Published as a conference paper at COLM 2025

Unifying Autoregressive and Diffusion-Based
Sequence Generation

Nima Fathi] Torsten Scholak & Pierre-André Noél
ServiceNow Research
nima.fathi@mila.quebec, {torsten.scholak,pierre-andre.noel}@servicenow.com

Abstract

We present significant extensions to diffusion-based sequence generation
models, blurring the line with autoregressive language models. We intro-
duce hyperschedules, which assign distinct noise schedules to individual
token positions, generalizing both autoregressive models (e.g., GPT) and
conventional diffusion models (e.g., SEDD, MDLM) as special cases. Sec-
ond, we propose two hybrid token-wise noising processes that interpolate
between absorbing and uniform processes, enabling the model to fix past
mistakes, and we introduce a novel inference algorithm that leverages this
new feature in a simplified context inspired from MDLM. To support effi-
cient training and inference, we design attention masks compatible with
KV-caching. Our methods achieve state-of-the-art perplexity and generate
diverse, high-quality sequences across standard benchmarks, suggesting
a promising path for autoregressive diffusion-based sequence generation.
See code and resources at https://hdlm-colm.github.io/.

1 Introduction

Generative diffusion models, primarily recognized for their impressive image generation
performance in continuous domains (Yang et al., 2023), are rapidly gaining traction in lan-
guage modeling, a discrete domain historically dominated by autoregressive (AR) models
such as the GPT family (Radford et al., 2019; Brown et al., 2020). Contrary to the apparent
separation between AR and diffusion models, and despite their distinct historical develop-
ment, this work reveals a fundamental connection: AR models are a form of diffusion.

The core principle behind diffusion models involves prescribing a “noising” process that
gradually destroys information in training data samples, subsequently learning a neural
network that progressively generates new samples from “pure noise” with a denoising
process. The noising process acts as a form of data augmentation: together with the original
training dataset, it specifies the curriculum on which the generator (denoiser) is trained. Part
of the attraction for these models arises from their rich theoretical grounding, resulting in
concrete practical techniques. In particular, a model’s training and inference environments
can be decoupled, allowing for a compute-budget knob at inference time, and guidance
techniques adapting a model’s behavior to specific situations.

Despite the common use of Gaussian noise in continuous diffusion, the underlying princi-
ples can be adapted to discrete state spaces (Austin et al., 2021; Zhou et al., 2023; Lou et al.,
2024). Common practices for sequence generation have the noising process randomly and in-
dependently substituting some original tokens by completely unrelated ones, i.e., uniformly
sampled tokens or a special “mask” absorbing state. A noise schedule determines token
replacement probabilities at different points in the curriculum. The resulting sequence at
the schedule’s highest noise level retains no mutual information with the original sequence.
The generator is trained on this curriculum to enable the production of novel sequences.

This work unifies AR and diffusion sequence generation by introducing hyperschedules,
allowing different positions in the sequence to be affected by different noise schedules. We

*Also at Québec Artificial Intelligence Institute (Mila) and McGill University.

Published as a conference paper at COLM 2025

The training curriculum gradually destroys information from data sample (noising).
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >

qar—1|t qr—2|T-1 12 qo|1
X X711 o X1 Xo
g %
E i # :
T T-1v R 1V 0
PriT-1 Pro17-2 Pan Pijo

Figure 1: Generative diffusion models prescribe (through gy/¢11) a curriculum process {X;},
then learn (through p? +1|t) @ reverse process {X;} so that the marginal distributions match
at each step t (vertical squiggly lines). X7 is the training dataset and Xr is the generated
output. This work focuses on discrete diffusion for sequences of discrete tokens. We show
that standard autoregressive models (e.g., GPT) are an extreme case of this framework, a
unification enabling a vast continuum of diffusion models, including autoregressive ones.

establish that autoregressive models, such as GPT, can be understood as diffusion models
without data augmentation, utilizing a discrete noise schedule comprising only “full noise”
and “no noise” levels. This unification expands model design space and enables a variety
of generalized AR-like approaches. With the hindsight, hyperschedule-like concepts can
be identified in the “Mask” process of Bansal et al. (2023) as well as in the “Swin-DPM”
technique of Feng et al. (2024).

Recent (Sahoo et al., 2024; Ou et al., 2024; Shi et al., 2024) and concurrent (Liu et al., 2024;
Kim et al., 2025; Peng et al., 2025; Nie et al., 2025; Wang et al., 2025; Arriola et al., 2025) works
have focused on mask diffusion models (MDMs). By specializing on the “absorb” noising
mechanism, these MDMs enable great simplifications over a general-purpose treatment:
neural networks no longer need an explicit noise-level dependency, and a more standard
loss function can be used. However, our work shows that the same feats and simplifications
can be accomplished in a general, non-MDM case. Motivated by the same rationale that
led concurrent MDMs to conceive “remasking” strategies, we introduce hybrid noising pro-
cesses, interpolating between the “absorb” and “uniform” processes to combine the benefits
of both and achieve state-of-the-art performances, with aspects further improved by our
novel adaptive correction sampler (ACS) inference algorithm. Our hyperschedule-equipped
approach supports specialized attention matrices enabling KV-caching and efficient training.

In summary, our main contributions are:

* we unify AR and diffusion sequence generation by introducing hyperschedules;
* we consider hybrid noising processes, reaping benefits from both leading noising

processes and achieving state-of-the-art performances, with and without our novel
ACS inference algorithm; and

* our hyperschedule-powered hybrid processes generalize multiple concurrent de-
velopments to non-MDM setting, including efficient training and KV-caching.

2 Unification Through Abstraction

In this section, we reconcile autoregressive and diffusion-based language models by
abstracting-out their respective implementation details, instead emphasizing their shared
essence.

Sequence Generator We define a sequence generator as a stochastic procedure that repeat-
edly calls a neural network to yield a sequence of d tokens, each taken from a finite vocabu-
lary X'. We write %y = (£, -, J?ffl) € X the state of the generator after t calls: starting
from a (trivial) initial state Xo, the neural network specifies the probability pf it (X¢11|%¢) to
get to state X; 1 from state X;. The generated sequence Xt is obtained after T such calls. The

bottom row of Figure 1 illustrates this process (from right to left, writing X; the stochastic
variable taking value X;).

Published as a conference paper at COLM 2025

a. Quenched (AR) b. Flat Annealing (standard) c. Block Annealing d. Slide Annealing

1. Hyperschedule

i=0 i=1i=2i=3 i=4 i=5 (al) i=0 i=1i=2 i=3 i=4 i=5

i=0 i=1i=2i=3 i=4 i=5 (c.1)
i=0 i=1i=2i=3 i=4 i=5 (d.1)

o
o
[

il
-

I
[P

Il
w
a U E W - o

Il
EN

2. Absorb Process
B AR

i=0 i=1i=2i=3 i=4i=5

=
&
i
EY
-
L
~
i
w
|
IS
i
o
B
|
o
i
[l
~
i
w
[
s
|
«
’6\
&
&
]

)

1l
F
il

[
LY T =]
I
LT N e

N

3. Uniform Process

o
]
=

il

i=0i=11i=2i=3 i=4 i=5

[
]

1l
il
o

il
il

-
il

o
o
[S
i

4. Hybrid Process
abiadbld
TTTTTTd
-

SLLA LN E

i
o
1l
il
¥
Il
v
il
IS
[
o)
g
&
"
&

i=0 i=1i=2i=3 i=4i=5

&

Figure 2: We introduce t-hyperschedules (top row) — subjecting different token positions i
with different noise levels (red high; blue low) at different generation step f — and illus-
trate how three different noising processes (bottom 3 rows) can be modulated by such
hyperschedules. Hyperschedules. (a) Standard AR models (e.g., GPT) determine tokens
one by one, “quenching” each of them to full determination in a single step. They may
thus be construed as an extreme case of a diffusion model. (b) Standard diffusion models
(e.g., SEDD) gradually anneal all tokens independently of their position. (c) Block-wise
application of flat annealing, here for blocks of width w = 3. (d) Annealing with a sliding
window (“smoothed” AR), here using window width w = 3. These last two examples
share important features of both AR and diffusion models. While the 4 presented examples
all generate p = 1 token per step in the long-sequence limit (with the caveat that slide
experiences an initial overhead of w — 1 steps), the last 3 patterns are all straightforwardly
adapted to p > 1 (“quick draft”) and p < 1 (“think hard”) regimes. Noising Processes. (2)
The absorb noising process — a.k.a. Masked Diffusion Model (MDM) — overwrites tokens
with a special MASK token. These masks are “known unknowns”: it is clear to a denoising
model that it must put a non-mask token in its stead. Conversely, unmasked tokens are
taken as “absolute truth” during generation: once a token has been unmasked, it remains
unaltered until the end. (3) The uniform noising process overwrites with (non-mask) tokens
selected uniformly at random from the vocabulary of possible tokens. The orange/light-blue
color coding is not part of the state x;, and is provided solely for the reader’s convenience.
The model thus has no direct way to know if a token has been altered before (“unknown
unknowns”), and may thus revisit a position’s value many times during generation. (4) The
hybrid noising process blends a little bit of uniform into the absorb process. When denoising,
MASK tokens still represent clear “known unknowns”, while unmasked ones have become
“a priori good” candidates that may however need to be “fixed”. We argue that it is desirable
for models to learn to fix their own mistakes.

