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Abstract

Recently, there has been growing evidence that if the width and depth of a neu-
ral network are scaled toward the so-called rich feature learning limit (µP and its
depth extension), then some hyperparameters — such as the learning rate — ex-
hibit transfer from small to very large models. From an optimization perspective,
this phenomenon is puzzling, as it implies that the loss landscape is consistently
similar across very different model sizes. In this work, we study the landscape
through the lens of the loss Hessian, with a focus on its largest eigenvalue (i.e.
the sharpness), and find that certain spectral properties under µP are largely inde-
pendent of the size of the network, and remain consistent as training progresses.
We name this property Super Consistency of the landscape. On the other hand,
we show that in the Neural Tangent Kernel (NTK) and other scaling regimes, the
sharpness exhibits very different dynamics at different scales. But what causes
these differences in the sharpness dynamics? Through a connection between the
Hessian’s and the NTK’s spectrum, we argue that the cause lies in the presence
(for µP) or progressive absence (for the NTK scaling) of feature learning. We
corroborate our claims with a substantial suite of experiments, covering a wide
range of datasets and architectures: from ResNets and Vision Transformers trained
on benchmark vision datasets to Transformers-based language models trained on
WikiText.

1 Introduction

Recent trends in deep learning research have unmistakably shifted towards an increase in model
sizes, with networks comprising of billions of parameters emerging as the standard [1]. However,
as models enlarge, so does the cost incurred in hyperparameter tuning which has led researchers to
look for ways to scale up the architecture — both in terms of width and depth — while preserving
the optimal hyperparameters (such as the learning rate).

While there exist several ways (a.k.a parametrizations) to scale up the width and depth of the net-
work, not all of them facilitate learning rate transfer. For standard deep learning practices, such as
networks parametrized with LeCun/Kaiming initializations [2, 3], a significant shift in the optimal
learning rate is usually observed as the width and the depth of the model are increased. Similarly,
under the Neural Tangent Kernel (NTK) parametrization [4], which provides theoretical insights
into the behavior of very wide neural networks during training, the optimal learning rate also varies
as the width and depth of the network change. Alternatively, Yang and Hu [5] and Yang et al. [6]
propose the µP framework, designed to maximize the gradient update of the representations of the
intermediate layers (i.e. feature learning) as the width increases. Under µP scaling, and its depth ex-
tension for residual networks Depth-µP [7, 8], it has been empirically demonstrated that the learning
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Figure 1: Top row. Under µP, (left) the sharpness dynamics are largely identical for the whole
training dynamics across different widths, phenomenon that we call Super Consistency. The dashed
horizontal lines are the Edge of Stability thresholds. Center: The loss dynamics are similar early in
training, but accumulate finite-size effects over time, thus violating Super Consistency. Right: The
learning rate transfers from small to large model, suggesting that the loss landscape is Super Consis-
tent across different model sizes. Bottom row. Under NTK parameterization (NTP), the sharpness
dynamics show large discrepancies. Also, the learning rate does not transfer. The architecture is
a two-layer convolutional network trained on CIFAR-10 with data augmentation, where the width
corresponds to the number of filters in the convolution. (See App. J). Other parameters: B = 128,
epochs = 50.

rate transfers across both width and depth. In Vyas et al. [9] it is observed that in feature learning
parametrizations (e.g. µP) the model’s dynamics are consistent across model sizes, but for harder
tasks or longer training times there are progressive and significant deviations across different model
sizes. We give an example in Figure 1 (top center), where the training losses exhibits an increasing
gap. The fact that the learning rate is exactly preserved, however, suggests that some properties
of the landscape do not exhibit these finite-size deviations, and must be precisely preserved across
different model sizes for the whole training trajectory.

