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Abstract

We study the reinforcement learning (RL) problem in a constrained Markov deci-
sion process (CMDP), where an agent explores the environment to maximize the
expected cumulative reward while satisfying a single constraint on the expected
total utility value in every episode. While this problem is well understood in the
tabular setting, theoretical results for function approximation remain scarce. This
paper closes the gap by proposing an RL algorithm for linear CMDPs that achieves
O(VK) regret with an episode-wise zero-violation guarantee. Furthermore, our
method is computationally efficient, scaling polynomially with problem-dependent
parameters while remaining independent of the state space size. Our results sig-
nificantly improve upon recent linear CMDP algorithms, which either violate the
constraint or incur exponential computational costs.

1 Introduction

Safe decision-making is essential in real-world applications such as plant control and finance [19].
Constrained Markov decision process (CMDP) is a mathematical framework for developing decision-
making algorithms with formal safety guarantees [2]. This paper studies the reinforcement learning
(RL) problem in finite-horizon CMDPs, where an agent explores the environment to maximize the
expected cumulative rewards while satisfying a single constraint on the expected total utility value.

Safe exploration has been established in the tabular CMDP settings. Several works [27, 8, 47]
achieve episode-wise zero-violation RL with O(v/K) regret for K number of episodes, ensuring
constraint satisfaction in every episode. Their approach consists of two phases: deploying a known
strictly safe policy 7 and then updating policies via linear programs (LPs), which optimizes an
optimistic objective while satisfying a pessimistic constraint. Deploying 7 is necessary to ensure
feasible solutions for the LPs once enough environmental information is collected.

*Current affiliation: Institute of Science Tokyo, Tokyo, Japan, and DENSO IT Laboratory, Tokyo, Japan.
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Table 1: Representative CMDP results with K -dependent regrets. See Section 3 for CMDP notations.

Paper Epi.-Wise Safe?  Comp. Efficient? Regret
Tabular Yu et al. [47] Yes |S| dependent O ' /ISPP|AJHPK)
Ghosh et al. [18] No No O(Vd3H*K)
Linear  Roknilamouki et al. [36]  Instantaneous Yes O WP H'K)
OPSE-LCMDP (Ours) Yes Yes O(¢ 'V H?K)
Bandit lower bound [32] Yes N/A Q(max{/[A|K,£°})

* The regrets of [47] and ours include an additional 5(5’2) constant. We omit them from the table due to space limitations. [36, 32, 4]
avoid the constant by assuming access to a safe action vector, but they are limited to instantaneous constraints (see Section 2.1). Including
ours, existing safe algorithms [27, 8, 47, 36, 3, 32, 22] incur 6(5’ ERY K) regret. Whether this can be improved to (7)(\/ K') remains open.

While safe exploration is well-established in tabular CMDPs, extending it to large-scale CMDPs
remains a major challenge. LP-based methods are impractical at scale due to their state-dependent
computational cost.? As a result, even in linear CMDPs, where value functions have linear structure,
episode-wise safe RL has not been achieved. The state-of-the-art linear CMDP algorithm [18], which

achieves the O(\/? ) violation regret,’ incurs an exponential computational cost of K, where H
is the horizon. Several studies achieve safe RL under instantaneous constraints [4, 36],* a special sub-
class of the episode-wise safety that can be overly conservative (e.g., in drone control, temporary high
energy consumption is tolerable, but full battery depletion is not). Table 1 summarizes representative
algorithms, with additional literature in Appendix B. In short, a fundamental open question remains:

Can we develop a computationally efficient’ linear CMDP algorithm with
sublinear regret and zero episode-wise constraint violation?

Contributions. We propose Optimistic-Pessimistic Softmax Exploration for Linear CMDP (OPSE-

LCMDP), the first algorithm for linear CMDPs that achieves O (+/K )-regret and episode-wise
safety. Our approach builds on the optimistic-pessimistic exploration framework with two key
innovations for large-scale state-space problems: (i) a new deployment rule for 75f, and (ii) a
computationally efficient method to implement optimism for the objective and pessimism for the
constraint within the softmax policy framework [16, 18].

Section 2 first analyzes the linear constrained bandit problem as a “warm-up” for linear CMDPs
(H = 1 with an expected instantaneous constraint), highlighting the key role of the 7' deployment
rule in avoiding linear regret. Previous instantaneous constraint literature limits 7% deployments by
representing the safe action as a vector asf € R4 [32, 33, 22, 3, 4]. However, extending this approach
to episode-wise safety is non-trivial, as the constraint is imposed on policies rather than actions, and
policies may be nonlinear functions (e.g., softmax mapping from value functions) rather than single
vectors. We overcome this challenge by showing that if 75f is deployed only when the agent is
less confident in 75f’s safety, the number of deployments is logarithmically bounded (Theorem 1).

Section 3 then extends the bandit result to RL in CMDPs. To enable optimistic-pessimistic
exploration in linear CMDPs, OPSE-LCMDP employs the composite softmax policy (Definition 3),
which adjusts optimism and pessimism by controlling a variable \. OPSE-LCMDP efficiently
searches for the best A\ through bisection search, achieving a polynomial computational cost in
problem parameters, independent of state-space cardinality (Remark 2). Overall, our techniques—the
novel 7 deployment rule and softmax-based optimistic-pessimistic exploration—achieve the first
episode-wise safe RL with sublinear regret and computational efficiency in linear CMDPs.

Mathematical notations. The set of probability distributions over a set S is denoted by Z(S).
For integers a < b, let [a,b] := {a,...,b}, and [a,b] := 0 if a > b. For x € RY, its n-th element
is x,, or x(n). The clipping function clip{x, a, b} returns x’ with x;, = min{max{x;,a},b} for
each i. We define 0 := (0,...,0)" and 1 := (1,...,1) T, with dimensions inferred from the context.
For a positive definite matrix A € R4*? and x € R?, we denote ||x||, = VxT Ax. For positive
sequences {a, } and {b, } withn = 1,2,..., we write a,, = O (b,,) if there exist C > 0and N € N

>While some works (e.g., 30) proposed LP methods for unconstrained linear MDPs, they remain unsuitable
for our exploration setting or still incur state-dependent computational costs (see Appendix B).

3Violation regret denotes the total amount of constraint violation during exploration.

*Inst. constraint requires uh(sik), agbk)) > bVh,k € [1,H] x [1, K] (see Section 3 for notations).

3 An algorithm is comp. efficient if its cost is polynomial with problem parameters, excluding the state space.



such that a,, < Cb,, forall n > N, and a,, = Q(b,) for the reverse inequality. We use O(-) and €2(-)
to further hide the polylogarithmic factors. Finally, for x € R?, we denote its softmax distribution
as SoftMax(x) € Z([1,d]) with its i-th component SoftMax(x); = exp(x;)/(D>_, exp(x;)).

2 Warm Up: Safe Exploration in Linear Constrained Bandit

To better illustrate the core ideas of our CMDP algorithm, this section introduces a contextual linear
bandit variant based on Pacchiano et al. [32]. All the proofs in this section are provided in Appendix D.
Let A C R? be the action space, a compact set of bounded d-dimensional vectors. Without loss of
generality, we assume ||a|| < 1 for any a € A. At each round £, the agent selects a policy 7(*) €
2P (A), samples an action a®) ~ 7(*) and observes the reward r(*) = OIa(’“) + ss,k) and utility
uk) = OIa(k) +s,(ﬁ). Here, 6,., 0, € R? are vectors unknown to the agent such that [|@..||2, [|0. |2 <
B, and s&’“), 52“ are R-sub-Gaussian random noises. For any policy 7 and g € {r,u}, let g, :=
Ea~r[(04,a)]. We consider a constraint such that the expected utility must be above the threshold

b € R. Formally, let II* := {7 |u, > b} denote the set of safe policies. The agent’s goal is to
achieve sublinear regret while satisfying the expected instantaneous constraints defined as follows:

Regret(K) := Zle e — 7ry = o(K) such that (%) € TIf vk € [1, K] , (D

where 7 € argmax, .y 7r. A sublinear regret exploration is efficient, as its averaged reward
approaches the optimal value, i.e., limg o %T’ﬂ.(}() — r.+. Finally, we assume access to a strictly
safe policy in ITf, as deploying arbitrary policies without this assumption risks violating constraints®.

Assumption 1 (Safe policy). We have access to 757 € II*! and ¢ > 0 such that u, .« —b > £ .

2.1 Technical Challenge: Zero-Violation with a Safe Policy

The key to efficient and safe exploration is the optimistic-pessimistic exploration, which constructs

an optimistic reward Fgrk) > r, and a pessimistic utility %(Tk) < u,, and then computes a policy by:

maXyc g (A) fSJ“’ such that g&’“) >b. 2)
Here, fSZ‘?) and ggrk) are designed to quickly approach r, and u, as data accumulates for efficient
exploration [1]. However, although Equation (2) can have feasible solutions when u, ~ u,, the
pessimistic constraint may not have any feasible solution in the early stages of exploration.

To ensure that (2) always has a solution, a common bandit approach assumes access to a safe action
a*f € A such that HIan > b+ &, and then ensures the feasibility of (2) by leveraging the vector
representation of asf € RY. For example, [32, 33, 3] designed g;k) using the orthogonal direction
(an)L = a™ — a*/||a*||,, while [22] assume a*' = 0 € A with a negative constraint threshold

b < 0. Both approaches ensure that a policy playing a*f with probability 1 is always feasible in (2).

However, extending this safe action technique to episode-wise safe RL is non-trivial, as the episode-
wise constraint is imposed on policies rather than actions, and policies in linear CMDPs may be
nonlinear functions (e.g., softmax mappings from value functions) rather than single vectors. To ad-
dress this challenge, we first develop a safe bandit algorithm without relying on safe action techniques.

2.2 Algorithm and Analysis

We summarize the proposed Optimistic-Pessimistic Linear Bandit with Safe Policy (OPLB-SP)

in Algorithm 1, which follows the standard linear bandit framework (see Abbasi-Yadkori et al.

[1]). Throughout this section, we analyze Algorithm 1 under the parameters listed in its Input line.
~(k S ~(k N

Let 05 = (AR =151 4@ and Hi ) = (AP =15 87Ea(@y () denote the regularized

least-squares estimates of @, and 8, respectively, where AP = oI + Zf:_ll a®@®) T, Let

~(k ~(k
k)= EaNﬂ[aTBE. )] and @) = EaNW[aTO,i )] be the estimated reward and utility functions.

The knowledge of £ is for simplicity. If unknown, we can estimate it by deploying 7*¥ with a little overhead.
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Algorithm 1: Optimistic-Pessimistic Linear Bandit with Safe Policy

Input: Regression coefficient p = 1, bonus scalers C,, = B + RV dIn4K§~! and
Cr = Cy(1 + 2B¢™1), safe policy 7, and iteration length K € N
fork=1,...,Kdo

Let ﬁgf), ﬂfk), and a;’” be bonus, estimated reward and utility, respectively (see Section 2.2)
if Cuﬂszg > % then 7 := 7f /+ Deploy = st
else 7%) € arg MaX, ¢ g (a) 7 1+ 8% such that ) — €, 8% > b
Sample an action a® ~ 7 and observe reward r*) and utility u®,

if 7 is unconfident =x/

Using the bonus function B = B [lall (A®)~ 1 with the well-established elliptical confidence
bound argument for linear bandits [1], the following confidence bounds hold:

Lemma 1 (Confidence bounds). For any m and k, with probability (w.p.) at least 1 — 6,
re+2C0,80) > 70 4 C 80 > v and  ugr > Al — OB > up — 20,80 .

Based on Lemma 1, Algorithm 1 solves the following optimistic-pessimistic (Opt-Pes) problem.
The optimistic objective promotes efficient exploration, while the pessimism enforces the constraint
satisfaction:

Opt-Pes (Line 4) (%) € argmax, ¢ 54y 7 + G suchthat @ — 0,88 >b. (3)

This is a convex optimization problem when the set A satisfies certain structural assumptions, such as
being discrete or ellipsoidal (see, e.g., Section 19.3 of Lattimore and Szepesvari [26]). To emphasize
our approach to the technical challenge in Section 2.1, this section omits the computational details
of (3) and focuses instead on the core technique for efficient exploration under episode-wise safety.

2.2.1 Zero-Violation and Logarithmic Number of 7! Deployments

Since 7(¥) is either 7! or the solution to Opt-Pes (if feasible), all deployed policies in Algorithm 1
satisfy the constraint with high probability due to the pessimistic constraint. However, as noted in
Section 2.1, the pessimistic constraint may render Opt-Pes infeasible, requiring Line 4 to wait until

the bonus ﬁSf) shrinks sufficiently. Yet, waiting too long overuses the suboptimal 7!, leading to poor
regret. Thus, exploration must keep the number of iterations where Equation (2) is infeasible bounded.

The core technique of Algorithm 1 lies in the 75f deployment trigger based on the confidence of

k

7f. Specifically, we solve the optimistic-pessimistic optimization whenever Bfrf) < —5—; otherwise,

<5
we correct the data by deploying 7! (see Line 3). Under this trigger, the following Theorem 1

ensures that the number of 7' deployments grows logarithmically with the iteration length K.
Definition 1 (757 unconfident iterations). Let I/ be the set of iterations when Algorithm 1 is unconfi-
dentin 7, ie., U == {k € [1,K] | S €/(2C,)}. Let 1® := [1, K] \ U be its complement.

st

Theorem 1 (Logarithmic |/| bound). I holds w.p. at least 1 — 6 that || < O(dC2¢~2In(Ké~1)).

The proof utilizes the well-known elliptical potential lemma [1]. Intuitively, it ensures that the
confidence bounds shrink on average, thereby limiting the number of iterations where the algorithm
remains unconfident in 7%f. He et al. [21], Zhang et al. [S0] employed a similar technique in linear
bandits to ensure the suboptimality of policies after sufficient iterations.

Moreover, combined with Lemma 1, the following Lemma 2 ensures that, after logarithmic iterations,

policies around 75t will become feasible solutions to Opt-Pes and Line 4.
. . T . H k) . 5_20u18::;)
Lemma 2 (Mixture policy feasibility). Consider k € U". Let o¥) == TN +2Cfu6i’i" For any

o< [O, oz(k)], the mixture policy mo = (1 — )7t + an* satisfies U, — 2C’uﬂ,(r? >b.