Published as a conference paper at COLM 2025

Discrete Diffusion Sequence Generators A sequence generator’s neural network must
learn the function p?] +(Xt41/%¢) such that the yielded % approximates the distribution of

7

clean training samples xt (no hat!) from the training dataset. To this end, the “diffusion”
paradigm (Yang et al., 2023) is to prescribe a distribution g;_j;(x;—1/x;) from which we

can sample x;_1 given x;. This noising process (top row in Figure 1) gradually destroys
the information in the training data sample xr, until nothing remains of it in xq; we call
curriculum the process {X;} obtained by recursively sampling the prescribed q;_1; (x;—1[xt)

starting from a training sample x7. The training objective for p¥ 1)¢ amounts to denoising
such noisy samples, aiming to align the marginal distribution of X; with its X; counterpart
(noted X;—~~~X; in Figure 1).

Token-Wise Processes The noising process is typically constructed out of many in-
dependent processes, each affecting one of the original tokens, i.e., g1 (X¢|Xt11) =

I qi‘t+l(xi|xi+1). In practice, qi‘tﬂ(xﬂxiﬂ) is given by the x-th column of a matrix
Qyj¢+1 that is independent of the position i. For example, SEDD (Lou et al., 2024) uses
Qtje+1 = exp (01— — 07—1-1)Qrok), Where the transition matrix Qy is either of

2—|X| 1
w1 0 ~1--- 0 0

QUniform = 1 27:\X| : QAbsorb = Do 0 (1)
B SR 0 0 --- -1 0

and 0y < 07 < - -+ < 07 are cumulative noise schedules such that 6y =~ 0 and o1 ~ co. Here
| X| is the number of tokens in the set X, including a special MASK token associated with
the last dimension of Q.. In words, using Quuniform gradually replaces tokens by random
ones, while Qapsorp gradually replaces them by MASK. Generation starts from %o sampled
from the stationary distribution py (i.e., random non-mask tokens for Qupiform and all-masks

for Qapsorb), and pf e is learned in terms of diffusion weighted denoising score entropy
(DWDSE) (Lou et al., 2024).

Although MDMs technically correspond to the above for the case Qapsorp, the literature has
converged on a much simpler formulation in terms of 1 ~ ap > a1 > --- > ar = 0 such
that x} has probability aT_; to be the original token i and probability 1 — a1_; to be MASK.

The resulting transition matrix Q1 = 1+ (1 — “‘;ii])Q Absorb May be further simplified,

allowing training pf Al using a weighted cross-entropy loss (Sahoo et al., 2024).

AR Sequence Generators Most modern language models predict tokens autoregressively:
one token at a time, each conditional on the tokens that precede it. This may be viewed as
a sequence generator with T = d: X9 = (MASK, MASK, - - - , MASK) represents an empty

sequences using a special MASK token, and each pf] . (Xe41/%¢) predicts the token £} ; to

substitute the first MASK encountered in X;. This can be viewed as an extreme case of a
diffusion model where the conditional probability g;; is actually a deterministic function

that masks-out the ¢-th token, ultimately resulting in xy composed solely of MASK tokens.
However, notice that this g1 (x¢[x¢41) = IT; qi,t 41 (xt[x; ;) involves factors depending on
the position i, which is forbidden in the discussion above; Section 3.1 palliates to this issue.

Transformers All sequence generators considered in this work are implemented as trans-
formers (Vaswani et al., 2017), more specifically the backbone from Peebles & Xie (2023).
One subtlety is that many diffusion and/or masked language models use an ALIGNED
configuration where each transformer cell predicts (output) the same token position as the
one it receives (input). In contrast, AR models use the SHIFTED configuration: each cell
predicts the next token in the sequence. These subtleties can be abstracted out at an high
level (see details in Figure 4 in Appendix).

Published as a conference paper at COLM 2025

3 Autoregressive Sequence Diffusion

3.1 Hyperschedules: position-dependent schedules

We generalize standard diffusion curricula by subjecting different token positions i to
different noise schedules, distinguishing the number of generation steps T from the number

of noise levels 7. Concretely, qi‘ 11 (x|x) is given by the x-th column of a Qi‘ ;1 Obtained

by substituting each instance of o7_; or ar—_; in Q41 by 0 or ar, respectively, where the
hyperschedule T} € {0,1,---,T} satisfying T = 7} > © > - > 7 = 0 for all positions
i€{0,---,d—1}. In effect, the noise schedule (¢ or &) unfolds differently at different
positions; hyperschedules act as schedules for schedules. See examples on top row of Fig. 2.

We introduce two characterizations of an hyperschedule. First, we define the window width
w as the largest (among all steps t) number of positions i for which (7}, 7/ ;) is neither (0,0)
nor (7,7). All other things being equal, a lower w offers more opportunities to improve
inference time (see Sec. 3.3 for examples). Standard AR models use Tguench With value 1
where i > t and 0 elsewhere, and thus have w = 1 by construction (Fig. 2(a.1)). Standard
diffusion models use T, with value 7 — ¢ (often called “noise level”) for all i, using 7 =T
and w = d (Fig. 2(b.1)). Two w-parametrized examples are also provided: concurrent work
on block diffusion (Arriola et al., 2025) may be understood in terms of Ty, (Fig. 2(c.1)),
and we introduce novel 7g,,. (Fig. 2(d.1)).

Second, we define the token generation rate p as the long-sequence limit of the ratiod/T.
All hyperschedules explicitly presented in Fig. 2 share the same p = 1: in the long run,
they require one model call to generate one token. However, all but Tgyench may be readily
adapted to “quick draft” (i.e., p > 1) or “think hard” (i.e., p < 1) regimes.

3.2 Hybrid Processes: training denoisers that can fix their mistakes

In the absorb process, each step produces the curriculum by replacing some of x71’s entries
by the special MASK token. Conversely, at generation time, the only action available to
the generator is to replace some MASK tokens by non-MASK ones. Notice that, unless the
generator is “perfect”, it may become apparent late in the generation process that some
early token choices were, in retrospect, inherently incompatible. However, there are no
action available for the model to “fix” these token choices: no backsies. Although such
“hindsight” situations may occur in any domain, they are particularly relevant to computer

code generation and other reasoning-intensive tasks.!

Conversely, the uniform process can replace any (non-MASK) token by any other one, both
at curriculum specification and sequence generation. Thus, at no point in the generation
process does the model have any indication whether it has already altered a given token
before. We hypothesize that this may cause a “lack of commitment” on the model’s part:
how much should you “trust” the value of a token? At least with absorb, MASK tokens
capture known unknowns.

These observations motivate an hybrid forward process, of which we consider two vari-
eties. The first one uses the SEDD framework with Q. set to leybri qa= (1=7)Qabsorb +
¥ QUniform, interpolating the Quniform and Qapsorb €xtremes according to an hyperparameter

0 < 7y < 1. The evolution operator exp((t"TTti — 0 1)leybri 4) can be solved analytically
£+

(because Quniform and Qapsorb cOmmute, see Appendix A), enabling use in practice with
the standard SEDD loss.

Our second hybrid process variety is closer to the MDM framework: unless 7} = 0 (in
which case x; = x%.), the probability distribution for x! is given by the x}-th column of
(1 + €Quniform) (1 + (1 — a7/) Qapsorb), Where 0 < € < 11is a step-independent probability
that the token is substituted by a uniform one, followed by a standard MDM process

1As an extreme example, consider the graph coloring of a particularly nasty instance.

Published as a conference paper at COLM 2025

henceforth. A weighted cross-entropy loss is used (see Appendix B.2) and, like MDMs,
the neural network does not require an explicit noise-level dependency. Which of the two
variety is used can be inferred from which of «y or € is specified.

3.3 Attention Mask and Efficiency

In SEDD, each call to the transformer predicts each entry of X;;1 in view of all entries in
X;. In contrast, standard autoregressive models use a causal attention mask to ensure that
£, may only depend on £j'. Combined with the fact that £} = £ at all step ¢, this causal
maskenables inference-time efficiency improvements such as KV-caching. MDMs such as
Sahoo et al. (2024) can enable a similar form of caching by relying on the special role of
MASK tokens.

However, new opportunities for optimization come up when the hyperschedule follows a
certain autoregressive-like regular structure such as the ones seen in Figs. 2(c.1, d.1). Indeed,
at each steps t the hyperschedule 7; and the state &; both break in three components

T = T?ettled - T?ctlve - T;Northless % =)A(?ettled -)A(?ctlve -)A(xtlvorthless , 2)
where: t5°ttled is composed exclusively of zeros and %14 matches the first entries of

X1 = ¥; both 721V and %3¢ have at most w < d entries; and T[S js composed
exclusively of repeated 7 while x}'°*h!¢ss bears no information about §. Thus, when using

an autoregressive attention mask on %14, all the conditions are met to use KV-caching

on these tokens just as in a standard autoregressive model. We may completely ignore
gyvorthless which leaves a small number w of positions that densely attend to xgettled —~ gactive

when generating f(?fﬂ"e. See details in Appendix B.

