
Discovering Sparsity Allocation for Layer-wise
Pruning of Large Language Models

Lujun Li1†, Peijie Dong2†, Zhenheng Tang2,3, Xiang Liu2, Qiang Wang4,
Wenhan Luo1, Wei Xue1, Qifeng Liu1∗, Xiaowen Chu2∗, Yike Guo1∗

1Hong Kong University of Science and Technology
2Hong Kong University of Science and Technology (Guangzhou)

3Hong Kong Baptist University 4Harbin Institute of Technology (Shenzhen)
lilujunai@gmail.com,pdong212@connect.hkust-gz.edu.cn,

zhtang@comp.hkbu.edu.hk, xliu886@connect.hkust-gz.edu.cn, qiang.wang@hit.edu.cn,
{whluo,weixue,liuqifeng,xwchu,yikeguo}@ust.hk ∗

Abstract

In this paper, we present DSA, the first automated framework for discovering
sparsity allocation schemes for layer-wise pruning in Large Language Models
(LLMs). LLMs have become increasingly powerful, but their large parameter
counts make them computationally expensive. Existing pruning methods for
compressing LLMs primarily focus on evaluating redundancies and removing
element-wise weights. However, these methods fail to allocate adaptive layer-
wise sparsities, leading to performance degradation in challenging tasks. We
observe that per-layer importance statistics can serve as allocation indications, but
their effectiveness depends on the allocation function between layers. To address
this issue, we develop an expression discovery framework to explore potential
allocation strategies. Our allocation functions involve two steps: reducing element-
wise metrics to per-layer importance scores, and modelling layer importance to
sparsity ratios. To search for the most effective allocation function, we construct
a search space consisting of pre-process, reduction, transform, and post-process
operations. We leverage an evolutionary algorithm to perform crossover and
mutation on superior candidates within the population, guided by performance
evaluation. Finally, we seamlessly integrate our discovered functions into various
uniform methods, resulting in significant performance improvements. We conduct
extensive experiments on multiple challenging tasks such as arithmetic, knowledge
reasoning, and multimodal benchmarks spanning GSM8K, MMLU, SQA, and
VQA, demonstrating that our DSA method achieves significant performance gains
on the LLaMA-1|2|3, Mistral, and OPT models. Notably, the LLaMA-1|2|3 model
pruned by our DSA reaches 4.73%|6.18%|10.65% gain over the state-of-the-art
techniques (e.g., Wanda and SparseGPT).

1 Introduction

Large language models (LLMs) [63, 51, 4] have ushered in a new era of natural language processing
(NLP) [56], demonstrating remarkable capabilities in understanding and generating human-like
text [55]. However, recent LLMs have an incredibly large number of parameters, which contributes to
their high computational resource consumption. For example, OpenAI’s GPT-3 model has 175 billion
parameters and consumed 284,000 kWh of energy during its training [9]. The exponential growth in
model size and complexity presents challenges, especially for deployment on resource-constrained

∗*Corresponding authors, † equal contribution. Codes at: https://github.com/lliai/DSA

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: Sparse ratios by our method (left) and OWL (middle), WikiText-2 perplexity results (right).

devices. As a result, there is a pressing need to develop effective compression techniques [3, 67] that
can reduce the size of LLMs while preserving their performance. One promising approach is pruning,
which involves removing redundant or less important parameters from the model.

Conventional pruning methods [21] propose extensive pruning metrics [61] and sparse training
strategies [21]. However, these traditional methods often involve performance drops on small-scale
models and require extra fine-tuning, making them difficult to transfer to LLMs due to differences in
model structure and the high cost of the extra fine-tuning. To address this, recent approaches like
SparseGPT [16] and Wanda [49] have been developed specifically for pruning LLMs. SparseGPT
prunes insignificant weights and reconstructs layer-wise outputs based on an importance metric
obtained from the Hessian matrix. Wanda proposes a streamlined approach that simplifies the compu-
tations by using only the product of weight and activation magnitudes. Despite these advancements,
these pruning methods share a common limitation: they uniformly set sparsity ratios for different
layers in LLMs, failing to account for the varying importance of each layer in the model’s overall
performance. Intuitively, the front layers of LLMs are considered more important, as they establish
the fundamental language understanding upon which the rest of the model relies. The limitations of
uniform pruning contradict this intuition and lead to performance degradation of pruned LLMs with
high sparsity ratios or on difficult language understanding tasks. However, achieving non-uniform
pruning is also difficult, mainly due to two challenges: (1) Additional costly computations: Most
non-uniform methods are trial-and-error paradigms requiring many computations and evaluation
overheads. For example, BESA [58] performs differentiable iterative optimization for block-wise
sparsity allocation based on evaluation results. However, this method primarily focuses on intra-layer
sparsity configuration and takes at least 5 hours, which is considerably slower compared to other
training-free approaches. Additionally, the overheads of these methods grow with both the number of
layers and the sparse granularity of LLMs. (2) Fixed and empirical allocations: Recent methods like
OWL [60] assign different sparsity ratios based on the outlier ratio within each layer. This empirical
method requires tuning hyperparameters such as the outlier threshold and sparsity upper/lower bounds
to obtain optimal values, and it heavily relies on empirical analysis and handcrafted design without
providing a solid theoretical foundation for its effectiveness, making it difficult to scale to various
models and datasets (see Figure 1 (right)). These dilemmas naturally raise the question: How can we
efficiently obtain adaptive allocation strategies capable of handling different models and scenarios?

To answer this question, we analyze the distribution of element-wise scores of different layers in
LLMs based on existing sparse methods. As shown in Figure 1 (left), we observe that the mean values
of the per-layer element importance scores of the front layers enjoy larger values. This observation
aligns with OWL (see Figure 1 (middle)) and the understanding that the initial layers of LLMs
are more important [13]. Furthermore, we find that other reduction operations, such as variance,
entropy, etc., also yield distributions with similar trends. Motivated by these findings, we explore the
possibility of directly utilizing these layer-wise importance scores as a guiding principle for allocating
sparsity ratios across layers. Thus, we transform the reduction values of element-wise scores using
various functions (e.g., sine, exponential) and employ the transformed values as layer-wise sparsity
ratios. Such non-uniform manners bring promising gains, which are sensitive to specific transform
operations. These observations inspire us to combine advanced reduction operations and transform
functions to obtain an effective sparsity allocation based on the original importance scores from
uniform pruning methods. However, how to obtain the most promising combinations? Fortunately,
the recent advancements in AutoML [71, 45, 34] provide potential answers by enabling the automatic
search for optimal solutions within a defined search space. By formulating this problem as an

2

AutoML task, we can leverage search algorithms to efficiently explore the search space and identify
the effective combinations for non-uniform pruning in LLMs.

Based on our observations, we introduce DSA, an innovative framework that leverages expression
discovery and evolutionary algorithms to tailor sparsity allocation schemes for LLMs. DSA seeks to
find the best functions for mapping element-wise scores → per-layer importances → sparsity ratios.
To identify the most effective allocation function, we construct a vast search space encompassing a
diverse set of pre-process, reduction, transformation, and post-process operations. The pre-process
operators, such as Frobenius norm and softmax, normalize the original importance values, enabling
fair cross-layer comparison. Reduction operations, including variance, standard deviation, entropy,
and geometric mean, extract the element-wise importance scores of each layer into a single repre-
sentative value. Recognizing the potential for complex nonlinear relationships, we incorporate a
wide range of mathematical functions as transformation operations, including sine and cosine. These
functions provide flexibility to model intricate patterns and amplify or attenuate the importance scores
as needed. Additionally, we introduce post-process operations to further increase the upper bound of
the function fit. Within this rich search space, DSA employs an evolutionary algorithm to explore and
discover promising allocation function candidates. The evolutionary process begins by initializing a
population of diverse allocation functions, which are then iteratively evaluated and evolved through
crossover and mutation operations. The crossover operation exchanges beneficial components be-
tween high-performing parent candidates, while mutation introduces random perturbations to promote
exploration. Once the evolutionary process converges, DSA selects the top-performing allocation
function candidates and seamlessly integrates them into existing pruning methods, such as Wanda and
SparseGPT, through a plug-and-play mechanism. By leveraging the discovered allocation functions,
these pruning methods can achieve significantly improved performance, maximizing compression
while minimizing accuracy degradation. By automating the search process, DSA eliminates the need
for manual tuning and expert intervention, reducing the time and effort required to find allocation
strategies. The expressiveness of the search space and the ability to combine diverse operations
enable the discovery of intricate, nonlinear allocation functions tailored to the unique characteristics
of each LLM.

