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ABSTRACT

Value factorization is an efficient approach for centralized training with decen-
tralized execution in cooperative multi-agent reinforcement learning tasks. As the
simplest implementation of value factorization, Linear Value Factorization (LVF)
attracts wide attention. In this paper, firstly, we investigate the applicable condi-
tions of LVF, which is important but usually neglected by previous works. We
prove that due to the representation limitation, LVF is only perfectly applicable to
an extremely narrow class of tasks, which we define as the decomposable Markov
game. Secondly, to handle the indecomposable Markov game where the LVF is
inapplicable, we turn to value factorization with complete representation capabil-
ity (CRC) and explore the general form of the value factorization function that
satisfies both Independent Global Max (IGM) and CRC conditions. A common
problem of these value factorization functions is the representation interference
among true Q values with shared local Q value functions. As a result, the pol-
icy could be trapped in local optimums due to the representation interference on
the optimal true Q values. Thirdly, to address the problem, we propose a novel
value factorization method, namely Q Factorization with Representation Interfer-
ence Suppression (QFRIS). QFRIS adaptively reduces the gradients of the local
Q value functions contributed by the non-optimal true Q values. Our method
is evaluated on various benchmarks. Experimental results demonstrate the good
convergence of QFIRS.

1 INTRODUCTION

Centralized training with decentralized execution (CTDE) (Lowe et al., 2017; Oliehoek et al., 2008;
Foerster et al., 2016) shows surprising performance and great scalability in challenging fully coop-
erative multi-agent reinforcement learning (MARL) tasks (Tan, 1993b). Such tasks only provide
rewards shared by all agents. Each agent is expected to deduce its own contribution to the team,
which introduces the problem of credit assignment (Foerster et al., 2018). As a simple and effi-
cient approach for credit assignment in the CTDE paradigm, value factorization, especially Linear
Value Factorization (LVF) recently gains growing attention, e.g., VDN (Sunehag et al., 2017) and
QMIX (Rashid et al., 2018). An important property of LVF is that it concisely meets the Indepen-
dent Global Max (IGM) principle (Son et al., 2019). The IGM principle is defined as the identity
between the joint Q value function and the set of factorized local Q value functions, which is wildly
acknowledged as a critical rule for value factorization.

However, the linearly factorizable joint Q value function in LVF is incapable to represent non-linear
true Q value functions, known as the representation limitation of LVF. Recent works focus on the
solutions to the representation limitation but usually neglect under what conditions the true Q value
function is not linearly factorizable. In this paper, we prove that in the context of Markov games,
the linear factorizability relies on two conditions: (1) the reward function is linearly factorizable
on a set of subspaces of the joint state-action space; (2) the state transitions in each subspace is
irrelevant to the state and action out of the subspace. Based on the two conditions above, we define
the decomposability of the Markov game. In words, the true Q value function is linearly factorizable
if and only if the Markov game is decomposable. Most of the tasks are indecomposable Markov
games, so we go deeper into the property of LVF in this case. We prove that the target of the joint Q
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value function in Bellman equation (Sutton & Barto, 2018) is always unbiased for LVF under value
iteration in sarsa manner.

To deal with the indecomposable Markov game where the true Q value function is not linearly
factorizable, we consider improving the representation capability of the value factorization function
by introducing extra approximators. According to the partial derivative on local Q value functions,
value factorization functions can be classified into two categories, i.e., linear and non-linear. For both
categories, we investigate the conditions of value factorization functions that satisfy the complete
representation capability (i.e., the capability to approximate any true Q value function) and the IGM
principle. Then we propose a rule to generate qualified functions and list some example functions
for both linear and non-linear cases.

A common problem of these value factorization functions is the representation interference among
true Q values. Specifically, a local Q value corresponds to multiple true Q values in value factoriza-
tion. As a result, the representation of these true Q values is interfered by each other through the
training of the shared local Q value function. The representation interference on the optimal true Q
value function could leave the policy trapped in the local optimum. To address the problem, we de-
sign a novel value factorization function. Our method, namely Q Factorization with Representation
Interference Suppression (QFRIS), alleviates the representation interference on the optimal true Q
value by reducing the weight contributed by the non-optimal ones. QFRIS is evaluated on matrix
game, predator-prey and starcraft multi-agent challenge. The experimental results demonstrate the
good convergence of our method.

We have three main contributions in this work: (1) We prove a sufficient and necessary condition for
the linear factorizability of the true Q value function, which can be used to distinguish whether the
joint Q value function of LVF is faced with representation limitation; (2) To deal with indecompos-
able Markov games, we propose the rules to generate value factorization functions that satisfy both
IGM and CRC conditions; (3) We point out a common problem of value decomposition, namely
representation interference, and design a novel value factorization function to address the problem.
Our method shows good convergence in experiments on various benchmarks.

2 PRELIMINARIES

2.1 DEC-POMDP

A fully cooperative multi-agent reinforcement learning problem can be modelled by the Decentral-
ized Partially Observable Markov Decision Process (Dec-POMDP), which is usually described by
a tuple G =< S,U ,P, r, Z,O, n, γ > (Guestrin et al., 2001; Oliehoek & Amato, 2016; Seuken
& Zilberstein, 2008). s ∈ S denotes the global state of the environment, by which a local obser-
vation zi ∈ Zi is assigned to agent i ∈ I ≡ {1, 2, · · · , n} according to the observation function
O : S × I → Zi. After receiving zi, each agent chooses an individual action ui ∈ Ui based on its
local policy πi(ui|τi) : Ti × Ui → [0, 1], where τi ∈ Ti ≡ (Zi × Ui) is the local observation-action
history, i.e., the local trajectory. After the execution of the joint actionu = {u1, · · · , un}, a reward r
shared by all agents and the next state s′ are generated by the reward function r(s,u) : S×U → R
and transition function P(s′|s,u) : S × U → S, respectively. γ ∈ [0, 1) is a discount factor. Note
that we use bold symbols to denote the global and joint variables, e.g., S and u.

The true Q value function is defined as the expectation of accumulative rewards, i.e., Q(st,ut) :=
Est+1:∞,ut+1:∞ [Rt|st,ut], where Rt =

∑∞
i=0 γ

irt+1. Q(st,ut) is approximated by the joint
Q value function Q(s,u). We denote the optimal action and greedy action by u∗ :=
argmaxu Q(s,u) and ugre := argmaxu Q(s,u), respectively.

2.2 VALUE FACTORIZATION

In value factorization, the joint Q value function is factorized through a value factorization operator
F(·) as

Q(s,u) = F(Q1(τ1, u1), · · · , Qn(τn, un)) (1)
Qi(ui, τi) : Ui → R (i ∈ [1, n]) is defined as the local Q value function of agent i. A critical rule
of value factorization is the Independent Global Max principle. The IGM principle is defined as the
identity of the joint greedy action and the set of local greedy actions. Formally, given the joint Q
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value function Q(s,u) and the factorized local Q functions {Q1(τ1, u1), · · · , Qn(τn, un)} by F(·),
if the following equality holds

argmaxu Q(s,u) = {argmaxu1 Q1(τ1, u1), · · · , argmaxun
Qn(τn, un)} (2)

we say the factorization operator satisfies the IGM principle. The IGM principle enables the coor-
dination of local policies under the centralized trained joint Q value function.

Linear Value Factorization (LVF) naturally meets the IGM principle and becomes the most popular
value factorization method in recent years. In LVF, the joint Q value function is linearly factorized
as

Q(s,u) = F(Q1(τ1, u1), · · · , Qn(τn, un)) =
n∑
i=1

wiQi(τi, ui) + V (s) (3)

The joint Q value function of LVF can only represent linearly factorizable true Q value functions,
known as the problem of representation limitation. As a result, the optimal Bellman operator could
be not a γ−constraint (Wang et al., 2020a) when faced with non-linear true Q value functions. In
words, there could be multiple convergences for the joint Q value function (Wan et al., 2021) and
the policy would get trapped in sub-optimums.

