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Abstract

Large, multimodal medical datasets harbor complex, latent structures that hold
immense potential for scientific discovery. While foundation models excel at ex-
tracting predictive signals from such data, their inherent opacity limits their use as
tools for generating new scientific knowledge. This work introduces a fully auto-
mated pipeline to uncover novel scientific knowledge by transforming the latent
representations of medical foundation models into sparse, human-interpretable con-
cepts. We employ Matryoshka Top-K Sparse Autoencoders (SAEs) to decompose
dense feature vectors from a 3D CT imaging foundation model into a sparse basis
of learned concepts. An automated interpretation module then uses a large language
model to assign a semantic, clinical description to each discovered concept. Finally,
the system systematically evaluates each concept for its prognostic value across
arange of clinical outcomes, generating testable hypotheses. This entire process,
from concept discovery to the generation of this manuscript, is automated. As a
proof-of-concept, we present a detailed analysis of one such automatically gener-
ated hypothesis: a novel imaging biomarker, image_Concept_66, which LLMs
concluded to represent "abnormal soft tissue density and stranding in abdominal
fat." This feature is shown to be a strong predictor for the future onset of skin cancer
(cancer_skin), with an odds ratio of 3.7 (p < 0.001), significantly outperforming
clinical risk factors such as patient age, sex, race and BMI and smoking status.
This work demonstrates a scalable, end-to-end system that transforms Al from a
predictive tool into an engine for generating interpretable and clinically valuable
scientific hypotheses.

1 Introduction

The increasing availability of large-scale, multimodal healthcare datasets presents an unprecedented
opportunity for scientific discovery. Foundation models, including large language models (LLMs)
and vision-language models (VLMs), have proven adept at learning rich, predictive representations
from this data, often achieving performance that meets or exceeds that of human experts on specific
diagnostic and prognostic tasks (1} |2 [3). However, the clinical and scientific utility of these models
is fundamentally limited by their "black box" nature. The complex, high-dimensional latent spaces
learned by these models do not readily map to human-understandable concepts, making it difficult to
understand *why* a model makes a particular prediction and, consequently, to derive new scientific
insights from its learned patterns.

Prior approaches to model interpretability, such as gradient-based or attribution-based saliency
methods, have shown limited utility. These methods typically highlight which input features were
important for a single prediction but fail to reveal the abstract, high-level concepts the model has
learned and uses consistently across the dataset. To bridge this gap and unlock the scientific potential



of foundation models, a move towards mechanistic interpretability is required. This paradigm seeks
to deconstruct a model’s internal computations into their constituent, understandable parts.

In this work, a novel framework is proposed to achieve mechanistic interpretability in the context of
multimodal medical data. The core idea is to transform the opaque, dense feature spaces of foundation
models into sparse and interpretable concept sets by training Sparse Autoencoders (SAEs) (4). SAEs
are unsupervised models designed to learn an overcomplete dictionary of features, forcing any given
input to be reconstructed from a sparse linear combination of these dictionary features. Recent work
has shown that these sparse features often correspond to semantically meaningful and monosemantic
concepts (4;15). We hypothesize that applying this technique to features from medical foundation
models can uncover clinically relevant concepts, linking model predictions to human-interpretable
phenomena.

Our primary contribution is an end-to-end, automated pipeline that operationalizes this vision (Figure
[I). The system begins by training Matryoshka Top-K SAEs (6; [7) on image embeddings from a
medical foundation model. It then employs an LLM-based auto-interpretation module to assign
clinical descriptions to the discovered sparse features. Finally, it systematically tests each feature for
association with future clinical outcomes, generating a ranked list of novel, data-driven hypotheses.
The scalability of this approach is demonstrated by its ability to generate thousands of such hypotheses
automatically.

To showcase the pipeline’s efficacy, this paper itself serves as an example of its output. The system
identified a promising hypothesis, collated the relevant statistics and figures, and generated this
manuscript for submission in a single shot (see for the single prompt). We present a detailed
analysis of one such discovery: a novel imaging feature, image_Concept_66, that is highly predictive
of future skin cancer diagnosis. This feature, interpreted by our system as representing "abnormal
soft tissue density and stranding within mesenteric, peritoneal, or retroperitoneal fat," exhibits a
significantly stronger association with skin cancer risk than established clinical risk factors. This
finding not only highlights a potentially novel biological link between systemic inflammation and
skin cancer but also validates our approach as a powerful engine for automated scientific discovery.
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Figure 1: Synopsis of the automated discovery pipeline. (a) Foundation models are used to extract
rich feature representations from large-scale, multimodal clinical data. (b) Matryoshka Top-K Sparse
Autoencoders (SAEs) are trained on these features to decompose them into a sparse set of interpretable
concepts. (c) A large language model-based auto-interpretation module assigns semantic labels to
each concept and the system systematically tests for associations with clinical outcomes, generating
novel scientific hypotheses.

2 Methods

The methodology is designed as a fully automated, multi-stage pipeline, from data processing to
hypothesis generation and reporting.