Motivated by this, in the present work we identify the notion of Super Consistency to describe the
properties of the neural network’s loss landscape that are preserved across training as a function
of the model width and depth, thus not accumulating finite-size effects. In particular, we analyze
the landscape through the lens of the loss Hessian. It provides insights into the landscape’s local
curvature, and its structure for neural networks has been studied in several works [10–14]. Of
great interest in optimization theory is the sharpness, i.e. the top Hessian eigenvalue, which for
neural networks exhibit a rapid increase (progressive sharpening) towards a threshold called Edge
of Stability (EoS) [15, 16]. However, although a few works have provided early insights [10, 16, 9],
the scaling properties of the sharpness and Hessian’s dynamics under different scaling limits remain
unexplored. In this work we first present evidence of Super Consistency in the Hessian’s largest
eigenvalues, which have been shown to control the curvature along the optimization subspace [17].
We then focus on the sharpness dynamics, and find that the presence (resp. absence) of Super
Consistency correlates well with presence (resp. absence) of learning rate transfer under µP, NTP
and other scaling limits. These results suggest that learning rate transfer happens in super consistent
landscapes, as the geometry of the landscape does not significantly change with the network’s size.

Then, we investigate the role of feature learning in the progressive sharpening phase, and argue that
while in µP feature learning causes progressive sharpening to reach a width-independent sharpness,
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in the NTK regime the progressive lack of feature learning when the width is increased prevents the
Hessian from adapting, and its largest eigenvalue from reaching the convergence threshold.

More concretely:
• We define Super Consistency, and show that under µP and Depth-µP it holds for the largest eigen-

values of the loss Hessian (Fig. 2), which converge to a largely width-independent threshold and
remains there for the rest of training. On the other hand, we show that other quantities, such as the
training loss and the NTK eigenvalues accumulate significant finite-size effects. We quantify the
rate of divergence of these quantities with power law fits (Fig. 3).

• We analyze the relationship between Super Consistency of the sharpness and learning rate transfer
across µP, Depth-µP, NTP and other parametrizations (Fig. 1, Fig. 4 and Sec. B). For µP and
Depth-µP, which do transfer, the sharpness stays super consistent, stabilizing to a threshold (Fig. 1,
top left), which in some cases corresponds Edge of Stability [16], and oscillates around it for a
sustained period of training time. On the other hand, under NTP, Standard Parametrization (SP),
or Depth-µP with multiple layers per residual block, the sharpness dynamics significantly separate
during training for different widths, albeit in different ways. Also, here we do not observe transfer.

• We reproduce some of these results at realistic scale, including ResNets and Vision Transformers
(ViTs) trained on Imagenet and GPT-2 on text data. Also, we analyze the effect of batch size,
learning rate warm-up, and long training times.

• In Sec. 4.1 we show that the progressive sharpening phase is mainly driven by the NTK’s largest
eigenvalue, which is asymptotically fixed to its initial value for NTP, while it evolves at any width
under µP. In Sec. 5 we provide intuition with a theoretical analysis on a two-layer linear network.

Finally, in Sec. 6 we discuss to what extent Super Consistency of these properties explains learning
rate transfer, and the relevance of our results in the existing literature on optimization and scaling
limits. Due to page limitations, we defer the discussion on related work to the appendix (App. A).

2 Background and Definitions

We consider a neural network with residual connections, defined by the following recursive equa-
tions over the layer indexes ℓ ∈ [L]:

hℓ+1(x) = τhℓ(x) +
1√
NLα

W ℓϕ(hℓ(x)), (1)

where N and L are the width and depth of the network, W ℓ ∈ RN×N for ℓ = 1, . . . , L− 1, and τ is
a factor that enables (τ = 1) or disables (τ = 0) the skip branch. We denote the output with f(x) =
1
γW

Lϕ(hL(x)), where WL ∈ R1×N and γ scales the network output. Similarly, α has the role of
interpolating between different depth limit regimes. At the first layer, we define h1(x) = 1√

D
W 0x,

where W 0 ∈ RN×D. All the weights θ = {W ℓ}Ll=0 are initialized independently from N (0, 1) and
we denote with P the total number of parameters. We stress that the fully connected layer can be
replaced with any type of layer (our experiments include convolutional and attention layers). Given
a dataset D = {(xµ, yµ)}|D|

µ=1 of datapoints xµ ∈ RD and labels yµ ∈ R, we train the network with
stochastic gradient descent (SGD) with batch size B and learning rate η ∈ R,