3 INVESTIGATION OF LINEAR VALUE FACTORIZATION IN MARKOV GAMES

3.1 DECOMPOSABILITY OF MARKOV GAMES

The linearly factorizable joint Q value function in LVF is incapable to represent non-linear true Q
value functions. In this section, we investigate the conditions of the linearity of the true Q value
function in the context of the Markov game. A Markov game (Littman, 1994) is equivalent to a
decentralized fully observable Markov decision process, which can described by a tupleMG =<
S,U ,P, r, n, γ >. The explanation of the symbols can be found in the preliminary. Firstly, we
introduce the concept of decomposability of Markov games.

Definition 1 (Decomposable Markov Game). Given an Markov game (Dou et al., 2022)MG =<

S,U ,P, r, n, γ >, if there exists a collection of subspaces of the joint state-action space {S1 × Û1,
S2×Û2, · · · , Sk×Ûk} (k ≥ 2), i.e., Si×Ûi ⊂ S×U for ∀i ∈ [1, k], such that for ∀(st,ut) ∈ S×U ,
the following holds

• ∀i ∈ [1, k], P(si,t+1|si,t, ûi,t) = P(si,t+1|st,ut), where (si,t, ûi,t) ∈ Si × Ûi;

• the reward function r(st,ut) can be linearly factorized as r(st,ut) =
∑k
i=1 ri(si,t, ûi,t).

then we say that MG is decomposable by {MG1,MG2, · · · ,MGk}, where MGi :=<

Si, Ûi,P, ri, ni, γ > (i ∈ [1, k]). Otherwise we say MG is indecomposable. ni is the number
of agents involved inMGi. Specially, ifMGi is no longer decomposable for ∀i ∈ [1, k], we say
that {MG1,MG2, · · · ,MGk} is the Minimum Granularity Decomposition (MGD).

MGi,MGj (∀i, j ∈ [1, k] and i 6= j) should not be considered as elements of the decomposi-
tion in the following situations. (1) Void decomposition: Ûi = ∅ and ri(si, ûi) = 0; (2) Self-
decomposition: Ûi = U and ri(si, ûi) = C · r(s,u), where C is a constant; (3) Overlapping
decomposition: Ûi = Ûj and ri(si, ûi) = C · rj(sj , ûj). Therefore, we also require ∀i, j ∈ [1, k]

(i 6= j), Ûi 6= ∅, Ûi 6= U and Ûi 6= Ûj for a decomposable Markov game.

Examples of both decomposable and indecomposable Markov games are provided in Fig.3.1, where
4 agents (denoted by dots) need to cover 2 landmarks (denoted by squares) in pairs. Agents are
assigned target landmarks in colors. The team receives an instant reward when any agent covers
the target landmark. In the indecomposable case, the team only receives a reward when a landmark
is covered by the first 2 agents, where the reward function is not linearly factorizable since it is
determined by the policy of all agents. Fig.3.1 (c) and (e) present two decompositions of the decom-
posable Markov game. Especially, the decomposition in Fig.3.1(e) is the MGD since none of the
decomposed Markov games are further decomposable.
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Figure 1: Examples of decomposable and indecomposable Markov games.

Proposition 1 (Linear factorizability of the true Q value function in decomposable Markov
games). The true Q value function can be linearly factorized as Q(s,u) =

∑k
i=1Qi(si, ûi) for

∀(s,u) ∈ S × U if and only if MG is decomposable by {MG1,MG2, · · · ,MGk}.
The proof of Proposition 1 can be found in Appendix A. Fig.3.1(d) presents the factorization of the
true Q value function under the decomposition in Fig.3.1(c). The joint Q value function of LVF is
capable to represent the true Q value function only if each decomposed Markov game of the MGD
involves only a single agent. Note that the decomposition of a Markov game is non-unique. We can
obtain new decompositions from an existing decomposition, for which we introduce the following
lemma:

Lemma 1. Suppose {MG1,MG2, · · · ,MGk} (k ≥ 2) is a decomposition of Markov gameMG.
{MG′1,MG

′
2, · · · ,MG

′
ks} is also a decomposition ofMG if the following conditions holds: (1)

MG′j is decomposable by a non-empty subset of {MG1,MG2, · · · ,MGk} for ∀j ∈ [1, ks]; (2)
∪ksj=1{S ′j × Û ′j} = S × U , whereMG′j =< S ′j ,U ′j ,P, r′j , n′j , γ >.

The proof of Lemma 1 can be found in Appendix B. Obviously, if {MG1,MG2, · · · ,MGk} (k ≥
2) is a decomposition of Markov game MG, we can also obtain new decompositions by further
decomposing the elements of {MG1,MG2, · · · ,MGk}.

3.2 LVF IN INDECOMPOSABLE MARKOV GAMES

Decomposability is unusual for Markov games. Multi-agent tasks involving cooperative rewards or
interactive transitions of all agents are usually indecomposable Markov games, where the true Q
value functions are not linearly factorizable. In this subsection, we investigate the performance of
LVF in the most frequent cases, i.e., indecomposable Markov games. Our investigation is carried
out from the perspective of indecomposable Markov games with discrete action spaces, where the
representation of the true Q value function is equivalent to solving the linear equation system{

Q(s,u) =
n∑
i=1

wiQi(s, ui) + V (s)

}
∀u∈U

(4)

The maximum number of independent equations is mn, where m is the size of the discrete action
space. It can be proved that the rank of the coefficient matrix of the equation system equals n(m−
1) + 1 (the proof is available in Appendix C). The equation system is overdetermined since mn >
n(m− 1)+1 for ∀m,n ∈ [2,∞). Despite the representation error of the joint Q value function, the
target of the joint Q value function is always unbiased for LVF under value iteration in sarsa manner.
To explain this, we introduce the following proposition:

Proposition 2. In indecomposable Markov game, the estimate of state value function is unbiased for
LVF under the value iteration in sarsa manner, i.e.,

∑mn

u π(u|s)Q(s,u) =
∑mn

u π(u|s)Q(s,u).
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The proof of Proposition 2 can be found in Appendix D. Furthermore, we have

Qtarget,t = r(st,ut) + γ
1

mn

mn∑
ut+1

∫
st+1

P(st+1|st,ut)π(ut+1|st+1)Q(st+1,ut+1)dst+1

= r(st,ut) + γEut+1∼π(ut+1|st+1),st+1∼P(st+1|st,ut) [Q(st+1,ut+1)] = Q(st,ut)

(5)

Eq.5 indicates the target of the joint Q value function still equals the true Q value function in inde-
composable Markov games for LVF under the value iteration in sarsa manner. In this case, LVF is
capable to find the optimal policy if for ∀t ∈ [0,∞), the following holds

u∗t = argmax
u

QLV F (s∗t ,ut) (6)

where τ ∗ := (s∗0,u
∗
0, s
∗
1,u
∗
1, · · · ) is the optimal trajectory, i.e., ∀t ∈ [0,∞) u∗t =

argmaxuQ(s∗t ,ut). Eq.6 is equivalent to solving a single-step matrix game. But note that the
joint Q value function is a biased estimate of the true Q value function. Therefore, we have
maxutQ(st,ut) 6= maxutQ(st,ut), which suggests there are errors in the Q-learning target.
Such errors could accumulate alone the trajectories by the bootstrap of the joint Q value function.

4 VALUE FACTORIZATION FUNCTIONS FOR INDECOMPOSABLE MARKOV

Although the target of the joint Q value function exactly equals the true Q value function in inde-
composable Markov games for LVF under the value iteration in sarsa manner, it is still impractical
for LVF to solve every single step matrix game in the optimal trajectory. To deal with the indecom-
posable Markov game, in this section, we turn to value factorization functions that satisfy both IGM
and CRC conditions. According to the partial derivative on local Q value functions, we divide the
value factorization functions into linear and non-linear.