3.4 Adaptive Correction Sampler

In addition to the theoretically-grounded inference schemes from SEDD and MDLM, we
introduce adaptive correction sampler (ACS), a novel variation on MDLM’s sampler that allows
the model to alter the value of already-unmasked tokens, and that has empirically shown

to perform particularly well for our hybrid process of the e-variety. We write p; . .. the
probability that MDLM’s sampler (adapted to use our hyperschedule) would unmask the
i-th token if it is masked, and proceed as usual for the token that are so masked. However,
where MDLM would leave already-unmasked tokens as they are, ACS has probability

n(l— pi Lansfer) 10 sample a replacement token from the model’s prediction. 7 serves as a
hyperparameter modulating the intensity of this correction. Pseudocode for the original
sampler and ACS sampler can be found in Appendix D.

4 Experiments

4.1 Experimental Setup

Our experiments investigate three primary design dimensions: (i) the choice of hyper-
schedule (e.g., Triat, Tslides and Tpjock) illustrated in Fig. 2; (ii) transformer configurations,
specifically ALIGNED and SHIFTED as depicted in Fig. 4; and (iii) the hybrid process, par-

ticularly our y-Hybrid with Q%ybri 4 operator and e-Hybrid parametrized by €. Additional
implementation details are provided in Appendix B.

4.2 Language Model Likelihood Evaluation

We evaluate model likelihood performance across two established datasets.

OPENWEBTEXT (OWT) (Gokaslan et al., 2019): Given that OWT lacks a standard data
split, we follow Ou et al. (2024), reserving the last 100K documents as a held-out set for
test perplexity reporting. All OWT models utilize a context length of 1024 tokens with the

Published as a conference paper at COLM 2025

Mark Method TestPPL| | v T
(a) Baseline SEDD-Absorb [14] 24.10 0 TFlat
(b) (a) + Hybrid Process 22.30 001 Tgpt
(c) (b) + Weighted token-embedding(= y-Hybrid) 22.18 0.01 Tpgat
(d) (c) — Transformer time-conditioning 22.47 001 Tgpt
(e (o) + Tyl 21.53 001 Tyl

Table 1: Test Perplexity for various design choices (lower is better), measured on the heldout
100k sample from OWT dataset. All ablations use ALIGNED with d = 1024.

Parameters PPL ({)

Autorecressive OmniNetr (Tay et al., 2021) 100M 21.5
3 Transformer (65B tokens) (Sahoo et al., 2024)} 110M 22.3
SEDD (65B tokens) (Lou et al., 2024) 110M 32.8

Diffusion MDLM (65B tokens) (Sahoo et al., 2024) 110M 31.8
BD3-LMs L' = 4 (65B tokens) (Arriola et al., 2025) 110M 28.2

v-Hybrid [y= 0.02, 7, aLienen] (56B tokens) 110M 27.8

y-Hybrid [y=0.02, 7, shirrep] (56B tokens) 110 M 28.3

Diffusion -Hybrid (7= 002, 5=/, aLicnen] (65B) 110M 27.1
(Ours) 'y-Hybrid [y=0.02, T%’l(:‘jk/‘;,ALIGNED] (65B) 110M 27.0
')/-Hybrid [y= 002, =%, siFrED] (65B) 110M 27.5

"y-HybI'id [y=0.02, Tg;gk/‘},SH[FTED] (65B) 110M 26.6

Table 2: Test perplexities (PPL; |) on LM1B. Perplexity values for diffusion models are

upper-bound estimations. TReported in He et al. (2022). fReported in Sahoo et al. (2024).
Best diffusion value is bolded.

GPT-2 tokenizer (Radford et al., 2019).

LM1B (Chelba et al., 2014): We use the bert-base-uncased tokenizer, reporting test per-
plexity on the predefined test set. All LM1B models are trained with 128 tokens contexts.

4.2.1 Ablation Study

We conduct a systematic ablation study to assess the contributions of key design choices
on OWT (Table 1). Our baseline model (a) follows the original SEDD-Absorb setup of Lou

et al. (2024). Introducing our hybrid transition operator leybri 4 Significantly improves

performance, noted in configuration (b). We further incorporate weighted token embed-
dings inspired by Ou et al. (2024), yielding additional improvement (configuration (c);
details in Appendix B.5). However, removing timestep conditioning (an operation that
isn’t theoretically justified for y-Hybrid, in contrast with MDLM and e-Hybrid) slightly
degraded performances (configuration (d)), prompting us to retain this component. We also
explored the Tslzijgom curriculum, which demonstrated modest improvements at the cost of

increased computational overhead due to additional forward passes.

4.2.2 Language Modeling Performance

Following our ablation insights, we compare our best-performing configurations against
state-of-the-art autoregressive and diffusion baselines on LM1B. Results presented in Ta-
ble 2 illustrate significant improvement upon prior discrete diffusion baselines, reducing
perplexity by approximately 19% relative to SEDD (Lou et al., 2024) and 3% compared to
the strongest existing diffusion models.

Published as a conference paper at COLM 2025

Method PTB WikiText LM1B Lambada AG News Pubmed Arxiv
Transformer

Iransformer 8205 2575 5125 51.28 52.09 4901 4173
SEDD Absorb? 9633 3598 6814 4893 67.82 4539 40.03
MDLM? 9096 3322 6494 4829 62.78 4313 37.89
(Sahoo et al., 20%4) 4

BD3-LM L/ =

BDsIML = 9681 3131 6088 50.03 61.67 425 3920
7-Hybrid (444B) 89.94 3002 6101 4538 67.51 4657 40.62
[v= 0.01, Tgjat, ALIGNED]

e-Hybrid (444B) 90.89 3253 6891 50.23 64.61 4118 37.85
[e= 0.01, T, ALIGNED]

7-Hybrid 90.67 3173 7371 50.03 68.27 4149 37.89
[y= 0.01, T45"*, ALIGNED]

7-Hybrid 9522 3264 63.68 44.75 62.18 4201 3733

[y= 0.01, Tiy=4/%4 SHIFTED]

Table 3: Zero-shot unconditional perplexity on seven benchmark datasets from Lou et al.
(2024) and Sahoo et al. (2024) and Arriola et al. (2025). J;Repor’ced in Arriola et al. (2025). All
models are trained for 524B tokens unless otherwise stated. All diffusion models are upper
bounds; the best diffusion value is bolded. See Appendix F.1 for complete results.

4.3 Zero-Shot Generalization

We evaluate the generalization capabilities of our models across seven standard datasets
considered before by Lou et al. (2024) and Sahoo et al. (2024). As shown in Table 3, our Hy-
brid diffusion language family of models, (y-Hybrid and e-Hybrid) consistently surpasses
prior discrete diffusion approaches on 5 of the 7 benchmarks. Moreover, we narrow the gap
between diffusion-based and AR models, outperforming AR baselines on two datasets.

4.4 Sampler Performance

We evaluate the performance gained from our proposed adaptive correction sampler (ACS).
Table 4 empirically shows that ACS improves the e-Hybrid models” ability to correct ini-
tial missteps, resulting in sequences that are both more coherent and of higher quality.
Pseudocode for the original sampler and ACS can be found in Appendix D.

. MAUVE (1) Gen PPL. (}) Entropy (1)
Model Famil Sampler
Y P p=2 p=1|p=2 p=1]|p=2 p=1
e-Hybrid Original Sampler 0.848 0.779 | 12190 129.52 5.49 5.50
[e = 0.01, Tpjar, ALIGNED] ACS 0.957 0.947 | 61.35 43.98 5.28 5.18
e-Hybrid Original Sampler 0.778 0.847 | 139.64 14213 | 5.43 5.46
ACS 0.813 0916 | 71.77 59.15 5.38 5.25

_ w=d/4
[e = 0.01, TBlock ALIGNED]

Table 4: Comparing the original sampler with ACS on e-Hybrid variants. For a more
complete comparison please refer to Table 10.

4.5 Sequence Generation Quality-Diversity Trade-offs

We further investigate the trade-off between sequence generation quality and diversity by
analyzing generative perplexity against token-level entropy and MAUVE? scores (Pillutla
et al.,, 2021), as visualized in Fig. 3. Our hybrid configurations consistently achieve superior
positions on both Pareto frontiers, indicating enhanced generation fluency, coherence, and
diversity compared to baselines; a new state-of-the-art in diffusion language modeling.

MAUVE strongly correlates with human judgment of text quality and diversity.