Note that the mixture policy 7, is introduced only to ensure the feasibility of Opt-Pes; it does not
need to be computed in the algorithm.



Finally, Lemma 1 and Lemma 2 directly imply the following zero-violation guarantee:

Corollary 1 (Zero-violation). W.p. at least 1 — 6, Algorithm 1 satisfies 7*) e 115 for any k.

2.2.2 Regret Analysis

The remaining task is to ensure sublinear regret. By Theorem | and Lemma 1, the regret is
decomposed as:

Regret(K) S 6(dBC§§72) + 3Cr Zkeuc ﬂ;rk) @ + Zkeuﬂ (7'71-* — ?fr]f)k) - Cr ‘I(Tk)

)
Using the elliptical potential lemma [1], we can bound () < (5(07, VdK).

For the term (2), when there is no constraint in Opt-Pes, the common strategy is bounding (2) using
Tox — éﬁl) - C, B,(rk) < 0, leveraging the optimism due to Lemma 1 with the maximality of 7(*) in
Opt-Pes (see, e.g., Abbasi-Yadkori et al. [1]). However, due to the pessimistic constraint in Opt-Pes,

7* may not be a solution to Opt-Pes, necessitating a modification to this approach.

Recall from Lemma 2 that, for k € /C, the mixture policy 7, = (1 — a®)7sf 4 oF)7* satisfies

Ur oy — 2C, BT(& o = b. For this 7,,(x), the following optimism with respect to 7* holds:

Lemma 3 () optimism). If C,. > 2BC,£71L, forany k € U, it holds Tr gyt CT,B(k) > o,

T o (k)

Since 7, (x) is a feasible solution to Opt-Pes, and 7(*¥) is its maximizer, when C,. > Cyu(1+42B¢ _1),

(a) k k k (b) k () ~
@D < Xpeue g + Crﬁga)m - ﬁ(% - TBET(’)C) < 2keus CT@(TQ)(M <O(CVdK), 4

where (a) uses Lemma 3, (b) uses Lemma 1, and (c) is bounded similarly to (D. This optimism via
a mixture policy technique is adapted from tabular CMDPs [27, 8] to the linear bandit setup. By
combining all the results, Algorithm 1 archives the following guarantees:

Theorem 2. If OPLB-SP is run with the parameters listed in its Input line, w.p. at least 1 — ¢,
7®) e I forany ke [1,K] and Regret(K) < (5(dBC’3§72 +CVdK) .

When B = R = 1, the regret bound simplifies to 6(d2§_2 + & WABK).

In summary, OPLB-SP relies on three components: (i) optimistic-pessimistic updates (Opt-Pes),
(ii) a logarithmic number of 7! deployments (Theorem 1), and (iii) compensation for the pessimism
(Lemma 3). Building on these components, the next section develops a linear CMDP algorithm.

3 Safe Reinforcement Learning in Linear Constrained MDP

A finite-horizon CMDP is defined as a tuple (S, A, H, P,r,u,b, s1), where S is the finite but
potentially exponentially large state space, A is the finite action space (|A| = A),” H € N is the
episode horizon, b € [0, H] is the constrained threshold, and s; is the fixed initial state. The reward
and utility functions r,u : [1, H] x & x A — [0, 1] specify the reward r}, (s, a) and constraint utility
up (s, a) when taking action a at state s in step h. Finally, P.(- | -,-) : [1, H] x S x A x § — [0, 1]
denotes the transition kernel, where Py (s’ | s, a) denotes the state transition probability to a new
state s’ from a state s when taking an action a in step h. With a slight abuse of notation, for functions
VS — Rand Py, we write (P,V)(z,a) =3, cs V(y)Pr(y | z,a).

Policy and (regularized) value functions. A policy is definedas 7.(- | -) : [1, H] xS x.A — [0,1],
where 7, (a | s) gives the probability of taking an action a at state s in step h. The set of all the
policies is denoted as II. With an abuse of notation, for any policy 7 and @ : S x A — R, let 7,
be an operator such that (7,Q)(s) = >_,c 4 ™n(a | $)Q(s,a). For a policy 7, transition kernel P,

"While Section 2 permits infinite actions, we here restrict to the finite case. Even then, episode-wise safe
exploration in linear CMDP is non-trivial, and infinite actions would further complicate the regret analysis.



reward function g : [1, H] x § x A — R, and entropy coefficient k > 0, let Q5% k] : S x A - R
and V;,i 7[k] : S = R denote the entropy-regularized value functions at step h satisfying:

T 6] = g + (P VIS o[, VESTK] = mu(QEIK] — wlnmy), and VS, plk] = 0.
For k = 0, we omit x, e.g., QB = Q57 [0]. We denote h,; == h(1 + x1In A) for h € [1, H].
For h € [1, H], let w},;, € A(S x A) denote the occupancy measure of 7 in P at step h such that
wpp(s,a) =P(sp = s,ap =a|m,P) V(hs,a) € [l,H xSx A, 5)

where the expectation is taken over all possible trajectories, in which a, ~ m,(- | s,) and
Shy1 ~ Pn(-| sn,an). With a slight abuse of notation, we write wf ,,(s) = >, c 4 wh (s, a).

Learning Setup.  An agent interacts with the CMDP for K episodes using policies 7(1), ..., 7(F) ¢

II. Each episode k starts from s;. At step h in episode k, the agent observes a state sgc), selects

an action agtk) ~ Tl'}(lk)(' | sglk)), and transitions to 32’21 ~ Py(-] sh ,aé )). The algorithm lacks

knowledge of the transition kernel P, while r and u are known for simplicity. Extending our setting
to unknown stochastic reward and utility is straightforward (see, e.g., Efroni et al. [13]).
To handle a potentially large state space, we consider the following linear MDP assumption:

Assumption 2 (Linear MDP). We have a known feature map ¢ : S x A — R? satisfying:
there exist unknown d (signed) measures p), = (p},..., u¢) € R9*4 such that Py (s’ | s,a) =

(s T (s, a), and known vectors 65, 8% € R? such that r, (s, a) = (87) " ¢(s,a) and us (s, a) =
(OZ)T(;S(S a) We assume sup, ,,H(;S(s a)ll, < 1and ||VTuhH2 < Vd for any V € R such that
Vil <

Let m € argmax, cpr V5 (s1) be the optimal policy, where T := {7 | V1"(s1) > b} is the
set of safe policies. The goal is to achieve sublinear regret under episode-wise constraints:

Regret(K) = Y0 VA" (s1) = VA, " (s1) = o(K) such that ) € I Vk € [K]. (6)
Finally, we assume the strictly safe policy similar to Section 2.

Assumption 3 (Safe policy). We have access to 7' € II*f and ¢ > 0 such that V5 Slf’“(sl) —-b>¢.

3.1 Technical Challenge: Optimistic-Pessimistic Optimization in Linear CMDP

Our linear CMDP algorithm builds on OPLB-SP in Section 2: deploying an optimistic-pessimistic
policy when confident in 7°f; otherwise, it uses 7. We will logarithmically bound the number of
7%f deployments, similar to Theorem 1, and ensure optimism through a linear mixture of policies,
as in Lemma 2. However, computing an optimistic-pessimistic policy in the linear CMDP setting,
similar to Opt-Pes, presents a non-trivial challenge. This section outlines the difficulties.

Following standard linear MDP algorithm frameworks (e.g., Jin et al. [23], Lykouris et al.

[28]), for each h,k, let B(k) : (s,a) — ||(i)(s,a)||(A<k)),1 be the bonus, where Aflk) =
h

pI + Zi:ll (ﬁ(sgj), agf))d)(sgl), agb)) and p > 0. Forany V' : S — R, let ﬁ(k V be the next-step
. E k k

value estimation defined as: ( .,(L )V)(s, a.) = .qb(s7 a)T (A Al )) Do 11 (b(sgf), aglz))V(sglzil) We

construct the following optimistic and pessimistic value functlons for reward and utility, respectively:

Definition 2 (Clipped value functions). Let C.., Cy, Cy, BT > 0. For each k, h, 7, and x > 0, define

eré;,h[ B Q(k)th k;h S x A%RandV?,;;h[ 1, V( ) V’(Tk?h S — R such that:

=T, . k =T,T =T,
Q(kg,h[ﬂ] = 1y, + clip{C, ;(L P( )V(k) h+1[ k], 0, Hg — hy}, V( ;,h[/‘ﬁ] = Wh(Q(k;,h[H] -
=, k . k ™, T ~7s
Qiy,h = By + clip{Cy B + Bf )V( Wt 0 Br(H —h)} Vg = mQuyp »

U . (k) Hk) U, U
Q(k) L = Un + clip{—C + P, V(k) hi10 0o H—h},  and V k),h 7ThQ(k),h :

771—-'-

We set Vi g ls] = Vi i1 = Vi) m1 = 0. For k=0, omit s, e.g., Quyn = Qi nl0].
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Algorithm 2: Optimistic-Pessimistic Softmax Exploration for Linear CMDP
Input: Regr. coeff. p = 1, bonus scalers C,. = O(dH), C,, = O(dH), C; = O(d*H3¢™1),

B; = (5(dH2£_1), entropy coeff. kK = §(£3H_4d_1K_0'5), search length T = (5(H),
A-threshold C = O (dH*€~?), safe policy 7', and iter. length K € N
fork=1,...,Kdo
Let Kzrk’; ,, be value function (Definition 2) and 7
sf

(F):A be softmax policy (Definition 3)

/* f

£V (51) < b then Set 1(®) = 7

o ().0
elseif V7, | " (s1) > b then Set w(F) .= 7 (#):0

else /x Do bisection-search to find safe 7

trigger is implicitly tied to 7® confidence (Lemma 5) x/

XA with small A */

Set A1) := 0 and Ao Cx. Let \(®1) .= (AR 4 X(k’t))/Z
fort=1,...,7 do
itV s1) 2 b then A i 300 ang 3O y60
else A\t .= \(Bt) apnq A D xR0
Set 7*) = W(k)’xwﬂw)
Sample a trajectory (sgk)7 agk), cee sg{“), a(}';)) by deploying 7 *)

We will utilize @?,J 5, and V?k; ,, to compensate for the pessimism, similar to the bandit proof in

(4).® Entropy regularization in @?k; 5[] is for the later analysis. The clipping operators are essential
to avoid the propagation of unreasonable value estimates [48].

Using these value functions, one might consider extending Opt-Pes to linear CMDPs by solving:
—m,r —,t U
maxren V(g)1(81) + V(),1(s1) such that Z(A),1(Sl) >b. (7)

However, solving this (7) is challenging due to (i) the large state space in the linear CMDP setting

.. . . . =TT —,T
(|S| > 1) and (ii) the clipping operators in ()y) ,, Q1) 5, and Qiyn:

In tabular CMDPs with small |S|, Liu et al. [27] and Bura et al. [8] used linear programming (LP)
to solve similar optimistic-pessimistic optimization problems, achieving zero violation. However,
the computational cost of LP scales with |S|, making it impractical for linear CMDPs.

Another option is the Lagrangian method, which reformulates the constrained optimization as

a min-max optimization: miny>omaxer V?k’;,l(&) + V?k’;r,l(sl) + )\(K?ﬁl(sl) —b). When

. . =T, —T,T . s B (k) A . . .
the value functions are exact, i.e., V(k; ht Vs + Z?kf;‘h = ;}:‘+ 842 this min-max is

equivalent to (7), and the inner maximization reduces to a standard policy optimization [2]. Both
favorable properties arise due to the linearity of the value function in the occupancy measure (see,
e.g., Paternain et al. [34]). However, due to clipping, the value functions in Definition 2 may not
be representable via occupancy measures, making the Lagrangian approach inapplicable.

To address this large-scale optimization challenge, instead of directly solving (7), we realize
optimism and pessimism through a novel adaptation of the recent softmax policy technique for linear
CMDPs [18, 16], combined with the 7f deployment technique from Section 2.

3.2 Algorithm and Analysis

We summarize the proposed OPSE-LCMDP in Algorithm 2 and analyze it under the parameters in
its Input line. All formal theorems and proofs in this section are in Appendix E. A key component of
our algorithm is the composite softmax policy, which balances optimism and pessimism via A > 0:

8Increasing C,. and clip-threshold could offer similar compensation, but separated values simplify analysis.



Definition 3 (Composite softmax policy). For A > 0, x > 0, let 7(*)-* € TI be a policy such that
(k)2 (k)2
2 o) = Softhax( % (@760 + @y TRl 4270 6 )

7k can be computed iteratively in a backward manner for b = H, ..., 1. For this 7(*)* using the
Lipschitz continuity of SoftMax(-) (see Ghosh et al. [16]), the following confidence bounds hold:

Lemma 4 (Confidence bounds). For any (k,h), A € [0,C)], 7 € {72 751 wp. at least 1 — 6,

, =7, 208K ,B:8F) (B +2C4 yB (k) 20, 8%)
Vzg,hr, < V(k%h < Vzg,hr . ’ VP,h ! < V(k) h < V ! ) V;;: ? < Vzrkq)Lh < Vﬁ u'

Using Lemma 4, analogous to Section 2.2.1, we next establish the zero-violation guarantee.

3.2.1 Zero-Violation and Logarithmic Number of 7! Deployments

In the softmax policy (Definition 3), A balances optimism and pessimism: a small A promotes
exploration, while a large A prioritizes constraint satisfaction. Building on this, Algorithm 2 conducts
a bisection search to find the smallest feasible A while ensuring the pessimistic constraint holds
(Line 4 to Line 10). If a large A = C), fails to satisfy the constraint, the algorithm assumes no
feasible pessimistic policy exists and deploys 75f (Line 3). Since the softmax policy is only deployed

for A satisfying Z?k(; fr’"(sl) > b, Lemma 4 implies the following zero-violation guarantees:

Corollary 2 (Zero-violation). W.p. at least 1 — 6, Algorithm 2 satisfies 7% € 115 for any k.

