
2Kδ−1

)
.

Proof. We have
K∑

k=1

Ea∼π(k)∥a∥2(Λ(k))
−1 ≥

∑
k∈U

Ea∼π(k)∥a∥2(Λ(k))
−1

(a)

≥
∑
k∈U

(
Ea∼π(k)∥a∥(Λ(k))

−1

)2
︸ ︷︷ ︸
=
(
β
(k)

πsf

)2
since π(k) = πsf

(b)

≥ |U| ξ
2

4C2
u

,

where (a) is due to Jensen’s inequality, and (b) is due to Definition 1. Due to E1, we have
K∑

k=1

Ea∼π(k)∥a∥2(Λ(k))
−1 ≤ 2

K∑
k=1

∥∥∥a(k)∥∥∥2
(Λ(k))

−1
+ 4 ln

2K

δ
.

Using Lemma 12 and since ∥a∥2 ≤ 1 and ρ = 1, the first term is bounded by: ≤ 2d ln
(
1 + K

d

)
.

Thus,
ξ2

4C2
u

|U| ≤ 2d ln

(
1 +

K

d

)
︸ ︷︷ ︸

≤2K

+4 ln
2K

δ
≤ 8d ln

(
2K

δ

)
.

The claim holds by rearranging the above inequality.

Lemma 26 (Restatement of Lemma 3). For any k ∈ U∁, πα(k) satisfies rπ
α(k)

+ 2BCu

ξ β
(k)
π
α(k)
≥ rπ⋆ .

Proof. Let α(k) :=
ξ−2Cuβ

(k)

πsf

ξ−2Cuβ
(k)

πsf+2Cuβ
(k)

π⋆

and C := 2BCu

ξ . Note that α(k)

1−α(k) =
ξ−2Cuβ

(k)

πsf

2Cuβ
(k)

π⋆

. We have,

rπ
α(k)

+ Cβ(k)
π
α(k)

= (1− α(k))rπsf + α(k)rπ⋆ + C(1− α(k))β
(k)

πsf + Cα(k)β
(k)
π⋆

≥ α(k)rπ⋆ + C
((

1− α(k)
)
β
(k)

πsf + α(k)β
(k)
π⋆

)
.

A sufficient condition to have α(k)rπ⋆ + C
((

1− α(k)
)
β
(k)

πsf + α(k)β
(k)
π⋆

)
≥ rπ⋆ is, since rπ⋆ =

Ea∼π⋆ [⟨θ,a⟩] ≤ ∥θ∥2Ea∼π⋆∥a∥2 ≤ B,

B ≤ C

(
β
(k)

πsf +
α(k)

1− α(k)
β
(k)
π⋆

)
= C

(
β
(k)

πsf +
1

2Cu
ξ − β

(k)

πsf

)
≤ C

2Cu
ξ .

Therefore, when C ≥ 2BCu

ξ , we have rπ
α(k)

+ Cβ
(k)
π
α(k)
≥ rπ⋆ .
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Theorem 5 (Restatement of Theorem 2). Suppose that Algorithm 1 is run with ρ = 1,

Cu = B +R

√
d ln

4K

δ
, and Cr = Cu

(
1 +

2B

ξ

)
.

Then, with probability at least 1− 2δ, the following two hold simultaneously:

• π(k) ∈ Πsf for any k ∈ [K]

• Regret(K) ≤ 64dBC2
uξ

−2 ln
(
2Kδ−1

)
+ 4Cr

√
K
√
2d ln

(
1 + K

d

)
+ 4 ln 2K

δ

Proof. Suppose the good events E1 ∩ E2 hold. Recall that π(k) is either πsf in k ∈ U or the solution
to Opt-Pes in k ∈ U∁. Since Opt-Pes is ensured to have feasible solutions by Lemma 24 for k ∈ U∁,
the first claim follows immediately.

We will prove the second claim. It holds that

Regret(K) =

K∑
k=1

rπ⋆ − rπ(k) =
∑
k∈U

rπ⋆ − rπ(k)︸ ︷︷ ︸
π(k) = πsf

+
∑
k/∈U

rπ⋆ − rπ(k)︸ ︷︷ ︸
π(k) is computed by Opt-Pes

≤ 2B|U|+
∑
k/∈U

rπ⋆ − rπ(k)

(a)

≤ 64dBC2
uξ

−2 ln
(
2Kδ−1

)
+
∑
k/∈U

(
rπ⋆ − r̂

(k)

π(k) − Crβ
(k)

π(k)

)
︸ ︷︷ ︸

1

+
∑
k/∈U

(
r̂
(k)

π(k) + Crβ
(k)

π(k) − rπ(k)

)
︸ ︷︷ ︸

2

,

where (a) uses the bound of |U| (Lemma 25). Using Lemma 23, the term 2 is bounded by
2 ≤

∑
k/∈U 3Crβ

(k)

π(k) . On the other hand, 1 is bounded by

1
(a)

≤
∑
k/∈U

rπ
α(k)

+
2BCu

ξ
β(k)
π
α(k)
− r̂

(k)

π(k) − Crβ
(k)

π(k)

(b)

≤
∑
k/∈U

r̂(k)π
α(k)

+ Cuβ
(k)
π
α(k)

+
2BCu

ξ
β(k)
π
α(k)
− r̂

(k)

π(k) − Crβ
(k)

π(k)

(c)

≤ 0 ,

where (a) uses the optimism of mixture policy (Lemma 26), (b) uses Lemma 23, and (c) uses
Cr = (1 + 2BCuξ

−1)Cu and since πα(k) is a feasible solution to Opt-Pes due to Lemma 24.

Finally, by combining all the results, we have

Regret(K) ≤ 64dBC2
uξ

−2 ln
(
2Kδ−1

)
+ 3Cr

∑
k/∈U

β
(k)

π(k)

≤ 64dBC2
uξ

−2 ln
(
2Kδ−1

)
+ 3Cr

√
K

√
2d ln

(
1 +

K

d

)
+ 4 ln

2K

δ

where the second inequality uses Lemma 22. Since the good event E1 ∩ E2 occurs with probability
at least 1− 2δ due to Lemmas 20 and 21, the claim holds.

E Regret Analysis (Linear CMDP)

E.1 Definitions and Useful Lemmas

Definition 9 (µ-estimator). Let e(s) ∈ RS denote a one-hot vector such that only the element at
s ∈ S is 1 and otherwise 0. In Algorithm 2, for all h and k, define µ(k)

h ∈ RS×d and ϵ
(k)
h ∈ RS such
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that

µ
(k)
h :=

k−1∑
i=1

e
(
s
(i)
h+1

)
ϕ
(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

and ϵ
(k)
h := e

(
s
(k)
h+1

)
− P

(
·
∣∣∣ s(k)h , a

(k)
h

)
. (10)

We remark that
(
P̂

(k)
h V

)
(s, a) = ϕ(s, a)⊤

(
µ

(k)
h

)⊤
V for any V ∈ RS .

Lemma 27. For all k and h, it holds that:

µ
(k)
h − µh = −ρµh

(
Λ

(k)
h

)−1

+

k−1∑
i=1

ϵ
(i)
h ϕ

(
s
(i)
h , a

(i)
h

)⊤ (
Λ

(k)
h

)−1

Proof. Due to the definition of µ(k)
h , we have

µ
(k)
h =

k−1∑
i=1

e
(
s
(i)
h+1

)
ϕ
(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

=

k−1∑
i=1

(
P
(
·
∣∣∣ s(k)h , a

(k)
h

)
+ ϵ

(k)
h

)
ϕ
(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

=

k−1∑
i=1

(
µhϕ

(
s
(k)
h , a

(k)
h

)
+ ϵ

(k)
h

)
ϕ
(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

=

k−1∑
i=1

µhϕ
(
s
(k)
h , a

(k)
h

)
ϕ
(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

+

k−1∑
i=1

ϵ
(k)
h ϕ

(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

= µh

(
Λ

(k)
h − ρI

)(
Λ

(k)
h

)−1

+

k−1∑
i=1

ϵ
(k)
h ϕ

(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

= µh − ρµh

(
Λ

(k)
h

)−1

+

k−1∑
i=1

ϵ
(k)
h ϕ

(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1

.

Lemma 28. Let V be a class of real-valued function over the state space S such that sups |V (s)| ≤ B
for a B > 0. Let Nε be the ε-cover of V with respect to the distance dist∞. In Algorithm 2, for all
k, h, s, a, for any V ∈ V , with probability at least 1− δ, we have∣∣∣((P̂ (k)

h − Ph

)
V
)
(s, a)

∣∣∣
≤∥ϕ(s, a)∥(

Λ
(k)
h

)−1

(√
dρB + 2B

√
d

2
ln

(
k + ρ

ρ

)
+ 2B

√
ln
|Nε|
δ

+
4kε
√
ρ

)
.