Published as a conference paper at COLM 2025

40 40
Model Family ° e
@ st0oo
@ rvow
@ vHybrid ly=00 60 1 e) 60 °)
-Hybr =0.
@ vHybri >) > (€]
@ vHybridly= E o = o
X X
@ =t [} @) [} @)
3 80 B 80
O &-Hybrid [= - - ‘
[[
g) | g |
s o 3 °
2 ¢ 2 ..’ o°
E 100 .O E 100 e O
Token rate [} (&) [@
() g o . 2 @ °
o~ & :
oo D
@ - 120 120
@ r-2 °@ ° _@
- Q© e @
140 () 140{@
5.2 5.3 5.4 5.5 5.6 5.7 0.4 0.5 0.6 0.7 0.8 0.9
Entropy MAUVE

Figure 3: Left: Generative perplexity as a function of token-level entropy. Right: Generative
perplexity versus MAUVE score. Our models consistently outperform baselines, achieving
lower perplexity at comparable levels of diversity and fluency.

4.6 Additional Analyses and Results

Qualitative generation samples, both conditional and unconditional, are included in Ap-
pendix G. Hybrid models exhibit robust performance, effectively handling extended context
lengths beyond the training range, particularly for OWT. Comprehensive ablations detailed
in Appendices 4.2.1, F, and F.4 confirm the effectiveness of our design choices. Specifically,
we find optimal performance around small 7y values (0.01 to 0.1), critical for balancing token
commitment and flexibility, as evidenced in Table 8 and Fig. 10. Additionally, adjustments
in generation rate p notably impact both quality and inference speed (Table 9), with our
proposed Ty, schedules significantly benefiting from KV-caching (Table 11).

5 Conclusion

Diffusion-based language models offer some unique opportunities — including theory-
supported guidance strategies and the native ability to iteratively improve their answer —
but these benefits are no substitutes for raw language modeling performances. Staggering
resources are continuously spent in scaling up AR models, engineering tools and techniques
specialized to the AR paradigm. How could diffusion models even dream of catching up?

This work takes significant step toward a bold strategy: starting from an already-great AR
language model, we wish to convert it (e.g., fine-tuning) into an even better diffusion-based
sequence generation model. This plan demands a SHIFTED configuration, an hyperschedules
generalizing the AR concept (e.g., Tslide OF TBlock), and a curriculum (such as our hybrids)
teaching the model how to generate quality sequences without painting itself into a corner.

Much of the design space opened by our innovations remain to be explored by future work.
We have merely glanced at the realm of possible hyperschedules, and our success with
e-Hybrid illustrates that more involved curricula can pay off, without the need to provide
explicit noise levels to an eventual pre-trained AR model.

Our innovations also open the path for more fundamental work. Indeed, the limit 1 <
w K d presents opportunities for tractable approximations of the joint distribution over w
tokens. On a different front, while our current approach employs a uniform distribution
for replacing tokens, further improvements in diversity and quality may be achieved with
distributions that more accurately reflect plausible, “honest” and/or “on policy” errors
(rather than purely random token substitutions).

Published as a conference paper at COLM 2025

References

Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qj, Jiaqi
Han, Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between
autoregressive and diffusion language models. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=tyEyYT267x.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Infor-
mation Processing Systems, 34:17981-17993, 2021.

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image
transforms without noise. Advances in Neural Information Processing Systems, 36:41259—
41282, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877-1901, 2020.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn,
and Tony Robinson. One billion word benchmark for measuring progress in statistical
language modeling. In Conference of the International Speech Communication Association
(Interspeech), 2014.

Ruili Feng, Han Zhang, Zhantao Yang, Jie Xiao, Zhilei Shu, Zhiheng Liu, Andy Zheng, Yukun
Huang, Yu Liu, and Hongyang Zhang. The matrix: Infinite-horizon world generation
with real-time moving control. arXiv preprint arXiv:2412.03568, 2024.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019.
URL http://Skylion@@7.github.io/OpenWebTextCorpus. Accessed: [DATE].

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models.
Advances in Neural Information Processing Systems, 36, 2024.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffu-
sionbert: Improving generative masked language models with diffusion models. arXiv
preprint arXiv:2211.15029, 2022.

Ari Holtzman, Jacob Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In International Conference on Learning Representations, 2020.

Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Ce Xiong, and Richard Socher. Ctrl: A
conditional transformer language model for controllable generation. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2742-2751, 2019.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv
preprint arXiv:2502.06768, 2025.

Sulin Liu, Juno Nam, Andrew Campbell, Hannes Stdrk, Yilun Xu, Tommi Jaakkola, and
Rafael Gémez-Bombarelli. Think while you generate: Discrete diffusion with planned
denoising. arXiv preprint arXiv:2410.06264, 2024.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating
the ratios of the data distribution. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=CNicRIVIPA.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai

Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

10

https://openreview.net/forum?id=tyEyYT267x
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=CNicRIVIPA

Published as a conference paper at COLM 2025

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean
data. arXiv preprint arXiv:2406.03736, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

Fred Zhangzhi Peng, Zachary Bezemek, Sawan Patel, Sherwood Yao, Jarrid Rector-Brooks,
Alexander Tong, and Pranam Chatterjee. Path planning for masked diffusion model
sampling. arXiv preprint arXiv:2502.03540, 2025.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human
text using divergence frontiers. Advances in Neural Information Processing Systems, 34:
4816-4828, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAl Blog, 1(8):9, 2019.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin,
Alexander M Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and
effective masked diffusion language models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=
L4uaAR4ArM.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Gupta, Philip M Pham, Zhen Qin, Dara Bahri,
Da-Cheng Juan, and Donald Metzler. Omninet: Omnidirectional representations from
transformers. In International Conference on Machine Learning, pp. 10193-10202. PMLR,
2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper. pdf.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking
discrete diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307,
2025.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao
Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. ACM Computing Surveys, 56(4):1-39, 2023.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang.
Masked diffusion models are secretly time-agnostic masked models and exploit inaccurate
categorical sampling. arXiv preprint arXiv:2409.02908, 2024.

Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion-nat: Self-prompting
discrete diffusion for non-autoregressive text generation. arXiv, 2023.

11

https://openreview.net/forum?id=L4uaAR4ArM
https://openreview.net/forum?id=L4uaAR4ArM
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at COLM 2025

A Evolution Operators

Although our SEDD-based curricula are a priori defined in terms of an arbitrary Qy.y, actually
using a model in practice demands that we can analytically solve the evolution operator

exp(AQyok) for A € R*. This section re-derives the solutions for Quniform and Q apsorb, then
extends the results to ngbri q

Using the definitions in Eq. (1), we can verify

(QAbsorb)2 = —QAbsorb (3a)

(QUniform)2 = —QUniform (3b)
QUniform QAbsorb = — QUniform (30)
QAbsorb QUniform = —QUniform - (3d)

Notice that, for any matrix Q. such that (Q+)? = AQ+, we have

0 k) k
Q=Y @R _ 54 210,) WOF 4210,

ey (A¢)"]

P k! =1 k! k=0 k!

Together with Eq. (3), we re-obtain the evolution operators used in SEDD
eAQAbsorb =1+ (1 — eiA)QAbSOrb (5a)
eAQUniform =1+ (1 — e_A)QUniform . (Sb)

Now notice that Qapsorb @and Quniform cOmMmute
[QAbsorbr QUniform] = QAbsoerUniform - QUnifoerAbsorb =0 , (6)

which enables the analytical solution for Qﬁyb id

eAQzberid (7a)

— eA((1_7)QAbsorb+7QUniform) (7b)

— e(l_’)/)AQAbsorb eﬂfAQUniform (7C)

= []l + (1 - e_(l_ﬂr)A)QAbsorb] []l + (1 - e_’YA)QUniform] (7d)
=1+ (1 - e_(l_v)A)QAbsorb + (1 - e_AXA)QUniform + (1 - e_(l_v)A)(l - e_’YA)Q(A7bsS)erUniform

e

=1+ (1 - e_(1_’y>A)QAbsorb + (1 - e_yA)QUniform - (1 - e_(l_v)A)(l - e_ryA)QUniform
(79)

=1+ (1 - ei(li,Y)A)QAbsorb + (67(177)A - eiA)QUniform : (7g)
Equation (7g) is the desired analytical solution for the evolution operator.

Additional notes on ELBO and hyperschedules. Theorem 3.6 from Lou et al. (2024)
provides an ELBO bound enabling training with the DWDSE training loss. This Theorem
holds for arbitrary constant-coefficients diffusion matrix, but is derived for the special case
of position-independent schedules. One might thus wonder if the result still holds if we
simply substitute in our position-dependent hyperschedules.

As mentioned in the beginning of Section 3.3 of Lou et al. (2024), such a general diffusion
matrix would be exponential in size, justifying decomposing the process into d independent
subspaces in practical applications. The evolution operator for each of these subspaces
has the form exp(AQyox) and, because of their independence, the full evolution operator is
simply the product of their action on the independent subspaces.

When substituting in an hyperschedule instead of a schedule in SEDD’s framework, the only
difference is that the evolution operator for each subspace, exp(A;Qyok), gains a dependency

12

Published as a conference paper at COLM 2025

20 ||« a2 || a3 20 || a1 a2 || a3
Xewp | | Xera | | Xev1| | Xerr Xewp | | Xera | | Xevn| | Xerr

| B B
] C o,
| Postprocessing | Q | Postprocessing Q
< <
t t t t 5 t t t t t 5
Transformer 3 Transformer 5
@) @)
t t t t 0 t t t t t o
3 Q 3 Q
| Preprocessing | =} | Preprocessing | =}
] (o]
= 4 =
jon o
() Al ()
N X 95]

| | | |

200 2] #2|] £ 200 2] =2|] £
(a) ALIGNED config. (b) SHIFTED config.