Next, we bound the number of 7! deployments to achieve sublinear regret. To this end, similar to the
bandit warm-up (Section 2), we relate 7w5f deployment to 75 uncertainty level and logarithmically
bound the number of uncertain iterations. The following Lemma 5 ensures that, if Algorithm 2 is
confident in 7% and runs with appropriate C, and &, then 7 is not deployed.

Deﬁnition 4 (7*f unconfident iterations). Let I/ be the iterations when Algorithm 2 is unconfident in
Jie, U ={k €1, K]]|Vplﬁ( )(sl)> o ) Let 2° := [[1, K] \ U be its complement.

SHE(BTH)

and Kk < then

sf e
Lemma 5 (Implicit 7 deployment trlgger) When C'y > THI (B F1)

w.p. at least 1 — 8, it holds that V7, “ “(s1) > bforallk e Z/lC

(k) 1

Essentially, the proof of Lemma 5 relies on the following monotonic property of the value function
for the softmax policy: if the value estimation is exact, increasing A monotonically improves safety.

Lemma 6 (Softmax value monotonicity). For A\ > 0, let 7 be a softmax policy such that 772( |
A
5) = SoftMax (- (Qp[k](s, ) + AQE ) (s,-))). Then, Vi, (s1) is monotonically increasing in \.

. . . . - . (1),
While the true value function enjoys this monotonicity, the estimated value V?k "*(s1) may not,

as P( )V can take negative values even when V is positive. This complicates the proof of Lemma 5.
To address this, we leverage Lemma 4, which sandwiches the estimated values by some true values.
We prove Lemma 5 by showing that, for sufficiently large C', any sandwiched value satisfies the
constraint under pessimism, implying that the estimated value also satisfies it. This novel result
enables bisection search to adjust A, making OPSE-LCMDP more computationally efficient than
Ghosh et al. [18]. The detailed proofs of Lemmas 5 and 6 are provided in Appendix E.4.1.

Finally, the following theorem ensures that the number of 75 deployment scales logarithmic to K,
as in Theorem 1. The proof follows from extending the bandit’s proof of Theorem 1 to CMDPs.

Theorem 3 (Logarithmic |//| bound). It holds w.p. at least 1 — § that |[U| < O(d*H*¢ 2 In KH§ ).

3.2.2 Regret Analysis

The remaining task is to ensure sublinear regret. By Theorem 3 and Lemma 4, the regret is
decomposed as:

~(d*H* () 20, g(k) o —n(®)
Regret(K) < O e + Y VEL P ) 4 D (VB (s1) = Vi [K](s1) +xkKHIn A,
keuC D keut ®)




where the last term arises from the entropy regularization (V) (s1)[k] — V51 (s1) < xH In A).
Using the elliptical potential lemma for linear MDPs [23], we obtain (D) < o (C.HVIK).

We now bound ). Note that for any k € U C. due to Lemma 5, (% is the softmax policy by Line 10.
To bound (2), following a similar approach to Lemma 3 in the bandit, we replace 7* with a mixture
policy that satisfies the pessimistic constraint. To this end, we utilize the following lemmas.

Definition 5 (Mixture policy). For a € [0, 1], let #® be a mixture policy such that, for any h,
wpy, = (1- a)w}i + aw}rjjh. Such a 7 is ensured to exists for any o € [0, 1] [7].

Lemma 7 (Safe and optimistic mixture policy). Let a%) := If By > ZLCT“H, then

3
E+2VEy 2cuf’(”(

(k) o - (k) *
forany k € US, it holds (1) V&, 2P (s1) > b and (i) VR1 TirBia® s VAL (s1).

We note that the mixture policy 7 " is introduced only for the regret analysis; it is not required in the

(k,T) ) u—2C, %) (51)

, a
actual algorithm. Since A is chosen to satisfy K?k(; ’)1’"(51) <bandb < V{5,

holds by Lemma 7,

a(k)

. B g coF) (6, T) e oo g(k)
®< ZkeMU(F’l 7 (81)+VP1 ’TM(SI)"‘)‘( )VPl uTRCE (1)

(k) k),

— (-, T) < (B) 4
V" (51) = Vi 1 Tl (s1) = X5V (s1)

- () X T) RO AkT)
T2 keut Vir (51) @ + O3 2eus Vi M) = Via (1)

©)

Using Lemma 4, similar to (D), we have @ < O ((BT + Cy)HV dK). The term (3) is controlled

FkT)

),
by the bisection search width (A A®TD)y and the following sensitivity of K?k(; IA’“(sl) to \.

ORI p B Ade
VI (1) ~ Vi (sl)‘ < O((KH)H)e
Ghosh et al. [18] also derived a similar exponential bound (see their Appendix C). Due to the update
rule of the bisection search, setting the search iteration to T = O(H) ensures that 3) < O(1).

Lemma 8. For any k and \ € [0, C,], we have

For (3), using a modification of the so-called value-difference lemma [40], we have
o g1 $®T) ™ 20,50
® =Y eue Vea T (s1) - VPl o (s1) = A" Vi, (1) (®)
where f1, f2: [1, H] x S x A — R are functions such that, for any h,
e () (G R G2 ) e i e
(k) u

—r(F) —n(F) r <(k,T) (k) 4 (k) 4 (}) 4
and f,%:(Q(k>,h [»e]—T.,L—PhV(,C),hH[n]>+A <uh+phz("k) i1~ L ) (Q(k)h —ByBP PV W )

Our use of the softmax policy with entropy regularization is crucial for bounding (3). Since
the analytical maximizer of the regularized optimization max e g (4) Y _,c 4 7(a)(x(a) — £ In7(a))

NE)

is given by SoftMax(+x(-)), it follows that f* is non—positive implying V5, o 1(51) < 0.

Additionally, applymg Lemma 4, we derive f7 > Y QCuﬁh , which leads to — V;l s 2(31)—
NE)

)\(k T)VP 1 20,6 (31) < 0. By substituting these bounds into Equation (8), we obtain 3) < 0.

By combining all the results, Algorithm 2 achieves the following guarantees:

Theorem 4. If OPSE-LCMDP is run with the parameters listed in its Input line, w.p. at least 1 — 9,
7 e I Vk € [1, K] and Regret(K) < O(H>*Vd3K) ot O(dPH¢™?) T O(H*'¢ "WdK)

(iii)
Notably, Theorem 4 is the first linear CMDP result achieving zero episode-wise constraint

violations and sublinear regret. We conclude this section by discussing the regret bound quality
and computational cost of OPSE-LCMDP.



Remark 1 (Can we do better?). Without the constraint—i.e., removing (ii) and (iii)—our bound
matches the O(H?\/ d3K) regret of the fundamental LSVI-UCB algorithm [23]. The £ =2 term in (ii)
is unavoidable [32]. The €1 dependence in (iii) remains unresolved, yet appears in all the existing safe
RL literature [27, 8, 47, 36, 3, 32, 22]. These observations suggest that the bound is tight in £~ and K.
As for d and H, the term (iii) introduces an extra dH? factor over (i). Similar deterioration has been
observed in tabular CMDPs [27, 42] and partially mitigated via Bernstein-type bonus analysis [47].

While improvement may be possible, it is unclear whether our v/ d° H® dependence is overly loose

when compared with existing CMDP regret bounds (e.g., V' d3H* by Ghosh et al. [18]), since none
of the existing results achieve episode-wise safe exploration. In general, regret or sample complexity
bounds under different safety requirements are not directly comparable, even if the problem settings
appear similar. For example, Vaswani et al. [42] shows that the sample complexity lower bound for
tabular CMDPs exhibits a worse dependence on the horizon under a strict safe policy requirement than
when small violations are allowed. Establishing a formal regret lower bound for our setting would
be necessary to assess the tightness of our result, but this is beyond the scope of the current paper.

Remark 2 (Computational cost). Algorithm 2 requires up to T value evaluations (Definition 2) and
policy computation (Definition 3). Using the bisection search, we bound T = O(H), reducing the

computational cost per-iteration to O(H x [value & policy comp.]). As this cost scales polynomially
with A, H, and d [28], OPSE-LCMDP runs in polynomial time—an improvement over recent Ghosh

etal. [18], which achieves (5(\/ K) violation regret but incurs an exponential K cost.

4 Conclusion

This paper proposed OPSE-LCMDP, the first RL algorithm achieving both sublinear regret and
episode-wise constraint satisfaction in linear CMDPs (Theorem 4). Our approach builds on optimistic-
pessimistic exploration with two key innovations: (i) a novel deployment rule for 7 and (ii) a
softmax-based approach for efficiently implementing optimistic-pessimistic policies in linear CMDPs.

Experiments. We numerically evaluate OPSE-LCMDP on several linear CMDP environments to
support our theoretical results. We compare OPSE-LCMDP with the prior state-of-the-art linear
CMDP algorithm of Ghosh et al. [18] and the tabular algorithm called DOPE [8]. Across all
environments, OPSE-LCMDP achieves sublinear regret with zero constraint violation, while Ghosh
et al. [18] shows positive violation regret. These results empirically validate Theorem 4. While
DOPE also achieves zero violation, its use is limited to the tabular settings where .S is small. This
highlights the computational tractability of our OPSE-LCMDP in large .S, which supports Remark 2.
All the results and details are deferred to Appendix F.

Limitation and future work. OPSE-LCMDP achieves computational efficiency by the bisection
search over \ € [0, C,], which works in the single-constraint setting thanks to the monotonicity in
Lemma 6. However, extending our method to the multi-constraint setting is non-trivial, as A becomes
a vector, requiring a vectorized version of the monotonicity lemma. Nonetheless, all theoretical results
in Table 1 are also limited to single-constraint settings, meaning our work still advances the state of the
art in safety. An efficient and safe algorithm for multi-constraint settings remains open for future work.

Another future direction is to extend the analysis to adversarial initial states s;. This extension is non-

trivial, as our core techniques rely on the fixed-state assumption. For example, we control the number
. . . st 3(k) .. .

of safe policy deployments by evaluating the bonus-return function V3 | # (s1) (Definition 4), which

explicitly depends on s;. The bound on the number of 75 deployments (Theorem 3) and the existence
of optimistic—pessimistic policies (Lemma 7) also depend on this initial state. Extending these anal-
yses to handle adversarial s; would entail non-trivial technical challenges and is left for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Theorem 4, Table 1, and Remark 2
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Assumptions 2 and 3 and corresponding proofs in Appendix E

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details in Appendix F and the submitted supplementary code.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the experimental code as supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Implementation details in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Figure 1
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix F
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No NeurIPS code of ethics were violated.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is a primarily theoretical study on the safe reinforcement learning.
The social impact of this research is not likely to be significant.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No model or data is released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing code assets, except for standard Python libraries
(e.g., NumPy).

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core of this research is unrelated to LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.L.M) for what should or should not be described.
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A List of Symbols

The next list describes several symbols used within this paper.

Mathematical Notations

P(8) Set of probability distributions over a set S

[a,b] Setof integers defined by {a,...,b}

clip{x, a,b} Clipping function which returns x” with x; = min{max{x;, a}, b} for each
0,1  Vectors such that 0 := (0,...,0)"T and 1 :== (1,...,1)"

|||, For a positive definite matrix A € R?? and x € R%, we denote ||x||, = Vx'Ax
an = O (by,) There exist constants C' > 0 and N € N such that a,, < Cb,, foralln > N

O(-)  Hide the polylogarithmic factors from O(-)

SoftMax(x) Softmax distribution satisfying SoftMax(x); = exp(x;)/(>_, exp(x;))
dist,, Distance metric for two functions @, Q" : S x A — Ror V,V’ : § — R (see Definition 7)
dist;  Distance metric for two functions 7, 7" : S — Z(.A) (see Definition 7)
Constrained Bandit

A C R? Set of actions

K Round length of the bandit problem

) 4(*) Reward and utility at k-th round

0.,0, € RY Unknown vectors for reward and utility

€r,Ey R-sub-Gaussian random noises

TryUr Gx = Ear[(04,a)] for both g € {r,u}

I1f  Set of safe policies {7 | u, > b}

st Safe policy

€ >0 Safety of 75 such that u,«« —b > ¢

A®  Gram matrix defined by A®) == pI + 35~ a(® ()T

~(k) ~(k) .
0, ,0, Estimatesof 6, and 8,

r

Srk) Bonus function

C,,C, Bonus scalers for reward and utility, respectively

u Set of iterations when Algorithm 1 is unconfident in 7! (see Definition 1)
Constrained MDP

K Number of episodes of the CMDP problem

H Horizon

S, A State space and action spaces

P Transition kernel
U Reward and utility functions
S1 Initial state

V757 [k] Regularized state value function for a reward function g with an entropy coefficient
59 k] Regularized action value function for a reward function g with an entropy coefficient

B Shorthand of h(1 + k1n A)

wp,  Occupancy measure of 7 in P at step h
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¢ :S x A— R? Feature map of the linear CMDP (see Assumption 2)
Uy, d-signed measures specifying the transition probabilities (see Assumption 2)
», 0" € R? Known vectors specifying the reward and utilitiy functions (see Assumption 2)
1t Set of safe policies { | VEi'(s1) > b}
st Safe policy
§>0 Safety of 7f such that V7 (7) — b > ¢
Aglk) Gram matrix defined by A(k) =pl+ Zf 11 q’)(sh ,ag))(ﬁ( (i ) (i))—r
Is,gk)V Next value estimation: (]S,Ek)V)(s, a) = ¢(s,a)" (A(k )~ Zf 11 ¢( h ) ah )V( S}rl)
@?k; nlkl, 7&;‘ Iy @?k; 5, Clipped value functions defined in Definition 2

C;,Cy, Cy, By Bonus scalers used in Definition 2

N e-cover of a certain set

u Set of iterations when Algorithm 2 is unconfident in 7% (see Definition 4)
w,(bk) * Softmax policy with a parameter A (see Definition 3)

A Parameter to balance optimism and pessimism of 7rh (see Definition 3)
Cy Maximum value of A

[A(k’t), X(M)] Search space of the bisection search at iteration ¢ in episode k (see Algorithm 2)

T Iteration length of the bisection search (see Algorithm 2)

Qr, Q% O Function classes for Q-functions defined in Definition 10

o° Function class for the composite of QQ-functions defined in Definition 11
Il Class for softmax policies defined in Definition 12

YT, V¥, V1 Function classes for V-functions defined in Definition 13
5” it 6” ;L, 6&’ Discrepancies between the estimated and true Q-functions (see Definition 14)

A(k) AR, A(}”) Function classes for 5?,;, 6&;, 5(k) (see Definition 14)
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B Related Work

B.1 Related Algorithms

Building on the seminal work of Efroni et al. [13], numerous safe RL algorithms for CMDPs have
been developed, broadly categorized into linear programming (LP) approaches and Lagrangian-based
approaches.