Proof. Using Lemma 14 and due to the definition of Λ(k) in Algorithm 2, with probability at least
1− δ, for all k, h, we have∥∥∥∥∥

k−1∑
i=1

ϕ
(
s
(k)
h , a

(k)
h

)(
V ⊤ϵ

(i)
h

)∥∥∥∥∥
(Λ(k))

−1

≤

√
4B2

(
d

2
ln

(
k + ρ

ρ

)
+ ln

|Nε|
δ

)
+

8k2ε2

ρ

≤ 2B

√
d

2
ln

(
k + ρ

ρ

)
+ 2B

√
ln
|Nε|
δ

+
4kε
√
ρ
,
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where the second inequality uses
√
a+ b ≤

√
a+
√
b. By inserting this to Definition 9, we have∣∣∣((P̂ (k)

h − Ph

)
V
)
(s, a)

∣∣∣
=

∣∣∣∣ϕ(s, a)⊤(µ(k)
h − µh

)⊤
V

∣∣∣∣
=

∣∣∣∣∣∣ϕ(s, a)⊤
(
−ρµh

(
Λ

(k)
h

)−1

+

k−1∑
i=1

ϵ
(i)
h ϕ

(
s
(i)
h , a

(i)
h

)⊤ (
Λ

(k)
h

)−1
)⊤

V

∣∣∣∣∣∣
≤ρ
∣∣∣∣ϕ(s, a)⊤(Λ(k)

h

)−1

(µh)
⊤
V

∣∣∣∣+
∣∣∣∣∣ϕ(s, a)⊤(Λ(k)

h

)−1 k−1∑
i=1

ϕ
(
s
(i)
h , a

(i)
h

)(
V ⊤ϵ

(i)
h

)∣∣∣∣∣
≤ρ∥ϕ(s, a)∥(

Λ
(k)
h

)−1

∥∥∥(µh)
⊤
V
∥∥∥(

Λ
(k)
h

)−1︸ ︷︷ ︸
≤B
√

d/ρ by Assumption 2

+∥ϕ(s, a)∥(
Λ

(k)
h

)−1

∥∥∥∥∥
k−1∑
i=1

ϕ
(
s
(i)
h , a

(i)
h

)(
ϵ
(i)
h

)⊤
V

∥∥∥∥∥(
Λ

(k)
h

)−1

≤∥ϕ(s, a)∥(
Λ

(k)
h

)−1

(√
dρB + 2B

√
d

2
ln

(
k + ρ

ρ

)
+ 2B

√
ln
|Nε|
δ

+
4kε
√
ρ

)
.

E.2 Function Classes and Covering Argument

Definition 10 (Q function class). For any h and for a pair of (w,Λ), where w ∈ Rd and Λ ∈ Rd×d,
define Q

(w,Λ),r
h : S ×A → R, Q(w,Λ),u

h : S ×A → R, and Q
(w,Λ),†
h : S ×A → R such that

Q
(w,Λ),r
h (s, a) = rh(s, a) + clip

{
Cr∥ϕ(s, a)∥Λ−1 +w⊤ϕ(s, a), 0, Hκ − hκ

}
Q

(w,Λ),u
h (s, a) = uh(s, a) + clip

{
−Cu∥ϕ(s, a)∥Λ−1 +w⊤ϕ(s, a), 0, H − h

}
Q

(w,Λ),†
h (s, a) = B†∥ϕ(s, a)∥Λ−1 + clip

{
C†∥ϕ(s, a)∥Λ−1 +w⊤ϕ(s, a), 0, B†(H − h)

}
,

where κ,Cr, Cu, B†, C† ≥ 0. We denoted hκ := h(1 + κ lnA) for h ∈ J1, HK. Let Qr
h, Qu

h, Q†
h

denote function classes such that

Qr
h :=

{
Q

(w,Λ),r
h

∣∣∣ ∥w∥2 ≤ KHκ, σmin(Λ) ≥ 1
}
,

Qu
h :=

{
Q

(w,Λ),u
h

∣∣∣ ∥w∥2 ≤ KH, σmin(Λ) ≥ 1
}
,

and Q†
h :=

{
Q

(w,Λ),†
h

∣∣∣ ∥w∥2 ≤ KHB†, σmin(Λ) ≥ 1
}
.

We let NQr
h

ε , NQu
h

ε , and NQ†
h

ε , be the ε-covers of Qr
h, Qu

h, and Q†
h with the distance metric dist∞.

Lemma 29 (Q covers). When Algorithm 2 is run with ρ = 1, it hold that:

(i) For all k, h and for any π ∈ Π, Q
π,r

(k),h[κ] ∈ Qr
h, Qπ,u

(k),h
∈ Qu

h, and Q
π,†
(k),h ∈ Q

†
h

(ii) ln |NQr
h

ε | ≤ d ln
(
1 + 4KHκ

ε

)
+ d2 ln

(
1 +

8
√
dC2

r

ε2

)
= O

(
d2
)
polylog

(
d,K,Hκ, Cr, ε

−1
)
,

ln |NQu
h

ε | ≤ d ln
(
1 + 4KH

ε

)
+ d2 ln

(
1 +

8
√
dC2

u

ε2

)
= O

(
d2
)
polylog

(
d,K,H,Cu, ε

−1
)
,

and ln |NQ†
h

ε | ≤ d ln
(
1 +

4KB†H
ε

)
+ d2 ln

(
1 +

8
√
dC2

†
ε2

)
=

O
(
d2
)
polylog

(
d,K,H,B†, C†, ε

−1
)

Proof. The statements in (ii) immediately follow from the proof of Lemma D.6 in Jin et al. [23].
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We prove the first claim (i). For Q
π,r

(k),h, we have

Q
π,r

(k),h[κ] =rh + clip
{
Crβ

(k) + P̂ (k)V
π,r

(k),h+1[κ], 0, (H − h)(1 + κ lnA)
}

=rh + clip

{
Cr

√
ϕ(s, a)⊤

(
Λ

(k)
h

)−1

ϕ(s, a) + ϕ(s, a)⊤
(
µ

(k)
h

)⊤
V

π,r

(k),h+1[κ], 0, (H − h)(1 + κ lnA)

}
.

According to the definition of Q(w,Λ),r
h (Definition 10), the claim immediately holds by showing

the L2 bound of
(
µ

(k)
h

)⊤
V

π,r

(k),h+1[κ]. For any h ∈ J1, HK and k ∈ J1,KK, we have∥∥∥∥(µ(k)
h

)⊤
V

π,r

(k),h+1[κ]

∥∥∥∥
2

=

∥∥∥∥∥
k−1∑
i=1

V
π,r

(k),h+1[κ]
(
s
(i)
h+1

)
ϕ
(
s
(i)
h , a

(i)
h

)⊤(
Λ

(k)
h

)−1
∥∥∥∥∥
2

(a)

≤Hκ

∥∥∥∥∥(Λ(k)
h

)−1 k−1∑
i=1

ϕ
(
s
(i)
h , a

(i)
h

)∥∥∥∥∥
2

≤ KHκ .

where (a) uses ∥ϕ∥2 ≤ 1 with ρ = 1 and 0 ≤ V
π,r

(k),h+1[κ] ≤ Hκ.

The remaining claims for Qπ,u

(k),h
(s, a) ∈ Qu

h and Q
π,†
(k),h(s, a) ∈ Q

†
h can be similarly proven.

Definition 11 (Composite Q function class). For each h, let Q◦
h denote a function class such that

Q◦
h :=

{
Q† +Qr + λQu

∣∣∣Q† ∈ Q†
h, Q

r ∈ Qr
h, Q

u ∈ Qu
h, and λ ∈ [0, Cλ]

}
.

where Cλ > 0. We let NQ◦
h

ε be the ε-cover of Q◦
h with the distance metric dist∞.

Lemma 30 (Composite Q cover). When Algorithm 2 is run with ρ = 1, the following statements
hold:

(i) For all (k, h), for any π ∈ Π, and for any λ ∈ [0, Cλ], Q
π,†
(k),h +Q

π,r

(k),h[κ] + λQπ,u

(k),h
∈ Q◦

h

(ii) ln
∣∣∣NQ◦

h
ε

∣∣∣ = O(d2) polylog(d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε
−1
)

Proof. The claim (i) clearly holds by Lemma 29 and Definition 11.

We prove the second claim (ii). Let N λ
ε be the ε-cover of a set {λ | λ ∈ [0, Cλ]} with the distance

metric ∥·∥2. Let ε†, εr, εu, ελ > 0 be positive scalars. Consider Q̃† ∈ NQ†
h

ε† , Q̃r ∈ NQr
h

εr ,
Q̃u ∈ NQu

h
εu , and λ̃ ∈ N λ

ελ
. For any Q† ∈ Q†

h, Qr ∈ Qr
h, Qu ∈ Qu

h, and λ ∈ [0, Cλ], we have

dist∞

(
Q† +Qr + λQu, Q̃† + Q̃r + λ̃Q̃u

)
≤ sup

s,a

∣∣∣Q†(s, a)− Q̃†(s, a)
∣∣∣︸ ︷︷ ︸

≤ε†

+sup
s,a

∣∣∣Qr(s, a)− Q̃r(s, a)
∣∣∣︸ ︷︷ ︸

≤εr

+ λ sup
s,a

∣∣∣(Qu(s, a)− Q̃u(s, a)
)∣∣∣︸ ︷︷ ︸

≤Cλεu

+sup
s,a

∣∣∣(λ− λ̃
)
Qu(s, a)

∣∣∣︸ ︷︷ ︸
ελH

(a)

≤ ε† + εr + Cλεu + ελH ,

where (a) appropriately chooses Q̃†, Q̃r, Q̃u, λ̃. By replacing ε† with ε/4, εr with ε/4, εu with
1/4Cλ, and ελ with ε/4H , the above inequality is upper bounded by ε. Thus,

ln
∣∣∣NQ◦

h
ε

∣∣∣ ≤ ln
∣∣∣N λ

ε/4H

∣∣∣+ ln
∣∣∣NQu

h

ε/4Cλ

∣∣∣+ ln
∣∣∣NQr

h

ε/4

∣∣∣+ ln

∣∣∣∣NQ†
h

ε/4

∣∣∣∣
≤O

(
d2
)
polylog

(
d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε

−1
)
.

where the second inequality uses Lemma 9 and Lemma 29.
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Definition 12 (Policy class). Π̃ := Π̃1 × · · · × Π̃H denotes a softmax policy class such that

Π̃h := {πQ ∈ Π |Q ∈ Q◦
h} where πQ(· | s) = SoftMax

(
1

κ
Q(s, ·)

)
∀s ∈ S ,

where κ > 0. We let N Π̃h
ε be the ε-cover of Π̃h with the distance metric dist1.