We conduct extensive experiments on publicly available language processing datasets and benchmarks.
The experimental results demonstrate our method achieves significant performance gains on multiple
challenging tasks such as arithmetic, knowledge reasoning, and multimodal tasks spanning GSM8K,
MMLU, VQAv2, SQA, and VQA benchmarks across multiple model architectures including LLaMA-
1|2|3, Mistral, Vicuna and OPT. Notably, our DSA method yields substantial improvements across
all evaluated models, with peak gains of 14.58% in LLaMA-3 8B under magnitude pruning and
10.65% when integrated with SparseGPT. Even under high sparsity ratios of 60-70%, our method
maintains robust performance, achieving improvements of 7.68% for LLaMA-2-13B at 60% sparsity.
In multimodal tasks, DSA demonstrates exceptional capability by surpassing conventional pruning
methods across all benchmarks, achieving superior scores of 76.08% on VQAv2, 65.57% on SQA,
and 54.36% on VQA for LLaVA-1.5 with Vicuna-7B at 50% sparsity. The method’s effectiveness is
particularly evident in challenging scenarios, maintaining strong performance even under aggressive
pruning conditions while consistently outperforming existing sparsity allocation approaches across
model scales and architectures.

2 Related Work

Model compression techniques [24, 57], such as quantization [15, 40, 33] and sparsifica-
tion [16, 65, 38], are practical approaches to reduce size of large language models (LLMs). Sparsi-
fication, or network pruning, increases the number of zero-valued weights and can be categorized
into structured [39, 23] and unstructured [15, 66, 64] pruning. While determining pruning criteria
and ratios is crucial, the massive scale of LLMs presents challenges for efficient pruning. Conven-
tional retraining-based methods [65, 23] are often impractical due to high computational demands.
Researchers develop LLM-specific pruning techniques that prioritize training-free and time-efficient
approaches to address these challenges. SparseGPT [16] introduces an efficient Hessian matrix
estimation technique to large-scale models. Wanda [49] further simplifies the approach, reducing the
computational overhead and memory requirements. LLM-Pruner [39] examines model dependencies
by incorporating first-order and approximated Hessian information, providing a comprehensive prun-
ing approach. LLM Surgeon [53] adapts Kronecker-factored curvature approximations specifically

3

Abs

Mean

Mean

Allocation Function Evolution

Exp

Exp

Entropy

Log

Cos
Norm

Var

No

Abs

Element-wise Scores Sparsity Ratios

Sig

Log

No

Tanh

Exp

No

Norm

Abs

Mean

Var

Entropy

Std

Sin

Cos

Exp

Abs

Allocation Function Search Space

Element Index

Layer Index

V
er

if
ic

at
io

n
 P

er
fo

rm
an

ce

Search Iterations

Pre-process ops

Reduction ops

Transform ops

Post-process ops

Figure 2: Overview of our DSA framework. We search for allocation functions to map element-wise
scores to sparse ratios. We build pre-process, reduction, transform, and post-process operations as the
search space for the allocation function, and then we perform evolutionary search.

for LLMs. Despite these advancements, most existing methods apply a uniform pruning rate across
all layers, which may result in suboptimal performance. To address this, we present the first allocation
function search for layer-adaptive sparsity, effectively minimizing performance degradation while
achieving high compression ratios. Our method differs significantly from traditional layer-wise
sparsity approaches for neural networks [12, 5, 26]. These methods often lead to the accumulation
of errors across layers, as the pruning decisions for each layer are made independently without
considering the global impact on the model’s performance. Recent BESA [58] has shifted focus to
intra-block sparsity allocation, employing various techniques to optimize the sparsity distribution
within individual blocks or layers. FLAP [2] applies sparsity ratios process updating for performance
compensation. In contrast, our method is layer-wise and training-free, with finer-grained allocation
and an efficient process. OWL [15] requires experts’ empirical design and tuning of hyperparameters.
By automating the allocation process, our approach eliminates the need for manual intervention of
OWL [15]. Our method differs from approaches like Pruner-Zero [44] in both the search object
and the technique type. Pruner-Zero is a uniformly sparse method that employs a metric-optimized
strategy. In contrast, our method explores non-uniform sparsity allocations, searching for an optimal
allocation strategy. Additionally, our DSA method deviates from layer-dropping techniques [18, 14],
which involve directly removing entire layers from the model architecture. Our approach preserves the
model’s overall architecture while strategically distributing sparsity across layers, allowing for high
compression ratios without sacrificing significant performance or relying on extensive fine-tuning.
More discussion are in Appendix A.

3 Methodology

3.1 Recap of Sparsity Methods for Large Language Models

Sparse methods introduce sparsity into the model weights by identifying and pruning redundant
or less important weights for a given pre-trained dense weight matrix W. To determine which
weights should be pruned, sparse methods employ pruning metrics or importance scores, denoted as
S(Wl,Xl,Gl), where Wl represents the weights of layer l, and Xl and Gl are any layer-specific
activations, gradient statistics, or the respective. The pruning metric ranks the weights based on their
importance, and ranking results with the sparsity ratio ϕ serves as a threshold to select the most
significant weights. The pruned weights are typically represented as a sparse mask Ml, which is a
binary tensor of the same shape as Wl. The mask is obtained by applying a threshold function f to
the pruning metric S and the sparsity ratio ϕl:

Ml = f(S(Wl,Xl,Gl), ϕl). (1)

4

Table 1: Some operations in our search space. Full operations are in Appendix D.
OP ID OP Name Expression
OP00 Mean mean(x)
OP01 std

√
var(x)

OP02 var var(x)
OP03 sqrt

√
x

OP04 geometric n
√∏n

i=1 xi

OP05 corref xT x
|x|22

OP06 l2_norm x−mean(x)
std(x)

OP07 l1_norm |x|1
OP08 entropy −

∑
i,j xij log xij

OP ID OP Name Expression
OP09 sigmoid 1

1+e−x

OP10 softmax ex∑n
i=1 esi

OP11 exp ex

OP12 abslog |lnx|
OP13 cosine cos(x)
OP14 sine sin(x)
OP15 log lnx
OP16 no_op x
OP17 rank rank(x)

The pruned weights Wmasked
l are then obtained by element-wise multiplication of the original weights

Wl and the sparse mask Ml:
Wmasked

l = Ml ⊙Wl, (2)

where ⊙ denotes element-wise multiplication. The choice of the pruning metric S and the sparsity
ratio ϕ significantly impacts the effectiveness of the sparse method. The basic pruning metric is the
magnitude-based approach [19], where S(Wl) = |Wl| employs the element-wise absolute value to
assess weight significance. The sparsity ratio ϕ plays a crucial role in determining the level of sparsity
introduced into the model. Higher values of ϕ correspond to higher levels of sparsity, resulting
in greater reductions in model size and computational requirements. However, excessive pruning
may lead to significant performance degradation if important weights are removed. In contrast to
traditional methods that use a fixed sparsity ratio ϕ for all layers, our adaptive sparsity allocation
scheme allows the sparsity ratio ϕl to vary across layers based on their importance. This approach is
motivated by the observation that different layers in a deep neural network contribute differently to
the overall model performance, and a uniform sparsity ratio may not be optimal. The advance of our
adaptive sparsity allocation scheme is its ability to identify and selectively prune the less important
layers, achieving better compression while preserving the model’s performance.