Linear programming. LP approaches formulate CMDPs as linear optimization problems [2],
solving them using an estimated transition kernel. Efroni et al. [13] introduced a basic sublinear
regret algorithm, while HasanzadeZonuzy et al. [20] provided (e, §)-PAC guarantees, ensuring the
algorithm outputs a near-optimal policy. However, these methods permit constraint violations during
exploration, making them unsuitable for safety-critical applications. Liu et al. [27] and Bura et al.
[8] developed LP-based algorithms that achieve sublinear regret while maintaining episode-wise
zero-violation guarantees by incorporating optimistic-pessimistic estimation into the LP formulation.

LP-based approaches in tabular settings, however, suffer from computational costs that scale with
the size of the state space, making them impractical for linear CMDPs. While several studies propose
LP algorithms for linear MDPs [31, 5, 30, 25, 14], these methods either use occupancy measures
as decision variables—which can be exponentially large for large state spaces—or require a set of
feature vectors that sufficiently cover the state space, which may not be feasible in our exploration
settings. Moreover, as described in Section 3.1, the estimated value functions in linear CMDPs with
exploration require clipping operators, further complicating the use of occupancy-measure-based
approaches like LP methods in our setting.

Lagrangian approach. Lagrangian approaches reformulate the constrained optimization
max.{f(m) | h(m) > 0} as a min-max optimization miny>o max,{f(m) + Ah(m)}, and simultane-
ously optimize both 7w and A\. When an algorithm gradually updates 7 and then adjusts \ incrementally,
it is referred to as a primal-dual (PD) algorithm [11]. In contrast, if A is updated only after fully
optimizing 7 in the inner maximization, it is known as a dual approach [46]. Since the inner
maximization reduces to standard policy optimization, Lagrangian methods integrate naturally with
scalable methods such as policy gradient and value iteration.

For the tabular settings, Wei et al. [44], Miiller et al. [29] develop model-free primal-dual algorithms
with sublinear regret, while Wei et al. [45] extends this approach to the average-reward setting. Zeng
et al. [49], Kitamura et al. [24] propose (&, §)-PAC primal-dual algorithms, and Vaswani et al. [42]
achieved the PAC guarantee via dual approach.

Beyond tabular settings, Ding et al. [10] propose PD algorithms with linear function approximation,
achieving sublinear regret guarantees. Ghosh et al. [17] extend this to the average-reward linear
CMDPs. Ghosh et al. [16] take a dual approach, also attaining sublinear regret in the finite-horizon
settings.

These PD and dual algorithms, however, do not ensure episode-wise zero violation. Intuitively, the
key issue lies in their A-adjustment strategy, which updates A only incrementally. For example, the
basic PD and dual algorithms by Efroni et al. [13] updates A using A\(**1) <— \(®) o - [violation],
where « is a small learning rate. Since A controls constraint satisfaction, if the current policy fails to
satisfy constraints adequately, A should be increased sufficiently before the next policy deployment.

Following this principle, Ghosh et al. [18] propose a dual approach that searches for an appropriate
A within each episode, leading to a tighter violation regret guarantee than Ghosh et al. [16]. However,
due to the lack of pessimistic constraint estimation, their method does not ensure episode-wise safety
and allows constraint violations. Like Ghosh et al. [18], our OPSE-LCMDP searches for the best A in
each episode. However, unlike their approach, OPSE-LCMDP controls \ with pessimism, ensuring
zero violation, and guarantees the existence of a feasible A by deploying a sufficient number of 7.

B.2 Related Safety Types

Instantaneous safety. Unlike our episode-wise safety, instantaneous safety defines exploration

as safe if it satisfies uh(sg@), aglk)) > bforall hand k [32, 33, 22, 41, 4]. In other words, states and
actions must belong to predefined safe sets, Sgr x Ag¢. Instantaneous safety is a special case of the
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episode-wise constraint. Indeed, by defining up(s,a) = —I{(s,a) ¢ Sst X As} and setting b = 0,
an episode-wise safe algorithm safeties the instantaneous constraint for all A and k.

Cancel Safety. Cancel safety is another common safety measure in CMDP literature Wei et al.
[44], Ghosh et al. [16]. It allows a strict constraint satisfaction in one episode to compensate for a
violation in another. Formally, cancel safety ensures that the following cumulative cancel violation
regret remains non-positive:

K
. (k) 4
Vlocanccl(K) = Z b— VP,l ’ (81) .

Note that the “hard” violation regret Viopa,q(K) = Zszl max{b -Vi (1k)’“(51), O} which con-

siders violations in each individual episode [18, 13, 29], always upper-bounds the cancel regret.
This means cancel regret is a weaker measure. Since episode-wise safety ensures Viopaq = 0,
our OPSE-LCMDP always satisfies cancel safety, but cancel safety does not necessarily guarantee
episode-wise safety.

C Useful Lemmas

Definition 6. For a set of positive values {an}nNzl, we write x = polylog (ay,...,ay) if there
exists an absolute constants {bn}fﬂb\f:0 > 0 and {cn}fy:l > O such that z < b + by (Inay) +--- +
by(Inay)™.

Definition 7 (Distance metrics). Let dist, be the distance metric such that, for two functions @, Q' :
Sx A = R, disto(Q, Q) = sup(s qyesxal@(s,a) — Q'(s,a)|. Similarly, for two functions
V,V': 8§ = R, distoo (V. V') = sup,c5|V(s) — V'(s)|. Finally, dist; denotes the distance metric
such that, for two functions 7,7’ : S — P (A), disty (7, 7") = sup,egs||7(-|s) —7'(- | 9)]|;-
Definition 8 (¢-cover). Let © = {6 € R? : ||]|, < R} be a ball with radius R. Fix an . An e-net

M. C © is a finite set such that for any 6 € ©, there exists a @' € M. such that dist(6,6") < e for
some distance metric dist(-, -). The smallest e-net is called e-cover and denoted as N. The size of
the e-net is called the e-covering number.

Lemma 9 (Lemma 5.2 in Vershynin [43]). The e-covering number of the ball
© = {0 € R?: ||0||2 < R} with the distance metric ||-||, is upper bounded by (1 + 2R/e)“.

Lemma 10 (Danskin’s Theorem [6]). Let f : R™ x Z — R be a continuous function where Z € R™
is a compact set and g(x) = max.cz f(x, 2).

Let Zy(x) == {z| f(x,2) = max,cz f(x, 2)} be the maximizing points of f(x,z). Assume that
f(x, z) is convex in x for every z € Z. Then, g(x) is convex. Furthermore, if Zy(x) consists of a

single element z, i.e., Zo(x) = {z}, it holds that % = %.

Lemma 11 (Lemma D.4 in Rosenberg et al. [37]). Let (X (k) ) ;11 be a sequence of random variables

with expectation adapted to the filtration (]—' (k))iio. Suppose that 0 < X %) < B almost surely.
Then, with probability at least 1 — 0, the following holds for all k > 1 simultaneously:

k . ‘ k ‘ ok
Y E [X“) |]—'("1)] <2y X0 4B =
i=1 i=1

Lemma 12 (Lemma 11 in Abbasi-Yadkori et al. [1]). Let {X(k)}le be a sequence in R%. Let
A® = g1 4 3B (x| x®) |, < B forall k,

K 9 2
Zmin{l, x(k)H 1} < 2d1In <pd+KB> .
(%) Z
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Additionally, if Hx(k) H2 < 1forall k and p > 1°, we have

K
kz=:1 HX(k)HzA(M)l < 2dIn (pdpth> .

Lemma 13 (Theorem 2 in Abbasi-Yadkori et al. [1]). Ler {F (’“)}Zio be a filtration. Let

{5(”“) }:o:1 be a real-valued stochastic process such that €*) is F*)-measurable and ¢ is con-
ditionally R-sub-Gaussian for some R > 0. Let {d)(k)}:; be an R%-valued stochastic pro-
cess such that %) is F5=1) measurable and ||¢™ ||y < L for all k. For any k > 0, define
Vi = 0" ") + ¢, for some 0 € R such that e, < B, AP = pI + Ele oW ((ﬁ(i))—r, and

g(k) ::

we have

-1 ) )
(A(k)) Zf:l ¢(2)Y(’). Then for any 6 > 0, with probability at least 1 — 6, for all k > 0,

2
< p1/2B+R dln <1—|—kL/p> )
A(k) 0

Lemma 14 (Lemma D.4 in Jin et al. [23]). Let {S(k) }2021 be a stochastic process on state space S
with corresponding filtration {.7:(]“) }1;“;0' Let {(ﬁ(k)}

(7]

~(k
H ® g

be an R%-valued stochastic process where
k=0

(ﬁ(k) is F*=Y)-measurable and H(ﬁ(k) H <1 Let A®) = oI+ ZZ:1 ¢(k) (qb(k))T and letV be a

class of real-valued function over the state space S such that sup, |V (s)| < B fora B > 0. Let NV

be the e-cover of V with respect to the distance dist.. Then for any 6 > 0, with probability at least
1—26, forall K >0, and any V €V, we have:

[0 (v (49) 5[ () 17)

Lemma 15 (Lemma A.1 in Shalev-Shwartz and Ben-David [39]). Let a > 0. Then, x > 2aln(a)
yields x > aln(z). It follows that a necessary condition for the inequality x < aIn(x) to hold is that
z < 2aln(a).

Lemma 16. For any positive real numbers x1, T2, . .., Zpn, Y iy \/Ti < /TNy T

2

< 4B? éln M + In ‘Nsvl +8K262
- 2 P ) p

(a) "

n -\ 2 A .
Proof. Due to the Cauchy-Schwarz inequality, we have (Zij ﬁ) < Zi? -. Taking the square

root of the inequality proves the claim. O

Lemma 17 (Lemma 1 in S~hani et al. [40]). Let 7, w be two policies, P be a transition kernel, and g
be a reward function. Let V¥ : S — R be a function such that

Vi(s) = Y nla] s)Qn(s.a) ,

acA
for all h € [1, H] with some function Qy, : [1, H] x S x A — R. Then, for any (h,s) € [1,H] x S
1T T, gt 9>
Vii(s) = Vil (s) = Vpyl (s) +Vpi (),
where g' and g* are reward functions such that

gh(s.0) = > (Fnla | 5) = ma(a] £)Qn(s,0) and gi(s,a) = Qn (s.0) = gn (s,0) = (PaVii ) (s,0)
acA

*The second argument follows since ||x||3 1 < Omax (A7) ]| < p~* < 1, where oumax (A1) denotes
the maximum eigen value of A~
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Lemma 18 (Regularized value difference lemma). Let k > 0 be a non-negative value, w, 7" be two
policies, P be a transition kernel, and g be a reward function. Let Vh% [k] : S = R be a function such

that
Vil)(s) = > Fnlal5)(Qnls,a) — knFnlal5)) |
acA
for all h € [1, H] with some function Qp, : [1, H] x S x A — R. Then, for any (h,s) € [1,H] x S
T T ! o, f2
ViTll(s) = VERs)(s) = VEIL () + VEI (s)
where f1 and f? are reward functions such that

fi(s,a) = Z 7n(a ] s) (@h(s,a) —kln7p(a| s)) —mp(a | s) (@h(s,a) —klnmp(a| s))

acA

and f7(s,0) = Qn(s,) = gn (5,0) = (PaViT[)) (5, )

Proof. Since

VT [K](s) = Z Tr(als) (@h(&a) —kln7p(a] s)) and V5i/[k](s) = ngﬁmnﬂ(s) ,
acA
using Lemma 17, we have

ST T, T, 1 ™, 2
Vi'[k](s1) = Ve P[sl(s1) = Vi (s1) + VBT (s1)
where ¢! and g2 are reward functions such that

gh(s.a) = > (Fula | 5) = mu(a] ) (Qnls,a) - klnFn(al 5))

acA

= th als) (Qh s,a) — kIn7p(a| )) —mn(a | s)(@h(s7a) —/ilnwh(a|s)>

acA

+ > mi(als)(klnF(a]s) — klnmy(a| s))
acA

(@)
and g7 (s,a) = Qn(s,a) — gn (s,a) — (Phﬁhil[fi])(s, a)—kInmp(a|s)+ klnmy(al|s) .
(b)
The claim holds since the terms (a) and (b) are canceled out in V7 ’,‘fl (s)+Vp ’,f2 (s). O

Lemma 19. Let Q, é : A = R be two functions. Let k > 0 be a positive constant. Define two
softmax distributions 7,7 € P(A) such that m = SoftMax(%) and T = SoftMax( ) Then,

2-a|

~ 8
lr ==y < %

Proof. 1t holds that

1 ~ ~
§||71'—7T||1 <22 a)lnr(a) — In7(a)| < 2max|lnn(a) — In7(a)|
acA

~ 2max %Qm) _ %@(a) - 1nza:exp<icg(a)) + 1nza:exp(ié(a)>’
L) 0]+ Yo @) - e

§2max;Q()—EQ )| +2

a

2 dmax %Q(a) _ %@(a)

)
a

where (a) uses Theorem 17 in Sason and Verdi [38] and (b) uses the fact that In ), exp(x;) —

In}", exp(y;) < max;(x; —y;) (see, e.g., Theorem 1 in Dutta and Furuichi [12]). This concludes
the proof. O
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D Regret Analysis (Linear Constrained Bandit)

Lemma 20 (Good event 1). Suppose Algorithm 1 is run with p = 1. Let § € (0, 1]. Define & as the
event where the following inequality holds:

K K 9 9K
E, 2 <o H (’“>H A 22
; a ﬂ(k)HaH(A(k)) 1> ; a (A(k))71+ n 5
Then, P(&1) > 1 —4.