2.1 Dataset and Cohort

The study was conducted using a large, de-identified, IRB-approved dataset from Stanford Health
Care (SHC). This multimodal dataset includes 3D Computed Tomography (CT) images, associated
radiology reports, laboratory values, clinical notes, ICD codes, and longitudinal outcomes. For this
initial investigation, a cohort of 25,334 patients from Stanford SHC was used, which was split into
train, validation and test using the Merlin splits (1). The system is designed for future generalization
testing on a separate dataset from Stanford Health Care Tri-Valley.



2.2 Foundation Model Feature Extraction

The first stage of the pipeline involves the extraction of high-dimensional feature representations from
the raw medical data. For the analysis presented in this paper, which focuses on imaging data, features
were extracted from 3D CT scans using Merlin (2), a state-of-the-art vision-language foundation
model for 3D medical imaging developed by our group. Merlin provides dense 1024-dimensional
embeddings that capture rich radiological information from each CT scan. These embeddings serve
as the input for the subsequent SAE training phase. The full pipeline is also equipped to process
textual data (e.g., radiology reports, clinical notes) using LLMs such as Gemini or Qwen, though this
modality is not the focus of the current case study.

2.3 Sparse Autoencoder Training

To transform the dense Merlin embeddings into an interpretable feature set, Sparse Autoencoders
(SAEs) were trained. An SAE learns to represent an input vector x as a sparse linear combination of
an overcomplete set of dictionary vectors. All SAEs used in this work employ a Top-K activation
function, where for each input, only the K features with the highest activation are retained. The
encoder f(x) and decoder & are defined as:

(-T) = ( enc® 1 benc) (1
T = Wdecf( ) + bdec (2)
ESmndard( ) = Hx - $||2 3)

where o is the Top-K sparse activation function which sets all but the top K values of its input to
Zero.

A key innovation in our approach is the use of Matryoshka Top-K SAEs (7). This architecture
improves upon standard SAEs by learning a nested, hierarchical set of features. The dictionary
vectors are ordered such that any prefix of the dictionary forms a valid, smaller dictionary. This is
enforced by a modified loss function that penalizes reconstruction error at multiple dictionary sizes
simultaneously:

EZMatryoshka Z ||'T Wge:;n (-T)O:m +bdec)||g (4)
meM
where M is a set of nested dictionary sizes. This structure allows for more efficient learning
of the underlying concept space and provides features at varying levels of granularity. For this
study, all Matryoshka Top-K SAEs used a maximum dictionary size of N = 8192 and layer sizes
M = [128, 512, 2048, 8192]. In total, we trained eight SAEs: four Matryoshka SAEs and four
standard Top-K SAEs, using four levels of sparsity K € {5, 10, 20, 40}.

2.4 Automated Concept Interpretation

A critical component of the pipeline is the ability to automatically assign semantic meaning to
the learned sparse features. Following the methodology of recent work in auto-interpretation (3)),
an LLM-based system was implemented. For each learned SAE feature, the 20 patient samples
(CT scans) that produced the highest activation for that feature were identified. The anonymized
"Findings" sections from the corresponding radiology reports for these 20 samples were then provided
as context to a large language model (Gemini 2.5 Pro). The model was prompted to summarize the
common radiological properties described across these reports into a concise, descriptive label.

To validate the generated interpretation, the label was then tested for its applicability on a held-out
set of 20 different highly activating samples for the same feature. The percentage of held-out samples
for which the interpretation was deemed accurate by the LLM serves as a generalization score for the
proposed concept label.

2.5 Automated Hypothesis Generation and Reporting

The final stage of the pipeline is a large-scale, automated hypothesis generation engine. In a
PheWAS (phenome wide association study), each of the thousands of interpreted SAE features was
systematically tested for its association with a panel of 39 predefined clinical outcomes, with onset
windows ranging from 0.5 to 7.5 years post-scan. This process generated a vast number of potential



/ image_Concept_66

cept_66, ranke:

This cohort ranks #100 out of 5179

Generated Paper Content

Saved to:

& Download LaTeX

Figure 2: A screenshot of the "Feature Discoverer" web application. This interface allows for the
exploration of discovered concepts and their association with clinical outcomes. The "Generate
LaTeX paper" button, circled in red, initiates the automated manuscript generation process for the
selected hypothesis and which created this paper.

scientific hypotheses, to which we apply multiple test correction. For the four SAE configurations,
this resulted in:

K=5: 6,357 hypotheses
K=10: 6,942 hypotheses
K=20: 7,605 hypotheses
K=40: 13,143 hypotheses

This totals 34,047 unique feature-outcome pairs, each representing a potential discovery.

These hypotheses are presented to users via a web interface, the "Feature Discoverer" (Figure[Z). From
this interface, a user can select a promising hypothesis and trigger an agentic workflow by clicking
a "Generate LaTeX paper" button. This action initiates a process where the system automatically
gathers all relevant statistics, plots, and interpretations for the selected hypothesis and populates a
predefined LaTeX template. The result is a complete, submission-ready manuscript, such as the one
presented here, generated in a single shot with Gemini 2.5 Pro.