4.1 EXTEND LINEAR VALUE FACTORIZATION FUNCTION

Firstly, consider a linear value factorization function F(Q1(τ1, u1), · · · , Qn(τn, un)). Let
Qset(τ ,u) := {Q1(τ1, u1), · · · , Qn(τn, un)} denote the collection of local Q value functions.
We have ∂F(Qset(τ ,u))/∂Qi(τi, ui) = wi for ∀i ∈ [1, n]. To improve the representation
capability of F(·), we introduce a set of parameterized modules denoted by Mset(s,u) :=

{M1(s1, û1), · · · ,Mk(sk, ûk)}. (si, ûi) ∈ Si× Ûi (i ∈ [1, k]), where Si× Ûi ⊂ S ×U . The joint
Q value function equals

Q(τ ,u) = F(Qset(τ ,u),Mset(s,u)) =

n∑
i=1

wiQi(τi, ui) +

k∑
j=1

Mj(sj , ûj) + V (s) (7)

To distinguish from LVF in Eq.1, we refer to the function in Eq.7 as extended LVF. Note that inde-
composable Markov games are not decomposable on any collection of subspaces of the joint state-
action space. According to Proposition 1, the true Q value function is also not linearly factorizable
by any functions based on the proper subspaces of the joint state-action space. In words, a neces-
sary condition for Eq.7 to represent any true Q value functions is ∃M(sj , ûj), (sj , ûj) = (s,u)
(j ∈ [1, k]). Notice F : S×U → (−∞,Q∗]. Therefore, we also requireMj : S×U → (−∞, C],
where C is an arbitrary constant. Now we consider the IGM principle. The IGM principle requires
∂F(Qset(τ ,u),Mset(s,u))/∂Qi(τi, ui) = wi > 0 and Mj(sj , ûj) ≤ Mj(sj , ûj,gre). Based
on the constraints above, we list some examples of extended LVF functions, which is available in
Appendix.E.

4.2 NON-LINEAR VALUE FACTORIZATION FUNCTION

Linear value factorization functions constitute a small part of the whole value factorization function
family. In this subsection, we discuss the functions of Non-linear Value Factorization (NVF). We
have ∂F(Qset(τ ,u))/∂Qi(τi, ui) = fi(Qset(τ ,u), si, ûi) for NVF functions, where Si × Ûi ⊂
S ×U . There are two different approaches to improve the representation capability of the function:
(1) Introducing parameterized functions directly; (2) introducing parameterized modules.
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Let Fθ(Qset(τ ,u)) denote the parameterized functions, where θ is the collection of introduced
parameters. A defect of Fθ(Qset(τ ,u)) is the uncontrollable sign of the derivative of local Q value
functions. As a result, the function suffers from poor convergence. More details are provided in
Appendix E.

Consider the second approach, i.e., introducing parameterized modules in a predefined NVF.
Let Mset(s,u) := {M1(s1, û1), · · · ,Mk(sk, ûk)} denote the introduced modules, we have
Q(τ ,u) = F(Qset(τ ,u),Mset(s,u)). We denote the partial derivatives of Qi(τi, ui) by
F ′i := ∂F(Qset(τ ,u),Mset(s,u))/∂Qi(τi, ui) (i ∈ [1, n]). For good convergence, we expect
that F ′i > 0 for Qi(τi, ui) ∈ (−∞, Qi(τi, ui,gre)], which is a more strict constraint than the IGM
principle. Since the function F(·) is predefined with a fixed form, a necessary condition of CRC is
∃M(sj , ûj), (sj , ûj) = (s,u) (j ∈ [1, k]). Based on the constraints above, we list some examples
of NVF function, which is available in Appendix.E.

5 METHODOLOGY

5.1 REPRESENTATION INTERFERENCE

Figure 2: In value factorization, the representation of all true Q values involving u1 is interfered by
each other through the training of the shared local Q value function Q1(u1).

A common problem of value decomposition is representation interference among true Q values.
As shown in Fig.5.1, the local Q value function Qi(τi, ui) is an input shared by all joint Q values
involving ui (i ∈ [1, n]). Since the joint Q values are representations of corresponding true Q values,
the representations of all true Q values involving ui are correlated via the training of Qi(τi, ui).
Methods that ignore the correlation of representation would suffer from poor convergence, where
the gradient onQi(τi, u∗i ) contributed by the optimal true Q value is interfered or even submerged in
the gradients contributed by the correlated non-optimal true Q values. In words, the representation
of Q(s,u∗) is interfered by its representation correlation with non-optimal true Q values. Let w∗i
denote the relative weight of gradient contributed byQ(τ ,u∗) in all true Q values involving ui, i.e.,

w∗i =
π(u∗|s) · ∂F∂Qi

|u=u∗∑Un−1

u\i
π(u∗i , u\i|s) · ∂F∂Qi

|u={u∗i ,u\i}
(8)

where u\i denote the joint action of all agents except i. The representation interference onQ(τ ,u∗)
is negatively correlated to w∗i . For linear value factorization function, according to Eq.7, we have
∀i ∈ [1, n], ∂F

∂Qi
|∀u∈Un = wi, where w∗i = π(u∗|s)∑Un−1

u\i
π(u∗i ,u\i|s)

is mainly determined by the sample

distribution. By contrast, for non-linear value factorization function, ∂F
∂Qi

is a function of u. An
example is QPLEX, where the representation interference is serious due to the sharply decreasing
w∗i during training. More details and analysis of QPLEX can be found in Appendix F. Since the
representation interference onQ(τ ,u∗) is related to the form of the value factorization function, we
consider to design a non-linear value factorization function to address the problem.
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5.2 REPRESENTATION INTERFERENCE SUPPRESSION VIA NON-LINEAR VALUE
FACTORIZATION

To alleviate the representation interference onQ(u∗), we consider raising the relative weight of gra-
dient contributed byQ(u∗), i.e., w∗i . Referring to Eq.8, w∗i is determined by the sample distribution
and the partial derivatives of F(Qi(u∗i ), Q\i(u\i)) with respect to Qi(u∗i ), where Q\i(u\i) denotes
the set of all agents’ local Q value functions except ui. Note that w∗i continuously reduces during
the training in QPLEX, where the value factorization function is

F(Qset(τ ,u),Mset(s,u)) = −
n∑
i=1

|Mi(s,u)| · [Qi(τi, ui,gre)−Qi(τi, ui)] +
n∑
i=1

Qi(τi, ui,gre)

(9)
We make a slight change on the function to reverse the trend.

F(Qset(τ ,u),Mset(s,u))

= −
n∑
i=1

[
Qi(τi, ui,gre)− e−I(u=ugre)·|Mi(s,u)| ·Qi(τi, ui)

]
+

n∑
i=1

Qi(τi, ui,gre)

=

n∑
i=1

e−I(u=ugre)·|Mi(s,u)| ·Qi(τi, ui)

(10)

where I(u = ugre) equals 1 if u = ugre otherwise 0. When Qi(τi, ui) > 0, we
have ∂F/∂|Mi(s,u)| = −e−I(u=ugre)·|Mi(s,u)|Qi(τi, ui) < 0, i.e., |Mi(s,u)| decreases as
Q(τ ,u) = F(Qset(τ ,u),Mset(s,u)) grows. Let F ′i := ∂F(Qset(u),Mset(u))/∂Qi(τi, ui)
denote the partial derivative of Qi(τi, ui). We have F ′i = e−I(u=ugre)·|Mi(s,u)|, which is nega-
tively related to |Mi(s,u)|. Therefore, F ′i is positively related to Q(τ ,u) when Qi(τi, ui) > 0. To
ensure Qi(τi, ui) > 0, we replace Qi(τi, ui) with |Qi(τi, ui)|.

F(Qset(τ ,u),Mset(s,u)) =

n∑
i=1

e−I(u=ugre)·|Mi(s,u)| · |Qi(τi, ui)|+ V (s) (11)

where V (s) enables F(Qset(τ ,u),Mset(s,u)) to represent negative true Q values. Based on the
value factorization function above, we introduce our method, namely, Q Factorization with Repre-
sentation Interference Suppression (QFRIS). The value factorization function of QFRIS equals

FQFRIS(Qset(τ ,u),Mset(s,u))

= e−|M(s,u)|2·I(u=ugre)
n∑
i=1

Qi(τi, ui)− |M(s,u)| · I(u = ugre) + V (s)
(12)

Obviously, our QFRIS satisfies both IGM and CRC conditions. The network structure of QFRIS is
provided in Appendix G.