Lemma 31 (π(k),λ cover). When Algorithm 2 is run with ρ = 1 and κ > 0, for all h, the following
statements hold:

(i) For all (k, h) and λ ∈ [0, Cλ] in Algorithm 2, π(k),λ
h ∈ Π̃h

(ii) ln
∣∣∣N Π̃h

ε

∣∣∣ = O(d2)polylog(d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε
−1, κ−1

)
Proof. The claim (i) immediately follows from Lemma 30 and Definition 3.

We prove the second claim. For a Q : S × A → R, let πQ be a softmax policy such that πQ(· |
s) = SoftMax

(
Q(s,·)

κ

)
. Consider Q̃ from NQ◦

h
ε . Then, for any Q ∈ Q◦

h, we have

dist1

(
πQ, πQ̃

) (a)

≤ 8

κ
dist∞

(
Q, Q̃

) (b)

≤ 8ε

κ
,

where (a) uses Lemma 19 and (b) appropriately chooses Q̃ from NQ◦
h

ε . Therefore,

ln
∣∣∣N Π̃h

ε

∣∣∣ ≤ ln
∣∣∣NQ◦

h

κε/8

∣∣∣ ≤ O(d2) polylog(d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε
−1, κ−1

)
where the second inequality uses Lemma 30.

Definition 13 (V function class). Let Vr
h, Vu

h, and V†
h denote value function classes such that

Vr
h :=

{
V π
Q [κ] : S → R

∣∣∣ π ∈ Π̃h ∪ {πsf
h } and Q ∈ Qr

h

}
,

Vu
h :=

{
V π
Q [0] : S → R

∣∣∣ π ∈ Π̃h ∪ {πsf
h } and Q ∈ Qu

h

}
,

and V†
h :=

{
V π
Q [0] : S → R

∣∣∣ π ∈ Π̃h ∪ {πsf
h } and Q ∈ Q†

h

}
,

where V π
Q [κ](s) :=

∑
a∈A

π(a | s)(Q(s, a)− κ lnπ(a | s)) ∀s ∈ S .

We let NVr
h

ε , NVu
h

ε , and NV†
h

ε be the ε-covers of Vr
h, Vu

h, and V†
h with the distance metric dist∞.

Lemma 32 (V covers). When Algorithm 2 is run with ρ = 1 and κ > 0, for all h, the following
statements hold:

(i) For all (k, h), for any λ ∈ [0, Cλ], and for both π = π(k),λ and π = πsf , we have:
V

π,r

(k),h[κ] ∈ Vr
h, V π,u

(k),h ∈ V
u
h, and V

π,†
(k),h ∈ V

†
h

(ii) ln
∣∣∣NVr

h
ε

∣∣∣ = O(d2) polylog(d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε
−1, κ−1

)
,

ln
∣∣∣NVu

h
ε

∣∣∣ = O(d2)polylog(d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε
−1, κ−1

)
,

and ln

∣∣∣∣NV†
h

ε

∣∣∣∣ = O(d2) polylog(d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε
−1, κ−1

)
Proof. The condition (i) immediately follow from Lemma 29 and Lemma 31 with Definition 13 and
Definition 3.
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We prove the second claim (ii). Let Q ∈ Qr
h and Q̃ ∈ NQr

h
εr where εr > 0. For any two

π, π̃ : S →P(A), for any s, we have∣∣∣∣∣∑
a∈A

π(a | s)(Q(s, a)− κ lnπ(a | s))−
∑
a∈A

π̃(a | s)
(
Q̃(s, a)− κ lnπ(a | s)

)∣∣∣∣∣
≤

∣∣∣∣∣∑
a∈A

π(a | s)Q(s, a)−
∑
a∈A

π(a | s)Q̃(s, a) +
∑
a∈A

π(a | s)Q̃(s, a)−
∑
a∈A

π̃(a | s)Q̃(s, a)

∣∣∣∣∣
+ κ

∣∣∣∣∣∑
a∈A

π(a | s) lnπ(a | s)− π̃(a | s) ln π̃(a | s)

∣∣∣∣∣︸ ︷︷ ︸
=:H (π)−H (π̃)

≤
∑
a∈A

π(a | s)
∣∣∣Q(s, a)− Q̃(s, a)

∣∣∣︸ ︷︷ ︸
≤εr

+∥π(· | s)− π̃(· | s)∥1
∥∥∥Q̃(·, s)

∥∥∥
∞︸ ︷︷ ︸

≤Hκ

+κ(H (π)−H (π̃))

≤εr +Hκ∥π(· | s)− π̃(· | s)∥1 + κ(H (π)−H (π̃))

where the second inequality chooses appropriate Q̃. We defined entropies of π and π̃ as
H (π) :=

∑
a∈A π(a | s) lnπ(a | s) and H (π̃) :=

∑
a∈A π̃(a | s) ln π̃(a | s), respectively.

The remaining task is to bound Hκ∥π(· | s)− π̃(· | s)∥1 + κ(H (π)−H (π̃)). When π = πsf ,
choosing π̃ = πsf trivially bounds this term by 0. Thus, we only consider the case when π ∈ Π̃h, i.e.,
π(· | s) = SoftMax

(
1
κQ

◦(s, ·)
)

with Q◦ ∈ Q◦
h. We also consider π̃(· | s) = SoftMax

(
1
κ Q̃

◦(s, ·)
)

with Q̃◦ ∈ NQ◦
h

ε◦ , where ε◦ > 0. For the entropy gap, we have

H (π)−H (π̃)

=

∣∣∣∣∣∑
a∈A

π(a | s) lnπ(a | s)− π̃(a | s) ln π̃(a | s)

∣∣∣∣∣
=

∣∣∣∣∣∑
a∈A

(π(a | s)− π̃(a | s)) lnπ(a | s) +
∑
a∈A

π̃(a | s)(lnπ(a | s)− ln π̃(a | s))

∣∣∣∣∣
≤∥π(· | s)− π̃(· | s)∥1 max

a
lnπ(a | s) + max

a
|lnπ(a | s)− ln π̃(a | s)|

(a)

≤ ∥π(· | s)− π̃(· | s)∥1︸ ︷︷ ︸
≤ 8

κ maxa|Q◦(s,a)−Q̃◦(s,a)| by Lemma 19

max
a

lnπ(a | s) + 2

κ
max

a

∣∣∣Q◦(s, a)− Q̃◦(s, a)
∣∣∣︸ ︷︷ ︸

≤ε◦

(b)

≤ε◦

κ

(
8max

a
lnπ(a | s) + 2

)
,

where (a) utilizes a decomposition similar to the proof of Lemma 19, and (b) chooses an appropriate
Q̃◦. Finally, lnπ(a | s) can be bounded as

max
a

lnπ(a | s) = max
a

1

κ
Q◦(s, a)− ln

∑
a′

exp

(
1

κ
Q◦(s, a′)

)
≤ B†H +Hκ + CλH

κ
,

where the last inequality is due to Definition 11.

Therefore, we have

Hκ∥π(· | s)− π̃(· | s)∥1 + κ(H (π)−H (π̃)) ≤ ε◦
(
2 +

8

κ
(B†H + 2Hκ + CλH)

)
︸ ︷︷ ︸

=:Z

.

Finally, by setting εr = ε/2Hκ and ε◦ = ε/2Z, ln
∣∣∣NVr

h
ε

∣∣∣ is bounded as:

ln
∣∣∣NVr

h
ε

∣∣∣ ≤ ln
(∣∣∣NQ◦

h

ε/2Z

∣∣∣+ 1
)
+ ln |NQr

h

ε/2Hκ
| = O

(
d2
)
polylog

(
d,K,Hκ, Cr, Cu, B†, C†, Cλ, ε

−1, κ−1
)
,
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where the second inequality is due to Lemma 29 and Lemma 30. The claims for ln
∣∣∣NVu

h
ε

∣∣∣ and

ln

∣∣∣∣NV†
h

ε

∣∣∣∣ can be similarly proven.

E.3 Good Events and Value Confidence Bounds for Lemma 4 Proof

Lemma 33 (Good event 1). Define E1 as the event where the following inequality holds:

K∑
k=1

H∑
h=1

E

[∥∥∥ϕ(s(k)h , a
(k)
h )
∥∥∥2(

Λ
(k)
h

)−1

∣∣∣∣∣ s(k)h , a
(k)
h ∼ π

(k)
h

]

≤2
K∑

k=1

H∑
h=1

∥∥∥ϕ(s(k)h , a
(k)
h )
∥∥∥2(

Λ
(k)
h

)−1 + 4H ln
2KH

δ
.

If Algorithm 2 is run with ρ = 1, P(E1) ≥ 1− δ.

Proof. The claim immediately follows from Lemma 11 with ∥ϕ∥2 ≤ 1 and ρ = 1.

Lemma 34 (Good event 2). Define E2 as the event where the following condition holds:
For all k, h and for any V r ∈ Vr

h+1, V u ∈ Vu
h+1, and V † ∈ V†

h+1∣∣∣((P̂ (k)
h − Ph

)
V r
)
(s, a)

∣∣∣ ≤ Crβ
(k)
h (s, a) ∀(h, s, a) ∈ J1, HK× S ×A∣∣∣((P̂ (k)

h − Ph

)
V u
)
(s, a)

∣∣∣ ≤ Cuβ
(k)
h (s, a) ∀(h, s, a) ∈ J1, HK× S ×A

and
∣∣∣((P̂ (k)

h − Ph

)
V †
)
(s, a)

∣∣∣ ≤ C†β
(k)
h (s, a) ∀(h, s, a) ∈ J1, HK× S ×A .

If Algorithm 2 is run with ρ = 1, Cr = Õ(dHκ), Cu = Õ(dH), and C† = Õ(dHB†), we have
P(E2) ≥ 1− 2δ.