3 Results

The results demonstrate the success of the end-to-end pipeline, from the effective training of SAEs to
the discovery and validation of a novel, clinically significant imaging biomarker.

3.1 Matryoshka SAEs Learn High-Fidelity and Performant Representations

The Matryoshka Top-K SAEs were found to effectively learn sparse representations of the CT image
embeddings while maintaining high reconstruction fidelity. Figure Bh shows that Matryoshka SAEs
(orange) consistently achieve a higher coefficient of determination (R?) for a given number of alive
features compared to standard Top-K SAEs (blue), demonstrating a superior Pareto frontier and more
efficient learning. Furthermore, the learned sparse features retain the predictive power of the original
dense embeddings. Figures[3p,c demonstrate that this trend extends to downstream clinical tasks.

3.2 Case Study: A Novel Imaging Biomarker for Skin Cancer

From the thousands of hypotheses generated, the system flagged the association between feature
image_Concept_66 (from the K=20, N=8192 SAE) and the future onset of cancer_skin as
particularly strong. A detailed analysis of this hypothesis was conducted on a held-out test set.
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(b) Average performance over clinical downstream tasks for disease progression (95% confidence intervals
calculated using over tasks using a t-distribution)
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(c) Downstream task performance (progression to skin cancer within 0.5-7.5 years)

Figure 3: SAE Training and Downstream Task Performance with pareto improvement for Matryoshka
SAEs. (a) Reconstruction fidelity (R?) of the feature space versus the number of alive features
for Matryoshka SAEs (orange) and standard Top-K SAEs (blue). (b) Downstream performance of
logistic regression models trained on Matryoshka SAE features versus standard Top-K SAEs features
averaged over a selection of diverse prognostic tasks for onset to blood cancer, abdominal cancer,
skin cancer, dementia, diabetes and obesity using the 0.5 to 7.5-year window. We find the pareto
improvement in feature space translates to downstream clinical tasks. (¢) Downstream performance
on skin cancer.

3.2.1 Automated Interpretation of image_Concept_66

The auto-interpretation module analyzed the radiology reports associated with high activations
of image_Concept_66. All reports used in (2) have been approved for public use. The LLM
synthesized the findings and concluded that the feature represents:

"Abnormal soft tissue density and stranding within mesenteric, peritoneal, or
retroperitoneal fat."



scoring 60% generalization and a 3/3 Anthropic Autolnterp rating. The LLM’s reasoning noted
that this visual pattern was a common denominator for various underlying pathologies, including
post-surgical changes, inflammation (e.g., peritonitis, diverticulitis), fluid collections, and infiltrative
masses, all of which disrupt normal anatomical fascial planes and appear as increased density in
abdominal fat on CT scans. See[A.2]for the full AutoInterp reasoning output.

3.2.2 Prognostic Value of image_Concept_66

The prognostic significance of image_Concept_66 for predicting the onset of skin cancer within a
0.5 to 7.5-year window was evaluated. The feature demonstrated strong predictive performance, as
detailed in Table[I] Notably, when analyzed in isolation, the presence of this feature was associated
with an odds ratio (OR) of 3.7 (p < 0.001) for developing skin cancer. The feature was present in
7.7% of the test cohort. A clear dose-response relationship was observed, where higher activation
values of the feature corresponded to a progressively higher incidence of skin cancer (Figure @).

Table 1: Statistical Performance of image_Concept_66 for Predicting cancer_skin on the held-out
test set. Confidence intervals calculated using Wilson’s test.

Metric Value

Feature Prevalence 7.3% (64/877)

Baseline Incidence Rate of skin cancer 33.52% (294/877)
Precision (binary feature) 58.1% (95CI [51.4% - 64.4%])
Specificity (binary feature) 42.9% (95CI [37.3% - 48.6%])
Isolated Odds Ratio (per std.) 3.695 (95CI [2.840 - 4.808]) (p=0.0)

Percentage of cancer_skin stratified by Concept_66
(with 95% confidence intervals)
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Figure 4: Dose-response relationship between the activation of image_Concept_66 and the inci-
dence of cancer_skin. The x-axis shows bins of feature activation values, while the y-axis shows
the proportion of individuals in each bin who developed skin cancer.

3.2.3 Comparison with Clinical Risk Factors

The predictive power of image_Concept_66 was compared with several widely available clinical
risk factors for skin cancer, including routinely collected demographic and lifestyle data: patient age,
sex, body mass index (BMI), race (White, Black, Asian, or other), and current smoking status. To
ensure all SAE-derived and clinical features are comparable, we first independently normalize each
so that odds ratios are in units of standard deviations.

As shown in Table[2] the discovered imaging feature has a substantially larger effect size than any of
the conventional risk factors analyzed. A common clinical risk factor for skin cancer, patient age,
had an odds ratio per standard deviation of 1.815. In contrast, the isolated odds ratio for the binary



presence of image_Concept_66 was 3.695. Other factors such as smoking status were not found to
be statistically significant predictors in this cohort.