6 EXPERIMENTS

Our experiments consist of 4 parts. Firstly, we verify our propositions on a finite Markov Game;
Secondly, we compare the performance of QFRIS value factorization with the value factorization
functions in other methods. Finally, we evaluate the performance of QFRIS on predator-pery and
StarCraft Multi-Agent Challenge (SMAC). The latter three parts are available in Appendix H.

We design toy games for both decomposable and indecomposable cases of Fig.3.1 and carry out
experiments to verify our propositions about the decomposability of Markov games. The tasks are
shown in Fig.6(a), where 4 agents (denoted by dots) need to cover 2 landmarks (denoted by squares)
in pairs. The map is gridded in a 4 × 4 checkerboard. All agents are initialized with the position
(3, 0) and required to select actions from {up, right} at each time step. Each agent is assigned with
target landmark in color. The team receives an instant reward of 1.0 when any agent covers the target
landmark. For the indecomposable case, the team only receives reward when a landmark is covered
by the first 2 agents. The invalid actions, e.g., up at position (0, 0) are masked.
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Figure 3: Verification of the factorizability of the true Q value functions in decomposable & inde-
composable Markov games. (a) Tasks for decomposable & indecomposable cases; (b) state number
in first 3 time steps; (c) RMSE of linearly factorized joint Q value functions; (d) test mean return of
linearly factorized joint Q value functions.

Verification of proposition 1. For the decomposable case, two decompositions ofMG are shown
in Fig.3.1(c) and Fig.3.1(e). According to proposition 1, the true Q value function can be linearly
factorized as Q(s,u) = Q331(s

′
1, u1, u2, u3) + Q332(s

′
2, u1, u2, u4) or Q(s,u) = Q1(s1, u1) +

Q2(s2, u2) + Q2(s3, u3) + Q2(s4, u4). We apply two neural networks denoted by Q33(s,u) and
QMGD(s,u) to model Q(s,u), respectively. Each network sums the approximated true Q value
function of decomposed Markov games, e.g., 3.1.(d) for Q33(s,u). To verify the factorizability
of Q(s,u), we evaluate the estimated error of Q33(s,u) and QMGD(s,u). To be specific, we
approximateQ(s,u) by a non-factorized neural network denoted byQ(s,u). As shown in Fig.6(b),
based on the positions of all agents, there are totally 98 states in the first 3 time steps. At each state,
we calculate the Root Mean Square Error (RMSE) of Q33(s,u) and QMGD(s,u), respectively,
e.g.,

RMSE33(s) =

(
1

mn

Un∑
u

[Q(s,u)−Q33(s,u)]
2

) 1
2

(13)

All agents follow random policies. The experimental results after 6k steps of training are shown
in Fig.6(c), where each bar denotes the result of a single state. The estimation errors of Q33(s,u)
and QMGD(s,u) are negligible for the decomposable case but sizable for the indecomposable case,
which suggests Q(s,u) is linearly factorizable only if the Markov game is decomposable. We also
test the return under Q33(s,u) and QMGD(s,u) in both decomposable and indecomposable cases.
The results are shown in Fig.6(d). The task is solved when all agents cover the target landmarks,
i.e., the return equals 4.0. Both Q33(s,u) and QMGD(s,u) are able to handle the decomposable
case. But for the indecomposable case, both joint Q value functions fail to solve the task since the
true Q value function is not linearly factorizable.

Verification of Proposition 2. According to proposition 2, the estimate of state value function
is unbiased for LVF under the value iteration in sarsa manner. We model the linearly factor-
ized Q(s,u) under MGD and the non-factorized Q(s,u) by QMGD(s,u) and Q(s,u), respec-
tively. The state value function can be approximated by V (s) =

∑Un

u π(u|s)Q(s,u). The es-
timated state value function of LVF equals VMGD(s) =

∑Un

u π(u|s)QMGD(s,u). Note that
the target of Q(st,ut) equals r(st,ut) + γP (st+1|st,ut)V (st+1) for sarsa. To evaluate the

8
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error of the representation target for LVF in indecomposable Markov games, we calculate the
difference between V (s) and VMGD(s). Besides, the target of Q(st,ut) equals r(st,ut) +
γP (st+1|st,ut)maxut+1

Q(st+1,ut+1) for Q-learning. We also calculate the difference between
maxut

Q(st,ut) and maxut
QMGD(st,ut). The experimental results are shown in Fig.6, where

each bar denotes the result of a single state.

Figure 4: The estimation error of state value (sarsa) and max Q value (Q learning) in both decom-
posable and indecomposable Markov games.

From Fig.6 we can see that for QMGD(s,u) trained by sarsa value iteration, the difference
between V (s) and VMGD(s) is negligible in both decomposable and indecomposable Markov
games. By contrast, for QMGD(s,u) trained by Q-learning value iteration, the difference between
maxuQ(st,ut) and maxuQMGD(st,ut) is sizable in the indecomposable case. The experimental
results indicate that although the true Q value function is not linearly factorizable in indecompos-
able Markov games, the representation target of a linearly factorized joint Q value function is still
unbiased under the value iteration of sarsa manner. However, for a linearly factorized joint Q value
function trained by Q-learning, the representation target is biased in indecomposable Markov games.

7 CONCLUSION

In this paper, we define the decomposability of Markov games and prove that the true Q value
function is linearly factorizable if and only if the Markov game is decomposable. LVF is perfectly
applicable in decomposable Markov games where each element of the MGD involves only a single
agent. We also prove that in indecomposable Markov game, the estimate of state value function is
still unbiased for LVF under the value iteration in sarsa manner. In addition to theoretical proofs,
our conclusions are also verified in experiments on a toy game. To deal with the indecomposable
Markov games, we explore the general form of value factorization functions that satisfy both IGM
and CRC conditions. A common problem of these functions is the representation interference on the
optimal true Q value function. To address this problem, we design a non-linear value factorization
function that adaptively reweights the gradient contributed by different true Q values. Our method,
namely QFRIS, is proved effective to address the representation interference in the experiments on
matrix games. Besides, comparison with baselines in predator-prey and SMAC demonstrates the
good convergence of our methods.

9
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A PROOF OF PROPOSITION 1

A.1 PROOF OF SUFFICIENCY

Given a decomposable Markov game MG =< S,U ,P, r, n, γ > and its decomposition
{MG1,MG2, · · · ,MGk}, where MGi =< Si, Ûi,P, ri, ni, γ >. Firstly, consider the joint Q
value function under the value iteration in sarsa manner. Suppose Q(st+1,ut+1) is linearly factor-
izable as Q(st+1,ut+1) =

∑k
i=1Qi(si,t+1, ûi,t+1). The state value function equals

V (st+1) =

k∑
i=1

∫
ut+1

π(ut+1|st+1)Qi(si,t+1, ûi,t+1)dut+1 (14)

Let û\i,t denote the collection of the joint action except ûi,t, i.e., ûi,t∪û\i,t = ut and ûi,t∩û\i,t = ∅.
Since the local policies are decentralized, the local actions are independent of each other. We have

V (st+1) =

k∑
i=1

∫
ut+1

k∏
i=1

πi(ûi,t+1|si,t+1)Qi(si,t+1, ûi,t+1)dut+1

=

k∑
i=1

∫
ûi,t+1

û\i,t+1∏
ûj,t+1

∫
ûj,t+1

πj(ûj,t+1|sj,t+1)dûj,t+1 · πi(ûi,t+1|si,t+1)Qi(si,t+1, ûi,t+1)dûi,t+1

=

k∑
i=1

∫
ûi,t+1

πi(ûi,t+1|si,t+1)Qi(si,t+1, ûi,t+1)dûi,t+1

(15)
Let Vi(si,t+1) :=

∫
ûi,t+1

πi(ûi,t+1|si,t+1)Qi(si,t+1, ûi,t+1)dûi,t+1 denote the state value function

ofMGi. We have V (st+1) =
∑k
i=1 Vi(si,t+1). According to Definition 1, the reward function is

linearly factorizable in decomposable Markov game. The true Q value function equals