4 Allocation Function Search Space

Allocation Function Representation. Our allocation function A aims to map element-wise scores S
to per-layer importance values V , and subsequently map these importance scores to sparsity ratios ϕ.
The allocation functions are represented as computation graphs consisting of various pre-process Tpre,
reduction Treduce, transformation Ttrans, and post-process Tpost operations, as follows:

V = Treduce(Tpre(S)), ϕ = Tpost(Ttrans(V)), A = V(ϕ(S)). (3)

Motivation of Allocation Function Design. As discussed in introduction and Figure 1 (left), our
design is motivated by analyzing element-wise score distributions: (1) We notice that mean, variance,
and entropy values of per-layer element-wise scores can serve as allocation indicators, inspiring
reduction operations. (2) While basic reduction of element-wise scores showed modest improvements,
applying transform functions yielded more promising results, prompting the introduction of transform
operations. (3) We include pre-process to normalize scores for fair comparison and post-process to
further enhance function fit’s upper bound. These observations naturally encourage us to employ the
four cascading operations for search space.

Primary Operators. Table 1 presents a subset of the primary operators considered in our search
space, which is organized into four main categories:

• Pre-process operations Tpre are applied to the element-wise scores S to prepare them for the
subsequent reduction step. Tpre standardizes inputs by normalizing scores across layers, ensuring
consistent performance metrics by addressing scale variations. These operations can include
clipping, normalization, or applying non-linear transformations.

• Reduction operation Treduce aggregates the pre-processed scores into a single per-layer im-
portance score V . Treduce condenses element-wise information by extracting representative
values and reduces computational complexity. They use statistical measures like mean, standard
deviation, variance, and entropy to provide insights into the distribution of the input data.

5

• Transform operation Ttrans models the distribution of per-layer scores V and transforms this
into sparsity ratios ϕ, enabling the representation of intricate patterns in layer importance. This
can involve non-linear transformations like sigmoid, softmax, exponential, and logarithmic
functions, which capture complex relationships, while trigonometric functions like sine and
cosine capture periodic patterns or cyclical behaviors.

• Post-process operation Tpost plays the role of augmenting the fitting power and flexibility on
transform operation. Tpost ensures that the sparsity ratios ϕ satisfy any required constraints, such
as being between 0 and 1 across all layers. By combining these diverse operators, our framework
constructs tailored allocation functions that capture the unique characteristics of each LLM.

5 Allocation Function Evolution

Search Objectives. Our search goal is to find the optimal combination of operations T that makes
the sparse model perform optimally on the validation set given the sparsity metric S and the overall
model size constraints C. This can be formulated as an optimization problem

argmax
T

P(M⊙W, X, Y), s.t. Size(M⊙W) < C, (4)

where W represents the weights of the LLMs, X and Y are the input and target data of the verification
set, respectively, and P is the performance metric (e.g., perplexity). The mask M is determined by
the sparsity ratios ϕ through combination of operations Tpre, Treduce, Ttrans, and Tpost, as

M = f(S, ϕ) = f(S, Treduce(Tpost(Ttrans(Tpre(S))))). (5)

To solve this problem, we need to search a combination of T in 4 levels with around 10 options in
each level, resulting in a rather large space (i.e., O(104)). In contrast to simple random search, we
develop an evolutionary search for optimal allocation function.

Evolution Search Procedure. Our search process begins by generating an initial population of
allocation function candidates, which can be created randomly or using heuristic techniques. Each
candidate in this population corresponds to a unique combination of operations. Next, the perfor-
mance of each candidate allocation function is evaluated. This involves computing the sparsity
ratios by applying the candidate function to the sparsity metric, evaluating the pruned model on
a validation set using a performance metric, and checking if the pruned model’s size satisfies the
given constraint. Based on this performance evaluation, the fittest candidates are selected for the
next generation, considering criteria such as the performance metric, model size constraint, or a
combination thereof. These selected candidates then undergo evolutionary operations like mutation
and crossover to generate a new population of candidates for the subsequent iteration. The search
process continues iterating until a stopping criterion is met, such as a maximum number of iterations
or a satisfactory performance level. To accelerate the search, we employ various techniques: (1)
Program checking uses static analysis to discard invalid candidates early, reducing computational
overhead. (2) Memoization and caching store and reuse results from previous evaluations, avoiding
redundant computations. (3) Parallel evaluation distributes the performance evaluation of different
candidates across multiple computing resources. (4) Surrogate models approximate computationally
expensive evaluations using techniques like neural networks trained on a subset of data. After each
iteration, the performance of the best candidates is verified on a held-out validation set or a separate
test set. These acceleration settings allow at least 100 times faster searches. In this way, we search
our allocation function in only 0.5 day on a 1× NVIDIA GPU H800 server based on Wanda using
perplexity results from the validation set of LLaMA-1-7B on WikiText2 [41]. We confirm that no
search was performed on the test set, ensuring the comparisons are completely fair. In addition, the
discovered allocation functions are transferable to other tasks without massive costs. Thus, the search
cost can be spread across multiple pruning runs.

6 Discovered Allocation Function Analysis

One of the top-performing allocation functions discovered through the evolutionary search process
is:

V∗ = T ∗
reduce(T ∗

pre(S)) = n

√√√√ n∏
i=1

|ln (ln(S))|i, ϕ∗ = T ∗
post(T ∗

trans(V)) = exp (cos (V∗)) , (6)

6

Table 2: Mean accuracies (%) of our DSA at 50% sparsity rate on 7 zero-shot tasks.

Model LLaMA-1 LLaMA-2 LLaMA-3 OPT
Method 7B 13B 30B 65B 7B 13B 70B 8B 6.7B
Dense 64.32 66.84 69.80 71.21 64.36 67.08 71.52 68.28 55.50
Magnitude 50.83 51.26 58.22 67.14 54.69 57.37 64.90 40.91 37.90
+ DSA (Ours) 53.73 59.05 60.55 67.86 57.90 61.38 68.76 55.50 40.25
Gain 2.90↑ 7.78↑ 2.33↑ 0.72↑ 3.21↑ 4.01↑ 3.85↑ 14.58↑ 2.35↑
Wanda 56.60 62.86 66.96 69.42 59.72 62.53 70.14 55.93 45.19
+ DSA (Ours) 59.22 63.03 67.80 70.98 60.80 64.87 70.54 60.70 45.45
Gain 2.62↑ 0.17↑ 0.84↑ 1.56↑ 1.09↑ 2.34↑ 0.40↑ 4.76↑ 0.26↑
SparseGPT 53.60 62.08 63.97 67.20 54.26 57.92 68.02 51.77 52.38
+ DSA (Ours) 58.33 62.49 67.63 67.32 59.22 64.10 68.70 62.41 55.15
Gain 4.73↑ 0.41↑ 3.66↑ 0.12↑ 4.95↑ 6.18↑ 0.68↑ 10.65↑ 2.77↑

where T ∗
pre consists of two steps: log and abslog. The log step applies the natural logarithm operation

ln(S) to the input importance values S , compressing the range of values and potentially highlighting
differences in smaller values. The abslog step computes the absolute value of the natural logarithm,
|ln(S)|, ensuring that negative values are treated symmetrically with positive values, preventing
potential cancellations or sign changes. T ∗

reduce applies the geometric mean operator n
√∏n

i=1 xi to
the result of abslog. This operation further compresses the range of values and introduces a nonlinear
transformation. T ∗

trans is the cosine function cos(x), applied to the output of the geometric mean. This
periodic function introduces oscillatory behavior, which can capture potential cyclical patterns or
dependencies in the importance values. Finally, T ∗

post applys the exponential function exp(x) to the
result of the cosine operation. This step reintroduces nonlinearity and expands the range of values,
potentially amplifying or attenuating the importance scores as needed.

Stability Analyses. To show that the function V = n
√∏n

i=1 |ln (ln(S))|i is stable under small
perturbations in the input S , we can derive an expression for the difference V(S +∆S)− V(S) and
analyze its behavior for small ∆S. The difference is approximately:

V(S +∆S)− V(S) ≈ 1

n
V(S)1−n

 n∑
i=1

sgn(ln(ln(S))) 1

ln(S)
1

S
∏
j ̸=i

kj(S)

∆S +O((∆S)2). (7)

For small ∆S , the second-order term O((∆S)2) becomes negligible, and the leading term is linear in
∆S . The coefficient of ∆S in this leading term is a product of bounded functions of S . Therefore, for
small perturbations ∆S around any positive value of S , the difference is also small, and the function
V(S) is stable under such perturbations. More analyses are in the Appendix B.