Proof. Using Lemma 28 with NVr
h+1

1/K , with probability at least 1− δ, for any (k, h, s, a),∣∣∣((P̂ (k)
h − Ph

)
V r
)
(s, a)

∣∣∣
(a)

≤∥ϕ(s, a)∥(
Λ

(k)
h

)−1

√dHκ + 2Hκ

√
d

2
ln(2K) + 2Hκ

√√√√
ln

∣∣∣NVr
h+1

1/K

∣∣∣
δ

+ 4


(b)

≤∥ϕ(s, a)∥(
Λ

(k)
h

)−1Õ(dHκ) lnCr

(c)

≤ ∥ϕ(s, a)∥(
Λ

(k)
h

)−1Cr

where (a) sets ε = 1/K toNVu
h

ε and uses Lemma 28, (b) uses Lemma 29, and (c) set sufficiently large
Cr = Õ(dHκ) and uses Lemma 15. The claim for Vu

h+1 and V†
h+1 can be similarly proven.

Lemma 35 (Remove clipping one-side). Under E2, for any (k, h, s, a), and for any λ ∈ [0, Cλ], for
both π = π(k),λ and π = πsf , we have

Crβ
(k)
h (s, a) +

(
P̂

(k)
h V

π,r

(k),h+1[κ]
)
(s, a) ≥

(
PhV

π,r

(k),h+1[κ]
)
(s, a) ≥ 0 ,

− Cuβ
(k)
h (s, a) +

(
P̂

(k)
h V π,u

(k),h+1

)
(s, a) ≤

(
PhV

π,u
(k),h+1

)
(s, a) ≤ H − h ,

and C†β
(k)
h (s, a) +

(
P̂

(k)
h V

π,†
(k),h+1

)
(s, a) ≥

(
PhV

π,†
(k),h+1

)
(s, a) ≥ 0
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Proof. We have

Crβ
(k)
h (s, a) +

(
P̂

(k)
h V

π,r

(k),h+1[κ]
)
(s, a)

(a)

≥
∣∣∣(Ph − P̂

(k)
h

)
V

π,r

(k),h+1[κ]
∣∣∣(s, a) + (P̂ (k)

h V
π,r

(k),h+1[κ]
)
(s, a)

≥
(
Ph − P̂

(k)
h

)
V

π,r

(k),h+1[κ](s, a) +
(
P̂

(k)
h V

π,r

(k),h+1[κ]
)
(s, a)

=PhV
π,r

(k),h+1[κ](s, a)
(b)

≥ 0 ,

where (a) is due to E2 with Lemma 32 and (b) is due to r ≥ 0 and by the definition of V
π,r

(k),h+1[κ].

The claim for V
π,†
(k),h+1 can be similarly proven.

For V π,u
(k),h+1, we have

− Cuβ
(k)
h (s, a) +

(
P̂

(k)
h V π,u

(k),h+1

)
(s, a)

(a)

≤ −
∣∣∣(P̂ (k)

h − Ph

)
V π,u

(k),h+1

∣∣∣(s, a) + (P̂ (k)
h V π,u

(k),h+1

)
(s, a)

≤−
(
P̂

(k)
h − Ph

)
V π,u

(k),h+1(s, a) +
(
P̂

(k)
h V π,u

(k),h+1

)
(s, a)

=PhV
π,u
(k),h+1(s, a)

(b)

≤ H − h ,

where (a) is due to E2 with Lemma 32 and (b) is due to u ≤ 1 and by the definition of V π,u
(k),h+1.

Definition 14 (Q estimation gap). For any h, k and π ∈ Π, define δπ,r(k),h, δ
π,u
(k),h, δ

π,†
(k),h : S ×A → R

be functions such that:

δπ,r(k),h = clip
{
Crβ

(k)
h +

(
P̂

(k)
h V

π,r

(k),h+1[κ]
)
, 0, Hκ − hκ

}
−
(
PhV

π,r

(k),h+1[κ]
)
,

δπ,u(k),h =
(
PhV

π,u
(k),h+1

)
− clip

{
−Cuβ

(k)
h +

(
P̂

(k)
h V π,u

(k),h+1

)
, 0, H − h

}
,

and δπ,†(k),h = clip
{
C†β

(k)
h +

(
P̂

(k)
h V

π,†
(k),h+1

)
, 0, B†(H − h)

}
−
(
PhV

π,†
(k),h+1

)
,

It is clear that these functions satisfy, for any (π, k, h),

Q
π,r

(k),h[κ] = Q
π,r+δπ,r

(k)

P,h [κ], Qπ,u

(k),1
= Q

π,u−δπ,u
(k)

P,h , and Q
π,†
(k),h = Q

π,B†β
(k)+δπ,†

(k)

P,h . (11)

Additionally, let ∆(k)
r , ∆(k)

u , and ∆
(k)
† be function classes such that:

∆(k)
r :=

{
δ : J1, HK× S ×A → R

∣∣∣ 0 ≤ δh ≤ min
{
2Crβ

(k)
h , Hκ − hκ

}
∀h ∈ J1, HK

}
∆(k)

u :=
{
δ : J1, HK× S ×A → R

∣∣∣ 0 ≤ δh ≤ min
{
2Cuβ

(k)
h , H − h

}
∀h ∈ J1, HK

}
and ∆

(k)
† :=

{
δ : J1, HK× S ×A → R

∣∣∣ 0 ≤ δh ≤ min
{
2C†β

(k)
h , B†(H − h)

}
∀h ∈ J1, HK

}
.

Lemma 36. Under E2, for any k and for any λ ∈ [0, Cλ], for both π = π(k),λ and π = πsf , it holds
that δπ,r(k),· ∈ ∆

(k)
r , δπ,u(k),· ∈ ∆

(k)
u , and δπ,†(k),· ∈ ∆

(k)
† .

Proof. δπ,u(k),h(s, a) ≤ H − h clearly holds. Additionally, we have

δπ,u(k),h(s, a)
(a)
=
(
PhV

π,u
(k),h+1

)
(s, a)−max

{
−Cuβ

(k)
h (s, a) +

(
P̂

(k)
h V π,u

(k),h+1

)
(s, a), 0

}
≤
(
PhV

π,u
(k),h+1

)
(s, a) + Cuβ

(k)
h (s, a)−

(
P̂

(k)
h V π,u

(k),h+1

)
(s, a)

≤Cuβ
(k)
h (s, a) +

∣∣∣(Ph − P̂
(k)
h

)
V π,u

(k),h+1

∣∣∣(s, a) (b)

≤ 2Cuβ
(k)
h (s, a) ,
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where (a) is due to Lemma 35 and (b) is due to E2. Finally, note that

δπ,u(k),h(s, a) =
(
PhV

π,u
(k),h+1

)
(s, a)−max

{
−Cuβ

(k)
h (s, a) +

(
P̂

(k)
h V π,u

(k),h+1

)
(s, a), 0

}
≥Cuβ

(k)
h (s, a) +

(
PhV

π,u
(k),h+1

)
(s, a)−

(
P̂

(k)
h V π,u

(k),h+1

)
(s, a)︸ ︷︷ ︸

≥0 by E2

≥ 0 .

This concludes the proof for δπ,u(k),h. The claims for δπ,r(k),h and δπ,†(k),h can be similarly proven.

Lemma 37 (Restatement of Lemma 4). Suppose E2 holds. For any k and for any λ ∈ [0, Cλ], for
both π = π(k),λ and π = πsf , we have

V π,r
P,h ≤ V

π,r

(k),h ≤ V π,r+2Crβ
(k)

P,h , Qπ,r
P,h ≤ Q

π,r

(k),h ≤ Qπ,r+2Crβ
(k)

P,h

V
π,B†β

(k)

P,h ≤ V
π,†
(k),h ≤ V

π,B†β
(k)+2C†β

(k)

P,h , Q
π,B†β

(k)

P,h ≤ Q
π,†
(k),h ≤ Q

π,B†β
(k)+2C†β

(k)

P,h ,

V π,u−2Cuβ
(k)

P,h ≤ V π,u
(k),h ≤ V π,u

P,h , Qπ,u−2Cuβ
(k)

P,h ≤ Qπ,u

(k),h
≤ Qπ,u

P,h .

Proof. The inequalities for Q functions directly hold by Equation (11) and Lemma 36.

For the utility V function,

V π(k),u
(k),h (s)− V π(k),u

P,h (s) =
∑
a∈A

πh(a | s)
(
Qπ,u

(k),h
(s, a)−Qπ,u

P,h(s, a)
)

(a)
=
∑
a∈A

πh(a | s)Q
π,−δπ,u

(k)

P,h (s)
(b)

≤ 0 ,

where (a) uses Equation (11) and (b) uses Lemma 36. Similarly,

V π,u
(k),h(s)− V π,u−2Cuβ

(k)

P,h (s) =
∑
a∈A

πh(a | s)
(
Qπ,u

(k),h
(s, a)−Qπ,u−2Cuβ

(k)

P,h (s, a)
)

(a)
=
∑
a∈A

πh(a | s)Q
π,−δπ,u

(k)
+2Cuβ

(k)

P,h (s)
(b)

≥ 0 ,

where (a) uses Equation (11) and (b) uses Lemma 36. The claims for r and † can be similarly
proven.

E.4 Proofs for Zero-Violation Guarantee (Section 3.2.1)

E.4.1 Proof of Lemma 5 and Lemma 6

Lemma 38 (Restatement of Lemma 6). Let f, g : J1, HK× S ×A → R be functions and let κ > 0.
Given λ ≥ 0, let πλ be a softmax policy such that

πλ
h(· | s) = SoftMax

(
1

κ

(
Qπ,f

P,h[κ](s, ·) + λQπ,g
P,h(s, ·)

))
.

Then, V πλ,g
P,1 (s1) is monotonically increasing in λ.

Proof. Let W :=
{
wπ

P,· : J1, HK× S ×A → [0, 1]
∣∣ π ∈ Π

}
be the set of all the occupancy mea-

sures. Let L : R×W → R be a function such that:

L (λ,w) =
∑

h,s,a∈J1,HK×S×A

wh(s, a)(fh(s, a) + λgh(s, a))− κwh(s, a) ln
wh(s, a)∑

a′∈A wh(s, a′)
.