θt+1 = θt − η

B∑
µ=1

∇θL(ft(xµ)), (2)

where the loss L is a twice differentiable loss function. Defining ft := (ft(xµ))µ∈[|D|] ∈ R|D|

to be the vector of network’s outputs at time t, if one considers continuous time, the correspond-
ing gradient descent dynamics in function space dft/dt take the following form [18]: dft

dt =
−Θ(ft)∆(ft), where ∆(ft)i := ∂L(ft(xi))/∂ft(xi), i ∈ [|D|] is the vector of residuals, and
Θ(ft)ij := ⟨∇θft(xi),∇θft(xj)⟩ for i, j ∈ [|D|] is the Neural Tangent Kernel (NTK).

Infinite Width. The parameters γ, α, η ∈ R determine the nature of the scaling limit. If γ =
γ0, η = η0 are O(1) constants with respect to N,L (neural tangent parameterization, or NTP),
then the network enters the NTK regime [4]. Here, in the limit of infinite width, the NTK remains
constant to its value at initialization throughout training, i.e. Θ(ft) = Θ(f0) for all t ≥ 0. Thus,
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the network’s dynamics become equivalent to a linear model trained on the first order term of the
Taylor expansion of the model at initialization [19]. The fact that the NTK is fixed to its value at
initialization is associated with the lack of feature learning of the model in the large width limit. If
γ = γ0

√
N , and η = η0γ

2 (µP, or mean-field parameterization), the features evolve in the limit
(i.e. the NTK Θ(ft) evolves), and the richer model’s dynamics can be described using either Tensor
Programs [5] or dynamical mean field theory [20]. Under µP, Yang et al. [6] show that the learning
rate η0 as well as other hyperparameters transfer across width, in contrast to kernel limits, which we
reproduce for our residual network in Fig. 1.

Infinite Depth. If on top of the µP framework, the residual branches are scaled with α = 1/2
(Depth-µP), then Bordelon et al. [7] and Yang et al. [8] show that the infinite width dynamics also
admit a feature-learning infinite depth limit. Under Depth-µP, the learning rate η0 transfers with
both width and depth. In this paper, we compare NTP and µP regimes as the width is increased, and
show that our results extend to depth-scaling using the Depth-µP model. We summarize the feature
learning parametrizations and report Depth-µP for Adam in Appendix K.
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Figure 2: (a) The top Hessian eigenvalues exhibit a progressive increase to a threshold, with larger
eigenvalues showing precise Super Consistency, while lower eigenvalues show finite-size accumu-
lation at small width in the initial phase of training. (b) Top eigenvalues of the NTK matrix Θ. As
opposed to the top eigenvalues of the Hessian, these exhibit evident finite-size accumulation during
training. Model: 3-layer ConvNet, τ = 0, η0 = 0.7 (optimal). Details in Sec. J.

3 Super Consistency of the Optimization Landscape

In this work, we analyze the landscape through the lens of the preconditioned Hessian γ2Ht, where
Ht := ∇2

θL(θt) :=
∑

µ ∇2
θL(ft(xµ)) ∈ RP×P , as θt evolves with gradient descent. The Hes-

sian is a key object in optimization theory [21], information geometry [22, 23], and deep learning
theory [17, 24, 16, 13] and its relation to optimal step sizes is often used to design second-order
optimizers [23, 25–27]. In Figure 1, we can observe that learning rate transfer correlates with strong
alignment across model sizes of the Hessian top eigenvalue dynamics, a property which we name Su-
per Consistency. The choice of the preconditioning factor γ2 ensures the right scaling with respect
to the width N , as the theory will justify. We also provide an intuition and an extension to Adam in
Appendix. J.1. Unless stated otherwise, every experiment is conducted with the this preconditioning
factor γ2 set according to the corresponding parametrization.

More concretely, Super Consistency refers to when certain aspects of the loss landscape and of the
predictor SN (t) (in this paper SN (t) refers to the NTK’s and loss Hessian’s eigenvalues or the loss
itself) exhibit the following two properties:

• At realistically large N , SN (t) does not deviate significantly from its limit S∞(t) :=
limN→∞ SN (t). This is what is referred to as consistency in Vyas et al. [9].