Q(st,ut) = r(st,ut) + γ

∫
st+1

P(st+1|st,ut)V (st+1)dst+1

=

k∑
i=1

(
ri(si,t, ûi,t) + γ

∫
st+1

P(st+1|st,ut)Vi(si,t+1)dst+1

) (16)

Note that Si is a subspace of S. We have∫
st+1

P(st+1|st,ut)Vi(si,t+1)dst+1 =

∫
si,t+1

P(si,t+1|st,ut)Vi(si,t+1)dsi,t+1 (17)

11
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According to the second condition in Definition 1, P (si,t+1|si,t, ûi,t) = P (si,t+1|st,ut). We have

Q(st,ut) =
k∑
i=1

(
ri(si,t, ûi,t) + γ

∫
si,t+1

P(si,t+1|st,ut)Vi(si,t+1)dsi,t+1

)

=

k∑
i=1

(
ri(si,t, ûi,t) + γ

∫
si,t+1

P(si,t+1|si,t+1, ûi,t+1)Vi(si,t+1)dsi,t+1

)

=

k∑
i=1

Qi(si,t, ûi,t)

(18)

For the joint Q value function under the value iteration in Q−learning manner, suppose
Q(st+1,ut+1) is linearly factorizable, we have

max
ut+1

Q(st+1,ut+1) =

k∑
i=1

max
ûi,t+1

Qi(si,t+1, ûi,t+1) (19)

According to the properties of decomposable Markov game, we have

Q(st,ut) = r(st,ut) + γ

∫
st+1

P(st+1|st,ut) ·max
ut+1

Q(st+1,ut+1)dst+1

=

k∑
i=1

(
ri(si,t, ûi,t) + γ

∫
st+1

P(st+1|st,ut) · max
ûi,t+1

Qi(si,t+1, ûi,t+1)dst+1

)

=

k∑
i=1

(
ri(si,t, ûi,t) + γ

∫
si,t+1

Pi(si,t+1|si,t, ûi,t)max
ûi,t+1

Qi(si,t+1, ûi,t+1)dsi,t+1

)

=

k∑
i=1

Qi(si,t, ûi,t)

(20)
We have proved that ifQ(st+1,ut+1) is linearly factorizable,Q(st,ut) is also linearly factorizable.
For a finite Markov game, let ∀i ∈ [1, k],Q(sT ,uT ) = Qi(si,T , ûi,T ) = 0, where T is the terminal
time step. Since Q(sT ,uT ) =

∑k
i=1Qi(si,T , ûi,T ) = 0 is linearly factorizable, ∀t ∈ [0, T ],

Q(st,ut) is linearly factorizable. The factorizability of Q(st,ut) in decomposable Markov games
is proved.

A.2 PROOF OF NECESSITY

Given a Markov gameMG =< S,U ,P, r, n, γ >, suppose the true Q value function Q(st,ut) is
linearly factorizable as Q(st,ut) =

∑k
i=1Qi(si,t, ûi,t), where (st,ut) ∈ S × U and (si,t, ûi,t) ∈

Si × Ui (i ∈ [1, k]). Si × Ui is a subspace of the joint state-action space (i.e., Si × Ui ⊂ S × U ).
We have

Q(st,ut) = r(st,ut) + γ

∫
st+1

P(st+1|st,ut)V (st+1)dst+1 =

k∑
i=1

Qi(si,t, ûi,t) (21)

Note that r(st,ut) is irrelevant to V (st+1) because r(st,ut) is the reward of current time step but
Q(st+1,ut+1) is determined by the policies, transitions and rewards of future time steps. There-
fore, Eq.21 holds if and only if both r(st,ut) and

∫
st+1
P(st+1|st,ut)V (st+1)dst+1 are linearly

factorizable as

r(st,ut) =

k∑
i=1

ri(si,t, ûi,t)

∫
st+1

P(st+1|st,ut)V (st+1)dst+1 =

k∑
i=1

fi(si,t, ûi,t)

(22)
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Let s\i,t denote the other dimensions of st except si,t, i.e., si,t∪s\i,t = st and si,t∩s\i,t = ∅. Note
that Qi(si,t, ûi,t) = ri(si,t, ûi,t) + γ

∫
si,t+1

Pi(si,t+1|si,t, ûi,t)Vi(si,t+1)dsi,t+1 and Qi(si,t, ûi,t)
is irrelevant to (s\i,t,u\i,t). We have

Pi(si,t+1|si,t, ûi,t) = Pi(si,t+1|si,t, s\i,t, ûi,t,u\i,t) = Pi(si,t+1|, st,ut) (23)

According to Definition 1,MG is decomposable by {MG1,MG2, · · · ,MGk}.

B PROOF OF LEMMA 1

Given a Markov gameMG =< S,U ,P, r, n, γ >, {MG1,MG2, · · · ,MGk} (k ≥ 2) is a decom-
position of MG. Suppose (1) MG′j =< S ′j ,U ′j ,P, r′j , n′j , γ > is decomposable by a non-empty
subset of {MG1,MG2, · · · ,MGk} for ∀j ∈ [1, ks]; (2) ∪ksj=1{S ′j × Û ′j} = S × U .

Let Aj = [A1,j , A2,j , · · · , Ak,j ] (j ∈ [1, ks]) denote an indicator vector, where Ai,j = 1 (j ∈
[1, k]) ifMGi is an element of the decomposition ofMG′j , otherwise, Ai,j = 0. According to the
definition of decomposable Markov game, Si×Ûi ⊂ S ′j×Û ′j ifAi,j = 1. We have ŝ′j = ∪ki=1Ai,j ·si
and û′j = ∪ki=1Ai,j · ûi. Let r′j(s

′
j , û
′
j) denote the reward function ofMG′j , which is defined as

r′j(s
′
j , û
′
j) =

k∑
i=1

Ai,j · ri(si, ûi)∑ks
j=1Ai,j

(24)

According to the second condition of Lemma 2, we have ∪ksj=1û
′
j = u. Note that ∪ki=1ûi = u since

{MG1,MG2, · · · ,MGk} (k ≥ 2) is a decomposition ofMG. Therefore,

∪ksj=1û
′
j = ∪

ks
j=1

(
∪ki=1Ai,j · ûi

)
= ∪ksj=1Ai,j · ∪

k
i=1ûi = ∪ki=1ûi

(25)

which indicates ∀j ∈ [1, k],
∑ks
j=1Ai,j ≥ 1. In words, the denominator in Eq.24 are non-zero. The

sum of the reward functions of {MG′1,MG
′
2, · · · ,MG

′
ks} equals

ks∑
j=1

r′j(s
′
j , û
′
j) =

ks∑
j=1

k∑
i=1

Ai,j · ri(si, ûi)∑ks
j=1Ai,j

=

k∑
i=1

 ks∑
j=1

Ai,j · ri(si, ûi)∑ks
j=1Ai,j


=

k∑
i=1

(∑ks
j=1Ai,j

)
· ri(si, ûi)∑ks

j=1Ai,j
=

k∑
i=1

r(si, ûi) = r(s,u)

(26)

We have proved that the reward function is linearly factorizable on the collection of state-action
spaces of {MG′1,MG

′
2, · · · ,MG

′
ks}. Besides, since {MG1,MG2, · · · ,MGk} is a decomposition

ofMG, we have P(si,t+1|si,t, ûi,t) = P(si,t+1|st,ut) for ∀i ∈ [1, k]. Note that ŝ′j = ∪ki=1Ai,j · si
and û′j = ∪ki=1Ai,j · ûi. We have

P(s′j,t+1|s′j,t, û′j,t) = P(∪ki=1Ai,j · si,t+1| ∪ki=1 Ai,j · si,t,∪ki=1Ai,j · ûi,t)
= P(∪ki=1Ai,j · si,t+1|st,ut) = P(s′j,t+1|st,ut)

(27)

According to the definition of decomposable Markov game, {MG′1,MG
′
2, · · · ,MG

′
ks} is a decom-

position ofMG.