Figure 4: Two transformer-based sequence generators for d = 4. (a) The ALIGNED config-
uration of standard diffusion models is reminiscent of masked language models. (b) The
SHIFTED configuration is closer to autoregressive language models. Here £~! represent a
token solely part of the conditioning (i.e., not generated), and may or may not be constant
(e.g., BOS). Similarly, ¥ represents that the output associated with the last token is discarded.
Our position-based indexing abstracts away these details.

on the position i associated with this subspace. Crucially, the subspaces are still independent,
and the overall evolution operator is still a simple product of the independent solutions.
All other derivations leading to SEDD’s ELBO bound thus directly generalize to hyperschedules,
including the case of y-Hybrid.

The case of e-Hybrid is more complicated. When € = 0, we fall back on MDLM, and the
ELBO derivations from Sahoo et al. (2024) thus apply. However, for € > 0, the evolution
operator cannot be represented under the form exp(AQyok): we do not have an ELBO bound
for e-Hybrid when € > 0. In any case, our empirical observations support its use in practice.

It would be interesting to see if training with a proper ELBO-bounded loss could improve
the performance of e-Hybrid models, and if something akin to our ACS algorithm could be
derived from first principles. However, these concerns are outside the scope of the present
work.

B Implementation Nuances

This section discusses several implementation details that affect both our model training
and evaluation procedures.

B.1 Training Setup

We now detail our experimental training procedure, structured into two distinct stages. In
Stage 1, we initially train our base models in both ALIGNED and SHIFTED configurations
using the hybrid noising process paired with the flat hyperschedule tg,;. Specifically, we
adopt different modeling strategies depending on the chosen variant. For y-variant models,
we extend the existing discrete diffusion framework from Lou et al. (2024), integrating our

proposed hybrid transition operator Qﬁybri - For e-variant models, we instead employ the

newly proposed hybrid diffusion cross-entropy (HDCE) loss, detailed in Equation 8. Stage 1
models are trained separately on two standard datasets: OpenWebText and LM1B. Each
configuration undergoes training for approximately 850K gradient updates with a batch

13

Published as a conference paper at COLM 2025

Jelsunlcd x_,ucuvc -
0| & 22| w2 || w4] w3 26| 27 qu
[
A0
X+l
77
2l
X+l
/7
)22
%57
a3
X+l —‘
/77
—
~4 —
Xet1 —
—— ,:IE
25
Xet1 W
W
1]
Xit+1
_\
27
b AN GAO A A
A

M7z %77 et

Figure 5: Example of attention mask for ALIGNED and SHIFTED configurations. Although
these naive masks are appropriate for inference, directly training on them would be ineffi-
cient; see Figures 6-9 for training-ready masks examples.

size of 512, processing roughly 444B tokens for OpenWebText and 56B tokens for LM1B.
This pretraining took about 14 days on 8xA100-80 GB GPUs for OpenWebText and 7 days
on 2xA100-80 GB GPUs for LM1B.

In Stage 2, we fine-tune the Stage 1 models under alternative hyperschedules—specifically,
Thlock and Tgige- These experiments involve custom-designed attention masks tailored to
each hyperschedule. Due to this customization, highly optimized attention kernels such as
Flash-Attention are not applicable, necessitating reliance on the standard PyTorch attention
mechanism, which incurs higher computational costs. Stage 2 training continues for an
additional 150K gradient steps, resulting in a cumulative training volume of 524B tokens for
OpenWebText and 65B tokens for LM1B. This fine-tuning required approximately 3 days
on 8xA100-80 GB GPUs for OpenWebText and about 36 hours on 2xA100-80 GB GPUs for
LM1B.

B.2 Loss Function

Our training objective consists of two primary loss components: (i) a standard cross-entropy
loss computed on the settled tokens, and (ii) a diffusion-weighted loss calculated on the active
tokens. We propose the Hybrid Diffusion Cross-Entropy (HDCE) as our diffusion-weighted
loss, which blends a per-token cross-entropy loss with a specialized weighting strategy
contingent upon whether tokens are masked, shuffled, or unchanged.

Formally, the HDCE loss is defined as:

1
Lupce(8) = Nd

1=z
1=~

Wit [— log po (vt | xi,t)}, 8)

1

Il
—

t

where N denotes the batch size, d is the sequence length, and the per-token loss corresponds
to the conventional cross-entropy formulation. The token-specific weights w; ; are defined
as:

14

Published as a conference paper at COLM 2025

1
—_ if x; ; is masked,
Pmask (l/ t)
Al—e . .
wip = ———— if x;; is unmasked and shuffled, 9)
1- prﬁask (i,t)
€

———— if x;; is unmasked and not shuffled,
1- pmask(lr t)

where ppask (i,) is the masking probability for token x;;, and A and € represent hyperpa-
rameters controlling the relative importance of shuffled versus unshuffled tokens.

In practice, we distinguish two model variants based on the employed diffusion-weighted
loss. For -variant hybrid models, we adopt the diffusion-weighted denoising score entropy
(DWDSE) loss proposed by Lou et al. (2024), denoted as Lpwpsg. Conversely, for our
e-variant hybrid models, we use the proposed HDCE loss as defined in Equation 8.

settled
t

Letting Lcg represent the cross-entropy loss computed over X , our overall loss function

is thus expressed as:
B2 Lowpsk (%2°1V¢), for y-Hybrid,
B2 LHDCE (ﬁ?Ctive) , for e-Hybrid,

where B1, B2 € R are hyperparameters balancing these two components.

£ = p1Lep(3d) + { (10)

Additionally, since early positions in the sequence tend to become settled sooner, we apply a
reweighting strategy to normalize the contribution of settled tokens at different positions.
Specifically, we partition the sequence of length d into blocks of width w, assigning each
token at position i a weight:

C_ lifw)
W) = a1
with the convention that if [d/w] =1, then w(i) = 1 for all .

i=0,1,...,d-1, (11)

B.3 Efficient Training and Inference

As mentioned in Sec. 3.3, we take particular care in crafting our attention matrices to enable
KV-caching at inference time. These scheme are particularly beneficent when w < d, but
naively using an attention matrix such as Fig. 5 would train the diffusion head on only w
positions while demanding to process on average d/2 context tokens. Here we present
how we may train the diffusion head on about approximately half the positions, increasing
the training-time efficiency by a factor d/w. Note that, under these efficient schemes, the
reweighing of active tokens as given in Eq. (11) is no longer required.

Figures 6-9 provides examples of attention masks that are compatible with the KV-caching
scheme presented in Sec. 3.3, while dedicating about half the positions to the denoising task.
Light red /blue squares represent positions that are settled, whereas dark red /blue represent
positions that are active. In all cases, the top-left part of the matrix has an autoregressive
structure, and the production of dark blue positions attends densely on the corresponding
dark red inputs as well as the light red inputs that precede them. All cases presume d = 12
and w = 4.

The ALIGNED cases are easier to understand. For Tgjiqe, Fig. 6 presents a situation where it
was randomly determined that the denoising will be performed on the intervals j < i <
min(j + w,d) for j € {2,5,11}. For Tpjock, these starting points j are always multiples of w,
here j € {0, w,2w}. The light green blocks indicate entries that are not actually involved in
the denoising and could thus potentially be eschewed.

Figures 8 and 9 present the corresponding matrices for the SHIFTED configuration. Notice

how settled tokens (light red or the gray £ ') are repeated as the first input of an interval to
denoise in the second half of the matrix, and how the last output of each such interval is
discarded.

15

Published as a conference paper at COLM 2025

Figure 6: Example training attention mask for ALIGNED configuration for use with T2

B.4 Inference and KV-Caching

At inference, both Euler and t-leaping analytical solutions are available; however, our
empirical results suggest that T-leaping is the de facto superior choice. Because each step
“settles” a prefix of tokens, we can cache the corresponding key/value pairs and avoid
recomputing them on subsequent passes. Concretely, let

L = sequence length, p = tokens generated per step, w = window width.

Then the number of transformer calls is
N = [(L—w)/p-‘ +1,
and the total token-processing cost is

Without cache: N X w,
With KV-cache: w+ (N —1)p.

16

Published as a conference paper at COLM 2025

Figure 7: Example training attention mask for ALIGNED configuration for use with T4/~4 .

B.5 Weighted token-embedding

Ou et al. (2024) demonstrated that when employing the absorbing transition matrix Q apsorb,
scaling the model’s score by the analytic, time-dependent factor

exp(=a(t))
1 —exp(-o(t))

causes the remaining score to be independent of f, eliminating the need to explicitly
condition on time within the network. However, when using the y-Hybrid process
(1 —7)Qabsorb + ¥ QUniform. this factor remains present but is insufficient for capturing all
temporal dependencies. In particular, under the hybrid process, an unmasked token is
perturbed with probability e =77 () (whereas under Q apsorh, alone, a non-mask token remains
unchanged).