• SN (t) does not accumulate significant finite-size effects over time, i.e. the curves of SN (t)
and S∞(t) remain close over a sustained period of training.

With respect to the experiment illustrated in Fig. 1, notice that the curves of the loss (center) at
different widths show progressive and significant deviations, thus violating Super Consistency. On
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the other hand, the sharpness dynamics for µP qualitatively exhibit little-to-no deviations. Also,
notice that we assume existence of the limit limN→∞ SN (t). For those parametrizations (e.g. stan-
dard parametrization[6]) that do not have a well-defined limit, SN (t) diverges at large N and Super
Consistency is trivially violated.

We now turn to the analysis of the Hessian spectrum and observe the following:

Observation: in µP (and Depth-µP), Hessian eigenvalues are super consistent along the optimisa-
tion trajectory. Smaller eigenvalues have progressively different dynamics.

In Fig. 2 (a), we train a residual network on CIFAR-10 (a 10 classes image classification task) us-
ing cross-entropy loss, and show super consistent dynamics of three of the top k = 10 eigenvalues.
The choice of k = 10 is guided by Gur-Ari et al. [17], where it is observed that stochastic gradient
descent happens in a small subspace where the gradient lies in the space spanned by top k Hessian
eigenvectors (where k is the number of classes). Thus, our results show that the curvature along the
training trajectory is preserved super consistently at different scales, thus suggesting that the geom-
etry of the landscape across the trajectory is preserved across model size. Lower order eigenvalues
tend to accumulate finite-size effects in the first phase of training, and stabilize at lower thresholds
for smaller width models. We discuss the effect of lower order eigenvalues through the Hessian
trace in Appendix G. Finally, to make sure that Super Consistency holds along the training trajec-
tory regardless of the tiny-subspace assumption, in Appendix I we track the directional sharpness,
that measures the curvature along the gradient direction.

To give a quantitative measure to the finite-size accumulation property, we measure deviations over
time by estimating the following quantity:

g(t) := |SN (t)− S∞(t)|. (3)

When g(t) increases over time (up to fluctuations), Super Consistency is violated. We illustrate this
in Fig. 3 (b, c), where we compute the left hand side of Eq. 3 for the loss L(ft) and the NTK’s
largest eigenvalue λmax(Θ). To estimate the infinite width limit, we use a very large-width model
as a proxy. Notice how under µP the the loss dynamics progressively diverge from the infinite width
model, indicating a finite-size accumulation over time. The same holds for λmax(Θ). To study
the rate of divergence g(t), we fit a power law of the form y = atβ to the observations. A larger
β indicates a higher divergence rate. Notice how β > 0.6 for the loss, and β ≈ 2 for λmax(Θ),
indicating quadratic divergence. In comparison, in Fig. 3 (left), we show Super Consistency of the
sharpness, in that finite-size effects are not accumulated over time (10 epochs). Finally, both in
Fig. 2 and 3 notice how the sharpness is not just converging in width, but in fact width-independent.
This might be due to the fact that the threshold is a stable attractor of the dynamics [28].
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Figure 3: (a) Convergence rate of the sharpness at finite width N to the infinite limit proxy. Note
that the distance approaches 0 as the training time increases. (b) Convergence rate of the loss at
finite width N to the infinite limit proxy. Note that the loss accumulates finite-size effects over time
and the distance to the proxy increases. (c) Convergence rate of the top NTK eigenvalues over time
to the infinite limit proxy. Similar to the loss, this also accumulates finite-size effects over time.
Details: infinite limit proxy is width 4096, model is ConvNet, τ = 0, η0 = 0.7.