C RANK OF THE COEFFICIENT MATRIX

In indecomposable Markov games with discrete action spaces, the representation of true Q value
function is equivalent to solving the linear equation system{

Q(s,u) =
n∑
i=1

wiQi(s, ui) + V (s)

}
∀u∈U

(28)
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For simplicity, we omit the state value function V (s). Let {1, 2, · · · ,m} denote the discrete local
action space. The joint Q value function can be written as

Q(s,u) = I(u1 = 1)Q1(1) + I(u1 = 2)Q1(2) + · · ·+ I(u1 = m)Q1(m)

+ I(u2 = 1)Q2(1) + I(u2 = 2)Q2(2) + · · ·+ I(u2 = m)Q2(m)

+ · · ·
+ I(un = 1)Qn(1) + I(un = 2)Qn(2) + · · ·+ I(un = m)Qn(m)

=

[
agent 1︷ ︸︸ ︷

I(u1 = 1) · · · I(u1 = m)

agent 2︷ ︸︸ ︷
I(u2 = 1) · · · I(u2 = m) · · ·

agent n︷ ︸︸ ︷
I(un = 1) · · · I(un = m)

]
·
[

agent 1︷ ︸︸ ︷
Q1(1) · · · Q1(m)

agent 2︷ ︸︸ ︷
Q2(1) · · · Q2(m) · · ·

agent n︷ ︸︸ ︷
Qn(1) · · · Qn(m)

]>
(29)

Here we omit the states in all inputs. In Markov game with discrete action space, the true Q values
of the joint actions’ all permutations constitute the complete set of the representation targets. For
example, the all permutations of 2-agent joint actions are (·,1)︷ ︸︸ ︷

(1, 1) (2, 1) · · · (m, 1)

(·,2)︷ ︸︸ ︷
(1, 2) (2, 2) · · · (m, 2) · · · · · ·

(·,m)︷ ︸︸ ︷
(1,m) (2,m) · · · (m,m)


>

(30)
Eq.28 is equivalent to the following matrix equation in 2-agent cases:

A2 × ~Q2
loc = ~Q2 (31)

where

A2 =



agent 1︷ ︸︸ ︷
1 0 · · · 0

agent 2︷ ︸︸ ︷
1 0 · · · 0

0 1 · · · 0 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 1 0 · · · 0

...
...

1 0 · · · 0 0 0 · · · 1
0 1 · · · 0 0 0 · · · 1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1


, ~Q2

loc =



Q1(1)
Q1(2)

...
Q1(m)
Q2(1)
Q2(2)

...
Q2(m)


, ~Q2 =



Q(1, 1)
Q(2, 1)

...
Q(m, 1)

...

...
Q(1,m)
Q(2,m)

...
Q(m,m)



(32)

The coefficient matrix A2 can be represented by

A2 =


Em A2

1

Em A2
2

...
...

Em A2
m

 , A2
i =

[
O2
i−

~I2 O2
i+

]
(33)

where Em is an m-dimensional unit matrix. O2
i− and O2

i+ are zero matrices of size m × i and
m × (m − i − 1) (i ∈ [0,m − 1]), respectively. ~I2 is an m-dimensional column vector with all 1

elements. Note that rk
([
Em A2

1

Em A2
2

])
= m+1. We have rk(A2) = m+(m− 1) = 2m− 1. Now

we extend the 2-agent case to the 3-agent, where

A3 =


A2 A3

1

A2 A3
2

...
...

A2 A3
m

 , A3
i =

[
O3
i−

~I3 O3
i+

]
(34)

14



Under review as a conference paper at ICLR 2023

O3
i− and O3

i+ are zero matrices of size m2 × i and m2 × (m− i− 1) (i ∈ [0,m− 1]), respectively.
~I3 is an m2-dimensional column vector with all 1 elements. We have rk(A3) = rk(A2)+m− 1 =
3m− 2. For the n-agent case, we can infer that

rk(An) = rk(An−1) +m− 1 = rk(A2) + (n− 2) · (m− 1) = n(m− 1) + 1 (35)

D PROOF OF PROPOSITION 2

Eq.28 is equivalent to the following matrix equation

An × ~Qnloc =
~Qn (36)

The expression of An, ~Qnloc and ~Qn can be inferred from Eq.32. We consider the worst case where
the augment matrix is full rank, i.e., rk(

[
An ~Qn

]
) = mn. Note that mn > n(m − 1) + 1

for ∀m,n ∈ [2,∞). The matrix equation is overdetermined, which can be solved by least square
method. Let ~πn denote the vector of all permutations of the joint action’s probabilities. Notice√
~πn · (An × ~Qnloc) = (

√
~πn · An)× ~Qnloc. The aim of least square method is:

min ~πn · ||An × ~Qnloc − ~Qn|| = min ||(
√
~πn · An)× ~Qnloc −

√
~πn · ~Qn|| (37)

~Qn∗loc is the least square solution if and only if the following holds:

(
√
~πn · An)> × (

√
~πn · An)× ~Qn∗loc = (

√
~πn · An)> × (

√
~πn · ~Qn) (38)

Let ~Qn∗jt denote the vector of all permutations of the joint Q values under the least square solution.
Notice that ~Qn∗jt = An × ~Qn∗loc. We have

(
√
~πn · An)> × (

√
~πn · An)× ~Qn∗loc = (

√
~πn · An)> × (

√
~πn · ~Qnjt) (39)

Combining Eq.38 with Eq.39, we have

(
√
~πn · An)> × (

√
~πn · ~Qn) = An> × (~πn · ~Qn)

= (
√
~πn · An)> × (

√
~πn · ~Qnjt) = An

> × (~πn · ~Qnjt)
(40)

According to Eq.34, we have

An> =

[
An−1> An−1> · · · An−1>
An>1 An>2 · · · An>m

]
, An>i =

On>i−~In>
On>i+

 (41)

where On>i− and On>i+ are zero matrices of size i×mn−1 and (m− i− 1)×mn−1 (i ∈ [0,m− 1]),
respectively. ~In> is an mn−1−dimensional row vector with all 1 elements. Referring to Eq.40 and
Eq.41, we have[

An>1 An>2 · · · An>m
]
× (~πn · ~Qnjt) =

[
An>1 An>2 · · · An>m

]
× (~πn · ~Qn) (42)

In words, ∀i ∈ [1,m], the following holds
mn−1∑
u\1

π(u1 = i,u\1|s)Q(s, u1 = i,u\1) =

mn−1∑
u\1

π(u1 = i,u\1|s)Q(s, u1 = i,u\1) (43)

where u\1 denotes the group of all actions except u1. Summing up the equations from u1 = 1 to
u1 = m, we have

m∑
i=1

mn−1∑
u\1

π(u1 = i,u\1|s)Q(s, u1 = i,u\1) =

mn∑
u

π(u|s)Q(s,u)

=

m∑
i=1

mn−1∑
u\1

π(u1 = i,u\1|s)Q(s, u1 = i,u\1) =

mn∑
u

π(u|s)Q(s,u)

(44)

∑mn

u π(u|s)Q(s,u) is the state value estimated by the joint Q value function of LVF and∑mn

u π(u|s)Q(s,u) is the actual state value. In words, the estimate of the state value function
is unbiased for LVF under the value iteration in sarsa manner.
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E EXAMPLES OF EXTENDED LVF AND NVF

E.1 EXAMPLES OF EXTENDED LVF

An example of linear value factorization function is QTRAN (Son et al., 2019). Let Mset(u) =
M1(u) and CQ,i = 1 (i ∈ [1, n]). We have

Q(u) = F(Qset(u),M1(u)) =

n∑
i=1

Qi(ui) +M1(u) + CF (45)

In QTRAN, Q(u) and CF refer to the joint Q value function (i.e., Qjt) and the state value function
(i.e., Vjt), respectively. M1(u) is the error between Q(u) and

∑n
i=1Qi(ui) + CF . To ensure the

IGM principle, QTRAN applies two regularizations to regulate thatM1(u) ≤M1(ugre) = 0.