Table 2: Comparison of odds ratios for cancer_skin. The discovered feature, image_Concept_66,
demonstrates a significantly stronger association with disease onset than clinical, human-engineered
risk factors. Confidence intervals for odds ratios calculated using Wald’s method.

Risk Factor Odds Ratio per Std. Dev. (95% CI) P-value
image_Concept_66 3.695 (2.840 - 4.808) <0.001
Race (White) 2.007 (1.483 -2.716) < 0.001
Patient Age 1.815 (1.415 - 2.328) < 0.001
BMI 1.623 (1.011 -2.611) 0.045
Patient Sex (Male vs. Female) 1.466 (0.981 - 2.191) 0.062
Current Smoker 1.105 (0.851 - 1.435) 0.455
Race (Other) 1.061 (0.701, 1.607) 0.021
Race (Black) 0.706 (0.463, 1.076) 0.106
Race (Asian) 0.611 (0.426, 0.877) 0.007

3.3 Robustness of the Discovery Process

The discovery of potent predictive features was not unique to a single SAE configuration. Strong
predictors for cancer_skin were identified across different SAEs trained with varying sparsity
levels, indicating that the discovery process is robust. Figure [5|shows the odds ratio of the single best
feature discovered for this outcome from each of the four trained SAEs, all of which show a strong
predictive signal.
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Figure 5: The highest odds ratio feature for cancer_skin discovered by Matryoshka SAEs (orange)
and standard Top-K SAEs (blue). After ranking features, the plot reports the odds ratio on the held
out test set (2). As before, we observe a pareto improvement using Matryoshka SAEs. Moreover,
strong predictive features translated to test set, demonstrating the robustness of the approach.

4 Discussion

The results presented herein demonstrate the successful implementation of an automated pipeline
for uncovering novel scientific knowledge from the latent spaces of medical foundation models. By
leveraging Matryoshka Top-K SAEs and an LLM-based interpretation module, our system transforms
opaque, high-dimensional embeddings into a vocabulary of sparse, interpretable clinical concepts.
The subsequent automated screening of these concepts against clinical outcomes creates a scalable
engine for hypothesis generation, culminating in the automated production of scientific manuscripts
to report its findings.

The case study of image_Concept_66 provides compelling evidence for the utility of this approach.
The system independently discovered a novel imaging biomarker—"abnormal soft tissue density and
stranding in abdominal fat"—and identified its strong association with the future development of skin
cancer. The radiological sign of fat stranding is a non-specific indicator of inflammation. Its presence
could reflect a state of chronic systemic inflammation, which has been previously hypothesized
as a risk factor for various malignancies, including skin cancer. Our finding provides quantitative,
image-based evidence for this link and suggests a new, potentially quantifiable risk factor that is not



captured by traditional measures. The fact that this automatically discovered feature outperforms
clinical risk factors like age underscores the potential for this methodology to uncover signals that
have been missed by conventional, human-driven research.

The primary strength of this work lies in its end-to-end automation and scalability. The system is
capable of generating and evaluating tens of thousands of hypotheses without human intervention.
This represents a paradigm shift from traditional medical research, which is often limited by the
time and resources required to formulate and test each hypothesis individually. By automating this
process, we can explore the vast combinatorial space of feature-outcome relationships, systematically
searching for novel connections that can drive future clinical and biological investigation.

Despite these promising results, several limitations must be acknowledged. Crucially, the findings
are, at this stage, correlational. While image_Concept_66 is a strong predictor, this does not
imply a causal relationship. The feature could be a marker for a confounding factor that is the true
driver of risk. While Autolnterp concluded the feature was inflammation based, it is likely that this
feature may detect evidence of metastatic or treated cancer that was missed or not recorded by the
associated radiology report, or was not recorded in the patient’s history at Stanford SHC. In this case,
image_Concept_66 would have use in flagging and stratifying cancer risk among incoming patients
from different hospital systems.

Moreover, this analysis was conducted on data from a single academic medical center. The generaliz-
ability of the discovered concepts and their prognostic value must be validated on external datasets
from different patient populations and healthcare systems. Our planned future work includes testing
the generalization of discovered concepts on the SHC Tri-Valley dataset. Third, the LLM-based
auto-interpretation, while powerful, is not infallible. The generated labels are hypotheses about the
feature’s meaning and require validation by clinical experts.

Future work will focus on addressing these limitations and expanding the scope of the pipeline. A key
next step is to extend the SAE training to be truly multimodal, incorporating features from clinical
text, laboratory values, and genomic data simultaneously. This will allow for the discovery of more
complex, cross-modal concepts that may yield even deeper biological insights. Furthermore, we plan
to establish a formal process for clinical review and validation of the top-ranked hypotheses generated
by the system, creating a tight feedback loop between automated discovery and expert-driven scientific
inquiry.