We first show that L is strictly concave inW . Let

H : w ∈ W 7→
∑

h,s,a∈J1,HK×S×A

−wh(s, a) ln
wh(s, a)∑

a′∈A wh(s, a′)
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be the function representing the second term of L . Then, 10

H
(
αw1 + (1− α)w2

)
= −

∑
h,s,a

(
αw1

h(s, a) + (1− α)w2
h(s, a)

)
log

αw1
h(s, a) + (1− α)w2

h(s, a)

α
∑

a′ w1
h (s, a

′) + (1− α)
∑

a′ w2
h (s, a

′)

(a)

≥ −
∑
h,s,a

αw1
h(s, a) log

αw1
h(s, a)

α
∑

a′ w1
h (s, a

′)
−
∑
h,s,a

(1− α)w2
h(s, a) log

(1− α)w2
h(s, a)

(1− α)
∑

a′ w2
h (s, a

′)

= αH
(
w1

h

)
+ (1− α)H

(
w2

h

)
,

for any w1, w2 ∈ W and α ∈ [0, 1], where (a) is due to the log sum inequality (
∑

i xi) ln
∑

i xi∑
i yi
≤∑

i xi ln
xi

yi
for non-negative xi and yi. Since (a) takes equality if and only if w1 = w2, H is strictly

concave. Consequently, L (λ,w) =
∑

h,s,a∈J1,HK×S×A wh(s, a)(fh(s, a) + λgh(s, a))− κH (w)

is also strictly concave inW .

Let wλ = argmaxw∈W L (λ,w), which is a unique maximizer due to the strict concavity.
Define L (λ) := maxw∈W L (λ,w). Using Danskin’s theorem (Lemma 10), L (λ) is convex
and ∂L (λ)

∂λ =
∑

h,s,a∈J1,HK×S×A wλ
h(s, a)gh(s, a). Since L (λ) is convex, its derivative is

non-decreasing. Therefore,

∂2L (λ)

∂λ2
=

∂

∂λ

∑
h,s,a∈J1,HK×S×A

wλ
h(s, a)gh(s, a) ≥ 0 . (12)

Since πλ is the softmax policy, combined with the one-to-one mapping between occupancy measure
and policy [35], the well-known analytical solution of regularized MDP [15] indicates that wλ

corresponds to the occupancy measure of πλ. Thus, due to Equation (12), it holds that

0 ≤ ∂

∂λ

∑
h,s,a∈J1,HK×S×A

wλ
h(s, a)gh(s, a) =

∂

∂λ
V πλ,g
P,1 (s1) .

This concludes the proof.

Definition 15 (Softmax policy with fixed δ). For any k ∈ U∁, δ := (δr, δu, δ†) ∈ ∆
(k)
r ×∆(k)

u ×∆(k)
†

and λ ≥ 0, let πδ,λ ∈ Π be a policy such that

πδ,λ
h (· | s) = SoftMax

(
1

κ

(
Q

πδ,λ,B†β
(k)+δ†

P,h (s, ·) +Qπδ,λ,r+δr

P,h [κ](s, ·) + λQπδ,λ,u−δu

P,h (s, ·)
))

.

Lemma 39 (Existence of feasible λ). Suppose κ ≤ ξ2

32H2
κ(B†+1) . For any k and for any δ ∈

∆
(k)
† ×∆

(k)
r ×∆

(k)
u , there exists a λδ ∈

[
0,

8H2
κ(B†+1)

ξ

]
such that, V πδ,λ,u−δu

P,1 (s1) ≥ b holds for

any λ ≥ λδ .

Proof. Throughout the proof, we use a shorthand rδ := B†β
(k) + δ† + r + δr. Consider the

following entropy-regularized max-min optimization problem:

max
π∈Π

min
λ≥0

V π,rδ

P,1 [κ](s1) + λ

(
V π,u−δu

P,1 (s1)− b− ξ

4

)
+

κ

2
λ2

=min
λ≥0

max
π∈Π

V π,rδ

P,1 [κ](s1) + λ

(
V π,u−δu

P,1 (s1)− b− ξ

4

)
+

κ

2
λ2 . (13)

where the equality holds by the strong duality of regularized CMDPs (see, e.g., Appendix C.1 in
Ding et al. [11]). Let (π̃, λ̃) be a saddle point of the problem, which is ensured to be unique thanks
to the regularization. We first show the analytical forms of (π̃, λ̃).

10This proof is based of Lemma 14 from Ding et al. [11]
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Analytical forms of (π̃, λ̃). Due to the strong duality, we have

max
π∈Π

V
π,rδλ̃(u−δu)
P,1 [κ](s1) = V

π̃,rδ+λ̃(u−δu)
P,1 [κ](s1) .

Since the left-hand side is an entropy-regularized optimization problem in an MDP, the well-known
analytical solution of regularized MDP indicates that [15]:

π̃h(· | s) = SoftMax

(
1

κ

(
Qπ̃,rδ

P,h [κ](s, ·) + λ̃Qπ̃,u−δu

P,h (s, ·)
))

= πδ,λ̃
h , (14)

where the last equality is due to the definition of πδ,λ
h . Additionally, due to the strong duality,

λ̃ ∈ argmin
λ≥0

V π̃,rδ

P,1 [κ](s1) + λ

(
V π̃,u−δu

P,1 (s1)− b− ξ

4

)
+

κ

2
λ2 .

Since the right-hand side is a quadratic equation on λ, we have

λ̃ =
1

κ

[
b+

ξ

4
− V π̃,u−δu

P,1 (s1)

]
+

. (15)

λ̃ upper bound. Next, we will show that λ̃ is upper bounded by constant. We have

2H2
κ(B† + 1)

(a)

≥ V π̃,rδ

P,1 [κ](s1)−
1

2κ

[
b+

ξ

4
− V π̃,u−δu

P,1 (s1)

]2
+︸ ︷︷ ︸

≥0

(b)
= V π̃,rδ

P,1 [κ](s1) + λ̃

(
V π̃,u−δu

P,1 (s1)− b− ξ

4

)
+

κ

2
λ̃2

(c)

≥ V πsf ,rδ

P,1 [κ](s1) + λ̃

(
V πsf ,u−δu

P,1 (s1)− b− ξ

4

)
+

κ

2
λ̃2

≥ λ̃

V πsf ,u
P,1 (s1)− b− ξ

4︸ ︷︷ ︸
≥3ξ/4

−V
πsf ,2Cββ

(k)

P,1 (s1)︸ ︷︷ ︸
≤ξ/2 since k∈U∁

 ≥ λ̃
ξ

4
,

where (a) is since
∥∥rδ∥∥∞ =

∥∥B†β
(k) + δ† + r + δr

∥∥
∞ ≤ B†+B†H +1+H = (H +1)(B†+1),

(b) is due to Equation (15), (c) uses Equation (13). By reformulating the inequality,

λ̃ ≤ 8H2
κ(B† + 1)

ξ
. (16)

Constraint violation of πδ,λ Finally, we will show that for any λ ≥ λ̃, πδ,λ guarantees zero
constraint violation. Due to Equations (14), (15), and (16), we have

κλ̃ =

[
b+

ξ

4
− V πδ,λ̃,u−δu

P,1 (s1)

]
+

≤ 8κH2
κ(B† + 1)

ξ
,

which ensures the small violation of πδ,λ̃ when κ ≪ 1. Since V πδ,λ,u−δu

P,1 (s1) is monotonically

increasing in λ due to Lemma 38, for any λ ≥ λ̃, V πδ,λ,u−δu

P,1 (s1) ≥ b+ ξ
4 −

8κH2
κ(B†+1)
ξ . Therefore,

by setting κ ≤ ξ2

32H2
κ(B†+1) , we have V πδ,λ,u−δu

P,1 (s1) ≥ b.

Lemma 40 (Restatement of Lemma 5). If Algorithm 2 is run with ρ = 1, Cλ ≥ 8H2
κ(B†+1)

ξ , and

κ ≤ ξ2

32H2
κ(B†+1) , under E2, it holds V π(k),Cλ ,u

(k),1 (s1) ≥ b for any k ∈ U∁.

Proof. Due to E2, it holds that

δ :=
(
δπ

(k),Cλ ,r
(k),· , δπ

(k),Cλ ,u
(k),· , δπ

(k),Cλ ,†
(k),·

)
∈ ∆

(k)
† ×∆(k)

r ×∆(k)
u .

According to Equation (11), this δ satisfies πδ,Cλ = π(k),Cλ where πδ,Cλ is defined in Definition 15.
Therefore, using Lemma 39, V π(k),Cλ ,u

(k),1 (s1) ≥ b. This concludes the proof.
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E.4.2 Proof of Theorem 3

Lemma 41 (Bonus summation bound). If Algorithm 2 is run with ρ = 1, under E1 and E2, it holds that

K∑
k=1

(
V π(k),β(k)

P,1 (s1)
)2
≤ 2H2d ln

(
1 +

K

d

)
+ 4H2 ln

2KH

δ
= Õ

(
H2d

)
and

K∑
k=1

(
V π(k),β(k)

P,1 (s1)
)
≤ H
√
K

√
2d ln

(
1 +

K

d

)
+ 4 ln

2KH

δ
= Õ

(
H
√
dK
)
.