In other words, when the model encounters an unmasked input token x! subject to cu-
mulative noise 7(t), it should treat that token as if it were unperturbed with probability

e~77(t), and as if it were masked with probability 1 — e~77(), One natural way to embed this
inductive bias into the model is to interpolate the token’s embedding accordingly. Denoting

17

Published as a conference paper at COLM 2025

Figure 8: Example training attention mask for SHIFTED configuration for use with 7&.

by f(x}) € Rmodel the standard embedding of token x!, we replace it with

e 170 f(xl) + (1 _e—’r"’(f)) f(MASK) . (12)

18

Published as a conference paper at COLM 2025

Figure 9: Example training attention mask for SHIFTED configuration for use with T‘é’;élk.

19

Published as a conference paper at COLM 2025

C Model Evaluation Metrics

C.1 Upper Bound Estimation of Perplexity

(To simplify the notation, the following uses y to represent non-noised samples.)

Evaluating perplexity for diffusion-based language models is challenging because the
model’s likelihood involves an integration over a continuum of noise levels. In our work,
we estimate the negative log-likelihood (NLL) via a Monte Carlo (MC) approximation over a
discrete set of diffusion timesteps. In particular, given a trained model py(y) and a diffusion
process that perturbs a sequence y into latent states X; (with ¢ € [0, T]), our goal is to estimate
the per-token loss that, when exponentiated, yields an upper bound on the true perplexity.

Let
log po(y) = Eyq() [log po (v | %) | = Dic (a1(x: | y) | p(x1)).

In practice, we approximate the expectation with M Monte Carlo samples:

. 1 M ‘
L(y) = 57 Llogpe(y | %), ti ~ Uniform(0,1).
i=1

Since our loss function returns the total NLL over a sequence of length d (i.e., it produces a
tensor of per-token losses whose sum over tokens yields the total loss for a sequence), we
define the average per-token loss as

_ Ly)
(==X

The estimated perplexity is then given by
PPL = exp({).

Because the MC approximation truncates the integration to M samples, the resulting per-
plexity is an upper bound on the true perplexity. In our experiments, we typically set
M = 1000, and we observe that increasing M further reduces the variance of the estimate.

For generators with semi-autoregressive or autoregressive configurations (with a fixed
window width w), we calculate the NLL only over the T?Cﬁ"e tokens (i.e., those tokens that
are actively being updated during generation). This ensures that the perplexity computation
is fair and reflects the model’s performance on the tokens whose values are uncertain, rather
than being diluted by tokens that are already settled.

We summarize the estimation procedure in Algorithm 1.

Remarks 1. In our setting, the loss function L£(6,y,t) returns a tensor of shape B, d]. If the
generator is semi-autoregressive with a fixed active window of width w, then the loss is computed
only on the TI¢ tokens. The expectation over t is approximated by averaging over M independent
samples. Since the integral is truncated, the computed perplexity serves as an upper bound on
the true value. Finally, dividing the total loss by Ny, gives the average per-token loss, so that the
perplexity is computed as exp(avg loss per token).

Remarks 2. All our “Test PPL” metrics are computed using the loss presented above, i.e., not the
one presented in Appendix B.2. For this reason, the upper bound provided by Algorithm 1 assesses
the quality of the neural network at language modeling. In particular, it does not account for the full
inference strategy. Therefore, although the Test PPL metric may indirectly be affected by the training
objective (described in Appendix B.2), the choice of hyperschedule and the values of € or y through
their combined impact on the training of the neural network’s weights, these hyperparameters are
not directly involved when running Algorithm 1.

20

Published as a conference paper at COLM 2025

Algorithm 1 Monte Carlo Upper Bound Estimation of Perplexity

Require: Model parameters 6, loss function £, evaluation dataset D, number of MC samples
M, sequence length d
1: Initialize total loss Ly < 0 and token count Ny, <— 0
2: for each batchy € D do
3: Initialize batch loss Lpatcn < 0

4 fori =1to M do

5: Sample t; ~ Uniform(0,1)

6: Compute per-token loss ¢; « L(6,y,t;) € RE*4

7: Lpatch < Lpatch + i

8: end for

9: Ebatch — = ‘Cbatch > Average over MC samples
10: total — Liotal + 1 Ebatch
11: Niotal ¢~ Niotal + B X d
12: end for

13: Compute average per-token loss: £ = Lioa1/ Niotal
14: Compute perplexity: PPL < exp(¢) return PPL

C.2 Generative Perplexity Evaluation

In addition to the intrinsic perplexity estimation described in Section C.1, we also assess our
generator via generative perplexity. In this approach, a pretrained autoregressive language
model — in our case, GPT2-Large Radford et al. (2019) — serves as an external judge of
the generated sequences. This method has been used in prior work Keskar et al. (2019);
Holtzman et al. (2020) as a proxy for fluency and coherence when direct likelihood evaluation
is intractable.

Concretely, our procedure is as follows: We first sample sequences from our diffusion
generator using the analytical solution Lou et al. (2024). Since our generator and GPT2-Large
may employ different tokenization schemes, the generated samples are retokenized using
the GPT2 tokenizer. The retokenized sequences are then fed into the GPT2-Large model,
which computes the negative log-likelihood (NLL) for each token; this value quantifies the
surprise of the judge regarding the generated text. Finally, by averaging the NLL over all
tokens and exponentiating the result, we obtain the generative perplexity:

Z|=
z

) —log PGPTz(xi)> ,

PPLgen = exp (
i=1

where N is the total number of tokens in the generated text and pgpr2(x;) denotes the
probability assigned by GPT2-Large to token x;.

In the case of semi-autoregressive or autoregressive models with a fixed active window of
width w, we compute the NLL only over the tokens corresponding to the active portion

T3°tive This ensures that the perplexity is estimated fairly by focusing on those positions
where the model is actually making nontrivial predictions.

The full procedure is summarized in Algorithm 2.

21

Published as a conference paper at COLM 2025

Algorithm 2 Generative Perplexity Estimation via External Judge

Require: Generator G with parameters 6, pretrained judge model | (GPT2-Large), number

—_

of samples S

. Generate a set of samples {y(®) } 5521 using the analytical solution of G
: Retokenize each generated sample using the GPT2 tokenizer:

}7(5> + Tokenizecpr, (y(s))

for each retokenized sample (*) do

Compute per-token negative log-likelihood £¢*) +— —log p; (§*))
end for
Compute the overall average per-token loss:

7= Ly
C=—) (¥
N s=1
Compute generative perplexity:

PPLgen = exp(¢)

return PPLgen

D

For completeness, we present pseudo code for both the original sampling procedure and

Adaptive Correction Sampler (ACS) Pseudo Code

our proposed Adaptive Correction Sampler (ACS).

Algorithm 3 Original Sampler

Input: model, context length L, total steps S, temperature T.
Initialize x < a tensor of shape [B, L] filled with mask tokens.

Compute timesteps {ti}is:O linearly spaced between 1 and 0).
fori=0,...,5S—1do
Sett <+ tjand s < tj11
Compute transfer probability pyansfer < 1 — 3
for each token in x do
if token is masked and a random draw is below piansfer then
Add Gumbel noise to the token’s logits and update it via arg max.
end if
end for
Update x accordingly.
end for
return x

22

Published as a conference paper at COLM 2025

Algorithm 4 Adaptive Correction Sampler (ACS)

1: Input: model, context length L, total steps S, temperature T, correction parameter 7.
2: Initialize x <— a tensor of shape [B, L] filled with mask tokens.

3: Compute timesteps {ti}iS:O linearly spaced between 1 and 0.

4: fori=20,...,S—1do

5: Sett < t;and s + tj1q

6: Compute transfer probability pyansfer < 1 — §

7 for each token in x do

8: if token is masked and a random draw is below pyansfer then

9: Update the token using the standard denoising update (with Gumbel noise).
10: else if token is unmasked and a random draw is below # (1 — pianster) then
11: Update the token via a uniform correction mechanism.
12: end if
13: end for
14: Update x accordingly.
15: end for

16: return x

E Experimental Setup

In our experiments, we adopt a training and evaluation protocol similar to that of Sahoo
et al. Sahoo et al. (2024). We conduct experiments on two datasets: the One Billion Word
Benchmark (LM1B; Chelba et al. (2014)) and OpenWebText (OWT; Gokaslan et al. (2019)).
For models trained on LM1B, we employ the bert-base-uncased tokenizer with a context
length of d = 128 tokens, and report perplexities on the test split of LM1B. In contrast, models
trained on OWT use the GPT2 tokenizer Radford et al. (2019) with a context length of d =
1024 tokens.

Since the LM1B corpus predominantly consists of single-sentence examples, a straightfor-
ward padding scheme for reaching a fixed context length may not be optimal. Accordingly,
following Sahoo et al. Sahoo et al. (2024), we concatenate and wrap sequences to fit a context
window of 128 tokens. Similarly, for OWT we concatenate and wrap sequences to 1024
tokens, rather than simply truncating or padding, thereby ensuring that our evaluation
is performed on coherent text segments. In the case of OWT, which lacks a designated
validation split, we reserve the final 100K documents for validation purposes.