Furthermore, we plan to establish a formal process for clinical review and validation of the top-ranked
hypotheses generated by the system, creating a tight feedback loop between automated discovery
and expert-driven scientific inquiry. As part of this we will also test the generalization of discovered
features not only on held-out test sets, but across hospitals such as the SHC Tri-Valley dataset to
ensure robustness of extracted knowledge between hospitals.

5 Conclusion

This paper introduces a fully automated system that leverages mechanistic interpretability to extract
novel scientific hypotheses from the latent representations of medical foundation models. By training
Matryoshka Sparse Autoencoders, we decompose complex features into an interpretable basis of
clinical concepts. An automated pipeline then interprets these concepts and quantifies their prognostic
value, culminating in the generation of scientific reports such as the one presented in this paper.
We demonstrated the power of this approach through the proposal of an imaging biomarker for
skin cancer that is more predictive at Stanford SHC than commonly collected clinical risk factors.
This work represents a significant step towards transforming artificial intelligence from a tool for
prediction into a collaborative partner in the process of scientific discovery, capable of systematically
generating and prioritizing testable hypotheses at a scale previously unattainable.

Al-agent Setup MechSci is a fully automated discovery process built on a multi-stage, agentic
pipeline. A user simply provides a dataset and a set of clinical outcomes of interest, and the system
runs end-to-end to discover interpretable hypotheses. A ready-to-use implementation of this agent
will be made publicly available at https://github.com/RobbieHolland/MechSci. The core of the
discovery process leverages Mechanistic Interpretability via SAEs (as described in Section [2.3)) to
discover interpretable features within the input data. MechSci then invokes an LLM (Gemini 2.5
Pro) to run automated concept interpretation (Section and single-shot manuscript generation
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(Section[2.5). When a user begins to explore generated hypotheses in the "Feature Discoverer" web
application (Figure [2), MechSci gathers all pre-computed assets (statistics, plots, interpretations)
and populates a prompt template for the LLM to produce the complete, submission-ready LaTeX
manuscript for review or manual edits by the radiologist or clinical researcher.



Agents4Science Al Involvement Checklist

1.

Hypothesis development:

Answer: [C]

Explanation: The automated pipeline proposed hypotheses based on patterns learned from
the medical foundation model embeddings. Human authors guided the selection of outcomes
and validated final hypotheses, but the Al generated the majority of hypothesis ideas.

. Experimental design and implementation:

Answer: [B]

Explanation: Humans designed the overall experimental setup, chose datasets, SAE parame-
ters, and evaluation protocols, while the Al executed the feature discovery, interpretation,
and automated manuscript generation.

. Analysis of data and interpretation of results:

Answer: [C]

Explanation: The AI performed most of the data analysis and interpretation, including
automated evaluation of discovered features, LLM-based labeling of concepts, and statistical
summarization. Humans validated key results and ensured clinical plausibility.

. Writing:

Answer: [C]

Explanation: The manuscript text, figures, and tables were primarily generated by the
Al pipeline. Human authors edited, corrected, and structured the final paper to ensure
readability and accuracy.

. Observed AI Limitations:

Description: The Al sometimes produced overly general interpretations of imaging features
and could not assess causal relationships. Human oversight was necessary for clinical
validation, correcting misinterpretations, and ensuring compliance with ethical and privacy
standards.
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Agents4Science Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction clearly describe the automated discovery pipeline,
the novel imaging biomarker, and its predictive performance relative to clinical risk factors.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are discussed in Section 5 (Discussion), including correlational
nature of results, single-center data, and potential LLM misinterpretations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No formal theoretical proofs are included; the paper focuses on applied
methodology and empirical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper?

Answer: [Yes]

Justification: Section 3 details datasets, SAE architecture, hyperparameters, and evaluation
protocols; reproducibility steps are documented.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results?

Answer: [Yes]

Justification: Code will be available at the authors’ repository (kept hidden for double-blind
review); dataset splits and preprocessing steps are publicly described.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]

Justification: Full experimental details, including data splits, SAE configurations, and LLM
settings, are provided in Section 3.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 1 and 2 report odds ratios with 95% confidence intervals and p-values;
figures include dose-response relationships.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3 describes computational resources used for SAE training and LLM-
based interpretation; approximate GPU/CPU requirements are provided.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics?

Answer: [Yes]

Justification: Research follows the Agents4Science Code of Ethics; patient data was de-
identified, and Al outputs were human-validated.
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 5 discusses potential positive impacts (scalable discovery of clinical
biomarkers) and negative impacts (misinterpretation by automated systems), with mitigations
described.

Responsible AI Statement

This work adheres to the NeurIPS Code of Ethics. The system was designed to ensure safe deployment
in research settings only, with safeguards to prevent patient-identifiable information from being used.
Broader impacts, such as reliance on Al-generated hypotheses, have been considered, and final
interpretations remain under human expert supervision.