Proof. The claim immediately follows from Lemma 11 with ||al|, < 1and p = 1. O

Lemma 21 (Good event 2). Define &, as the event where the following two hold: For any w € 1],
ke [1,K],

‘,ﬁ\(ﬂk) _ rﬂ‘ < C.8%  and ‘@(Tk) - uw‘ <C,pH .

Then, if Algorithm 1 is run with p = 1 and the value of min{C,,,C,} > B + R,/ dln , it holds
that ]P)((pg) >1— 0.

Proof. Using Lemma 13 with p = 1, with probability at least 1 — §, for any k € [1, K] and for both
g € {r,u}, we have
A

21+ K
<B + Ry/dn (5)> &l (p -

/ 41K
S (B + R dln 5) HaH(A(k))—l y

()_gﬂ'

~(k)
<0, —6y

a _
(k)H H(Am) !

INE

T ’\(k)
where (a) uses Lemma 13. a (6, —80,]| for
g € {r,u}. O

Lemma 22 (Cumulative bonus bound). Suppose & holds. Then, Zszl Bfﬁ) <
VE\/2dIn(1+ 5) + 41 2.

< anﬂ'

Proof. 1t holds that

K K

K

k) @ 2 2
DSBS\ K Y (Banno lall pwny1) S 4| KD Eanew 8 powry
k=1

k=1 k=1

INS

K 2K
< VK QZHa”H A®) 1+41H<\F\/2d1n 1+ d>+41 5

where (a) and (b) use Cauchy—Schwarz inequality, (c) is due to &7, and (d) uses Lemma 12. ]
Lemma 23 (Restatement of Lemma 1). Suppose & holds. Then, for any m € Il and k € [1, K],
Tr + 207“57(1—@ 2 ﬂ,f”‘) + Crﬁq(rk) Z Tr and Ur Z a'(;rk) - Cuﬂgrk) 2 Urg — 2Cuﬂ7(rk)

Proof. We have

up > ) — ’a;’f) | > AW 0,80 > gt ‘ a) _ ﬂ‘ — CuBR) >y — 20,8
Similarly,
r 26,80 2 7O [ = po| + €80 > 7 4 €80 > 70+ 70 | >
O
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k
£-20.8%)
T e 2Cuﬁ“z+20uﬁ(’“’

Lemma 24 (Restatement of Lemma 2). Consider k € UC. For any o € |0,

mixture policy 7, = (1 — a)7™ + an* satisfies u,, — 20, 8% >,

Proof. For any k and « € [0, 1], we have

Uny, — b= 20,85 = (1 = @) (gt — b) +0 (e — ) =20, (1 — @) %) — 20,0 8%
——— ~———
>¢ >0
> (1-a) (6 - 20,8 ) — 200,58,
To make (1 — «) (f — QCuﬁfr]:f)) 2aCy, 5(k) > 0, a sufficient condition is
200,
e E-2CuB0 . o
¢ —20,8%) +20,8%
where the right hand side is non-negative since k € U C. This concludes the proof. O

Lemma 25 (Restatement of Theorem 1). Suppose Algorithm I is run with p = 1. Assume the event
&1 holds. Then, uf’z ln(2K5’1).

Proof. We have

K
2
> Eanwallf (A®)~t = ZanmHaH(Am)—l
k=1 ke
@ 2 o £2
>3 (Bavewllall gooy ) 2 U=
2 (s lall(aon) acz’

kel

N 2 )
:(6(2) since m(F) = 75t

where (a) is due to Jensen’s inequality, and (b) is due to Definition 1. Due to &7, we have

K K 5
2 k

> Earnoo[all{ gy <2 > >H(A(k) +dln =

k=1 k=1

Using Lemma 12 and since ||al|, < 1 and p = 1, the first term is bounded by: < 2dIn(1 + ) .
Thus,

K K 2K
<2dln|(1 4ln — < &d1In .
4@2'“‘ n<+d)+n6 s (6>
N——’
<K
The claim holds by rearranging the above inequality. O

Lemma 26 (Restatement of Lemma 3). If C, > %, forany k € ut, Tok) Satisfies rr . +

k
C’r@(ra)(,c) > 1.

2C, %) ) 20, 8%)
- Note that —2 &~ ==L We have,

(k) . =
Proof. Let a\¥) := i 2C, ﬂ(k)+2c 5 1—a® = 90,0

Pr g +CoBP = (1= a® e + aPre + G (1= o)) 4 Ca®

T (k)

> a4+ C((1-a®) %) +a®pl))
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A sufficient condition to have o) r_. + C, ((1 - a(’“))ﬂffiz + Oz(k)ﬂ,(ﬁ)) > ra« 18, since rp« =
Eanr[(0,2)] < [|0]|;Eanr[lall, < B,

(k)
B<C, (@S’; + a(k)ﬂ,(fiv
—

1
k k C,
=G (@LZ TR @LZ) AR
Therefore, when C,. > % we have Tr gy T Crﬂﬂau«) > Tox. O

Theorem 5 (Restatement of Theorem 2). Suppose that Algorithm 1 is run with p = 1,

Cu:B+R\/dln%, and CT—CU<1+2£B>.

Then, with probability at least 1 — 20, the following two hold simultaneously:

7®) € I for any k € [K]

 Regret(K) < 64dBC3E > (2K67") +4C,/K\/2dn(1+ &) + 41n 25

Proof. Suppose the good events &, N & hold. Recall that 7(*) is either 7 in k& € I/ or the solution

to Opt-Pesin k € U €. Since Opt-Pes is ensured to have feasible solutions by Lemma 24 for k € U G
the first claim follows immediately.

We will prove the second claim. It holds that

K
Regret(K) = er* =Ty = Z Trr — Trte) + Z Tox — Trk)
k=1

keud k¢U

a(k) = g5t 7(*®) is computed by Opt-Pes
<2B|U|+ Z T = Tr(k)
k¢u
(@)
< 64dBC2E 2 In(2K67") + Z(rﬂ* k. ﬂff?i)) Z(“’?i) +C,8%) - mk)) :
k¢u k¢u

) @

where (a) uses the bound of |/| (Lemma 25). Using Lemma 23, the term () is bounded by
Q<Y ket 3Cr Bfr]f,)c). On the other hand, (1) is bounded by

(a) k k k
® < Z r”a<k) + C B7(T )(k) - %fr(m 57(7(1)0

kgu
@ K Ak k)
< ZCE«@T " ( Tr gy T Cr By )(M oy — C”ﬂfr(k))
kU
(o) k
<> CBE
k¢U

where (a) uses the optimism of mixture policy (Lemma 26), (b) uses Lemma 23, and (c) holds since
T,k is a feasible solution to Opt-Pes due to Lemma 24.

Finally, by combining all the results, we have

Regret(K) < 64dBCL¢*In(2K07 ") +4C, Z 57gk>(k)
kgU

< 64dBCZE T In(2K07 1) + 4CM/?\/2d1n <1 + [;) +41n %
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where the second inequality uses Lemma 22. Since the good event &7 N & occurs with probability
at least 1 — 24 due to Lemmas 20 and 21, the claim holds. O

E Regret Analysis (Linear CMDP)

E.1 Definitions and Useful Lemmas

Definition 9 (u-estimator). Let e(s) € RS denote a one-hot vector such that only the element at
s € §is 1 and otherwise 0. In Algorithm 2, for all & and k, define /Lglk) € R9%4 and egﬁ) € RS such
that

k—1

k k) 1 k k
9 = S ) (o9 (AD) " a9 a(s2,) - (.

i=1

s ,ag’”). (10)

~ T
We remark that (P,Ek)V) (s,a) = ¢(s,a)T (ué@) V forany V € RS.
Lemma 27. For all k and h, it holds that:

o () Sl () ()
Proof. Due to the definition of p\", we have
= Sl ) (M) = S0kl o) ()
=3 (e () + o )o0) (4)
=S bl o) ()" Sl ()
(A=) (87) (k) (a1

= . — i, (A k) +Ze(k) o(s.af) (Aék)yl-

1

O

Lemma 28. Let V be a class of real-valued function over the state space S such that sup, |V (s)| < B
fora B > 0. Let N_ be the e-cover of V with respect to the distance dists. In Algorithm 2, for all
k,h,s,a, forany V€V, with probability at least 1 — 6, we have

((ﬁ(k) - Ph) V) (s, a)‘

<|[¢(s,a H(A(k)) <f3+23\/1ﬁ+23 ‘N 4/%)

Proof. Using Lemma 14 and due to the definition of A®) in Algorithm 2, with probability at least

1 — 6, for all k, h, we have
2.2
< \/432(d1n<k+p> +ln NS') | Bk
(A®)~" 2 p 4 p

et ()
ld. (k+p [N Ake
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where the second inequality uses v/a + b < \/a + v/b. By inserting this to Definition 9, we have

((ﬁf(tk) — Ph) V) (s,a)’
(e, (<) v

=|o(s a)T <_ (A(k)>*1 +]§€(i)¢(s(i) a(i))T (A(k)>1>TV
= , PHp | g, - h W ay ¢

85,0 (M) S (o9, a0 (V7 0)
=1

k—1 T
() ()
d/p by Assumption 2

<l9(5, )y (\/>B+QB\/TH+QB |N 4k5>

E.2 Function Classes and Covering Argument

—1

<ot (A1) v +

SPH(Z’(S’CL)H(A;LM)*I

.
V[ gy 105 0N g .

Definition 10 (Q function class). For any h and for a pair of (w, A), where w € R% and A € R%¥4,
deﬁneQELw’A)’T:SxA—)R,Q(WA :Sx A= R, andQWA : S x A — R such that
AT (s a) = ra(s,a) + clip{ Crl|@(s,a)|[ y-1 + W D(s,a), 0, Hy — hy}
W (s.0) = un(s,a) + clip{~Cull@(s, @)y + W (s,a), 0, H —h}
Q™M (s,0) = Bylld(s,a) | g+ + clin{Cyl|§(s.a) | s+ + W b(s,a), 0, By(H — 1)},

where &, Cy, Cy, B;,Cy > 0. We denoted h,, = h(1 + klnA) for h € [1, H]. Let O}, OF, Q;rl
denote function classes such that

V)

r w,A),
9; = {@p™
of = Qi

and Qf = {QEW’A)’T ‘ [wlle < KHB;, omin(A) = 1} '

< KH,, omin(A) > 1} :

[Wll2 < KH, ouin(A) > 1} ,

- u 1
We let ./\/EQ", J\/EQ’L, and NEQ’L, be the e-covers of O}, O}, and QIL with the distance metric distee.
Lemma 29 (Q) covers). When Algorithm 2 is run with p = 1, it hold that:

(i) Forall k, h and for any m € 1, Q?k; (k] € QF, € 9}, and Q(k) n € Q;rl

(k) h

(ii) In |N5Q’T1 < dln(l + 4KEH”) +d? ln(l + Sfc ) = (’)(dQ) polylog(d, K, H,, CT,E_l),
In IV < din(1 + 42 4 @21 (1+ M) = O(d?) polylog(d, K, H,Cyy, 1),
and  In|N2H| < dln(l n 4KBTH) + @2 1n<1 + 8“55’*2) _

O(d2) polylog(d7 K, H,B;,Cy,e™ )

Proof. The statements in (ii) immediately follow from the proof of Lemma D.6 in Jin et al. [23].
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We prove the first claim (i). For Q?kg n» We have

T, T

Qi) alwl =rn + clip{C8® + POVES 1w, 0, (H = W1+ nln A)}

1 T
_rh—|—chp{ \/(;5 (s,a) (k)> ¢(S,a)+¢(5aa)T<u§Lk)) Viwyna1lls 0, (H—h)(1—|—f<;1nA)} :
According to the definition of Q(W A, " (Definition 10), the claim immediately holds by showing
N —T,T
the L2 bound of (uﬁ?) V (k).n41 (K] Forany h € [1, H] and k € [1, K, we have

A sy ()
2

.
k
H (1) Vi nnls

k—1
@ 1
<H, ( ) Z¢<3h ,ah> <KH, .
=1 2
where (a) uses |[@||, < 1withp=1and0 < V(,;) hﬂ[m] < H,.
The remaining claims for Q k) V', (s,a) € Qj and Q n(s,a) € QZ can be similarly proven. O

Definition 11 (Composite ) function class). For each h, let O} denote a function class such that
Qf = {QT + Q"+ Q" | Qf € Q;rw Q" eQp, Q¥ e Qp, and X € [O,C’x]} .

where C > 0. We let Ngg’)‘ be the e-cover of Q) with the distance metric dist o,
Lemma 30 (Composite Q cover). When Algorithm 2 is run with p = 1, the following statements

hold:
. ulil AT T, o
(i) Forall (k,h), for any w € 11, and for any X € [0, C1], Qg 5 + Q) nlK] + )\Q(];)ﬁh €95

(ii) ln‘NQh

= (d2) pOlleg(d K, HmcracuaBTacTaC/\v )

Proof. The claim (i) clearly holds by Lemma 29 and Definition 11.
We prove the second claim (ii). Let V2 be the e-cover of a set {\ | A € [0, C')\]} with the distance

metric ||- ||2 Let €4,6r,6u,6x > 0 be positive scalars. Consider Qf € Er , Q" € erh
Q“ e N. Eu cand \ € ./\/A For any Q' € Qh, Qme 97, Q" € Q¥ and X € [0, C], we have

distoo (Q + Q"+ 2Q", QT + Q" +1Q")

s

< sup|Q'(s,0) = @ (s.0)| +sup| @' (5,0) = @' (s.0)
<o <e,
+ Asup (Q“(s,a) —@"(s,a)) I (A—X)Q“(s,a)’

s,a

<Cieuw exH
(@)
<er+e+Chey+erH,

where (a) appropriately chooses @T, @T, @“, A By replacing ¢; with €/4, e, with £/4, €, with
1/4C), and €, with /4 H, the above inequality is upper bounded by . Thus,

I e o R M A Y B
g(’)(dQ) polylog(d, K, Hy., Cy., Cy, By, Ct,Cx,e71) .
where the second inequality uses Lemma 9 and Lemma 29. O
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Definition 12 (Policy class). I1:=1I; x --- x Il denotes a softmax policy class such that
~ 1
II, ={mg € 1| Q € Oy} where mg(-|s) = SoftMax(KQ(s7 )) Vses ,

where x> 0. We let N2+ be the e-cover of I1;, with the distance metric dist; .