7 Experiments

In this section, we conduct detailed evaluation experiments on multiple tasks and models. For pruning
and evaluation, we follow the settings of Wanda, SparseGPT and ensure using the same database
version, GPU model, and random seed across all experiments to maintain consistent conditions. More
experimental results are in Appendix C.

7.1 Experiments on Zero-shot Tasks

Implementation. To verify the effectiveness and generalizability, we perform extensive evaluation
of our models on 7 zero-shot tasks. We employ a set of seven tasks sourced from the EleutherAI
LM Harness [50]. These tasks include Winogrande [46], OpenBookQA [42], HellaSwag [62],
BoolQ [6], ARC [7], and RTE [54]. To assess the performance of our Dynamic Sparse Allocation
(DSA) method, we evaluate its effectiveness on several models. These LLMs include LLaMA-1
(7B/13B/30B/65B) [51], LLaMA-2 (7B/13B/70B) [52], LLaMA-3 (8B) [1], and OPT (6.7B/13B) [63].
Our allocation function is applied to different pruning methods, namely Wanda [49], Magnitude-
based pruning [20], and SparseGPT [15]. For fair comparisons, we follow the same configurations of
SparseGPT and Wanda methods. We select data from the C4 dataset and ensure that all test data used
in the evaluation are from zero-shot settings.

7

Table 3: Mean accuracies (%) of our DSA on 7 zero-shot tasks at 60 & 70% sparsity rates.

Method LLaMA-2-7B LLaMA-2-13B LLaMA-3-70B
Ratios 60% 70% 60% 70% 60% 70%
Magnitude 35.61 50.81 38.38 51.16 55.86 38.76
+ DSA (Ours) 37.95 57.84 46.06 54.28 60.24 42.98
Gain 2.34↑ 7.03↑ 7.68↑ 3.12↑ 4.38↑ 4.22↑
Wanda 36.08 60.90 41.46 72.00 40.51 40.44
+ DSA (Ours) 38.00 62.08 43.18 73.24 42.74 42.78
Gain 1.92↑ 1.18↑ 1.72↑ 1.24↑ 2.23↑ 2.34↑
SparseGPT 43.61 60.68 48.76 70.14 65.03 43.22
+ DSA (Ours) 45.56 61.31 50.04 72.12 67.34 45.73
Gain 1.95↑ 0.63↑ 1.28↑ 1.98↑ 2.31↑ 2.51↑

Sparsity Results on Varying Models. The results in Table 2 demonstrate the effectiveness of our
allocation function in improving the performance of pruned models across various methods and model
architectures. When integrated with magnitude-based pruning, DSA yields substantial improvements
across all evaluated models, with particularly impressive gains in LLaMA-3 8B, where accuracy
increases by 14.58%. For the Wanda pruning method, DSA consistently enhances performance,
achieving notable improvements of 4.76% in LLaMA-3 8B and 2.62% in LLaMA-1 7B, while
maintaining stable gains across larger models such as LLaMA-2 70B with a 0.40% increase. The
integration of DSA with SparseGPT produces the most striking results, with substantial improvements
of 10.65% for LLaMA-3 8B and 6.18% for LLaMA-2 13B, demonstrating its exceptional capability to
optimize sparsity patterns. DSA shows particular strength in enhancing smaller models, with LLaMA-
1 7B experiencing gains of 4.73% under SparseGPT and 2.90% under magnitude pruning, while
also maintaining effectiveness across larger architectures such as LLaMA-2 70B, where it achieves
improvements of 3.85% under magnitude pruning. These consistent performance improvements
across different model scales, from the 6.7B OPT to the 70B LLaMA-2, highlight the ability of DSA
to migrate well and generalize across different pruning techniques and model architectures, enabling
improved performance and efficient compression of LLMs while minimizing the impact on their
zero-shot capabilities.

Sparsity Results under High Pruning Ratios. The experimental results in Table 3 demonstrate
the robust performance of DSA under high pruning ratios across different model scales and pruning
methods. When integrated with magnitude-based pruning, DSA exhibits remarkable improvements,
achieving gains of up to 7.68% for LLaMA-2-13B at 60% sparsity and 7.03% for LLaMA-2-7B at
70% sparsity. In combination with Wanda, DSA consistently enhances performance across all models
and sparsity ratios, with particularly notable improvements in LLaMA-3-70B, where it achieves gains
of 2.23% and 2.34% at 60% and 70% sparsity respectively. The integration with SparseGPT yields
steady improvements, with the most significant gains observed in LLaMA-3-70B (2.51% at 70%
sparsity) and LLaMA-2-7B (1.95% at 60% sparsity). DSA’s effectiveness is particularly evident in
challenging scenarios, such as maintaining LLaMA-2-13B’s performance at 73.24% accuracy even
under 70% sparsity when combined with Wanda, and achieving 67.34% accuracy with LLaMA-3-70B
at 60% sparsity when integrated with SparseGPT, demonstrating its capability to preserve model
performance even under aggressive pruning conditions.

Compare Other Sparsity Allocation Methods. Table 4 shows WikiText-2 perplexity results
demonstrate the superior performance of DSA across varying high sparsity rates from 65% to 80%
in LLaMA-1-7B. At 65% sparsity, DSA achieves the lowest perplexity of 12.62, outperforming
OWL’s 13.05 and showing substantial improvement over traditional methods like Uniform (20.85)
and ER (45.85). The performance advantage of DSA becomes more pronounced as sparsity increases,
reaching a perplexity of 736.81 at 80% sparsity, which represents a significant improvement over
OWL (1002.87) and BESA (2208.75). Notably, DSA demonstrates remarkable stability under
extreme sparsification, maintaining performance far superior to conventional approaches like Global
and ER-plus, which deteriorate dramatically with perplexities of 39918.56 and 6013.91 respectively
at 80% sparsity. The consistent superiority of DSA across all sparsity levels, particularly its ability
to maintain relatively low perplexity even at 80% sparsity, validates its effectiveness in allocating
sparsity while preserving model performance. By constructing tailored allocation functions that

8

Table 4: WikiText-2 perplexity (↓) performance of various allocation methods with the Wanda metric
for sparse LLaMA-1-7B at varying high sparsity rates (65%∼80%).

Method Global [60] ER-plus [36] ER [43] Uniform [69] BESA [58] OWL [60] DSA (Ours)
65% 867.82 97.28 45.85 20.85 18.52 13.05 12.62
70% 5147 229.17 112.03 81.18 42.58 24.54 22.60
75% 25863.75 1482.93 3287.92 927.42 257.89 152.47 103.32
80% 39918.56 6013.91 11151.18 3499.88 2208.75 1002.87 736.81

capture the unique characteristics of each layer, DSA achieves superior performance compared to
other commonly used layerwise sparsity methods, especially at higher sparsity rates.

Table 5: 50% Sparsity results (%) on GSM8K.

Method LLaMA-1 LLaMA-2 Mistral
7B 13B 7B 13B 7B

Dense 11.07 17.82 14.59 19.86 40.11
Magnitude 1.52 5.99 2.05 6.22 15.53
SparseGPT 8.19 15.60 8.11 13.42 25.40
Wanda 7.96 11.52 7.43 9.10 22.74
Ours 8.22 15.64 8.47 14.27 25.78

Table 6: 50% Sparsity results (%) on MMLU.

Method LLaMA-1 LLaMA-2 Mistral
7B 13B 7B 13B 7B

Dense 35.28 46.98 41.97 51.47 58.92
Magnitude 26.24 30.12 26.04 43.83 50.83
SparseGPT 29.48 38.29 33.06 47.14 50.95
Wanda 29.81 37.84 32.09 48.06 53.05
Ours 31.05 39.76 33.08 48.38 53.87

Table 7: Results (%) on 7B LLaVA-1.5.