Our model architecture builds upon the diffusion transformer framework Peebles & Xie
(2023), augmented with rotary positional embeddings Su et al. (2024). We instantiate our
autoregressive baselines — SEDD, MDLM — with a transformer backbone as described in
Sahoo et al. (2024): 12 layers, a hidden dimension of 768, and 128 attention heads.

F Additional Results

This section presents additional results and ablation studies on our family of models.

E1 Zeroshot Perplexity

In Table 5 we report the full list of results for the family of our models against all the reported
models available online. This is an extensive and more complete version of Table 3.

E2 Generative Perplexity Using a Judge LLM

In this subsection, we report the generative perplexity (see Section C.2) of our model. Zheng
et al. (2024) were the first to demonstrate that the generative perplexity evaluations of base-
line masked diffusion language models are flawed due to imprecise categorical sampling.
They show that employing 32-bit floating point precision in categorical sampling via the
Gumbel trick induces an artificial temperature-lowering effect, which results in a lower (i.e.,

23

Published as a conference paper at COLM 2025

Method PTB WikiText LM1B Lambada AGNews Pubmed Arxiv
%ﬂe% 13843 4160 7520 45.04 - - -
Transformer

Lransformer 8205 2575 5125 5128 52.09 4901 4173
D3PMm?

DePM 20082 7516 13892 9347 - - -
Plaid" 14260 5086 9112 57.28 - - -
(I\G/ﬁlizani & Hashimoto, 2024) : : : -

oy 10226 3590 6810 4843 - - -
SEDD Absorb 9633 3598 6814 4893 67.82 4539 40.03
MDLM

ool 226 9096 3322 6494 4829 62.78 4313 37.89
BD3-LM L' =4 9681 3131 60.88 50.03 61.67 4252 3920
RADD-AL 107.85 3798 7299 5170 - - -

~v-Hybrid (444B)

89.94 30.02 6101 4538 67.51 4657 40.62
[v=0.01, Tpjat, ALIGNED] I
e-Hybrid (444B) 90.89 3253 6891 5023 64.61 4118 37.85
[e= 0.01, T, ALIGNED]
7-Hybrid (444B) 100.88 3748 7151 56.57 70.69 43.06 38.83
[y= 0.01, Tgjat, SHIFTED] I —

Hybrid

reyene 90.67 3173 7371 50.03 68.27 4149 37.89
[y=0.01, Tg;qe ~ ALIGNED]
7-Hybrid 9532 3894 7049 4818 67.32 4423 478
[y= 0.01, Ty=4/*, ALIGNED]
7-Hybrid 90.74 3524 6264 5121 69.62 4146 3713
[y= 0.01, T4-9/%4 ALIGNED]
7-Hybrid 9522 3264 6368 44.75 62.18 4201 3733

[y= 0.01, Tiy=4/%* SHIFTED]

Table 5: Zero-shot unconditional perplexity on seven benchmark datasets from Lou et al.
(2024) and Sahoo et al. (2024) and Arriola et al. (2025). 1LReported in He et al. (2022).
fReported in Arriola et al. (2025). *The GPT-2 numbers are reported for the checkpoint
pretrained on WebText and are not a direct comparison. All models are trained for 524B
tokens unless otherwise stated. All diffusion models are upper bounds; the best diffusion
value is bolded, the second best values is underscored.

seemingly better) generative perplexity at the expense of reduced entropy—a key indicator
of generation diversity. Their proposed remedy is to cast the values to 64-bit floating point
precision.

To ensure a fair comparison of generative perplexity across baselines, we report both the
flawed (32-bit) and the corrected (64-bit) perplexity values in Table 6. All the entries
were resampled using full precision. Our results indicate that, irrespective of the artificial
temperature effect, our models consistently outperform all diffusion-based counterparts.

24

Published as a conference paper at COLM 2025

Method FP32-PPL | FP64-PPL |
SEDD-Absorb [14] 4341 105.91
MDLM [21] 43.88 108.88
v-Hybrid [y= 0.05, Tpja, ALIGNED] (444B tokens) 39.53 89.05
v-Hybrid [y= 0.01, Tg;, SHIFTED] (444B tokens) 48.08 110.60
v-Hybrid [y= 0.01, T—+*, ALIGNED] 40.48 85.01
y-Hybrid [y= 0.01, 7&./*, ALIGNED] 61.05 13145
y-Hybrid [y= 0.01, Tl /*, ALIGNED] 76.12 121.99
y-Hybrid [y= 0.01, T&—*, SHIFTED] 53.89 111.73

Table 6: Generative perplexities (PPL; lower is better) on OWT. All models were trained
for 524B tokens unless otherwise indicated. “FP32” denotes the flawed 32-bit sampling,
whereas “FP64” corresponds to the corrected 64-bit precision values. All available models
were resampled using their published weights.

F.3 Inference Pareto frontier Results

In Table. 7 we report the results we utilized to report the Pareto frontier plots in the main
paper.

Higher p values (o = 8,4)

Method MAUVE (1) Gen PPL. (}) Entropy (1)
p=8 p=4]p=8 p=4|p=8 p=4

SEDD 0.410 0491 | 139.2 130.1 5.72 5.63

MDLM 0.921 0959 | 1285 1164 5.63 5.58

'y-Hybrid [y = 0.05, Tjat, ALIGNED] 0.809 0.817 85.9 89.5 5.37 5.38
y-Hybrid [y = 001, vp,, snirren] 0.666 0.700 99.2 93.9 5.46 5.45
'y-Hybrid [y =0.01, r‘é’ﬁi“, ALIGNED] 0.775 0.788 107.3 106.0 5.53 5.53
e-Hybrid [e = 001, 7p,, aLGNED] 0.848 0.928 84.2 69.8 5.36 5.33
e-Hybrid (e =001, 25-#%, auenen] 0964 0.811 | 1042 769 | 542 525

Lower p values (o = 2,1)

Method MAUVE (1) Gen PPL. ({) Entropy (1)
p=2 p=1]p=2 p=1]|p=2 p=1

SEDD 0512 0457 | 1272 126.8 | 5.60 5.58

MDLM 0.947 0.897 | 1158 108.8 | 5.61 5.60

y-Hybrid [y = 005, 1, aucrep) 0.877 0.895 | 97.9 968 | 540 541
~y-Hybrid [y = 001, 7y, ssrrreo] 0728 0744 | 964 939 | 545 547
y-Hybrid [y = 001, 244, aeneo] 0553 0.819 | 1055 1002 | 546 541
e-Hybrid [c = 001, rpy, ALGNED] 0957 0947 | 613 439 | 528 518
e-Hybrid e =001, <¢=%4 aucnen) 0813 0916 | 717 59.1 | 538 525

TBlock

Table 7: Sample quality of absorbing state discrete diffusion models. Upper block: higher p
values (p = 8,4); Lower block: lower p values (p = 2,1).

F4 Effect of Varying y

In this section, we examine the influence of the hyperparameter &, which modulates the
contribution of Qpiform in the hybrid process and thereby allows the model to reexamine
its predictions after unmasking a token. As shown in Table 8, while the corrective influence
of Quniform is essential, the value of # must remain relatively small. If « is set too high, the
model tends to simply reshuffle the tokens and the MASK token, effectively undermining
the intended unmasking process.

Another perspective is that increasing a reduces the penalty associated with errors in
the unmasking operation, thereby devaluing its corrective impact. Moreover, during the
denoising process, each token is influenced not only by its own prediction but also by

25

Published as a conference paper at COLM 2025

65

Test Perplexity

40

0.0 0.2 0.4 0.6 0.8 1.0
y Value

Figure 10: Ablation study illustrating the effect of varying the < (for v-Hybrid variants)
parameter on perplexity evaluated on the OWT test split at the 26B-token observation point.
Lower perplexity values reflect improved model performance. Consistent with our previous
observations, y between 0.01 and 0.1 yields optimal performance.

the context provided by neighboring tokens. Consequently, if a token (e.g., token A) is
mispredicted, the resulting change in the overall structure may leave little opportunity for
subsequent correction.

Remarks 3. The analyses presented above are mainly intuitive. Further empirical investigation is
necessary to confirm.

Configuration FP64-PPL |

= 0.01 84.32
y=0.05 82.27
v=0.1 85.15
y=04 91.48
y=038 90.99

Table 8: Generative perplexities (PPL; lower is better) on OWT. All the models are trained
under ALIGNED configuration with 74>2°¢ for 524B tokens. We use the double precision,
denoted as “FP64-PPL".

To further examine the effect of «, we evaluate our trained models’ test perplexity (on OWT
held out set) after processing 26B tokens under various configurations. As shown in Fig. 10,
small « values—approximately 0.01 and 0.1—yield the best performance.