Lemma 31 (7(*):X cover). When Algorithm 2 is run with p = 1 and > 0, for all h, the following
statements hold:

(i) Forall (k,h) and X € |0, C,] in Algorithm 2, wélk)’)‘ e Iy,

(ii) 1n‘NEﬂh

= O(dQ) pOIYIOg(da K7 Hﬁa CT7 Cu7 BT7 CT; C)\a€_17 ’i_l)

Proof. The claim (i) immediately follows from Lemma 30 and Definition 3.

We prove the second claim. Fora @ : S x A — R, let mg be a softmax policy such that wg(- |
s) = SoftMax(%). Consider @ from /\/'EQ”. Then, for any @ € Oy, we have

(@ ~\ ®
distq (WQ,W@) < §distOo (Q,Q) < 8 ,
K K

where (a) uses Lemma 19 and (b) appropriately chooses @ from Nggf‘. Therefore,

ln’./\/;ﬁh

< ln‘NKQj/LS < O(dz) pOIYIOg(d7 K, Hmcrvc’uaBTchaC)xagilaffil)

where the second inequality uses Lemma 30. O

Definition 13 (V' function class). Let V}, V}., and VL denote value function classes such that

VI {Vg[n}:SeR‘weﬁhu{wa} and QeQ;},

Vi

{vg[oys%n@]weﬁhumf} and Qegz},
and V:L = {Vé’[O]:S—)R’ﬂ'GﬁhU{ﬂZf} and QEQZ},

where V{[x](s) = Z m(al]s)(Q(s,a) —kInm(a|s)) Vs €S
acA

T u vi . . ..
We let Ngvh', J\/;-V » and N " be the e-covers of V7, 7, and V;rl with the distance metric dist.

Lemma 32 (V covers). When Algorithm 2 is run with p = 1 and k > 0, for all h, the following
statements hold:

(i) For all (k,h), for any X € [0,C\], and for both # = 7*)* and 7 = 7, we have:
—m,T - 7, ” —m,t
Vil € Vi, VIS, € Vi and Vg ), € 1%

(i) [N = O(d?) polylog(d, K, He, Cr, Cu, By, Ci, Oy i),
In|AYH| = O(a?) polylog(d, K, He, Cy, Cu, By, Gy, Oy, 671 571,
NP

and In

= O(dz) polylog(d, K,H,,C,,Cy, BT; CTv Ckvgila 571)

Proof. The condition (i) immediately follow from Lemma 29 and Lemma 31 with Definition 13 and
Definition 3.
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We prove the second claim (ii). Let @ € QJ and Q € ./\/'37 where € > 0. For any two
w7 S — P(A), for any s, we have

3 w(a]5)(Q(s,a) — klnw(als) - S F(als) (@(s,a) —klnm(al s))‘

ac€A acA
<[> wlal$)Q(s,a) = Y mlal 9)Qs.a) + Y w(a|)Qs,a) = Y Fla|s)Q(s,a)
acA acA a€A acA
+ K Z m(a|s)nm(a|s) —7(a|s)In7(a|s)
acA
:%’(w) ()
<Y wlal9)|Qes,a) = Qs )|+l [ 5) =7 |9y |@C9)||_+r((x) - ()
ac€A
<er <H,

<&+ Hellw(- | ) = 7(- | s)lly + (A () — (7))

where the second inequality chooses appropriate @ We defined entropies of 7 and 7 as
H (1) = geam(a|s)Inm(a|s)and (7)== ) 4 T(a|s)In7(a|s), respectively.

The remaining task is to bound H,||7(- | s) — 7 (- | 8)||, + x((7) — ' (7)). When 7 = 7,
choosing 7@ = 7* trivially bounds this term by 0. Thus, we only consider the case when 7 € 11, i.e.,
(- | s) = SoftMax(1Q°(s,-)) with Q° € Q5. We also consider 7(- | s) = SoftMax(%@o(s, ))
with Q° foh, where €° > 0. For the entropy gap, we have

H () — H(T)

Zﬂ(a [s)Inm(a|s)—7(a|s)In7(als)

acA

Z(W(a\s)—%(cﬂ s))lnm(a|s +Z (a]s)(Inm(als)— ln%(as))‘

acA acA
<|Iw(-]s) —7(- | 9)]l; maxInm(a|s) + max|lnm(a|s) —In7(a|s)|

S MGl -FCls)l,  maxinn(als) + 2 max|Q2(s @) ~ @°(s,a)]

<2 maxa|Q°(s,a)7©°(s7a)‘ by Lemma 19 <go
(b> e°
< (8maxln7r(a | s) + 2) ,
K
where (a) utilizes a decomposmon similar to the proof of Lemma 19, and (b) chooses an appropriate
Q°. Finally, In 7(a | s) can be bounded as

BiH + H, H
max Ilnm(a | )—max Q anexp( ’))S tH + Hi + O ;

R

where the last inequality is due to Definition 11.

Therefore, we have

Hyl|lw(- | s) =7(- | s)||y + 6(IH(7) — (7)) < €° (2 + %(BTH +2H, + C,\H)) :

=7

Finally, by setting e” = ¢/2H,; and e° = ¢/2Z, 1n’]\/'gv;; is bounded as:

ln’/\/vh

< ln(’J\f /22

+1) + Nk, | = O(d2) polylog(d, K, He, Cr, Cu, By, Cp, O,=™ w71
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where the second inequality is due to Lemma 29 and Lemma 30. The claims for ln’J\/}V i and

VT
NE h

In can be similarly proven. O

E.3 Good Events and Value Confidence Bounds for Lemma 4 Proof

Lemma 33 (Good event 1). Define &, as the event where the following inequality holds:

K H 9
238 ot

h

A~

—

M=
M= ]

2 2KH

<2336 afd

B

=1

If Algorithm 2 is run with p = 1, P(&1) > 1 — 0.

>
[

1

Proof. The claim immediately follows from Lemma 11 with ||¢||, < 1 and p = 1. O

Lemma 34 (Good event 2). Define &5 as the event where the following condition holds:
Forall k,h and forany V" € Vi, ., V* € Vi, and VT € ijﬂ

‘((ﬁfsk) - Ph)V’")(&a)‘ <C, }(Lk)(s,a) V(h,s,a) € [1,H] x S x A
‘((ﬁ,ﬁ’“ - Ph)V“)(s, a)‘ < CuB™(s,a) V(h,s,a) €1, H] xS x A
and ‘ ((ﬁ;’” . P;L)VT) (s,a)’ < 01" (s,a) V(h,s,a) € [1,H] xS x A.

If Algorithm 2 is run with p = 1, C,, = O(dH,,), C,, = O(dH), and Cy = (5(dHBT), we have
P(&) > 1 —26.

Proof. Using Lemma 28 with va/;?l, with probability at least 1 — 0, for any (k, h, s, a),

(= P)vr)so)

(a) d
§|\¢(s,a)II(A§k>)fl VdH, +2H, 3 In(2K) +2H,

®) ~ ©
SH¢(8,a)II(Ag)le(dHn)lnCr < ||¢(8,a)II(A;k>>—1Cr

where (a) setse = 1/K to NEV " and uses Lemma 28, (b) uses Lemma 29, and (c) set sufficiently large
Cr = O(dH,) and uses Lemma 15. The claim for Vj; | ; and VL 41 can be similarly proven. O

Lemma 35 (Remove clipping one-side). Under &, for any (k, h, s, a), and for any A € [0, C\], for
both m = 71X and 7 = 7%, we have

k H(k)T7m.T —T,T
o (5,a) + (P [ (5.0) = (PV ] ) (s,0) 2 0,
k pk)y, m, ™,
- C, }(L )(s,a) + (P}E )K(k?,h+1)(s’a) < (PhK(k;hH)(s,a) <H-h,

k (k) Fm,T T
and CT@S )(s,a) + (P}E )V(k),h+1>(5»a) > (PhV(k)7h+1)(s7a) >0
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Proof. We have

P (s,0) + (PUVES syl (5, )
2| (P = BV sl (5, ) + (POVES g [41) (5, )
> (Ph - P;(L )>V(é),h+1[’f](57 a) + (ﬁﬁk)V?z;;hH[ﬁ]) (s,a)
— PV pll(s.0) 2 0,

where (a) is due to & with Lemma 32 and (b) is due to > 0 and by the definition of V?k; ny1lk]

(a)

The claim for V?,J n1 can be similarly proven.

For V’{k;L hi1> We have
k (k U
- Cy }(L )(s,a) + ( )V(k h+1>(s,a)

< ‘(P(k) )V? h-&-l‘( a)+ (P(k)v?k?h+1)(8’a)
<= (PO PV )+ (BOVES, L) (5.0)

where (a) is due to &, with Lemma 32 and (b) is due to u < 1 and by the definition of V O

h+1

Definition 14 ((Q estimation gap). For any h, k and 7 € II, define 5(k) . 565,1, JZTk) L, SxA—=R
be functions such that:

o755 = clin B + (POVES yali]), 0 Hy — i} = (PVE ali])
0 = (P ) — clin{=CuBlP + (BVVE ) 0. H = n}

)
and &3], = clip{CiB + (P 1 ), 0, Bi(H = 1)} = (PaV g )

It is clear that these functions satisfy, for any (7, &, h),

T8 —6 _ s B’rﬂ )4 67

@?k:; (K] = QPh k], Q QPh “, and Q( T QPh “ . D

Additionally, let A{", Al and A" be function classes such that:

AR = {5 I, H] ><S><A—>R‘O<6h <m1n{2Cr JH, h,{}Vhe [[1,H]]}

AW = {5 [LH[ xS x A R ‘ 0 <8, < min{2C, 8", H — h} vh e [1,H] |
and AV = {5 [LH] xS x A >R ‘ 0<d, < mm{zqg ,By(H — h)} Vh € [[l,H]]} .
Lemma 36. Under &, for any k and for any X € [0, Cy), for both m = 7®)A and m = 7%, it holds
that 577 € A, 0T € ALY, and 571 € ALY,

(k). ) (k) T
Proof. d(k) n(8,a) < H — h clearly holds. Additionally, we have

. (k) (k)

5T (s,0) 2(PaVE ) (s:0) = max{ =CuBP (s,a) + (BPVES, . ) (s,0),0)

U k k)y rmu
g(PhK(k)’hH)(s,a) +CuB®) (s,a) - (p( v h+1)(s,a)

k k
<CuBP(s,0) + | (Pu = BV )RS [(5.0) < 20080 (5.0)
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where (a) is due to Lemma 35 and (b) is due to &5. Finally, note that

6k,h( a) = (th(k) hH)(s,a)—max{—Cu }(L)( a) + (P( )V ) }
k T™,Uu
ZCu n ( a) + (th(k) h+1)(s,a) — ( P! )V(k) h+1)( a)>0.
>0 by &
This concludes the proof for 5zrk;‘h The claims for 67 ( k) , and (56@;[ , can be similarly proven. O

Lemma 37 (Restatement of Lemma 4). Suppose & holds. For any k and for any X\ € [0, C,], for
both = )X and m = 7%, we have

mr o TFTT m,r+2C,B%F) m,r+2C,BF)
Veh <Vieyn < Vph : QF) < Qiyn < QF
Tr,BTﬁ(k) 7,7t i BT,B(k)+QCT[3(k) TF,BT,B( ) e B]Lﬁ( )+2CTIB(k)
Ve <Viky,n < Vp) ; Ph < Q(k) n < Qp )
7r,u72Cu,@( U U 7r7u72CuB( U
Ve <V <Vehn Ph < QGyn S Qph

Proof. The inequalities for () functions directly hold by Equation (11) and Lemma 36.
For the utility V' function,

w(k),u ﬂ'(k),u U U
Vini(s) = Vi, () = 3 mulal ) (@, (s,0) = QFih(s,0)

)

acA

a LA C)

o Zﬂh(CL'SQPh (k)( ) <0,
a€A

where (a) uses Equation (11) and (b) uses Lemma 36. Similarly,

7_Cu() ,—Cu(k)
Vi) = VERTO (5) = 3 milal ) (@1 (s.0) = Q2 (5,0))
acA
@ smuy2C, B ®)
(>Z7rha|sQPh(” (s) >0,
acA

where (a) uses Equation (11) and (b) uses Lemma 36. The claims for r and { can be similarly
proven. O

E.4 Proofs for Zero-Violation Guarantee (Section 3.2.1)
E.4.1 Proof of Lemma 5 and Lemma 6

Lemma 38 (Restatement of Lemma 6). Let f,g: [1, H] x S x A — R be functions and let . > 0.
Given \ > 0, let T be a softmax policy such that

1 n
7|9 = Softhax (@10 + AQEL(5.9) )
Then, VP 1'% (s1) is monotonically increasing in \.

Proof. Let W = {wp_: [L,H] x S x A— [0,1] | m € 11} be the set of all the occupancy mea-
sures. Let .Z : R x W — R be a function such that:

LA\ w) = Z wp(s,a)(frn(s,a) + Agn(s,a)) — kwp(s,a) In

h,s,a€[1,H|xSx A

wh(sva)
Za/eA wh(57 a/)

We first show that .Z is strictly concave in W. Let
wp(s, a)

%U}GW*—) Z 7wh(8,a)lnm

h,s,a€[1,H] XS x.A
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be the function representing the second term of .#. Then, '

A (aw' + (1 — a)w?)