Reproducibility Statement

All code for SAE training, LLM-based interpretation, and hypothesis generation will be made
available (but would currently break anonymity for double-blind review). The study uses a public
dataset from Merlin and includes detailed hyperparameters, evaluation protocols, and random seeds
to ensure reproducibility. Figures and tables can be regenerated following the documented pipeline.
We also provide the full prompt used to generate the article.
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A Appendix

Below in[A.T]is the prompt used to generate this paper in a single shot, subject to a small number of
minor improvements prior to submission. Placeholders inside { } braces are replaced with specific
statistics and values from the selected feature disease combination webpage. We also include the
Autolnterp reasoning trace in[A.2]

A.1 Prompt used to generate paper in one shot

Your task is to write the main body of a LaTex paper to be submitted to the Agents4Science 2025
conference at Stanford. It is structured as an up-to-8 page paper. Write it like an expert academic,
and in passive voice. Be comprehensive in writing the paper, the methodology and specific details are
what makes this a strong paper. We're looking to get excellent reviews from NeurIPS-style reviewers.

Below I provide you information on the paper you are writing, including links to figures you created,
and then you will think about how to write the paper before writing it out in full in one shot. Also,
add citations provided using their numbers.

—- Our overall project is structured as follows. This will help you write the Abstract, Introduction
and Methods: Uncovering Scientific Knowledge from Multimodal Medical Data through Foundation
Models and Mechanistic Interpretability

Background and Motivation Modern healthcare generates a vast and complex array of multimodal
data — CT imaging studies, radiology reports, laboratory results, clinical notes, and structured EHR
data — all of which contain latent information about disease mechanisms and patient outcomes. Foun-
dation models trained across these modalities have achieved exceptional diagnostic and prognostic
performance, uncovering subtle relationships that elude conventional statistical approaches.

However, despite their accuracy, these models remain difficult to interpret. Techniques such as
saliency maps or gradient-based attributions offer limited insights into what the models actually
learn, particularly when applied across multiple data types. The challenge is not only to explain
predictions but to expose the internal representations and mechanisms that connect to real biomedical
phenomena.

This work explores a path toward mechanistic interpretability: understanding and restructuring the
internal feature spaces of large multimodal foundation models through sparse autoencoders (SAEs).
The goal is to convert opaque, high-dimensional representations into sparse, interpretable concept
spaces that make model reasoning visible and scientifically meaningful.

Concept and Approach Foundation models capture intricate, multidimensional patterns that encode
relationships across imaging, clinical text, and structured health data. These representations are
powerful but dense and difficult to parse. Sparse autoencoders provide a systematic way to restructure
these representations: by enforcing sparsity, they isolate the key activations that explain most of the
variance in the data. Each sparse feature can then correspond to a clinically meaningful concept —
for example, a specific imaging phenotype or laboratory pattern.

Prior work outside medicine has shown that such sparse representations can reveal interpretable
internal concepts hidden within large models. Translating this approach to the medical domain can
provide a way to map model features to physiological and pathological mechanisms. The hypothesis
is that SAEs trained on foundation model embeddings will preserve predictive performance while
exposing interpretable and clinically relevant structure.

Overview of Method This project leverages a large, IRB-approved multimodal dataset from Stanford
Health Care (SHC) and Stanford Health Care Tri-Valley (SHC-TV), which includes CT scans,
radiology reports, clinical documentation, laboratory results, ICD codes, and longitudinal outcome
data for more than 45,000 patients.

Multimodal Representations Foundation model embeddings will be extracted from both text and
imaging data. Large language models such as Gemini and Qwen will be used to embed clinical
reports and notes, while Merlin, a multimodal medical foundation model developed by our group,
will be used to obtain CT-based image embeddings. These representations will form the input space
for subsequent sparse autoencoder training.



Sparse Autoencoder Training Sparse autoencoders will be trained to reorganize the dense foun-
dation model features into sparse, interpretable concept spaces. We will implement and compare
architectures such as Top-K SAEs and Matryoshka SAEs, evaluating how effectively they pro-
duce disentangled, meaningful concepts that preserve the informational richness of the original
embeddings.

Automated Concept Interpretation To assign meaning to each sparse feature, we will construct an
automated interpretability pipeline. For every SAE-derived concept, we will identify samples that
strongly activate it and use large language or vision—language models to describe shared attributes
and propose semantic labels. These candidate concept labels will be iteratively refined and validated
on held-out samples to ensure reliability and clinical coherence.

Performance and Utility Assessment The resulting sparse concept representations will be evaluated
for their ability to support clinically relevant predictive tasks. We will compare diagnostic and
prognostic performance between the sparse concepts and the original foundation model embeddings,
and assess whether accurate predictions can be achieved using a smaller, more interpretable subset of
sparse features.

Future Directions Once validated, this framework will serve as a foundation for deeper scientific
discovery. Sparse, interpretable features derived from foundation models could be used to explore
mechanistic hypotheses about disease progression, treatment response, and outcome prediction.
For example, newly identified latent concepts may correspond to previously unrecognized imaging
biomarkers or physiological signatures that warrant clinical study.