4 Super Consistency and Learning Rate Transfer

Sharpness and Edge of Stability. We now focus on the sharpness λ := λmax(γ
2H), defined as

the largest eigenvalue of the Hessian. In the theory of smooth convex [21], nonconvex [29], and
stochastic [30] optimization, the sharpness plays a crucial role in in the guarantees of convergence
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of gradient methods and selection of the optimal step size. For instance, for a quadratic objective,
λt = λ is constant and gradient descent would diverge if the learning rate satisfies η0 > 2/λ,
and training speed is maximized for η0 = 1/λ (LeCun et al. [2], page 28). Beyond this classical
example, which assumes constant Hessian, the descent lemma [21] states that L(θt+1) ≤ L(θt) if
η ≤ 2

β where β := supθ ∥∇2L(θ)∥2, and ∥∇2L(θ)∥2 is the sharpness at θ. When it comes to
deep neural networks, λt is generally observed to increase during training (progressive sharpening):
in the early phase of training it increases [31, 32] and then it decreases close to convergence [10].
Under full batch gradient descent training, the sharpness consistently rises above the EoS threshold
of 2/η0 [16].

Conditions for hyperparameter transfer. The empirical success of hyperparameter transfer cru-
cially relies on the following two observations, constituing a “theoretical puzzle” [8].

1. The optimal learning rate is preserved across widths/depths, indicating very fast conver-
gence with respect to the scaling quantity.

2. The models show consistent improvement in training speed with respect to the scaling quan-
tity (i.e. there is a clear “wider/deeper is better” effect), indicating that the loss dynamics
have not yet converged to the limiting behaviour predicted by the theory.

In this section, we study the role of Super Consistency in learning rate transfer. We focus on the
dynamics of sharpness λmax across training, due to its well-established connection to optimization
theory and step size selection, as well as better computational tractability than the full Hessian
spectrum. We provide extensive studies of other relevant spectral quantities (i.e. Hessian and NTK
eigenvalues) in Appendix G.

Observation: in µP (and Depth-µP), the sharpness λ is super consistent along the training tra-
jectory, while for NTP the sharpness decreases in width. This correlates with presence/absence of
hyperparameter transfer.

In Fig. 1 we train a two-layer convolutional network under the µP and NTP scalings with cross
entropy loss, while keeping track of the sharpness at fixed gradient step intervals. The top row
shows the dynamics of λ. Notice how the sharpness’ behaviour is qualitatively different in the two
parameterizations: in µP it reaches a width-independent value which is close to the EoS threshold of
2/η0. On the other hand, in NTP we observe a progressive diminishing of the sharpness with width,
as previously observed for Mean-Square-Error loss by Cohen et al. [16].

We then study the effect of depth under the Depth-µP model of Eq. 1. In Fig. 4 (left), we show that
the sharpness’ dynamics are also super consistent across depth, although progressively diminishing
from the EoS threshold. This suggests that EoS is not necessary for the learning rate to transfer, but
the consistency of the sharpness dynamics is.

Other feature learning parameterizations. Finally, we study the effect of other feature parameter-
izations that do not exhibit learning rate transfer. In particular, we study the Depth-µP scaling of the
residual branches in residual networks with multiple layers per residual branch - denoted by k (i.e.
each branch has multiple weight matrices and non linearities). A typical example is the Transformer
architecture, which has multiple layers per block in both the attention and fully connected blocks.
This parameterization, although it learns features in the infinite depth limit, it is lazy within each
residual branch [8, 7]. The results are in Fig. 4. Notice how the sharpness dynamics are not super
consistent, in that they accumulate finite-size effects over time. We study other parametrizations,
including those without a stable limit in Appendix B, showing compatible results with those pre-
sented here. The observation that sharpness dynamics exhibit greater consistency compared to loss
dynamics suggests that under µP scaling, although models with larger capacity fit the data faster,
the paths taken by various models through the optimization landscape show a surprisingly uniform
curvature.