1 2
ya) + (1 — a)wi(s,a)
= - awi (s,a) + (1 — a)wi(s,a))log awy(s, a) h
hZ( (s ) (L= a)uii(s.a)) log o=yt =i g SR S
Q awy (s, a) 1 — )wi(s,a)
> — 1 1 _ TR\ 1— 2 1 h\S,
> %awh(s, a)log aza, w}lL (s,a’) };}( a)w; (s, a)log 1-a . w’QL (s,d)
=a (w,) + (1 — ) (w}) ,
Z,y X <

for any w', w? € W and a € [0, 1], where (a) is due to the log sum inequality (3, x;) In S <
> Xiln % for non-negative x; and y;. Since (a) takes equality if and only if w! = w?, 7 is strictly
concave. Consequently, Z(X\,w) =3, . ceq1,mayxsx.a Wh(S,a)(fa(s,a) + Agn(s,a)) — kI (w)
is also strictly concave in W.

Let w* = argmax,cy, -Z(\,w), which is a unique maximizer due to the strict concavity.
Define £ (\) = maxyey Z (A, w). Using Danskin’s theorem (Lemma 10), .Z(\) is convex
and aigi’\) = Y sac[LH]xSxAWh (5, @)gn(s,a). Since ZL(N) is convex, its derivative is

non-decreasing. Therefore,

RL(N) 0 5

e = wy (s, a)gn(s,a) > 0. (12)

h,s,a€[1,H|xSx.A

Since 7 is the softmax policy, combined with the one-to-one mapping between occupancy measure
and policy [35], the well-known analytical solution of regularized MDP [15] indicates that w™
corresponds to the occupancy measure of 7*. Thus, due to Equation (12), it holds that

0 0 _
0= 2 Z wiy(s,a)gn(s,a) = aVP,llg(Sl) .
h,s,a€[1,H]xSx A
This concludes the proof. .

Definition 15 (Softmax policy with fixed §). Forany k € ut, s = (67,6v,6") € AP AP x A_(l_k')
and A > 0, let 7% € II be a policy such that

) 1 70X B, g0 45t 2O T 25N g
Wiaz'/\(' |s) = SOftMaX(n (QP.,h s, )+ Qpy U [K](s, ) + AQpy,” (s, ))> .

2

Lemma 39 (Existence of feasible \). Suppose k < WBTH)' For any k and for any § €
A(Tk) X A(rk) % Aglk)’ there exists a \® € [0, %} such that, ngk’“%”(sl) > b holds for
any A > A9,

Proof. Throughout the proof, we use a shorthand r® = B;3®*) + §f 4+ r + §7. Consider the
following entropy-regularized max-min optimization problem:

max min V“’Té [](s1) + A yru—dt (s1) —b— € + a2
mell a>0 Dl Pl 4 2

— minmax V27 [£](s1) + A VI (s) — b — g STy (13)
A>0 menr Dol P 1 5

where the equality holds by the strong duality of regularized CMDPs (see, e.g., Appendix C.1 in
Ding et al. [11]). Let (7, A) be a saddle point of the problem, which is ensured to be unique thanks
to the regularization. We first show the analytical forms of (7, \).

"9This proof is based of Lemma 14 from Ding et al. [11]
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Analytical forms of (7, X) Due to the strong duality, we have
w8 A (u—8" 78 A (u—8"
max V27 k] (s1) = Va0 [w] (1) -
Since the left-hand side is an entropy-regularized optimization problem in an MDP, the well-known
analytical solution of regularized MDP indicates that [15]:

~ 1 70 S AT, u—8" X
-] 5) = SoftMax(K(Qp:h [W](5,) +AQEH " (s, o)) =, (14)
where the last equality is due to the definition of ﬂg’k. Additionally, due to the strong duality,

B qyErt Fu—8" £ K\ 2
€argmin V51 [k](s1) + A VB (s1) —b— 7 ) + A%,
A>0 ’ ' 4 2

Since the right-hand side is a quadratic equation on \, we have

-~ 1 P
A:H[Hi—vpj J (sl)L. (15)

A upper bound. Next, we will show that Nis upper bounded by constant. We have
2

@ &0 1 Tau—38"
2H2(B; +1) 2 VI Wl(s1) — o= |0+ 5 — VAR (s1)
’ 2K 4 ’ n
>0
7,rd 3 Tu—a" K+
QV”l [E](Sl)—‘r‘)\(VPy’l 0 (81)—b—i> +§>\2

- . st )
SX| Ve —b— & vt s | 538
—_——

>3¢/4 <&/2 since keU®
where (a) is since ||7®|| = || B{8%) + 6T + 7+ 67| < By+BiH+1+H = (H+1)(B; +1),
(b) is due to Equation (15), (c) uses Equation (13). By reformulating the inequality,
8Hg(BT + 1)
¢ .

Constraint violation of Finally, we will show that for any A > X, oA guarantees zero
constraint violation. Due to Equations (14), (15), and (16), we have

~ X U SkH?(B 1
B\ = b+§—V}§iA’“ " (s1) Siﬁ x(Bi+1) ,
TS ) ¢

% (s1) is monotonically

X< (16)

IO

~ 5,
which ensures the small violation of 7%* when k < 1. Since V]; 1 u
. . Y 0N u—s £ 8KHZ(Bi+1)
increasing in A due to Lemma 38, forany A > A, V5| (s1) > b+ i e Therefore,

2 52, su
by Setting K S W, we have V;;,l u—0o (81) Z b. 0

2
SHABED g

Lemma 40 (Restatement of Lemma 5). If Algorithm 2 is run with p = 1, C >

K< under &, it holds Z?;;jicA “(s1) > bforany k € ut.

&-2
32HZ(Bi+1)’

Proof. Due to &, it holds that

w(k)’ck,r
5= (97,

According to Equation (11), this & satisfies 7%C* = 7(¥)-C where 7%-C is defined in Definition 15.

),
Therefore, using Lemma 39, K?k: 10“‘(51) > b. This concludes the proof. O

w(’“)vck,u 7T(k),c>\JL (k) L .
75(16),- 75(1c)¢- ) € AT X A§, ) x AEI )
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E.4.2 Proof of Theorem 3

Lemma 41 (Bonus summation bound). If Algorithm 2 is run with p = 1, under &, and &>, it holds that

K
S (v ) < 2H2d1n<1 + I;) a2 = 6 (m%)
k=1

K
and Z(Vp(k) #Ps) < H\/R\/len<1 + [;) fam 2BH O(HVIEK) .

]

Proof. We have
a () 3k 2 K ([ H w k 9
Z(Vp (51)) => ZE[Bh (Sh,an) ‘ Sy, ~ 76 )}
k=1 k=1 \h=1
S (k) o\ 2
< HZZ<E[ n (8h:an) ‘ Shyap ~ mt )D

k=1h=1
K H
(@)
LY E[I0(on oy [ snoan 7]
k=1h=1 "
K H
(b) k (k 2KH
LMY UL EERTRTE &
k=1h=1

© K 2KH
<2H2d1n<1+ d)+4H21 —

where (a) is due to Jensen’s inequality, (b) is due to &7, and (c) uses Lemma 12. The second claim
follows by:

K
(a) 2 ®) — K 2KH
Z P(k) ﬁ<k) 51 < \/7 Z(VP(M o (51)) = \/2dln(1 d > A ’

)
k=1

where (a) uses Cauchy—Schwarz inequality and (b) uses the first claim. O

Lemma 42 (Restatement of Theorem 3). Suppose Algorithm 2 is run with p = 1 and &, and & hold.
Then,

27172
| < B1CEH <2KH

& 0

where the last equality sets C,, = (5(dH)

) =O(e2H4 %),

Proof. Using Lemma 41 and Definition 4, we have
2 s , 2 K 2KH
U] (g) < Z(v;{f’”uﬂ“’(sl)) < 803H2d1n<1 + d) +16C2H In = .
keu

Therefore, we have

U] <

d

820, Hd <1+ K> 64CoH? | 2KH _ GACIH?d (2KH>
T i n .

& e My ST e 5
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E.5 Proofs for Sublinear Regret Guarantee (Section 3.2.2)

Suppose the good events & N & hold. We decompose the regret as follows:
Regret(K)

K
= (Vs = VE T (e)
k=1
= (VA1) = VEL )+ 2 (VA (o) VEL T (s)

keu keut
(k)

<wir+ Y (Vi W) - Vil o0 ) + X (VA ) - Vil i)

keut

@ ~ () S0, o 209

O(@H'e) + X (Vigd Wen - iy “Teen)) + 3 (Vo) - Vi en ) + a4
keut keut

®) ~ OWIO! i —r(®)

<O(d*H'¢?) + 20, Z Vi, B (s1) + Z (VP,I (81) = Vi [K](Sl)) +kKHInA,

ke keu®

) @
a7

where (a) uses Lemma 42 and (b) is due to Lemma 37 with &,. Under & N &, (D) can be easily
bounded by Lemma 41

@ < C,0(HVIE) < O(H2d**VE) | (18)
where the last equality inserts C\. = O(dH,,).

E.5.1 Mixture Policy Decomposition

We upper bound (2) in Equation (17) by the mixture policy technique.

Lemma 43 (Mixture policy’s feasibility). Ler a(¥) = . Forany k € U C and

9
T
@ y_2c, g
€ [0,a®)], n* defined in Definition 5 satisfies V" 20uB (1) > b

Proof. We have
7 u—2C, BK*)
VEL T (s1) = b
w5 u— (k) T u— (k)
=1 = a) (VA2 (1) = b) 0 (VYT (1) — )
+ O‘(Vlg,;’_chﬂ(k)(sl)) 7

of (k)
where the last inequality holds because Vj PP (s1) < § due to k € UC.  Thus,
o y—20, B
Ve, 2CuB (51) — b > 0 holds when

>(1-a)}

£

a < .
T, (k)
€+2VE 2P (s1)

O
Lemma 44 (Mixture policy’s optimism). Let By > MT“H. Forany k € ut, 7" with a/(*) from
Lemma 43 satisfies,

(k)

() . . B
Vea TR (51) > Vi (s1) and Vi, " 20 (5) > b
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s (x) . .
Proof. The sufficient condition that Vp, 1’T+BTB (s1) > V5" (s1) to hold is

* «@ ‘IT*,T TI'SfJ‘
. V£1’T(S1) _ V};17T(81) B (1-a) (VP,l (s1) — VP,I (81))
= o BR) = ) )
Vpa" (1) (L=a)Vp ™ (s1) +aVp ™ (s1)
- 5
Vi (1) = Vi, (s1)

= St 3(k) * 3(k) .
VLT (s1) + 12 VBT (s1)

By inserting o(%) = 3 intoa, e, & = —S&
Y & e+2v7, 2P (51) e vz
* sf *, st
N VEL (1) = Vi (s1) 4G (VA" (52) = VE " (o)
T = St 3(k) ~ 3(k) = St 20, B(F) .
Vi, P (s1) + —F ) Vzg,fﬁ (s1) 2Vp PP (s1) + €

4C,VELYT T (s1)

(k) (k) *
Thus, when B; > 4CEH, it holds that V;{l BB (s1) > V5" (s1). The second claim follows

from Lemma 43. O

We are now ready to decompose (2). Using Lemmas 43 and 44, we have

@= 3 (Ve - Vi e

keu®
o (k) (k) (k)
T ,B--B(k) oo™ —n(®
<y (Vm P o)+ VEL TRl (s1) — Vs w(sl))
keu®
(k) o (k) (k) )
x>, By g T s&T) om™ u—20, 85
=3 (Vi P o vED Il + X TVES “s)
ket (19)

—n(F) —n(F) ~ (k1) m(F) 4
“Viya (51) = Vi i [Kl(s1) =AYV 5 (31)>

77T(k)’T —(k,T) ﬂ(k),u ﬁ“(k),u— c. (k)
+ 2 Vipd (s)+ 3 2 (V<k>,1 (s1) = VB, 727 (s1) )

keut keut
@ ®
is defined in Line 10. Using Lemma 37, the term @ is bounded as

(k) (Bi42C:)B*)
@SV;J (B1+2C4)B (s1) .

where X&T)

Using Lemma 41, it holds that

@ < (By +201)0(HVIK ) = O(H'¢*¢VE) (20)

where the last equality inserts By = 4~ 'C, H, C,, = O(dH), and Cy = O(dH By). We will bound
() and (5) separately.

E.5.2 Optimistic Bounds
Lemma 45 (Optimism in composite value function). Suppose & holds. Then,
alk) (k) a(k) — a(k) &
" B, re® [ I Y L)
@=> (Var "7 )+ VL IR + XV )

ke

iﬂ(m’B B(’v) iﬂﬂc)’,. ~(k,T) w(’“),u
Vool (s1) = Vi [6l(s1) = X v (51)) <0.
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Proof. Using Lemma 18, for any k € U C, we have

— ) B, g ) (6,T) ) oy
Vigd | (s1) + Vi g K(s1) + A7 Vi 2 (s1)

(k) (k) (k)
@ ,B (k) o ~(k,T) <Y —2C., (k)
Vi P s) — VR TIRl(s) - A VL TR ()

k) 41 ok o —(k,T) . o) (%)
=VEy T s+ Ve T (s) XTIV R (sy)

where f1:[1,H] xS x A— Rand f?:[1,H] x S x A — R are functions such that

s = X (5019 @ 1.0 + 3@ s - kil 9) )
acA
_ Z( * (a]s (Q(k) » (s,a) +/\( )Q(k(:)} (s,a) — nlnﬂ,ol‘(k)(a | 5))>
aE.A

) ~(6,T) ¥
fi(s,a) = o7 " = XE g

It is well-known that the analytical maximizer of max ez (4) Y _,c4 T(a)(x(a) — xkIn7(a)) is
k)
SoftMax (£x(-)). Therefore, the function f* is non-negative and thus V| S (s1) > 0.

On the other hand, using Lemma 36, we have

7 (R 4y ( ) (kT k
f(s,a) = 55 i = A gp = X a0, g

Therefore, it holds that

w')‘(k) 2 (k,T) ‘n'a(k) 2C, (k)
Vir D)+ XTVEL 2 (s1) 2 0.