26

Published as a conference paper at COLM 2025

E5 Effect of Varying p

In this section, we examine the impact of varying p in our y-Hybrid models using the ‘r‘ﬁ’ljczlfé
hyperschedule. Recall that the parameter p is modified during the generation process and
directly only influences the quality of the generated sequence. Consequently, we adopt
generative perplexity as our evaluation metric. For completeness—and to facilitate comparison
with prior baselines—we report the generative perplexity computed under both double
precision (FP64) and full precision (FP32), as illustrated in Table 9. As p decreases, the
generation process becomes slower, thereby entering the “think hard” regime; in this regime,
the model tends to produce higher-quality outputs at the cost of increased computational
time.

Remarks 4. This trade-off is a key characteristic of diffusion models, which inherently possess a
flexible inductive bias that allows for varying degrees of commitment in generation. In contrast,
autoregressive models are restricted to generating one token at a time.

Moreover, under the flawed 32-bit sampling scheme, increasing the number of sampling steps
effectively reduces the artificial temperature, thereby reducing the tokenwise entropy. In contrast, the
tokenwise entropy remains mostly unaffected when the Gumbel trick is executed in double precision.

Configuration FP32-PPL | FP64-PPL |

p =16 (T = 64) 75.57 100.11
p =8 (T =128) 64.90 95.38
p =4 (T = 256) 53.02 81.37
p=2(T=512) 4415 79.3

p=1(T =1024) 40.48 85.01
p =1 (T =2048) 33.09 87.31
p=1(T =409%) 25.39 88.75
p=4(T=8192) 24.05 83.21

Table 9: Generative perplexities (PPL; lower is better) on OWT. The same very model

(y-Hybrid [y= 0.01, Tgljcdli‘*, ALIGNED]) has been used under different generation regimes.
p value as well as equivalent T “diffusion steps” are used in the table. “FP32” denotes
the flawed 32-bit sampling, whereas “FP64” corresponds to the corrected 64-bit precision
values.

F.6 Effect of Varying 77 in Adaptive Correction Sampler

In this section, we investigate the effect of the hyperparameter # in our proposed Adaptive
Correction Sampler. Table 10 illustrates results for our e-variety family of models. As we
increase the number of sampling steps (corresponding to a decrease in p), our model tends
to overcorrect when 7 is too large, which ultimately harms generation diversity—marked as
“extreme values” in the table.. To mitigate this issue, we find that using smaller # values
is beneficial. We further suggest that the optimal choice of 7 is related to the € value used
during training: the more inherently corrective the model is, the smaller the optimal #
should be.

E7 Inference Speed Up with Caching

In Table 11, we report the wallclock time required to generate eight samples for various
models on a single NVIDIA A100 80 GB GPU. Owing to our custom attention masks, we
were unable to leverage fast transformer kernels such as Flash-Attention, which in turn
results in slower sampling speeds. We note that future work may design specialized kernels
that are compatible with our attention masks to accelerate inference.

27

Published as a conference paper at COLM 2025

Model Family Sampler MAUVE (1) Gen PPL. (|) Entropy (1)
p=8 p=4 p=2 p=1 | p=8 p=4 p=2 p=1 |p=8 p=4 p=2 p=I
Original Sampler 0950 0.944 0.848 0779 | 130.78 12475 12190 129.52 | 551 547 549 5.50
ACS(y =025 0955 0.821 0.859 0928 | 79.64 6506 5505 49.09 | 535 528 524 519
ACS (7 =005 0846 099 0865 0936 | 10594 9391 8383 7716 | 546 548 531 529
ACS(7=001) 0848 0928 0957 0947 | 8428 6984 6135 4398 |536 533 528 5.18
c-Hybrid ACS (3 =0.001) 0871 0949 00919 0.998 | 80.37 6442 5548 4580 | 535 531 525 515

[€ = 0.01, Tpyy;, ALIGNED] extreme values

ACS(7=099) 0618 0582 0754 0508 | 28.05 2494 2201 2126 | 498 4.86 4.66 441
ACS (3 =0.75) 0.883 0770 0999 0293 | 2851 2457 2349 2223 | 503 490 479 456
ACS (7 = 0.5) 0.740 0987 0.859 0.837 | 31.86 6442 5548 4580 |535 531 525 521
Original Sampler 0916 0.976 0.778 0.847 | 14845 130.16 139.64 14213 | 539 535 543 546
c-Hybrid ACS (3 =025) 0962 0948 0652 0.653 | 112.87 64.01 54.67 43.32 | 534 513 501 478
yore. ACS (3 =005 0964 0811 0813 0916 | 10426 7698 7177 59.15 | 542 525 538 525
(=00 Thoa AL ACS (3 = 0.01) 0568 0746 0767 0.974 | 14471 107.06 10130 7591 | 553 530 538 535
ACS (7 =0.001) 0979 0.847 0977 0906 | 15041 150.32 139.66 114.12 | 548 5.54 555 548

Table 10: Sample quality of e-variant models using different samplers.

Our T3, models are intrinsically faster since, during sampling, only the tokens corre-
sponding to the Tyeijeq and Tactive components are fed into the transformer (e.g., w, 2w, .. .,
up to d tokens). Moreover, incorporating KV-caching would further boost the sampling
speed.

Time(l.)
SEDD 68
MDLM 59
+ caching 36
y-Hybrid (e, ALIGNED] 131
y-Hybrid («4=#*, aLicnED] 79
+ KV-caching 38

Table 11: Wall clock time reported in seconds to generate 8 samples on a single NVIDIA A100
80 GB GPU. The same number of diffusion steps were utilized for all the models.

E8 Training Throughput Evaluation

Table 12 compares training throughput of our e-Hybrid [e = 0.01, T}, 4/4, ALIGNED]in
both non-efficient and efficient settings, alongside MDLM (Sahoo et ai., 2024), SEDD (Lou
et al., 2024), and an AR baseline, on a single NVIDIA A100 80 GB GPU. We use the largest
batch size divisible by two (64 for most methods; 32 for the efficient variant due to its
“double-length context” strategy) and set the window size to w = d/4 (smaller w further
amplifies the training efficiency gains).

By leveraging our efficient attention masks and doubling the context length via concatena-
tion of clean and noisy sequences, the efficient variant achieves nearly twice the active-token
throughput of its non-efficient counterpart. This demonstrates that our hyperschedule
variants incur substantially lower training cost while matching the effective throughput of
other diffusion baselines.

28

Published as a conference paper at COLM 2025

Method Throughput (token/ms) Effective Throughput (active token/ms)
e-Hybrid [e = 0.01, 7,4/, ALIGNED] (Non-Efficient) 100.31 25.07
e-Hybrid [e = 0.01, 7§, 4/4, ALIGNED] (Efficient) 88.04 44.02
MDLM (Sahoo et al., 2024) 97.64 54.42
SEDD (Lou et al., 2024) 99.29 56.01
AR 127.65 127.65

Table 12: Training throughput comparison on a single NVIDIA A100-80GB GPU. Effective
throughput counts only the active tokens processed by the transformer.

29

Published as a conference paper at COLM 2025

G Samples

The following is a random selection of a few samples from our 3 diffusion language model
families.

G.1 Undonditonal Sample

Figure 11: Unconditional samples generated by y-Hybrid [y= 0.01, Tgj,, ALIGNED] trained
on OWT dataset.

30

Published as a conference paper at COLM 2025

Figure 12: Unconditional samples generated by y-Hybrid [y= 0.01, Tgi:ii/ 4, ALIGNED]

trained on OWT dataset.

31

Published as a conference paper at COLM 2025

Figure 13: Unconditional samples generated by <-Hybrid [y= 0.01, T‘é’ljjl{("*, SHIFTED]
trained on OWT dataset.

32

Published as a conference paper at COLM 2025

Figure 14: Unconditional samples generated by e-Hybrid [e= 0.01, Tpjat, ALIGNED] trained
on OWT dataset.

G.2 Conditional Samples

Figure 15: Conditional (conditioned on first 6 tokens) samples generated by e-Hybrid
[e= 0.01, Tgjat, ALIGNED] trained on OWT dataset.

	Introduction
	Unification Through Abstraction
	Autoregressive Sequence Diffusion
	Hyperschedules: position-dependent schedules
	Hybrid Processes: training denoisers that can fix their mistakes
	Attention Mask and Efficiency
	Adaptive Correction Sampler

	Experiments
	Experimental Setup
	Language Model Likelihood Evaluation
	Ablation Study
	Language Modeling Performance

	Zero-Shot Generalization
	Sampler Performance
	Sequence Generation Quality-Diversity Trade-offs
	Additional Analyses and Results

	Conclusion
	Evolution Operators
	Implementation Nuances
	Training Setup
	Loss Function
	Efficient Training and Inference
	Inference and KV‐Caching
	Weighted token-embedding

	Model Evaluation Metrics
	Upper Bound Estimation of Perplexity
	Generative Perplexity Evaluation

	Adaptive Correction Sampler (ACS) Pseudo Code
	Experimental Setup
	Additional Results
	Zeroshot Perplexity
	Generative Perplexity Using a Judge LLM
	Inference Pareto frontier Results
	Effect of Varying gamma
	Effect of Varying rho
	Effect of Varying eta in Adaptive Correction Sampler
	Inference Speed Up with Caching
	Training Throughput Evaluation

	Samples
	Undonditonal Sample
	Conditional Samples