Proof. We have

K∑
k=1

(
V π(k),β(k)

P,1 (s1)
)2

=

K∑
k=1

(
H∑

h=1

E
[
β
(k)
h (sh, ah)

∣∣∣ sh, ah ∼ π(k)
])2

(a)

≤ H

K∑
k=1

H∑
h=1

(
E
[
β
(k)
h (sh, ah)

∣∣∣ sh, ah ∼ π(k)
])2

(a)

≤ H

K∑
k=1

H∑
h=1

E
[
∥ϕ(sh, ah)∥2(

Λ
(k)
h

)−1

∣∣∣∣ sh, ah ∼ π(k)

]
(b)

≤ 2H

K∑
k=1

H∑
h=1

∥∥∥ϕ(s(k)h , a
(k)
h )
∥∥∥2(

Λ
(k)
h

)−1 + 4H2 ln
2KH

δ

(c)

≤ 2H2d ln

(
1 +

K

d

)
+ 4H2 ln

2KH

δ
,

where (a) is due to Jensen’s inequality, (b) is due to E1, and (c) uses Lemma 12. The second claim
follows by:

K∑
k=1

V π(k),β(k)

P,1 (s1)
(a)

≤
√
K

√√√√ K∑
k=1

(
V π(k),β(k)

P,1 (s1)
)2 (b)

≤ H
√
K

√
2d ln

(
1 +

K

d

)
+ 4 ln

2KH

δ
,

where (a) uses Cauchy–Schwarz inequality and (b) uses the first claim.

Lemma 42 (Restatement of Theorem 3). Suppose Algorithm 2 is run with ρ = 1 and E1 and E2 hold.
Then,

|U| ≤ 64C2
uH

2d

ξ2
ln

(
2KH

δ

)
= Õ

(
ξ−2H4d3

)
,

where the last equality sets Cu = Õ(dH).

Proof. Using Lemma 41 and Definition 4, we have

|U|
(
ξ

2

)2

≤
∑
k∈U

(
V πsf ,2Cuβ

(k)

P,1 (s1)
)2
≤ 8C2

uH
2d ln

(
1 +

K

d

)
+ 16C2

uH
2 ln

2KH

δ
.

Therefore, we have

|U| ≤ 32C2
uH

2d

ξ2
ln

(
1 +

K

d

)
+

64C2
uH

2

ξ2
ln

2KH

δ
≤ 64C2

uH
2d

ξ2
ln

(
2KH

δ

)
.
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E.5 Proofs for Sublinear Regret Guarantee (Section 3.2.2)

Suppose the good events E1 ∩ E2 hold. We decompose the regret as follows:

Regret(K)

=

K∑
k=1

(
V π⋆,r
P,1 (s1)− V π(k),r

P,1 (s1)
)

=
∑
k∈U

(
V π⋆,r
P,1 (s1)− V π(k),r

P,1 (s1)
)
+
∑
k∈U∁

(
V π⋆,r
P,1 (s1)− V π(k),r

P,1 (s1)
)

≤|U|H +
∑
k∈U∁

(
V

π(k),r

(k),1 [κ](s1)− V π(k),r
P,1 (s1)

)
+
∑
k∈U∁

(
V π⋆,r
P,1 (s1)− V

π(k),r

(k),1 [κ](s1)

)
(a)

≤Õ
(
d3H4ξ−2

)
+
∑
k∈U∁

(
V

π(k),r

(k),1 [κ](s1)− V π(k),r
P,1 [κ](s1)

)
+
∑
k∈U∁

(
V π⋆,r
P,1 (s1)− V

π(k),r

(k),1 [κ](s1)

)
+ κKH lnA

(b)

≤Õ
(
d3H4ξ−2

)
+ 2Cr

∑
k∈U∁

V π(k),β(k)

P,1 (s1)︸ ︷︷ ︸
1

+
∑
k∈U∁

(
V π⋆,r
P,1 (s1)− V

π(k),r

(k),1 [κ](s1)

)
︸ ︷︷ ︸

2

+κKH lnA ,

(17)

where (a) uses Lemma 42 and (b) is due to Lemma 37 with E2. Under E1 ∩ E2, 1 can be easily
bounded by Lemma 41

1 ≤ CrÕ(H
√
dK) ≤ Õ

(
H2

κd
3/2
√
K
)
, (18)

where the last equality inserts Cr = Õ(dHκ).

E.5.1 Mixture Policy Decomposition

We upper bound 2 in Equation (17) by the mixture policy technique.

Lemma 43 (Mixture policy’s feasibility). Let α(k) := ξ

ξ+2V π⋆,2Cuβ(k)

P,1 (s1)
. For any k ∈ U∁ and

α ∈ [0, α(k)], πα defined in Definition 5 satisfies V πα,u−2Cuβ
(k)

P,1 (s1) ≥ b.

Proof. We have

V πα,u−2Cuβ
(k)

P,1 (s1)− b

=(1− α)
(
V πsf ,u−2Cuβ

(k)

P,1 (s1)− b
)
+ α

(
V π⋆,u−2Cuβ

(k)

P,1 (s1)− b
)

≥(1− α)
ξ

2
+ α

(
V π⋆,−2Cuβ

(k)

P,1 (s1)
)
,

where the last inequality holds because V πsf ,2Cuβ
(k)

P,1 (s1) ≤ ξ
2 due to k ∈ U∁. Thus,

V πα,u−2Cuβ
(k)

P,1 (s1)− b ≥ 0 holds when

α ≤ ξ

ξ + 2V π⋆,2Cuβ(k)

P,1 (s1)
.

Lemma 44 (Mixture policy’s optimism). Let B† ≥ 4CuH
ξ . For any k ∈ U∁, πα(k)

with α(k) from
Lemma 43 satisfies,

V
πα(k)

,r+B†β
(k)

P,1 (s1) ≥ V π⋆,r
P,1 (s1) and V πα(k)

,u−2Cuβ
(k)

P,1 (s1) ≥ b .

42



Proof. The sufficient condition that V πα,r+B†β
(k)

P,1 (s1) ≥ V π⋆,r
P,1 (s1) to hold is

B† ≥
V π⋆,r
P,1 (s1)− V πα,r

P,1 (s1)

V πα,β(k)

P,1 (s1)
=

(1− α)
(
V π⋆,r
P,1 (s1)− V πsf ,r

P,1 (s1)
)

(1− α)V πsf ,β(k)

P,1 (s1) + αV π⋆,β(k)

P,1 (s1)

=
V π⋆,r
P,1 (s1)− V πsf ,r

P,1 (s1)

V πsf ,β(k)

P,1 (s1) +
α

1−αV
π⋆,β(k)

P,1 (s1)
.

By inserting α(k) = ξ

ξ+2V π⋆,2Cuβ(k)

P,1 (s1)
into α, i.e., α

1−α = ξ

2V π⋆,2Cuβ(k)

P,1 (s1)
,

B† ≥
V π⋆,r
P,1 (s1)− V πsf ,r

P,1 (s1)

V πsf ,β(k)

P,1 (s1) +
ξ

4CuV
π⋆,β(k)

P,1 (s1)
V π⋆,β(k)

P,1 (s1)
=

4Cu

(
V π⋆,r
P,1 (s1)− V πsf ,r

P,1 (s1)
)

2V πsf ,2Cuβ(k)

P,1 (s1) + ξ
.

Thus, when B† ≥ 4CuH
ξ , it holds that V πα(k)

,r+B†β
(k)

P,1 (s1) ≥ V π⋆,r
P,1 (s1). The second claim follows

from Lemma 43.

We are now ready to decompose 2 . Using Lemmas 43 and 44, we have

2 =
∑
k∈U∁

(
V π⋆,r
P,1 (s1)− V

π(k),r

(k),1 [κ](s1)

)

≤
∑
k∈U∁

(
V

πα(k)
,B†β

(k)

P,1 (s1) + V πα(k)
,r

P,1 [κ](s1)− V
π(k),r

(k),1 [κ](s1)

)

=
∑
k∈U∁

(
V

πα(k)
,B†β

(k)

P,1 (s1) + V πα(k)
,r

P,1 [κ](s1) + λ
(k,T )

V πα(k)
,u−2Cuβ

(k)

P,1 (s1)

−V π(k),†
(k),1 (s1)− V

π(k),r

(k),1 [κ](s1)− λ
(k,T )

V π(k),u
(k),1 (s1)

)
︸ ︷︷ ︸

3

+
∑
k∈U∁

V
π(k),†
(k),1 (s1)︸ ︷︷ ︸
4

+
∑
k∈U∁

λ
(k,T )

(
V π(k),u

(k),1 (s1)− V πα(k)
,u−2Cuβ

(k)

P,1 (s1)

)
︸ ︷︷ ︸

5

,

(19)

where λ
(k,T )

is defined in Line 10. Using Lemma 37, the term 4 is bounded as

4 ≤ V
π(k),(B†+2C†)β

(k)

P,1 (s1) .

Using Lemma 41, it holds that

4 ≤ (B† + 2C†)Õ
(
H
√
dK
)
= Õ

(
H4d5/2ξ−1

√
K
)
, (20)

where the last equality inserts B† = 4ξ−1CuH , Cu = Õ(dH), and C† = Õ(dHB†). We will bound
3 and 5 separately.

E.5.2 Optimistic Bounds

Lemma 45 (Optimism in composite value function). Suppose E2 holds. Then,

3 =
∑
k∈U∁

(
V

πα(k)
,B†β

(k)

P,1 (s1) + V πα(k)
,r

P,1 [κ](s1) + λ
(k,T )

V πα(k)
,u−2Cuβ

(k)

P,1 (s1)

− V
π(k),B†β

(k)

(k),1 (s1)− V
π(k),r

(k),1 [κ](s1)− λ
(k,T )

V π(k),u
(k),1 (s1)

)
≤ 0 .
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Proof. Using Lemma 18, for any k ∈ U∁, we have

V
π(k),B†β

(k)

(k),1 (s1) + V
π(k),r

(k),1 [κ](s1) + λ
(k,T )

V π(k),u
(k),1 (s1)

− V
πα(k)

,B†β
(k)

P,1 (s1)− V πα(k)
,r

P,1 [κ](s1)− λ
(k,T )

V πα(k)
,u−2Cuβ

(k)

P,1 (s1)

=V πα(k)
,f1

P,1 (s1) + V πα(k)
,f2

P,1 (s1) + λ
(k,T )

V πα(k)
,2Cuβ

(k)

P,1 (s1)

where f1 : J1, HK× S ×A → R and f2 : J1, HK× S ×A → R are functions such that

f1
h(s, a) =

∑
a∈A

(
π
(k)
h (a | s)

(
Q

π(k),r

(k),h [κ](s, a) + λ
(k,T )

Qπ(k),u

(k),h
(s, a)− κ lnπ

(k)
h (a | s)

))
−
∑
a∈A

(
πα(k)

h (a | s)
(
Q

π(k),r

(k),h (s, a) + λ
(k,T )

Qπ(k),u

(k),h
(s, a)− κ lnπα(k)

h (a | s)
))

f2
h(s, a) = δπ

(k),r
(k) − λ

(k,T )
δπ

(k),u
(k) .