Future work will expand to additional modalities such as genomics and longitudinal EHR data, and
integrate causal inference tools to test whether identified concepts represent mechanistic pathways
rather than statistical correlations. Further development will also focus on creating clinician-facing
interfaces for interactive exploration of the sparse concept space, supporting hypothesis generation
directly from model-derived insights.

In the long term, this approach aims to reposition Al in medicine — from systems that merely predict
outcomes to systems that reveal structure, generate hypotheses, and advance understanding of human
health and disease. By combining large-scale multimodal data from institutions like Stanford Health
Care with mechanistic interpretability methods, we move toward an era where foundation models
contribute not only to clinical decision-making but to genuine biomedical discovery.

References 1. Cunningham, H., et al. Sparse Autoencoders Find Highly Interpretable Features in
Language Models. 2023. arXiv:2309.08600 DOI: 10.48550/arXiv.2309.08600. 2. Van Veen, D., et
al., Adapted large language models can outperform medical experts in clinical text summarization.
Nat Med, 2024. 30(4): p. 1134-1142. 3. Blankemeier, L., et al., Merlin: A Vision Language
Foundation Model for 3D Computed Tomography. Res Sq, 2024. 4. Chen, Z., et al., Chexa-
gent: Towards a foundation model for chest x-ray interpretation. arXiv preprint arXiv:2401.12208,
2024. 5. Gao, L., et al. Scaling and evaluating sparse autoencoders. 2024. arXiv:2406.04093
DOI:10.48550/arXiv.2406.04093. 6. Bussmann, B., et al. Learning Multi-Level Features with
Matryoshka Sparse Autoencoders. 2025. arXiv:2503.17547 DOI: 10.48550/arXiv.2503.17547. 7.
Templeton, A., et al. Scaling Monosemanticity: Extracting Interpretable Features from Claude 3
Sonnet. 2024.

—- Method specifics: Specifically, for this first iteration of the project, we use 25,334 CT scans and
train four different Top-K SAEs using sparsity K=5, 10, 20 and 40. We use N=8192 dictionary size.
This is a Matryoshka Top-K SAE which uses nested dictionary sizes of [128, 512, 2048 and 8192].

For Autolnterpretation we use LLMs, specifically Gemini 2.5 Pro using the same API. We provide
them the anonymized radiology report findings, which describe the CT images in text by human
experts. In particular, we provide 20 samples which highly activate the feature to the model, and
ask it to summarize the common properties of these samples. Then, we test this interpretation on a
held-out set of 20 other highly activating samples. This results in a percentage of generalization of
the interpretation.

—- Results specifics: I have created a website which lists all the discovered SAE features and links
them to prognostic risk for disease. We are currently on one of the subpages which links feature
{feature_name} to disease {disease}. In total, given all SAE alive features across configurations,
and their combinations with each disease, we have generated {number_of_hypotheses} hypotheses,



and therefore {number_of_hypotheses} LaTex papers such as this one. For this submission we have
selected the generated paper for the hypothesis that feature {feature_name} is highly predictive of
onset to {disease} within 0.5-7.5 years. Below we list arrays of statistics that back this up:

{statistics}
This feature was Autolnterpreted, and was given the following interpretation:
{interpretation}

We also compare to the best risk factors that have been discovered through human efforts. These are
listed below. Please provide a comparison to each of these in the paper:

{best_established_risk_factors}

This approach, that we can automatically generate a LaTex paper for every SAE feature x disease
combination, is also part of the Methods of this paper. On the website, there is a button I just pressed
called "Generate LaTex paper" which led to this prompt being created, and then passed to the Gemini
2.5 Pro APIL Describe in the paper how we autofill these statistics and figures straight from the
website. Also comment how the generation of this entire paper is done in a single shot (make this
clear from the abstract).

For the results, you should create tables where necessary based on the provided statistics. We also
have several figures: - ’figures/sae_r2.jpg’: Original SAE fit statistics, with R2 on the original
feature space reconstruction vs. the sparsity parameter K and number of alive features. The plot
shows Matryoshka SAEs in orange and standard Top-K SAEs in blue. It shows a strong pareto
improvement of the Matryoshka SAEs over the Top-K SAEs. - ’figures/sae_downstream.jpg’:
SAE downstream performance, which takes each SAE and uses logistic regressions to predict
the binary onset of conditions. - ’figures/feature_discoverer_webapp.jpg’: Shows a screenshot
of the webpage for feature_name linked to disease, with the ’Generate LaTex paper’ button cir-
cled in red. - ’figures/feature_disease_plot.jpg’: Shows a histogram of feature_names activation
bins on the xaxis, and the proportion of individuals in each bin which develop disease. - ’fig-
ures/best_odds_ratio_per_sae.jpg’: *Shows the best highest odds ratio feature yielded per SAE
configuration for disease.” - *figures/comparisons_to_human_features.jpg’: Shows a barplot of odds
ratios for the best established human risk factors (see the statistics for a list) and feature_name for
progression to disease.