Vicuna-7B VQAv2 SQA VQA
Dense 78.50 66.80 58.20

Magnitude (50%) 63.50 31.24 38.39
SparseGPT (50%) 75.86 63.92 53.69

Wanda (50%) 75.72 63.99 53.05
Ours (50%) 76.08 65.57 54.36
Wanda (4:8) 72.70 58.92 50.20
Ours (4:8) 73.54 59.84 51.74

Wanda (2:4) 68.92 55.06 45.42
Ours (2:4) 71.18 57.44 48.25

Table 8: Results (%) on 13B LLaVA-1.5.

Vicuna-13B VQAv2 SQA VQA
Dense 80.00 74.94 61.30

Magnitude (50%) 75.79 70.95 52.16
SparseGPT (50%) 78.62 71.19 58.23

Wanda (50%) 78.58 70.97 58.03
Ours (50%) 79.10 73.17 58.70
Wanda (4:8) 77.57 69.79 56.15
Ours (4:8) 77.79 70.50 56.33

Wanda (2:4) 75.39 64.89 52.52
Ours (2:4) 76.75 67.13 54.05

7.2 Experiments on Arithmetric & Knowledge Reasoning Tasks

Implementation. We apply our allocation function to Wanda and evaluate the performance on
arithmetic and knowledge reasoning tasks, specifically on the GSM8K [8] and MMLU [22] datasets
using LLaMA-1 7B/13B, LLaMA-2 7B/13B, and Mistral 7B models [25].

Comparison Results. On GSM8K (Table 5), our method consistently outperforms baselines like
magnitude pruning, SparseGPT and Wanda across all evaluated LLaMA-1, LLaMA-2, and Mistral
models. The gains are most notable for smaller models like LLaMA-1 7B. Similarly, on MMLU
(Table 6), our DSA achieves the highest accuracy among all methods, outperforming Wanda by up
to 1.24% on LLaMA-1 7B and showing consistent improvements across larger LLaMA and Mistral
models. The results highlight the effectiveness of our allocation strategy in optimizing sparse patterns
across architectures, even on challenging reasoning tasks.

7.3 Experiments on Multimodal Tasks

Implementation. To explore the applicability of our method towards a more diverse task, we
evaluate our method for pruning language models on various visual question-answering and reasoning
benchmarks, including VQAv2 [17], SQA [37], and VQA [47]. In particular, our method is applied
with Wanda to LLaVA-1.5 [35], where the Vicuna-7B and Vicuna-13B language models are pruned.
In addition, we also transfer some pruning methods and make comparisons on these multimodal tasks.
More comparison under different sparsity ratios are in Appendix C.3.

Comparison Results. Table 7 and Table 8 showcase the performance of different pruning methods
such as Magnitude, SparseGPT, and Wanda on the Vicuna-7B and Vicuna-13B models. For LLaVA-
1.5 with Vicuna-7B, at 50% sparsity, our method surpasses conventional pruning methods across all
benchmarks, achieving top scores of 76.08% on VQAv2, 65.57% on SQA, and 54.36% on VQA.
Under the 4:8 structured sparsity pattern, our method consistently outperforms Wanda across all

9

Figure 3: Comparison of search curves of evolution search and random search in our sparse allocation
function discovery for LLaMA-1 7B on WikiText-2. Evolutionary search converges faster than
random search and can achieve potential results with better perplexity (↓) performance.

metrics, showing improvements of 0.84%, 0.92%, and 1.54% on VQAv2, SQA, and VQA respectively
for the 7B model. The performance gap becomes even more pronounced with 2:4 sparsity, where
our method achieves substantial gains of 2.26%, 2.38%, and 2.83% over Wanda on the same metrics.
For the 13B model, while the improvements under 4:8 sparsity are modest (0.22%, 0.71%, and
0.18%), the 2:4 pattern shows more significant gains of 1.36%, 2.24%, and 1.53% on VQAv2, SQA,
and VQA respectively. The consistent superiority of our method across different model sizes and
sparsity patterns demonstrates its robustness and effectiveness in maintaining model performance
under aggressive compression settings.

7.4 Analysis

Search Algorithm Analysis. Figure 3 compares random search with our evolutionary search in the
function search tasks. Our advanced evolutionary search has faster convergence and final results, e.g.,
our search algorithm exceeds in 700 generations over 1500 generations of the random algorithm.

Sparse Allocation Results Analysis. Figure 1 illustrates the per-layer importance values and the
final sparsity ratios with our allocation functions. These distributions are nicely tailored to the specific
and explanatory nature of the LLMs.

8 Conclusion

In this paper, we introduce the DSA framework, which offers a powerful and automated approach to
discovering tailored sparsity allocation schemes for LLMs. By leveraging expression discovery and
evolutionary algorithms, DSA can effectively explore a vast search space of operations and uncover
intricate, nonlinear allocation functions that map importance metrics to optimal layer-wise sparsity
ratios. This automated process eliminates manual tuning and expert intervention, reducing the time
and effort required for effective sparsity allocation. Our DSA demonstrates promising results on the
LLaMA, Mistral, and OPT models. We hope the DSA framework and its underlying principles will
provide valuable insights to the research community, inspiring new avenues for efficient and effective
compression of LLMs and enabling their wider deployment in resource-constrained environments.

Limitations. Following the AutoML technical route [29, 11, 28], we also need some cost in search
process. We will develop more efficient search algorithms and incorporate domain knowledge to
guide and constrain the search process in future work.

Acknowledgements

The research was supported by Theme-based Research Scheme (T45-205/21-N) from Hong Kong
RGC, Hong Kong CRF grants under Grant No. C7004-22G and Generative AI Research and
Development Centre from InnoHK.

10

References
[1] AI@Meta. Llama 3 model card. 2024. 7

[2] Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive
structured pruning for large language models. In AAAI Conference on Artificial Intelligence,
2023. 4

[3] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
arXiv preprint arXiv:2401.15024, 2024. 2

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, February 2020. 1

[5] Yanqi Chen, Zhengyu Ma, Wei Fang, Xiawu Zheng, Zhaofei Yu, and Yonghong Tian. A unified
framework for soft threshold pruning. In The Eleventh ICLR, 2023. 4, 15

[6] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, abs/1905.10044, 2019. 7

[7] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. 7

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 2021. 9

[9] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. NeurIPS, 35:30318–30332, 2022. 1

[10] Peijie Dong, Lujun Li, and Zimian Wei. Diswot: Student architecture search for distillation
without training. In CVPR, 2023. 15

[11] Peijie Dong, Lujun Li, Zimian Wei, Xin Niu, Zhiliang Tian, and Hengyue Pan. Emq: Evolving
training-free proxies for automated mixed precision quantization. In ICCV, pages 17076–17086,
2023. 10

[12] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
lottery: Making all tickets winners. In ICML, pages 2943–2952. PMLR, 2020. 4, 15

[13] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter
optimization at scale. arXiv preprint arXiv:1807.01774, 2018. 2

[14] Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan
Wang, and Zhongyuan Wang. Not all layers of llms are necessary during inference. ArXiv,
abs/2403.02181, 2024. 4

[15] Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
In ICML, 2023. 3, 4, 7, 15

[16] Elias Frantar and Dan Alistarh. Sparsegpt: massive language models can be accurately pruned
in one-shot. In Proceedings of the 40th ICML, volume abs/2301.00774 of ICML’23. JMLR.org,
2023. 2, 3

[17] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the
v in vqa matter: Elevating the role of image understanding in visual question answering. In
CVPR, 2017. 9

[18] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts.
The unreasonable ineffectiveness of the deeper layers. ArXiv, abs/2403.17887, 2024. 4

11

[19] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In ICLR, 2016. 5

[20] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, volume 28, pages 1135–1143, 2015. 7

[21] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural networks. In NeurIPS, 2015. 2

[22] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020. 9

[23] Zhongzhan Huang, Xinjiang Wang, and Ping Luo. Convolution-weight-distribution assumption:
Rethinking the criteria of channel pruning. CoRR, abs/2004.11627, 2020. 3