It is well-known that the analytical maximizer of maxπ∈P(A)

∑
a∈A π(a)(x(a)− κ lnπ(a)) is

SoftMax
(
1
κx(·)

)
. Therefore, the function f1 is non-negative and thus V πα(k)

,f1

P,1 (s1) ≥ 0.

On the other hand, using Lemma 36, we have

f2
h(s, a) = δπ

(k),r
(k),h − λ

(k,T )
δπ

(k),u
(k),h

(a)

≥ −λ(k,T )
2Cuβ

(k)
h

Therefore, it holds that

V πα(k)
,f2

P,1 (s1) + λ
(k,T )

V πα(k)
,2Cuβ

(k)

P,1 (s1) ≥ 0 .

By combining all the results, we have 3 ≤ 0.

E.5.3 Bounds for Bisection Search

Using Lemma 43, 5 is further bounded by

5 =
∑
k∈U∁

λ
(k,T )

(
V π(k),u

(k),1 (s1)− V πα(k)
,u−2Cuβ

(k)

P,1 (s1)

)
≤
∑
k∈U∁

λ
(k,T )

(
V π(k),u

(k),1 (s1)− b
)
≤ Cλ

∑
k∈U∁

(
V π(k),u

(k),1 (s1)− b
)
.

We bound the last term using the bisection search in Algorithm 2. Note that we focus only the
case V π(k),0,u

(k),1 (s1) < b and V π(k),Cλ ,u
(k),1 (s1) ≥ b due to Line 4 and Line 3 in Algorithm 2. Due to the

definitions of λ
(k,t)

and λ(k,t) in Algorithm 2,

V π(k),λ(k,t)
,u

(k),1 (s1) < b and V π(k),λ(k,t)
,u

(k),1 (s1) ≥ b

hold for any t ∈ J1, T K. Therefore,

5 ≤Cλ

∑
k∈U∁

(
V π(k),λ(k,T )

,u
(k),1 (s1)− V π(k),λ(k,T )

,u
(k),1 (s1)

)

To bound the right-hand side, we derive the sensitivity of V π(k),λ,u
(k),1 (s1) with respect to λ.

Lemma 46 (Restatement of Lemma 8). Let X := K
(
1 +

8(1+Cλ)(Hκ+B†H+H)
κ

)
and Y :=

8(Hκ+B†H+H)
κ . For any k and λ ∈ [0, Cλ], it holds that∣∣∣V π(k),λ,u

(k),1 (s1)− V π(k),λ+ε,u
(k),1 (s1)

∣∣∣ ≤ XHH2Y ε .
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Proof. The proof is based on Lemma 2 from Ghosh et al. [18]. For notational simplicity, we denote
π := π(k),λ and π′ := π(k),λ+ε. Additionally, we use shorthand:

vrh :=
∥∥∥V π,r

(k),h[κ]− V
π′,r

(k),h[κ]
∥∥∥
∞

, qrh :=
∥∥∥Qπ,r

(k),h[κ]−Q
π′,r

(k),h[κ]
∥∥∥
∞

,

v†h :=
∥∥∥V π,†

(k),h − V
π′,†
(k),h

∥∥∥
∞

, q†h :=
∥∥∥Qπ,†

(k),h −Q
π′,†
(k),h

∥∥∥
∞

,

vuh :=
∥∥∥V π,u

(k),h − V π′,u
(k),h

∥∥∥
∞

, quh :=
∥∥∥Qπ,u

(k),h
−Qπ′,u

(k),h

∥∥∥
∞

.

For any h, we have

vrh =
∥∥∥πhQ

π,r

(k),h[κ]− π′
hQ

π′,r

(k),h[κ]
∥∥∥
∞
≤ Hκ∥πh − π′

h∥1 + qrh

v†h ≤ B†H∥πh − π′
h∥1 + q†h

vuh ≤ H∥πh − π′
h∥1 + quh .

Since πh and π′
h are softmax policies, using Lemma 19,

∥πh − π′
h∥1 ≤

8

κ

∥∥∥Qπ,†
(k),h +Q

π,r

(k),h[κ] + λQπ,u

(k),h
−Q

π′,†
(k),h −Q

π′,r

(k),h[κ]− (λ+ ε)Qπ′,u

(k),h

∥∥∥
∞

≤ 8

κ

(
q†h + qrh + Cλq

u
h + εH

)
Additionally,

qrh ≤
∥∥∥P̂ (k)

h

(
V

π,r

(k),h+1[κ]− V
π′,r

(k),h+1[κ]
)∥∥∥

∞
≤ Kvrh+1

q†h ≤
∥∥∥P̂ (k)

h

(
V

π,†
(k),h+1 − V

π′,†
(k),h+1

)∥∥∥
∞
≤ Kv†h+1

quh ≤
∥∥∥P̂ (k)

h

(
V π,u

(k),h+1 − V π′,u
(k),h+1

)∥∥∥
∞
≤ Kvuh+1 ,

where we used the fact that, for any V : S → R,∣∣∣P̂ (k)
h V

∣∣∣(s, a) = ∣∣∣∣∣ϕ(s, a)⊤(Λ(k)
h )−1

k−1∑
i=1

ϕ(s
(i)
h , a

(i)
h )V (s

(i)
h+1)

∣∣∣∣∣
≤

∥∥∥∥∥(Λ(k)
h )−1

k−1∑
i=1

ϕ(s
(i)
h , a

(i)
h )

∥∥∥∥∥
2

∥V ∥∞ ≤ K∥V ∥∞ .

By combining all the results,

vrh ≤ K

(
8Hκ

κ
+ 1

)
vrh+1 +K

8Hκ

κ
v†h+1 +K

8HκCλ

κ
vuh+1 +

8Hκ

κ
εH

v†h ≤ K
8B†H

κ
vrh+1 +K

(
8B†H

κ
+ 1

)
v†h+1 +K

8B†HCλ

κ
vuh+1 +

8B†H

κ
εH

vuh ≤ K
8H

κ
vrh+1 +K

8H

κ
v†h+1 +K

(
8H

κ
+ 1

)
Cλv

u
h+1 +

8H

κ
εH .

Let X := K
(
1 +

8(1+Cλ)(Hκ+B†H+H)
κ

)
and Y :=

8(Hκ+B†H+H)
κ . Then,

vrh + v†h + vuh ≤ X(vrh+1 + v†h+1 + vuh+1) + Y Hε

≤ X2(vrh+2 + v†h+2 + vuh+2) +XYHε+ Y Hε

≤ . . .

≤
(
XH + · · ·+X + 1

)
Y Hε .
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We are now ready to bound 5 Applying Lemma 46 to 5 , we obtain the following lemma.

Lemma 47. When T = Õ(H), it holds that

5 ≤ Cλ

∑
k∈U∁

(
V π(k),λ(k,T )

,u
(k),1 (s1)− V π(k),λ(k,T )

,u
(k),1 (s1)

)
≤ Õ(1) .

Proof. Due to the bisection search update rule, λ
(k,T ) − λ(k,T ) = 2−T . Thus,

5 ≤ Cλ

∑
k∈U∁

(
V π(k),λ(k,T )

,u
(k),1 (s1)− V π(k),λ(k,T )

,u
(k),1 (s1)

)
≤ XHCλKH2Y 2−T

where the inequality uses Lemma 46 with X and Y defined in Lemma 46. Thus, 5 ≤ Õ(1) holds
by setting T = H polylog(X,H, Y ). This concludes the proof.

We are now ready to prove Theorem 4. The proof is under the parameters of: ρ = 1, Cr = Õ(dH),
Cu = Õ(dH), C† = Õ(d2H3ξ−1), B† = Õ

(
dH2ξ−1

)
, κ = Ω̃

(
ξ3H−4d−1K−0.5

)
, T = Õ(H),

and Cλ = Õ
(
dH4ξ−2

)
.

E.5.4 Proof of Theorem 4

We condition the proof with the good events E1 ∩ E2, which holds with probability at least 1− 3δ
by Lemmas 33 and 34.

In Algorithm 2, the deployed policy switches between πsf ∈ Πsf and the softmax policies. Since
Algorithm 2 deploys the softmax policies only when V π(k),0,u

(k),1 (s1) ≥ b, due to Lemma 36 and the
good events, all the deployed policies satisfy π(k) ∈ Πsf for all k ∈ J1,KK. This concludes the proof
of the zero-violation guarantee.

Next, we derive the regret bound. Recall from Equation (17) that

Regret(K) ≤ Õ
(
d3H4ξ−2

)
+ 1 + 2 + κKH lnA ≤ Õ

(
d3H4ξ−2

)
+ 1 + 2 + Õ(

√
K) ,

where the second inequality is due to the value of κ.

Using Equation (18),
1 ≤ Õ

(
H2d3/2

√
K
)
.

Using Equation (19), 2 can be decomposed as:

2 ≤ 3 + 4 + 5 .

Each term can be bounded as:

• 3 ≤ 0 by Lemma 45

• 4 ≤ Õ
(
H4d5/2ξ−1

√
K
)

by Equation (20),

• 5 ≤ Õ(1) by Lemma 47

Finally, by combining all the results, we have

Regret(K) ≤ Õ
(
d3H4ξ−2

)
+ Õ

(
H2d3/2

√
K
)
+ Õ

(
H4d5/2ξ−1

√
K
)
.