You may group figures together if you deem it helpful.

—- Discussion and Conclusion sections: Firstly, draw your own conclusions from the statistics
provided for this feature and its comparison to existing risk factors. Write a discussion which
summarize the strengths of this approach, the fully automatic nature of it, and the excitement around
what it can discover.

Also within the discussion, you should mention the limitations of the approach, and how it could be
improved, and future work based on the ’overall project structure’ outlined in the beginning.

The following conclusion section should be a shorter, punchier version of that.

—- Formatting: For describing the feature and disease names, put *before any ’_’ and wrap it in
texttt. Finally the prompt used to generate this paper and Autolnterp reasoning trace are listed in the
Appendix under ref{appendix:paper_gen_prompt} and ref{appendix:llm_autointerp_reasoning}.

A.2 LLM Autolnterp reasoning

This feature was Autolnterpreted, and was given the following interpretation:
My reasoning process to determine the neuron’s detected feature is as follows:

1. **Initial Scan of Reports for Overarching Themes:** I began by reading through all 15 reports
to identify any high-level, recurring concepts. Two themes immediately stood out: (1) evidence of
prior surgery or current medical intervention, and (2) signs of active inflammation or malignancy. *
**Surgery/Intervention:** This was evident from frequent mentions of "surgically absent" organs
(especially the gallbladder), "postsurgical changes," "transplant," and the presence of numerous
medical devices like catheters, drains, stents, and LVADs. Reports 1, 3, 4, 6, 7, 8, 10, 12, 13,
and 14 are strong examples of this. * **Inflammation/Malignancy:** This theme was clear from



"non " "non non

descriptions of "inflammation," "peritonitis," "diverticulitis," "phlegmon," "necrotic lymph nodes,"
and "infiltrative soft tissue." Reports 2, 4, 6, 8, 11, and 15 are strong examples.

2. **]dentifying the Common Visual Denominator:** A neuron detects visual patterns, not abstract
medical concepts. My next step was to determine the common visual appearance that underlies
both "surgery" and "inflammation" on a CT scan. * Surgery inherently disrupts normal anatomy.
Incisions create scars, resections leave altered tissue planes, and post-operative healing often involves
fluid collections (seromas, hematomas) and inflammatory reactions in the surrounding tissues. *
Inflammation (like diverticulitis or peritonitis) and infiltration by tumors also disrupt normal anatomy.
The key visual sign for this on CT is often "fat stranding"—a hazy, ill-defined increase in the density
of the normally black abdominal fat—as well as fluid collections and abnormal soft tissue masses.

3. **Hypothesis Formulation and Testing:** I hypothesized that the core feature is the visual
manifestation of this disruption. I considered several specific phrasings: * *Hypothesis A: "Indwelling
medical devices."* This was strong for many reports (e.g., 3, 14) but failed to explain the high
activation for reports describing only inflammation (15) or a necrotic mass (2). * *Hypothesis B:
"Abnormal fluid collections."* This was present in many cases but was explicitly absent in several
high-ranking reports, including the 1 report ("no free fluid"). * *Hypothesis C: "Disruption of
abdominal fascial planes."* This was a strong conceptual candidate. Both surgery and inflammation
blur the sharp lines that normally define anatomical structures. This concept successfully explained
all 15 cases. For example, a surgical incision (1), an infiltrative mass (2), a hematoma with stranding
(3), peritonitis (4), and diverticulitis (15) all visually disrupt or blur fascial planes.

4. **Refining the Description for Precision:** The concept of "disruption of fascial planes" is
correct, but I needed to translate it into a more specific, descriptive radiological term that captures the
primary visual evidence. The most consistent visual signs of this disruption across the reports are
abnormal densities within the normally dark fat of the abdomen. This includes the hazy pattern of
"stranding" and the more solid appearance of "soft tissue density" (from fluid, phlegmon, scar, or
tumor). Therefore, I combined these observations into a single, comprehensive feature description.

5. **Final Verification:** I re-checked my final proposed feature—"Abnormal soft tissue density
and stranding within mesenteric, peritoneal, or retroperitoneal fat"—against the highest-ranking
reports. * Report 1: "post surgical changes" and "surgical clips" represent abnormal densities in the
abdominal wall and retroperitoneal fat. * Report 2: "necrotic ... lymph nodes and soft tissue implants"
are abnormal soft tissue densities in the pelvic/retroperitoneal fat. * Report 3: "hematoma" and
"stranding" are a perfect match. * Report 4: "peritonitis" and "fluid collection" match the description.
* Report 15 (an inflammatory example): "pericolic fat stranding" is a direct match. This description
successfully unifies the varied findings (postsurgical changes, inflammation, fluid collections, and
masses) into a single, coherent visual feature that a neuron could plausibly detect. It adheres to
the prompt’s constraints by being specific, avoiding "or," and focusing on appearance rather than
pathology.

* This feature represents abnormal soft tissue density and stranding within mesenteric, peritoneal, or
retroperitoneal fat.
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