By combining all the results, we have B <o. O

E.5.3 Bounds for Bisection Search
Using Lemma 43, (5) is further bounded by

< (BT [ (), o™ o0, g
®= Z A ( (k).1 “(s1) — Vi 2P (51))

keut
< S X —b) <0 D (Vs — b))
keu® ke

We bound the last term using the bisection search in Algorithm 2. Note that we focus only the
k),
case K’(Tk()> O “(s1) < band V(k) . “(s1) > bdue to Line 4 and Line 3 in Algorithm 2. Due to the

PR and A (&) in Algorithm 2,

c k,
AR A0 7, X0

Ya ’ (51) < b and V(k) 1 (31) >b

hold for any ¢ € [1, T']. Therefore,

w(k)’x(k'T) u ﬂ(k)A(k‘T) ”
@SCA Z (V(k),l ' (51) _K(k:),l ’ (Sl)>

keut

definitions of \

To bound the right-hand side, we derive the sensitivity of V(’;;kiAU(sl) with respect to \.

1+ 8(1+CA)(H”+BfH+H)) and Y =

K

Lemma 46 (Restatement of Lemma 8). Let X = K (
SULABYHEH) | o any k and \ € [0, Cy], it holds that

K
(k) A (k) A+e

Vi (s1) ~ Vi ’“(sl)‘ < XU pye .
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Proof. The proof is based on Lemma 2 from Ghosh et al. [18]. For notational simplicity, we denote

7= 7k)A and 7’ == 7(k):A+e Additionally, we use shorthand:
oh = ||V ali) = Vil G = @55l = Qaalel]|_
Up, = HV V(kT H q;; = HQ(k) h Q(kT H
Vh = Hz?k?h f?k)uh ) G = HQ(k) h Q?k;fh -
For any h, we have
= |7 Q75 1l) = mh QG Tl | < Hellmn = il +

s
h=

vl < BiH|m) — |l + q]
n < By h 7Th1 ap
h < Hllmp —mlly +ap

Since 7, and 7, are softmax policies, using Lemma 19,

I =l < @+ @l +AQY, — @t — @l — A+ Q|

< %(thrqﬁJrCAqﬁJré‘H)
Additionally,
ap < Hﬁ(k) (V?k) 1K) — V(k) ha1lk )H < Kvj 4
q < Hﬁ( )<V(k) ht1 — V(k) h+1)H < Kvf .,

m k U ! U
qn < HPIS )<K( i1~ Y h+1)H < Kvpyq,

where we used the fact that, forany V : § — R,

‘ﬁ,gk)V‘(s,a) =

k—1

k 1

o(s,0) (AN (s, al )WV (si)y)
=1

k—1
k) —
< | (Ao a1Vl < KNV
i=1 2
By combining all the results,
8H, 8H, 8H,.C 8H,
vy, < K< >vh+1 + K—= vZ_H +K7sz+1 + eH
K K K
8B+H 8B+H 8B;HC 8B+H
v,t < K1 Vhat —|—K( /i + 1>v;rl+1 +K#v}f+1 +TT€H
8H 8H 8H 8H
vy < K—wp oy + K—v;:+1 +K( + 1) Cavpy 41 +—eH.
K K K K
Let X K(l n 8(1+Cx)(H:+BTH+H)) andV = W' Then,
up + vl ol < X(vh g + ol +oly,) + Y He
< X2(Vh g+ V) o + V) + XY He + Y He
< (X744 X+4+1)YHe.
O
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We are now ready to bound (5) Applying Lemma 46 to (5), we obtain the following lemma.
Lemma 47. When T = O(H), it holds that

R xET) R AT ~
oo Y (v e v men ) < 60).

keut

Proof. Due to the bisection search update rule, X(k’T) — A(k’T) = 2T Thus,

(k) xR T) (k) AR T)
®<a Y ( g g

Viea  (s1) =V, ’"(31)) < X"C\KH?Y2™"
keu®

where the inequality uses Lemma 46 with X and Y defined in Lemma 46. Thus, 3) < (5(1) holds
by setting 7' = H polylog(X, H,Y"). This concludes the proof. O

We are now ready to prove Theorem 4. The proof is under the parameters of: p = 1, C,. = o (dH),
C, = O(dH), C; = O(d*H3¢™1), By = O(dHQE_l), K = Q(§3H_4d—1K—0'5), T = O(H),
and C = O(dH*¢?).

E.5.4 Proof of Theorem 4

We condition the proof with the good events & N &5, which holds with probability at least 1 — 36
by Lemmas 33 and 34.

In Algorithm 2, the deployed policy switches between 7 € II*f and the softmax policies. Since
Tr(k

Algorithm 2 deploys the softmax policies only when K( k)fio’u(sl) > b, due to Lemma 36 and the

good events, all the deployed policies satisfy (%) € TI*f for all & € [[1, K. This concludes the proof
of the zero-violation guarantee.

Next, we derive the regret bound. Recall from Equation (17) that

Regret(K) < O(*H*¢ ) + D+ Q+rkKHInA < O(*H*¢ ) + D+ @+ O(VK) ,
where the second inequality is due to the value of .

Using Equation (18),
D < (5(H2d3/2\/7().

Using Equation (19), @) can be decomposed as:
Q<+@+B.

Each term can be bounded as:
+ 3 < 0 by Lemma 45
c @< 6(H4d5/25—1\/?) by Equation (20),
« (® < O(1) by Lemma 47
Finally, by combining all the results, we have
Regret(K) < O(d*Hi¢2) + 6(H2d3/2\/§) n 6(H4d5/25—1\/?) .

This concludes the proof of the sublinear regret guarantee.
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F Numerical Experiments

This section presents empirical results supporting Theorem 4, which guarantees v/ K regret and
episode-wise safety of OPSE-LCMDP. We also evaluate how often OPSE-LCMDP deploys the
safe policy 7!, a key technique for achieving sublinear regret (Theorem 3). All experiments were
conducted within 30 minutes using eight Intel Core i7 CPUs and 32 GiB of RAM.

The source code for the experiment is available at https://github.com/matsuolab/
Episode-Wise—-Safe-Linear—-CMDP.

We compare OPSE-LCMDP against the previous state-of-the-art linear CMDP algorithm by
Ghosh et al. [18] and the tabular CMDP algorithm called DOPE [8]. Gh~osh et al. [18] achieves

O(V/K) bounds for both regret and violation regret, and DOPE achieves O(v/K) regret with zero
episode-wise violation.

For a sequence of policies {7 (%)} ke[L,K]» the violation regret is defined as:

: 25 4
Vio(K) = Zszl max{b = Vi, “(s1), O} . (21)

Clearly, if all the policies satisfy 7(*) € TI*f, the violation regret is zero.

Additionally, we also report the performance of a uniform policy defined by 7, (- | s) = 1/A for
all h, s, to highlight the sublinear regret of our algorithm.

Implementations of Ghosh et al. [18] and DOPE. Ghosh et al. [18]’s algorithm can be
implemented similarly to ours, with a few modifications: remove the 75 deployment trigger,
eliminate the pessimism compensation bonuses by setting C't = B = 0, and apply an optimistic
constraint bonus instead of our pessimistic one (i.e., use a negative sign for C,). We use C,. and
C,, to denote the bonus scaling parameters for Ghosh et al. [18]. See Algorithm 1 of Ghosh et al.
[18] for further implementation details.

The DOPE algorithm can be implemented in tabular environments with a moderately small state
space. It computes the policy 7(*) by solving the following optimistic—pessimistic problem:

_C 8™
® e max mex V;;,’Jrc P (51) such that V5, B (s1) >0, (22)

where ﬁ,(lk) (s,a) denotes the bonus at step A for the state-action pair (s,a) and P*) denotes the

confidence set for the transition kernel. Specifically, using the visitation count'! nﬁlk) (s,a,8") =

ZZ/:1 ]l[sgz =5 aﬁf) = a, 8;321 = '], the bonus and the confidence set are defined as
3 (s,0) = > v®)(s,a,5') where v (s,a,5') o | =2 ("] 5,0)( (8" |s,a)) ’
niM (s a) V1
s’eS ¥ ,
(k) ~(k) n(k)(s a,s)
Zn sas ,andPh (8/|s,a): n (5,4,

s'€S g)(,a)\/l

For simplicity, we omit absolute constants and logarithmic factors, and use this simplified form in
all experiments. Further implementation details can be found in Bura et al. [8].

For each environment, we select the hyperparameters of each algorithm using heuristic adjustments
to balance exploration and exploitation. To ensure numerical stability, we assign relatively small
values to these parameters. The detailed values are provided below.

Synthetic tabular environments. To evaluate the exact regret values, we conduct experiments on
tabular CMDPs with a small state space size. Tabular CMDP is the special case of linear CMDP with
d = |S| and allows us to compute the optimal policy 7* by linear programming.

""1[E] equals 1 if the event E is true, and 0 otherwise. For two scalars a and b, we use shorthand a VV b :==
max{a, b}.
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We instantiated CMDPs with |S| = 5, |A| = 3, H = 4, employing a construction strategy akin to that
of Dann et al. [9]. For all s, a, h, the transition probabilities Py (- | s, a) were independently sampled
from Dirichlet(0.1,...,0.1). This transition probability kernel is concentrated yet encompasses
non-deterministic transition probabilities.

The reward values for the objective 7, (s, a) are set to O with probability 0.1 and to 1 otherwise.
The utility values for the constraint uy(s,a) are assigned in the same way. The initial state
51 is randomly chosen from S and fixed during the training. The constraint threshold is set as
b= 0.6 max en V};’lu(sl).

We choose the hyperparameters of the algorithms as follows:

* OPSE-LCMDP: C, = C,, = C4 = 1.0, C = 300, B; = 1.0, and x = 0.1.
e Ghoshetal. [18]: C,, =C, = 1.0and k = 0.1.
 DOPE [8]: C, = C, = 1.0.

Media Streaming CMDP Environments. As a realistic environment, we also evaluate algorithms
on the media streaming environment from Bura et al. [8]. In the environment, a wireless base station
(agent) transmits media to a device using either a fast or slow service option, each incurring different
costs. The slow and fast services correspond to actions a = 1 and a = 2, respectively.

The fast service succeeds with probability (i, and the slow one with p5 = 1 — p1, where both follow
independent Bernoulli distributions. At each environment construction, we randomly sample ji;
from [0.5, 0.9]. Packets received at the device are stored in a media buffer and played out according
to a Bernoulli process with parameter p. We sample p uniformly from [0.1,0.4].

Let Ay, By, € {0, 1} denote the number of arriving and departing packets, respectively. The media
buffer length represents the state, and transitions as sj,+1 = min{max{0, s, + A, — By}, L} where
L denotes the maximum buffer length. We set L = 5, |S| = L 4 1, and H = 4. The initial state
is setto s1 = 0.

The objective is to deliver enough packets to the buffer while limiting the use of the fast service.
Accordingly, the agent receives a reward r,(s,-) = 1{s > 0.3L} and incurs a constraint utility
up(-,a) = 1{a = 1}. The constraint threshold is set as b = 0.6 max en V5" (51)-

We choose the hyperparameters of the algorithms as follows:

* OPSE-LCMDP: C, = C, = C4 = 2.0, C) = 300, B; = 1.0,and x = 0.1.
e Ghoshetal. [18]: C,, =C, =2.0and xk = 0.1.
* DOPE [8]: C,. = C, = 1.0.

Synthetic linear environments. Building on the experiment by Amani et al. [4], we randomly
construct linear CMDPs in which the number of states is larger than the feature map dimension. We
test the algorithms on environments with S = 100, A = 3, d = 5, and H = 4. This setup has a
relatively large state space while still allowing us to analytically compute the optimal policy and
exact regret.

For each (s,a) € S x A, the feature vector ¢(s,a) € R? is sampled from Dirichlet(0.1,...,0.1).
Recall from Assumption 2 the definition of p, = (u}b, ey ug) € RS*4 For each
(hyi) € [1,H] x [1,d], we sample g from Dirichlet(0.1,...,0.1). With these g and ¢,
we set Pp,(s" | s,a) = p;,(s") T ¢(s,a). This construction ensures that Pj,(- | s,a) = 1 becomes a
valid probability distribution for any (h, s, a).

For the reward and utility functions, we sample both 8} and 6}, from a uniform distribution over
[0, 1]¢. The reward and utility functions are then constructed such that 7, (s, a) = (8},) " ¢(s,a) and

un(s, a) = (0;)" (s, a).
The initial state s is randomly chosen from S and fixed during the training. The constraint threshold
is setas b = 0.68 max ¢ Vg”lu(sl).
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Figure 1: Numerical comparison of the algorithms in the synthetic tabular environment (Top), the

media streaming environment (Middle), and the synthetic linear environment (Bottom). We do not
run DOPE in the linear CMDP environment due to its computational intractability (see Remark 3).
Left: regret (Equation (6)), Middle: violation regret (Equation (21)), and Right: total number of st
deployments in OPSE-LCMDP.

Remark 3. We do not run the DOPE algorithm in this linear environment due to its heavy compu-
tational cost. Using the extended LP technique introduced by Efroni et al. [13], the optimization
problem in (22) can be reformulated as the following standard LP problem:

ming c¢'x suchthat Ax=b and Gx>h,

where parameters are defined appropriately. This LP involves HS? A decision variables and more
than HS?A number of constraints (see [13] for more details). Therefore, in our synthetic linear
CMDP experiment, the matrices A and G require at least 100 entries, which is computationally
intractable in practice.

Results. Figure 1 shows the performance of the algorithms, averaged over 10 random seeds, with
regret plotted on the left, violation regret in the middle, and the total number of 75f deployments
on the right.

Across all settings, both OPSE-LCMDP and the algorithm by Ghosh et al. [18] exhibit sublinear regret.
However, while OPSE-LCMDP maintains zero constraint violation throughout, Ghosh et al. [18] con-
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sistently violates the constraint, leading to increasing violation regret. These results empirically val-
idate Theorem 4, confirming the O(+/ K) regret and episode-wise safety guarantees of our algorithm.
While DOPE achieves sublinear regret with zero-violation, it is limited to the tabular settings

where S is small, as described in Remark 3. This highlights the computational tractability of our
OPSE-LCMDP in large S, which supports Remark 2.

Finally, the right plot shows that OPSE-LCMDP explores the environment using 7 primarily during
the early stages of training, and stops deploying it after approximately 10* episodes. This behavior
supports Theorem 3.
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