[24] Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, and Yinfei Yang.
Compressing llms: The truth is rarely pure and never simple. arXiv preprint arXiv:2310.01382,
2023. 3

[25] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023. 9

[26] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
ICML, pages 5544–5555, 2020. 4, 15

[27] Lujun Li, Yufan Bao, Peijie Dong, Chuanguang Yang, Anggeng Li, Wenhan Luo, Qifeng Liu,
Wei Xue, and Yike Guo. Detkds: Knowledge distillation search for object detectors. In ICML,
2024. 15

[28] Lujun Li, Peijie Dong, Anggeng Li, Zimian Wei, and Ya Yang. Kd-zero: Evolving knowledge
distiller for any teacher-student pairs. NeuIPS, 2024. 10

[29] Lujun Li, Peijie Dong, Zimian Wei, and Ya Yang. Automated knowledge distillation via monte
carlo tree search. In ICCV, 2023. 10

[30] Lujun Li, Haosen Sun, Shiwen Li, Peijie Dong, Wenhan Luo, Wei Xue, Qifeng Liu, and Yike.
Guo. Auto-gas: Automated proxy discovery for training-free generative architecture search. In
ECCV, 2024. 15

[31] Lujun Li, Zimian Wei, Peijie Dong, Wenhan Luo, Wei Xue, Qifeng Liu, and Yike. Guo. Attnzero:
Efficient attention discovery for vision transformers. In ECCV, 2024. 15

[32] Wei Li, Lujun Li, Mark Lee, and Shengjie Sun. Als: Adaptive layer sparsity for large language
models via activation correlation assessment. In NeuIPS, 2024. 15

[33] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023. 3

[34] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.
In ICLR, volume abs/1806.09055, 2019. 2

[35] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning, 2023. 9

[36] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang
Wang, and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of
the most naive baseline for sparse training. arXiv preprint arXiv:2202.02643, 2022. 9

[37] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. NeurIPS, 2022. 9

12

[38] Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large
language models. In Thirty-seventh Conference on Neural Information Processing Systems,
volume abs/2305.11627, 2023. 3

[39] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. 2023. 3

[40] Yuexiao Ma, Taisong Jin, Xiawu Zheng, Yan Wang, Huixia Li, Yongjian Wu, Guannan Jiang,
Wei Zhang, and Rongrong Ji. Ompq: Orthogonal mixed precision quantization. In AAAI,
volume 37, pages 9029–9037, 2023. 3

[41] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR, volume abs/1609.07843, 2017. 6, 17

[42] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018. 7

[43] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature Communications, 9(1):1–12, 2018. 9

[44] Dong Peijie, Li Lujun, Tang Zhenheng, Pan Xiang, Liuand Xinglin, Wang Qiang, and Chu
Xiaowen. Pruner-zero: Evolving symbolic pruning metric from scratch for large language
models. ICML, 2024. 4, 15

[45] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018. 2

[46] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021. 7

[47] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi
Parikh, and Marcus Rohrbach. Towards vqa models that can read. In CVPR, 2019. 9

[48] Lujun Sun, Haosen Li, , Peijie Dong, Zimian Wei, and Shitong. Shao. Auto-das: Automated
proxy discovery for training-free distillation-aware architecture search. In ECCV, 2024. 15

[49] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023. 2, 3, 7

[50] Sutawika, Schoelkopf, Gao, Abbasi, Biderman, Tow, fattori, Lovering, farzanehnakhaee,
Phang, Thite, Fazz, Wang, Muennighoff, Aflah, sdtblck, nopperl, gakada, tttyuntian, researcher,
Chris, Etxaniz, Lee, Kasner, Khalid, Hsu, Kanekar, Ammanamanchi, Boykis, and AndyZwei.
EleutherAI/lm-evaluation-harness: v0.4.2, March 2024. 7

[51] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 1, 7

[52] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 7

[53] Tycho F. A. van der Ouderaa, Markus Nagel, Mart van Baalen, Yuki Markus Asano, and Tijmen
Blankevoort. The llm surgeon. ArXiv, abs/2312.17244, 2023. 3

[54] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Tal Linzen, Grzegorz Chrupała, and Afra Alishahi, editors, EMNLP, 2018. 7

[55] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022. 1

13

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
NeurIPS, 35:24824–24837, 2022. 1

[57] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating
language model pre-training via structured pruning. ICLR, 2024. 3

[58] Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei
An, Yu Qiao, and Ping Luo. BESA: Pruning large language models with blockwise parameter-
efficient sparsity allocation. In ICLR, 2024. 2, 4, 9, 15

[59] Mohit Bansal Yi-Lin Sung, Jaehong Yoon. Ecoflap: Efficient coarse-to-fine layer-wise pruning
for vision-language models. In International Conference on Learning Representations (ICLR),
2024. 15

[60] Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pech-
enizkiy, Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl):
A missing secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175,
2023. 2, 9

[61] Miao Yin, Burak Uzkent, Yilin Shen, Hongxia Jin, and Bo Yuan. Gohsp: a unified framework
of graph and optimization-based heterogeneous structured pruning for vision transformer. In
AAAI, 2023. 2

[62] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019. 7

[63] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, abs/2205.01068, 2022. 1, 7

[64] Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci.
Plug-and-play: An efficient post-training pruning method for large language models. In ICLR,
2024. 3

[65] Yuxin Zhang, Mingbao Lin, Fei Chao, Yan Wang, Ke Li, Yunhang Shen, Yongjian Wu, and
Rongrong Ji. Lottery jackpots exist in pre-trained models. TPAMI, 2023. 3

[66] Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and
Rongrong Ji. Learning best combination for efficient n: M sparsity. In NeurIPS, 2022. 3

[67] Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner,
Shiwei Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse
LLMs. In ICLR, 2024. 2

[68] Chendi Zhu, Lujun Li, Yuli Wu, and Zhengxing Sun. Saswot: Real-time semantic segmentation
architecture search without training. In AAAI, 2024. 15

[69] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. In ICLR Workshop (ICLRW), 2017. 9

[70] Zimian Zimian Wei, Lujun Li Li, Peijie Dong, Zheng Hui, Anggeng Li, Menglong Lu, Hengyue
Pan, and Dongsheng Li. Auto-prox: Training-free vision transformer architecture search via
automatic proxy discovery. In AAAI, 2024. 15

[71] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018. 2

14

Appendix

A More Discussion

A.1 Comparison with Existing Methods

Compare to existing AutoML techniques. In contrast to common AutoML [10, 70, 68] and evo-
lutionary algorithms [31, 30, 48, 27], our method introduces several groundbreaking innovations
specifically tailored for sparsity allocation discovery in LLMs. We are the first to frame LLM
sparsity allocation as an AutoML problem, opening new avenues for optimizing LLM efficiency. Our
approach introduces a distinctive search space customized for LLM sparsity allocation, combining
pre-processing, reduction, transformation, and post-processing operations in novel ways, allowing for
more nuanced and effective sparsity distributions. Diverging from typical AutoML methods such as
NAS and HPO that search for specific modes or hyperparameters, our framework emphasizes gener-
alized function discovery, identifying common patterns across LLMs and formulating interpretable
sparsity allocation. Furthermore, we develop LLM-specific acceleration techniques to reduce search
time, making our DSA practical for large-scale LLM optimization.

Compare to ECoFLaP [59]. Our work represents the first automated search for adaptive sparsity
methods, which significantly differs from traditional adaptive pruning methods like ECoFLaP. We
employ an automated search method that eliminates the need for expert design and adapts strategies
to different models and tasks, whereas ECoFLaP relies on hand-designed, hyperparameter tuning.
Our comprehensive search space systematically maps element-wise scores to per-layer importances to
sparsity ratios, in contrast to ECoFLaP’s simple linear computation of keep ratio during its two-stage
pruning. Notably, our method obtains significant performance gains across various large language
and multimodal models, demonstrating superior performance compared to ECoFLaP.