4.1 Feature Learning and Progressive Sharpening

We now study the effect of feature learning in the sharpness dynamics. Following the Gauss-Newton
decomposition [25, 12], the Hessian can be decomposed as a sum of two matrices H = G+R, where
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Figure 4: Depth-µP extensions with top row showing transfer plots and bottom row the sharpness
evolution. (a) ConvNets with 1 layer per block exhibit both hyperparameter transfer and sharpness
Super Consistency. (b) ConvNets with 2 layers per block. The model has a lazy behavior within
each block, and no transfer. The sharpness starts accumulating finite-size effects during training,
violating Super Consistency. (c) ViTs also have k > 2 blocks per layer by design, and thus have a
similar behaviour. Details: (a), (b) are trained with SGD, with widths 128 and 32 respectively; (c) is
trained with Adam, with the learning rate scaled by 1/

√
L [8]. See Fig. 22 for convergence rates.

G is the Gauss-Newton (GN) matrix and R depends on the Hessian of the model. For MSE loss,

G =

|D|∑
i=1

∇θf(xi)∇θf(xi)
⊤ = K⊤K and R =

|D|∑
i=1

∇2
θf(xi)(yi − f(xi)),

where K ∈ R|D|×P is a matrix where each row is ∇θf(xi) (i.e. the Jacobian of f(xi)), and yi ∈ R
is the label. One can readily see that the NTK matrix can be written as Θ(fθ) = KK⊤, thus the
NTK and G share the same nonzero eigenvalues. In Figure 5, we show that under µP the sharpness
evolution is dominated by the G matrix consistently across different widths, while for NTP the
sharpness evolution slows down when increasing the width. Since in the limit the NTK matrix is
fixed for NTP, while it evolves with time for µP, these results provide further supporting evidence
for the role of feature learning in the evolution of the hessian. While this argument strictly holds for
MSE loss, it can be generalized to any twice differentiable loss function, albeit with some caveats.
In Appendix D, we generalize the setting, analyze the cross-entropy loss and perform validating
experiments, confirming the conclusions drawn here. Finally, in Appendix H, we show that our
results remains valid in a random feature model, where the NTK matrix is fixed at initialization at
any finite width. In Section 5 we revisit the above claims more precisely in a simplified setting,
providing further intuition on the sharpness dynamics and learning rate transfer.
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Figure 5: Evolution of the top eigenvalues of the Hessian components G and R for a two-layer linear
network trained on random data under MSE loss. The vector field characterizes the evolution during
training for a fixed learning rate. Top: µP. Note how G drives the initial change super consistently.
Bottom: NTP. For wider networks the sharpening phase reduces, since the network is approaching
the limit where the NTK is fixed to its value at initialization.

Large scale experiments. In App. F, we perform more experiments to validate the connection
between the consistency of the sharpness’ dynamics and learning rate transfers across datasets (Tiny-
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ImageNet, Wikitext), architectures (ViT, GPT-2 [33]), and optimizers (Adam [34] and AdamW [35]).
We find these results to be consistent with those in the main text.

End of training dynamics. In App. E.1 (Fig. 12), we study the width dependence of the sharpness
at the late phase of training. It is well-known that for cross-entropy loss, a phase transition happens
where the sharpness starts to decrease [16]. We found that even for µP this transition point is width-
dependent, with a consequent slight shift in optimal learning rates during this late phase. Again,
these results are in line with our results that super consistent sharpness facilitates transfer.

Batch size ablation. We repeat the experiment in Fig. 1 with increasing batch size, observing that
the threshold is reached across all the tested batch sizes, thus not affecting learning rate transfers.
For larger batches, a close-to-EoS threshold is reached across more learning rates. Results are
summarized in Fig. 13 and 14 in App. E.

5 Case study: Two-Layer Linear Network

We now revisit and validate our intuition and empirical findings in Sec. 4 through the lens of a
two-layer neural network with linear activations and L2 loss. Our purpose is to characterize the
dynamics of µP and NTP at the edge of stability through the lens of a simple example that shares
a similar phenomenology with the more complex scenarios observed in the last section (see Fig. 10,
App. C). In particular, the theory justifies the preconditioned Hessian γ2H ∝ NH as the right object
of study when it comes to the sharpness computations (see Prop. 5.3). Also, it provides an intuition
to the width-independent evolution of the sharpness. Our setting is similar to the one leading to the
insightful analysis of EoS in [28, 36]. Compared to these works, we do not limit the analysis to a
single datapoint or to vanishing targets 1.