This concludes the proof of the sublinear regret guarantee.
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F Numerical Experiments

This section presents empirical results supporting Theorem 4, which guarantees
√
K regret and

episode-wise safety of OPSE-LCMDP. We also evaluate how often OPSE-LCMDP deploys the
safe policy πsf , a key technique for achieving sublinear regret (Theorem 3). All experiments were
conducted within 30 minutes using eight Intel Core i7 CPUs and 32 GiB of RAM.

The source code for the experiment is available at https://github.com/matsuolab/
Episode-Wise-Safe-Linear-CMDP.

We compare OPSE-LCMDP against the previous state-of-the-art linear CMDP algorithm by
Ghosh et al. [18] and the tabular CMDP algorithm called DOPE [8]. Ghosh et al. [18] achieves
Õ(
√
K) bounds for both regret and violation regret, and DOPE achieves Õ(

√
K) regret with zero

episode-wise violation.

For a sequence of policies {π(k)}k∈[1,K], the violation regret is defined as:

Vio(K) :=
∑K

k=1 max
{
b− V π(k),u

P,1 (s1), 0
}
. (21)

Clearly, if all the policies satisfy π(k) ∈ Πsf , the violation regret is zero.

Additionally, we also report the performance of a uniform policy defined by πh(· | s) = 1/A for
all h, s, to highlight the sublinear regret of our algorithm.

Implementations of Ghosh et al. [18] and DOPE. Ghosh et al. [18]’s algorithm can be
implemented similarly to ours, with a few modifications: remove the πsf deployment trigger,
eliminate the pessimism compensation bonuses by setting C† = B† = 0, and apply an optimistic
constraint bonus instead of our pessimistic one (i.e., use a negative sign for Cu). We use Cr and
Cu to denote the bonus scaling parameters for Ghosh et al. [18]. See Algorithm 1 of Ghosh et al.
[18] for further implementation details.

The DOPE algorithm can be implemented in tabular environments with a moderately small state
space. It computes the policy π(k) by solving the following optimistic–pessimistic problem:

π(k) ∈ max
π∈Π

max
P ′∈P(k)

V π,r+Crβ
(k)

P ′,1 (s1) such that V π,u−Cuβ
(k)

P ′,1 (s1) ≥ b , (22)

where β
(k)
h (s, a) denotes the bonus at step h for the state-action pair (s, a) and P(k) denotes the

confidence set for the transition kernel. Specifically, using the visitation count11 n
(k)
h (s, a, s′) :=∑k

k′=1 1[s
(k)
h = s, a

(k)
h = a, s

(k)
h+1 = s′], the bonus and the confidence set are defined as

β
(k)
h (s, a) =

∑
s′∈S

γ
(k)
h (s, a, s′) where γ

(k)
h (s, a, s′) ∝

√√√√ P̂
(k)
h (s′ | s, a)(1− P̂

(k)
h (s′ | s, a))

n
(k)
h (s, a) ∨ 1

,

n
(k)
h (s, a) :=

∑
s′∈S

n
(k)
h (s, a, s′) , and P̂

(k)
h (s′ | s, a) :=

n
(k)
h (s, a, s′)

n
(k)
h (s, a) ∨ 1

.

For simplicity, we omit absolute constants and logarithmic factors, and use this simplified form in
all experiments. Further implementation details can be found in Bura et al. [8].

For each environment, we select the hyperparameters of each algorithm using heuristic adjustments
to balance exploration and exploitation. To ensure numerical stability, we assign relatively small
values to these parameters. The detailed values are provided below.

Synthetic tabular environments. To evaluate the exact regret values, we conduct experiments on
tabular CMDPs with a small state space size. Tabular CMDP is the special case of linear CMDP with
d = |S| and allows us to compute the optimal policy π⋆ by linear programming.

11
1[E] equals 1 if the event E is true, and 0 otherwise. For two scalars a and b, we use shorthand a ∨ b :=

max{a, b}.
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We instantiated CMDPs with |S| = 5, |A| = 3, H = 4, employing a construction strategy akin to that
of Dann et al. [9]. For all s, a, h, the transition probabilities Ph(· | s, a) were independently sampled
from Dirichlet(0.1, . . . , 0.1). This transition probability kernel is concentrated yet encompasses
non-deterministic transition probabilities.

The reward values for the objective rh(s, a) are set to 0 with probability 0.1 and to 1 otherwise.
The utility values for the constraint uh(s, a) are assigned in the same way. The initial state
s1 is randomly chosen from S and fixed during the training. The constraint threshold is set as
b = 0.6maxπ∈Π V π,u

P,1 (s1).

We choose the hyperparameters of the algorithms as follows:

• OPSE-LCMDP: Cr = Cu = Cd = 1.0, Cλ = 300, B† = 1.0, and κ = 0.1.

• Ghosh et al. [18]: Cr = Cu = 1.0 and κ = 0.1.

• DOPE [8]: Cr = Cu = 1.0.

Media Streaming CMDP Environments. As a realistic environment, we also evaluate algorithms
on the media streaming environment from Bura et al. [8]. In the environment, a wireless base station
(agent) transmits media to a device using either a fast or slow service option, each incurring different
costs. The slow and fast services correspond to actions a = 1 and a = 2, respectively.

The fast service succeeds with probability µ1, and the slow one with µ2 = 1− µ1, where both follow
independent Bernoulli distributions. At each environment construction, we randomly sample µ1

from [0.5, 0.9]. Packets received at the device are stored in a media buffer and played out according
to a Bernoulli process with parameter ρ. We sample ρ uniformly from [0.1, 0.4].

Let Ah, Bh ∈ {0, 1} denote the number of arriving and departing packets, respectively. The media
buffer length represents the state, and transitions as sh+1 = min{max{0, sh +Ah −Bh}, L} where
L denotes the maximum buffer length. We set L = 5, |S| = L + 1, and H = 4. The initial state
is set to s1 = 0.

The objective is to deliver enough packets to the buffer while limiting the use of the fast service.
Accordingly, the agent receives a reward rh(s, ·) = 1{s ≥ 0.3L} and incurs a constraint utility
uh(·, a) = 1{a = 1}. The constraint threshold is set as b = 0.6maxπ∈Π V π,u

P,1 (s1).

We choose the hyperparameters of the algorithms as follows:

• OPSE-LCMDP: Cr = Cu = Cd = 2.0, Cλ = 300, B† = 1.0, and κ = 0.1.

• Ghosh et al. [18]: Cr = Cu = 2.0 and κ = 0.1.

• DOPE [8]: Cr = Cu = 1.0.

Synthetic linear environments. Building on the experiment by Amani et al. [4], we randomly
construct linear CMDPs in which the number of states is larger than the feature map dimension. We
test the algorithms on environments with S = 100, A = 3, d = 5, and H = 4. This setup has a
relatively large state space while still allowing us to analytically compute the optimal policy and
exact regret.

For each (s, a) ∈ S × A, the feature vector ϕ(s, a) ∈ Rd is sampled from Dirichlet(0.1, . . . , 0.1).
Recall from Assumption 2 the definition of µh =

(
µ1

h, . . . ,µ
d
h

)
∈ RS×d. For each

(h, i) ∈ J1, HK × J1, dK, we sample µi
h from Dirichlet(0.1, . . . , 0.1). With these µ and ϕ,

we set Ph(s
′ | s, a) = µh(s

′)⊤ϕ(s, a). This construction ensures that Ph(· | s, a) = 1 becomes a
valid probability distribution for any (h, s, a).

For the reward and utility functions, we sample both θr
h and θu

h from a uniform distribution over
[0, 1]d. The reward and utility functions are then constructed such that rh(s, a) = (θr

h)
⊤ϕ(s, a) and

uh(s, a) = (θu
h)

⊤ϕ(s, a).

The initial state s1 is randomly chosen from S and fixed during the training. The constraint threshold
is set as b = 0.68maxπ∈Π V π,u

P,1 (s1).
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Figure 1: Numerical comparison of the algorithms in the synthetic tabular environment (Top), the
media streaming environment (Middle), and the synthetic linear environment (Bottom). We do not
run DOPE in the linear CMDP environment due to its computational intractability (see Remark 3).
Left: regret (Equation (6)), Middle: violation regret (Equation (21)), and Right: total number of πsf

deployments in OPSE-LCMDP.

Remark 3. We do not run the DOPE algorithm in this linear environment due to its heavy compu-
tational cost. Using the extended LP technique introduced by Efroni et al. [13], the optimization
problem in (22) can be reformulated as the following standard LP problem:

minx c⊤x such that Ax = b and Gx ≥ h ,

where parameters are defined appropriately. This LP involves HS2A decision variables and more
than HS2A number of constraints (see [13] for more details). Therefore, in our synthetic linear
CMDP experiment, the matrices A and G require at least 1010 entries, which is computationally
intractable in practice.

Results. Figure 1 shows the performance of the algorithms, averaged over 10 random seeds, with
regret plotted on the left, violation regret in the middle, and the total number of πsf deployments
on the right.

Across all settings, both OPSE-LCMDP and the algorithm by Ghosh et al. [18] exhibit sublinear regret.
However, while OPSE-LCMDP maintains zero constraint violation throughout, Ghosh et al. [18] con-
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sistently violates the constraint, leading to increasing violation regret. These results empirically val-
idate Theorem 4, confirming the Õ(

√
K) regret and episode-wise safety guarantees of our algorithm.

While DOPE achieves sublinear regret with zero-violation, it is limited to the tabular settings
where S is small, as described in Remark 3. This highlights the computational tractability of our
OPSE-LCMDP in large S, which supports Remark 2.

Finally, the right plot shows that OPSE-LCMDP explores the environment using πsf primarily during
the early stages of training, and stops deploying it after approximately 104 episodes. This behavior
supports Theorem 3.
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