To be more compact, letMset(u) =M1(u), CQ,i = 1 (i ∈ [1, n]) and CF = −M1(ugre). We
have

Q(u) = F(Qset(u),M1(u)) =

n∑
i=1

Qi(ui)−Md(u) (46)

whereMd(u) = −M1(u) +M1(ugre). According to Condition 1.2, we haveMd : U → [0,∞),
Md(u) = 0 if u = ugre else Md(u) ≥ 0. Md(u) can be modelled by distance or indicator
functions. Examples ofMd(u) are listed as follows:

Md
1(u) = |G(u)− G(ugre)|

Md
2(u) = [G(u)− G(ugre)]2

Md
3(u) = I(u = ugre)e

G(u)

(47)

where G : U → R. I(u = ugre) is an indicator function and I(u = ugre) = 1 if u = ugre else
I(u = ugre) = 0.

E.2 EXAMPLES OF NVF FUNCTIONS

Consider parameterizing the operator directly. The IGM principle requires Fθ(Qset(τ ,u)) ≤
Fθ(Qset(τ ,u)). Let

Fθ(Qset(τ ,u)) = −Fdθ (Qset(τ ,u)) + Fcθ (Qset(τ ,ugre)) (48)
where Fdθ : U → [0,∞), Fdθ (Qset(u)) = 0 if u = ugre else Fdθ (Qset(u)) ≥ 0, which can be
modelled by Eq.47. Fcθ (Qset(ugre) is trained to model Qugre

. Fθ(Qset(u)) is directly optimized
by value iteration, by which Qi(ui) is updated. The final objective requires both max Qi(ui) =
Qi(u

∗
i ) and max Fθ(Qset(u)) = Fθ(Qset(u∗)). Let F ′θ,i(u) denote the partial derivatives for

Qi(ui) (i ∈ [1, n]), i.e., F ′θ,i(u) = ∂Fθ(Qset(u))/∂Qi(ui). As Fθ(Qset(u)) is typically modelled
by neural networks, there is a risk that F ′θ,i(u) < 0. A negative F ′θ,i(u) means the increase in
Fθ(Qset(u)) result in the decrease of Qi(ui), which misleads the update of Qi(ui). For linear
value factorization function, the problem can be avoided by setting wi > 0 since F ′θ,i(u) = wi.

Consider introducing parameterized modules. For brevity, we only consider the model Mj(ûj)
conditioned on the joint action spaces, i.e., Uj = U . Refer to Eq.48 and letF(Qset(u),Mset(u)) =
−Fd(Qset(u),Mset(u)) + Fc(Qset(ugre),Mset(ugre)). We require Fd : U → [0,∞) and
Fd(Qset(u),Mset(u)) = 0 if u = ugre else Fd(Qset(u),Mset(u)) ≥ 0 (# Condition 2.2).
Fc(Qset(ugre) is trained to model Qugre .

Examples of Fd(Qset(u),Mset(u)) are listed as follows:

Fd1 (Qset(u),Mset(u)) = |M1(u)| ·
n∑
i=1

[Qi(ui,gre)−Qi(ui)]

Fd2 (Qset(u),Mset(u)) = |M1(u)−M1(ugre)| ·
n∏
i=1

e−Qi(ui)

Fd3 (Qset(u),Mset(u)) = I(u = ugre)e
M1(u) +

n∑
i=1

[Qi(ui,gre)−Qi(ui)]2

(49)
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A variant of Fd1 (Qset(u),Mset(u)) is
∑n
i=1 |M1(u)| · [Qi(ui,gre)−Qi(ui)]. Let

F(Qset(ugre),Mset(ugre)) =
∑n
i=1Qi(ui,gre). The joint Q value function equals

Q(u) = F(Qset(u),Mset(u)) = −
n∑
i=1

|M1(u)| · [Qi(ui,gre)−Qi(ui)] +
n∑
i=1

Qi(ui,gre) (50)

which is exact the joint Q value function of QPLEX (Wang et al., 2020b).

F RELATED WORKS

Independent learning has been introduced in fully cooperative multi-agent tasks for a long time (Tan,
1993a). In tasks with small number of agents, independent proximal policy optimization (PPO) with
agent-specific reward functions is able to acquire strategies on the level of human experts. For better
scalability, recent works turn to automatic credit assignment under reward functions shared by the
team. Meanwhile, by introducing global information in the training of local policies, centralized
training with decentralized execution (CTDE) achieve great success in complex cooperative MARL
tasks. As a simple and effective approach to achieve credit assignment in the paradigm of CTDE,
value decomposition recently gains wide attention.

F.1 LINEAR VALUE FACTORIZATION

There is a series of implementations of linear value factorization. VDN (Sunehag et al., 2017) ob-
tains the joint Q value function by simply adding all local Q value functions together and update the
joint Q value function by Q−learning value iteration. Based on VDN, QMIX (Rashid et al., 2018)
extracts a set of weights form the global state and applies them to the local Q value functions. SMIX
(Wen et al., 2020) and Qatten (Yang et al., 2020) share the same value factorization function with
QMIX. SMIX replaces the TD(0)Q−learning target with a TD(λ) sarsa target. Qatten introduces an
attention network before the mixing network. All methods above suffer form relative overgeneral-
ization due to the representation limitation of the joint Q value function, i.e., there would be multiple
possible convergence.

F.2 VALUE FACTORIZATION FOR INDECOMPOSABLE MARKOV GAMES

There are various works to address relative overgeneralization, which can be summarized into two
categories. The first is biased representation. The basic idea is reducing the representation errors
of the Q−learning targets at the expense of increased representation errors of non-maximal joint
Q values. WQMIX (Rashid et al., 2020) alleviates the estimate error of the Q−learning targets by
attaching more weights on the representation of the joint Q values for potential optimal actions.
In practice, a weight α ∈ (0, 1) is applied to the samples with lower targets than expected. The
Q−learning targets are unbiased when α = 0. GVR (Wan et al., 2021) achieves approximatively
unbiased estimate of the Q−learning targets by target shaping. The former reshapes the targets of
joint Q values lower than expected, while the latter reshapes the targets matrices into a monotonic
from. Biased representation alleviates but does not eliminate the representation errors. Besides,
these methods rely on the identification of potential optimal actions, which would introduce extra
errors in the training. Another route to address the indecomposable Markov game is completing
the representation capability of the joint Q value function under the IGM principle, i.e., introducing
value factorization functions with both IGM and CRC properties, e.g., Qtran and QPLEX.

Qtran (Son et al., 2019) adopts a linear value factorization function asQ(s,u) =
∑n
i=1Qi(τi, ui)+

M1(s,u) + V (s) (Eq.45). The IGM principle requires M1(s,u) ≤ M1(s,ugre) = 0. How-
ever, instead of modelling M1(s,u) explicitly, Qtran models Q(s,u) and represent M1(s,u)
by M1(s,u) = Q(s,u) −

∑n
i=1Qi(τi, ui) − V (s). As a result, (1) Qtran does not satisfy the

IGM principle strictly. To approximate the IGM principle, Qtran applies a multi-stage training to
regulate that M1(s,u) ≤ M1(s,ugre) = 0. In the first stage, Q(s,u) is trained to approx-
imate the true Q value function; In the second stage, V (s) is trained to meet M1(ugre) = 0,
i.e., V (s) = Qjt(s,ugre) −

∑n
i=1Qi(τi, ui,gre); In the third stage, the local value functions are

trained to meet M1(s,u) ≤ 0, where the local policies are updated only if M1(s,u) > 0, i.e.,
Q(s,u)−

∑n
i=1Qi(τi, ui) > V (s). As a result, (2) the estimate errors ofQ(s,u) and V (s) magnify
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the estimate errors of local Q value functions. A simple method to overcome the above two defects of
Qtran is modellingM1(s,u) explicitly with functions that satisfiesM1(s,u) ≤M1(s,ugre) = 0,
e.g., distance functions. Then represent Q(s,u) byM1(s,u) and train Q(s,u) end-to-end.