Compare to OWL. When compared to OWL [15], our method revolutionizes the field with an
automated search approach that removes the need for expert design, while OWL remains constrained
by hand-designed hyperparameter tuning and fixed form constraints. Our comprehensive search
space systematically maps element-wise scores to sparsity ratios, surpassing OWL’s limited linear
computation of keep ratio based on outlier ratio. Comparative experiments definitively demonstrate
our method’s significant outperformance over OWL, as detailed in Table 8.

Compare to Pruner-Zero Our DSA approach differs fundamentally from Pruner-Zero [44] across
multiple dimensions including method type, search space, task, strategy, and Input-Output char-
acteristics. We uniquely frame LLM sparsity allocation as an AutoML challenge, opening novel
avenues for enhancing LLM efficiency. Our search space is specifically customized for LLM sparsity
allocation, integrating various operations in innovative ways. Additionally, we develop LLM-specific
acceleration techniques like program checking, making our approach practical for large-scale LLM
optimization.

Compare to existing ayer-wise sparsity approaches. Our method differs significantly from tra-
ditional layer-wise sparsity approaches for neural networks [12, 5, 26, 32]. These methods often
lead to the accumulation of errors across layers, as the pruning decisions for each layer are made
independently without considering the global impact on the model’s performance. Furthermore,
the extensive retraining required on vast datasets further amplifies the challenges associated with
applying these techniques to LLMs. In contrast to our approach, recent work such as BESA [58]
has shifted focus to intra-block sparsity allocation, employing various techniques to optimize the
sparsity distribution within individual blocks or layers. Despite operating at a finer granularity, these
methods fundamentally adhere to a layer-wise pruning paradigm, neglecting the importance of global
sparsity allocation across the entire model. Consequently, the resulting allocation may be locally
optimal within each layer but globally suboptimal, potentially leading to solutions that are stuck in
local optima and fail to fully leverage the potential benefits of non-uniform sparsity distribution. Our
DSA method addresses these limitations by introducing a holistic approach that considers the global
impact of sparsity allocation across all layers. Unlike traditional layer-wise pruning methods that
operate independently on each layer, our method employs an efficient search process to discover an
allocation function that dynamically determines the appropriate sparsity level for each layer based on
its characteristics and contribution to the overall model performance.

15

Table 9: Comparison of Method Characteristics of our DSA and Pruner-Zero.
Method Types Task Search space Input Output Strategy
Pruner-Zero uniform symbolic Pruning unary/binary element-wise element-wise Symbolic

Metric operations weights/gradients score Regression
DSA (ours) non-uniform adaptive allocation pre-process/reduction/ element-wise layer-wise Evolutionary

function transform/post-process score sparsity ratios Algorithm

B Theoretical Understanding of Discovered Allocation Function

To show that the function V = n
√∏n

i=1 |ln (ln(S))|i is stable under small perturbations in the input
S, we can derive an expression for the difference V(S +∆S)− V(S) and analyze its behavior for
small ∆S . We define the following intermediate functions:

g(S) = ln(S)
hi(S) = ln(g(S)) = ln(ln(S))
ki(S) = |hi(S)| = |ln(ln(S))|i

l(S) =
n∏

i=1

ki(S)

V(S) = n
√

l(S) = n

√√√√ n∏
i=1

|ln (ln(S))|i

Using the chain rule for differentiation, we can derive the derivative of V(S) with respect to S as
follows:

dV
dS

=
1

n
n
√
l(S)

1−n dl

dS

=
1

n
V(S)1−n

 n∑
i=1

dki
dS

∏
j ̸=i

kj(S)

=

1

n
V(S)1−n

 n∑
i=1

sgn(hi(S))
dhi

dS
∏
j ̸=i

kj(S)

=

1

n
V(S)1−n

 n∑
i=1

sgn(ln(ln(S))) 1

ln(S)
1

S
∏
j ̸=i

kj(S)

where sgn(ln(ln(S))) is the sign function, equal to 1 for ln(ln(S)) > 0 and -1 for ln(ln(S)) < 0.

Now, we can use Taylor’s theorem to approximate V(S +∆S) around S as:

V(S +∆S) ≈ V(S) + dV
dS

(S)∆S +O((∆S)2)

= V(S) + 1

n
V(S)1−n

 n∑
i=1

sgn(ln(ln(S))) 1

ln(S)
1

S
∏
j ̸=i

kj(S)

∆S +O((∆S)2)

Therefore, the difference V(S +∆S)− V(S) is approximately:

V(S +∆S)− V(S) ≈ 1

n
V(S)1−n

 n∑
i=1

sgn(ln(ln(S))) 1

ln(S)
1

S
∏
j ̸=i

kj(S)

∆S +O((∆S)2)

16

Algorithm 1 Evolutionary Search for Allocation Function Discovery
Input: Search space S, population size P , max iterations T , sample ratio r, top-k k.
Output: Best allocation function A∗.
1: Initialize population P0 with P random allocation functions;
2: for i = 1, 2, . . . , T do
3: Sample pool R ⊂ Pi− 1 with ratio r;
4: Top candidates Gik := GetTopk(R, k);
5: Parent Gp

i := RandomSelect(Gik);
6: Mutant Gm

i := MUTATE(Gp
i);

7: Crossover Gc
i := CROSSOVER(Gp

i , RandomSelect(Gik \Gp
i));

8: Pi := Pi− 1 ∪Gm
i , Gc

i ;
9: Pi := Select-Top-Performers(Pi, P);

10: end for
11: A∗ := argmaxA ∈ PPPL(A(S), ϕ);

For small ∆S, the second-order term O((∆S)2) becomes negligible, and the leading term is linear
in ∆S. The coefficient of ∆S in this leading term is a product of bounded functions of S, namely:

- V(S)1−n, which is bounded for S > 0 - sgn(ln(ln(S))), which is either 1 or -1 - 1
ln(S) , which is

bounded for S > 1 - 1
S , which is bounded for S > 0 -

∏
j ̸=i kj(S), which is bounded for finite S

Therefore, for small perturbations ∆S around any positive value of S , the difference V(S +∆S)−
V(S) is also small, and the function V(S) is stable under such perturbations.

This stability property is desirable for the function V(S), as it ensures that small fluctuations or
measurement errors in the input importance values S do not significantly impact the computed result
V , leading to robust and consistent computations.

C More Experiment Details

Table 10: WikiText-2 perplexity (↓) performance of our searched allocation function with different
initial seeds with the Wanda metric for 70% sparse LLaMA-1-8B.

Seed Searched Allocation Functions perplexity
Seed-1 ABSLOG-VAR-ATAN,ASIN 24.52
Seed-2 ABSLOG,NO_OP-VAR-ATAN,ACOS 23.69
Seed-3 LOG,ABSLOG-GEOMETRIC_MEAN-ACOS,SIGMOID 22.60
Seed-4 LOG,ABSLOG-GEOMETRIC_MEAN-COS,EXP 22.60
Seed-5 MMS,ABSLOG-VAR-ATAN,ASIN 24.61

C.1 More details about Evolutionary Search

We commence our experiments by searching for an optimal allocation function based on the Wanda
pruning method, utilizing perplexity results from the validation set of the LLaMA-1-7B model on
the WikiText2 dataset [41]. We ensure that no search is performed on the test set, maintaining a
fair and unbiased comparison. Subsequently, we directly transfer this discovered allocation function
to different tasks and scenarios without conducting additional searches, aiming to evaluate its
generalizability. To establish a robust and reliable experimental setup, we allocate 20% of the original
dataset’s training set as a held-out test set for the search process. We meticulously confirm that these
validation datasets do not overlap with the test set, preventing any potential data leakage or bias in
our evaluations. During the search phase, we configure the evolutionary algorithm (Algorithm 1) with
a population size of 20, a maximum of 1,000 iterations, a sample ratio of 0.9, and a top-k value of 5.
Throughout this process, we evaluate a total of 50 allocation function candidates within the validation
set, iteratively refining and improving the solutions through the evolutionary mechanisms of crossover
and mutation. By adhering to this rigorous experimental protocol, we ensure the integrity and
validity of our results, enabling a comprehensive assessment of the discovered allocation function’s
effectiveness and its ability to generalize across diverse tasks and datasets.