QPLEX (Wang et al., 2020b) adopts a non-linear value factorization function as Q(s,u) =
−
∑n
i=1 |Mi(s,u)| · [Qi(τi, ui,gre)−Qi(τi, ui)] +

∑n
i=1Qi(τi, ui,gre) (Eq.50). A set of mod-

els {M1,M2, · · · ,Mn} is introduced to constitute Q(s,u) and Q(s,u) is trained end-to-end.
However, QPLEX is easily trapped in local optimums for the following two reasons. (1) Suppose
current greedy action is not the optimal action, i.e., ugre 6= u∗. The convergence to the global opti-
mum requires Q(s,u∗) > Q(s,ugre). Notice ∂Q(s,u∗)/∂Qi(τi, u

∗
i ) = |Mi(s,u

∗)| (i ∈ {1, n}),
which can be viewed as a weight of the sample. As Q(s,u∗) increases, |Mi(s,u

∗)|, i.e., the
weight of the optimal sample decreases to 0. (2) For u′ = {u∗1, u2,gre, u3,gre, · · · , un,gre}, we
have Q(s,u′) = −|M1(s,u

′)| · [Q1(τ1, u1,gre)−Q1(τ1, u
∗
1)] +Q(s,ugre), where Q(s,ugre) =∑n

i=1Qi(τi, ui,gre). −|M1(s,u
′)| · [Q1(τ1, u1,gre)−Q1(τ1, u

∗
1)] is trained to approximate

Q(s,u′) − Q(s,ugre). The convergence to the global optimum requires Qi(τ1, u
∗
1) >

Qi(τ1, u1,gre). As Q1(τ1, u
∗
1) increases and approximates Q1(τ1, u1,gre), |M1(s,u

′)| , i.e., the
weight of the sample Q(s,u′) increases sharply. Q1(τ1, u

∗
1) is updated by all samples involving

u∗1, e.g., Q(s,u′) and Q(s,u∗). As a result, the update of Q1(τ1, u
∗
1) is dominated by non-optimal

samples.

G NETWORK STRUCTURE OF QFRIS

Figure 5: The network structure of QFRIS.

H EXPERIMENTS

H.1 EXPERIMENTAL SETTINGS

In the experiments on one-step matrix games and the verifications of the propositions, all modules
are implemented by multilayer perceptrons. A replay buffer of length 1000 is applied for all algo-
rithms. In experiments on predator-prey and SMAC, we adopt the default settings for VDN, QMIX,
QPLEX and WQMIX. The length of replay buffer is 5000 and the batch size is 32. For WQMIX,
we adopt a weight of 0.5 for predator-prey and 0.1 for SMAC to the samples of poor performance,
respectively. The game version of StarCraft II is 69232. Each algorithm is trained for 2e6 steps in
MMM2, 2c vs 64 zg, 3s vs 5z and 5m vs 6m, with ε damping from 1 to 0.05 in the first 5e4 steps.
Besides, in 6h vs 8z and 3s5z vs 3s6z, each algorithm is trained for 5e6 steps, with ε damping from
1 to 0.05 in the first 1e6 steps. All experiments are repeated over 5 seeds.

According to Definition 1, the tasks involving cooperative rewards or interactive transitions of all
agents are indecomposable, e.g., predator-prey (Böhmer et al., 2020) and Starcraft multi-agent chal-
lenges (SMAC) (Samvelyan et al., 2019). The former involves punitive rewards for miscoordination
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of all agents and the latter involves the transition on the health of enemy unites, which is determined
by the policies of all agents.

H.2 MATRIX GAME

In this subsection, we compare the performance of different value factorization functions in one-step
matrix games. The pay-off matrix is shown in Fig.H.2(a). Two agents select actions from {0, 1, 2}
and receive a reward according to the pay-off matrix. To evaluate whether the function is capable to
drive the joint Q value function out from the local optimum. We only consider the cases where the
greedy action is trapped at (2, 2) after few rounds of training. The experimental results are shown
in Fig.H.2. The red curves denote the mean test return. The orange and blue curves denote the
difference between the local Q values of the optimal action and current greedy action. The green
and brown curves denote the non-linear coefficients on the optimal local Q values contributed by
the optimal and non-optimal true Q values, respectively. We do not measure the coefficients on the
local Q values for (extended) linear value factorization functions (QMIX and Qtran), where ∂F

∂Qi
is

a constant. We compare the value factorization functions of QMIX (Rashid et al., 2018), Qtran (Son
et al., 2019) (Eq.45), QPLEX (Wang et al., 2020b) (Eq.50), an variant of QPLEX and our method
(Eq.12). The variant of QPLEX is

F(Qset(u),Mset(u)) = −
n∑
i=1

(|M1(u)|+ 1) · [Qi(ui,gre)−Qi(ui)] +
n∑
i=1

Qi(ui,gre) (51)

Figure 6: Evaluation of various value factorization operators.

Without complete representation capability (CRC), QMIX suffers from relative overgeneralization.
From the red curve of Fig.H.2(a) we can see the greedy action of QMIX becomes (2, 2) at around
0.1k iterations and get trapped in the local optimum. Although Qtran is equipped with CRC, the
problem can not be well-solved due to the representation interference on Q(u∗). The problem of
representation interference is more serious in QPLEX. From the green curve of Fig.H.2(d) we can
see the non-linear coefficients on Q1(0) and Q2(0) contributed by Q(0, 0) decrease sharply during
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training and quickly approximates 0. As a result, Q1(0) and Q2(0) grows slowly and the policy
is trapped in the local optimum. We add a constant 1 to the non-linear coefficients and obtain
a variant of QPLEX (Eq.51). As shown in Fig.H.2(e), the minimum coefficient contributed by
Q(0, 0) becomes 1. But the value factorization function still can not drive the joint Q value function
out from the local optimum since the coefficients on Q1(0) and Q2(0) contributed by non-optimal
true Q values (the brown curve) are much larger. QFRIS adopts the representation interference
suppression technique, whose coefficients on Q1(0) and Q2(0) contributed by non-optimal true Q
values (the brown curve) are greatly suppressed, thus is capable to jump out from the local optimum
quickly and stably.

H.3 PREDATOR-PREY

Predator-prey is a cooperative multi-agent task which requires highly coordinated policies. The
agents, i.e., the predators are trained to capture the preys moving in random polices. The team is
assigned with an instant reward at each time step. The basic reward is 0. There will be a bonus
when any prey is captured by more than one agents as well as a punishment if any prey is captured
by a single agent. As the punishment increases, the agents are more likely to take a sub-optimal
but safe policy, i.e., staying away from the preys. We carry out experiments on 3 different levels of
punishments. The experimental results are shown in Fig.3.1.

Figure 7: Comparison of value factorization methods on predator-prey with punishment -2, -5 and
-10.

From Fig.3.1 we can see that our method can handle the task under different levels of punishments.
Two implementations of LVF, i.e., VDN and QMIX are incapable to solve the tasks. cw-QMIX and
ow-QMIX reduce the weight of samples with poor performance, which is able to deal with small
punishments. Although Qtran and QPLEX adopts value factorization functions that satisfy both
IGM and CRC conditions, the problem can not be well solved due to the representation interference.

H.4 STARCRAFT MULTI-AGENT CHALLENGE

We compare our method with baselines on challenging tasks of StarCraft Multi-Agent Challenge.
The experimental results are shown in Fig.H.4. From Fig.H.4 we can see that our method outper-
forms the baselines in most of the tasks.

H.5 ABLATION STUDIES

To evaluate the effect of interference suppression introduced by the non-linear value factorization
function. We compare QFIRS with a linear variant of it, whose joint Q value function is

Q(s,u) =

n∑
i=1

Qi(τi, ui)− |M(s,u)| · I(u = ugre) + V (s) (52)

The experimental results are shown in Fig.H.5.
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Figure 8: Mean test win rate of value factorization methods on SMAC.

Figure 9: QFRIS vs QFRIS without representation interference suppression on predator-prey.
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