17

Table 11: WikiText perplexity of pruned LLaVA-1.5(Vicuna-7B) models with different sparsity ratios.
Ratios 10% 20% 30% 40% 50%

Magnitude 6.48 6.68 7.40 9.03 15.03
SparseGPT 6.50 6.75 6.95 7.37 8.26

Wanda 6.47 6.66 6.88 7.26 8.35
Wanda (DSA) 6.41 6.47 6.64 7.03 8.00

Table 12: WikiText perplexity of pruned LLaVA-1.5(Vicuna-13B) models with different sparsity
ratios.

Ratios 10% 20% 30% 40% 50%
Magnitude 5.62 5.68 5.85 6.34 7.65
SparseGPT 5.71 5.82 5.99 6.22 6.88

Wanda 5.73 5.85 5.98 6.20 6.86
Wanda (DSA) 5.62 5.68 5.84 6.07 6.66

C.2 Analysis of Search Robustness

Our evolutionary search algorithm shows robustness to different initialization seeds both theoretically
and experimentally. Theoretically, it maintains robustness by: (1) Starting with a diverse initial popu-
lation of allocation functions to avoid getting trapped in poor solutions. (2) Using genetic operators
like mutation and crossover to explore new regions beyond the initial population. Experimentally, we
evaluated the algorithm across 5 different random initialization seeds when searching for an allocation
function to sparsify LLaMA-1-8B on WikiText-2 to 70% sparsity using the Wanda metric. The results
in Table 10 show: (1) Different seeds discovered different allocation function expressions involving
various operations. Despite this variation, all seeds achieved competitive perplexity performance
in the range of 22.60 - 24.61. (2) Two seeds (3 and 4) converged to the same best perplexity of
22.60 despite different initial conditions. This consistent performance across diverse initializations
demonstrates the robustness of the search aided by the diverse initial population and exploration
via genetic operators. While minor performance variations exist, the overall competitiveness of the
results validates the algorithm’s resilience against initialization biases through effective search space
exploration.

C.3 More Experiments on Multimodal Tasks

Comparison under different sparse ratios. Table 11 and Table 12 presented to showcase the
WikiText perplexity of pruned LLaVA-1.5 (Vicuna-7B) and LLaVA-1.5 (Vicuna-13B) models with
varying sparsity ratios, ranging from 0.10 to 0.50. For the LLaVA-1.5 (Vicuna-7B) model, as the
sparsity ratio increases, the perplexity of the pruned models generally worsens. Our proposed method
outperforms the other approaches across a wide range of sparsity ratios, consistently achieving the
lowest perplexity scores. At the sparsity ratios of 0.20, 0.30, 0.40, and 0.50, our method demonstrates
the best performance, showcasing its robustness and effectiveness in maintaining model quality
under various pruning levels. The trend is similar for the LLaVA-1.5 (Vicuna-13B) model, where
our proposed method outperforms the other pruning techniques across most sparsity ratios. These
results indicate that our proposed pruning approach is particularly adept at preserving model quality,
especially at higher sparsity ratios, where the trade-off between model compression and performance
becomes more challenging. Our method’s consistent superiority across the LLaVA-1.5 (Vicuna-7B)
and LLaVA-1.5 (Vicuna-13B).

D Search Space for Allocation Functions

The search space for allocation functions is organized into four main categories: (1) pre-process
operations Tpre, (2) reduction operations Treduce, (3) transform operations Ttrans, and (4) post-process
operations Tpost. The following subsections provide a detailed list of the operations included in each
category, along with their corresponding mathematical formulas.

18

D.1 Pre-process Operations Tpre

The pre-process operations Tpre are applied to the element-wise scores S to prepare them for the
subsequent reduction step. The operations in this category include:

• NO_OP: No operation is performed, and the input is returned as is.

NO_OP(x) = x

• ABS: Element-wise absolute value operation.

ABS(x) = |x|

• LOG: Element-wise natural logarithm operation.

LOG(x) = ln(x)

• ABSLOG: Element-wise absolute value of the natural logarithm operation.

ABSLOG(x) = | ln(x)|

• POW: Element-wise power operation with a constant exponent.

POW(x, c) = xc

• EXP: Element-wise exponential operation.

EXP(x) = ex

• NORMALIZE: Normalization operation that scales the input to have a mean of 0 and a
standard deviation of 1.

NORMALIZE(x) =
x− µ

σ
where µ is the mean of x, and σ is the standard deviation of x.

• SIGMOID: Element-wise sigmoid function.

SIGMOID(x) =
1

1 + e−x

• TANH: Element-wise hyperbolic tangent function.

TANH(x) =
ex − e−x

ex + e−x

D.2 Reduction Operations Treduce

The reduction operations Treduce aggregate the pre-processed scores into a single per-layer importance
score V . These operations use statistical measures and matrix operations to provide insights into the
distribution and characteristics of the input data. The operations in this category include:

• NO_OP: No operation is performed, and the input is returned as is.

NO_OP(x) = x

• GRAM: Gram matrix operation, which computes the matrix multiplication of the input with
its transpose.

GRAM(X) = X⊤X

• CORREF: Correlation coefficient operation, which measures the linear relationship between
the elements of the input.

CORREF(x) =
x⊤x

||x||22
• DIAGONAL: Diagonal operation, which extracts the diagonal elements of the input matrix.

DIAGONAL(X) = diag(X)

19

• FROBENIUS_NORM: Frobenius norm operation, which computes the square root of the
sum of the squared elements of the input matrix.

FROBENIUS_NORM(X) =

√∑
i,j

X2
i,j

• L1_NORM: L1 norm operation, which computes the sum of the absolute values of the
elements in the input.

L1_NORM(x) =
∑
i

|xi|

• DETERMINANT: Determinant operation, which computes the determinant of the input
matrix.

DETERMINANT(X) = det(X)

• RANK: Rank operation, which computes the rank of the input matrix.

RANK(X) = rank(X)

• GEOMETRIC_MEAN: Geometric mean operation, which computes the nth root of the
product of the elements in the input.

GEOMETRIC_MEAN(x) = n

√√√√ n∏
i=1

xi

• MEAN: Mean operation, which computes the arithmetic mean of the elements in the input.

MEAN(x) =
1

n

n∑
i=1

xi

• VAR: Variance operation, which computes the variance of the elements in the input.

VAR(x) =
1

n

n∑
i=1

(xi − µ)2

where µ is the mean of x.

D.3 Transform Operations Ttrans and Post-process Operations Tpost

The transform operations Ttrans map the per-layer importance scores V to a suitable range for sparsity
ratios, while the post-process operations Tpost ensure that the sparsity ratios ϕ satisfy any required
constraints. The operations in these categories include:

• NO_OP: No operation is performed, and the input is returned as is.

NO_OP(x) = x

• SIN: Sine function.
SIN(x) = sin(x)

• COS: Cosine function.
COS(x) = cos(x)

• TAN: Tangent function.
TAN(x) = tan(x)

• ASIN: Inverse sine (arcsin) function.

ASIN(x) = sin−1(x)

• ACOS: Inverse cosine (arccos) function.

ACOS(x) = cos−1(x)

20

• ATAN: Inverse tangent (arctan) function.

ATAN(x) = tan−1(x)

• EXP: Exponential function.
EXP(x) = ex

• LOG: Natural logarithm function.

LOG(x) = ln(x)

• ABS: Absolute value function.
ABS(x) = |x|

• SIGMOID: Sigmoid function.

SIGMOID(x) =
1

1 + e−x

• TANH: Hyperbolic tangent function.

TANH(x) =
ex − e−x

ex + e−x

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

22

Justification: No Theory Assumptions and Proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23

Answer: [Yes]
Justification: See supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: See Experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [No]
Justification: NO.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Only technical reports.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

25

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: No.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

26

paperswithcode.com/datasets

Answer: [No]
Justification: No.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: NO
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NO.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