Notation and assumptions. Consider a dataset of |D| datapoints in D dimensions X ∈
R|D|×D (|D| ≥ D), and labels generated through a latent ground-truth vector w∗ ∈ RD, that is
Y = Xw∗. The neural network we use here is parametrized by weights W 0 ∈ RD×N , W 1 ∈ RN×1,
where N is the width. To simplify the notation in our setting, we name E := W 0 and V := W 1:
f(X) = 1

γ
√
ND

XEV , L(E, V ) = 1
2∥f(X)−Y ∥2. We initialize each entry of E, V i.i.d. Gaussian

with mean zero and variance 1. Recall that γNTP = 1, γµP =
√
N . We train with gradient de-

scent (GD) with a learning rate η = η0γ
2. Empirically, we observed (Fig. 10, App. C) that picking

|D| = D and data X = ID (ID is the D × D identity matrix) is sufficient to track most of the
crucial features of µP / NTP explored in this paper, except the “wider is better” effect which here is
less apparent due to the simple hypothesis class. The loss function reduces to:

L(E, V ) =
1

2
∥w − w∗∥2 , with w :=

1

γ
√
ND

EV. (4)

Finally, we reparametrize the model by defining:

e :=
1

ND
EE⊤ ∈ RD×D, v :=

1

ND
V ⊤V ∈ R≥0. (5)

Note that using a learning rate η0γ
2 when optimizing L is equivalent to using a learning rate η0

when optimizing γ2L. Next, we characterize how e, v evolve through time, and give conclusions for
µP.

5.1 Dynamics and Edge of Stability in Latent Space

We now show that at any value of the width N , under GD on the original network parameters
(E, V ), the dynamics of w, e, v, can be described completely through a self-contained dynamical
system in (1 + D + D2) dimensions. This property is surprising because the original dynamical
system described by GD on the variables E, V lives in N(D + 1) dimensions. Concretely, this
means we can study the Hessian dynamics at different network widths in the same space.

Theorem 5.1 (Evolution Laws). Let (E, V ) evolve with GD at stepsize η = η0γ
2 on the loss of

Eq. 4. The evolution of (w, e, v) is completely described by the following self-contained equation:

1If our dataset has cardinality 1, then the NTK is a scalar. If targets vanish, for 2-layer linear networks with
L2 loss, NTP and µP induce the same loss on the parameters (γ cancels).
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let the + denote updated quantities,

w+ = w − η0(v · ID + e)(w − w∗) +
η20γ

2

ND
(ww⊤ − w∗w

⊤)(w − w∗).

e+ = e+
η0γ

2

ND

[
−2ww⊤ + w∗w

⊤ + ww⊤
∗
]
+

η20γ
2

ND

[
vww⊤ − vw∗w

⊤ − vww⊤
∗ + vw∗w

⊤
∗
]
.

v+ = v +
η0γ

2

ND

[
−2w⊤w + 2w⊤

∗ w
]
+

η20γ
2

ND

[
w⊤ew − 2w⊤

∗ ew + w⊤
∗ ew∗

]
.

While the system above describes the evolution laws (wk, ek, vk) → (wk+1, ek+1, vk+1), the dy-
namics are influenced also by initialization. In Prop. C.1 in the Appendix, we show that the only
dependence in width in the evolutions laws are in the initial conditions.

Last, by analyzing the stability of the dynamical system in Theorem 5.1, we can characterize the
edge of stability using tools from dynamical systems [37]. First of all, we need the following Lemma,
which implies that at the minimizer (w = w∗), the Hessian has the same non-zero eigenvalues as the
NTK Θ, which only depends on e and v.
Lemma 5.2 (GN bound). Let γ2∇2L = G +R be Gauss-Newton decomposition2 (see Sec. 4.1) of
the Hessian for the loss in Eq. 4, with G = K⊤K, where K ∈ RD×(ND+N).
Let us denote the NTK matrix Θ = KK⊤ ∈ RD×D. Then

Θ(E, V ) = e+ v · ID
and

|λmax[γ
2∇2L(E, V )]− λmax[Θ(E, V )]| ≤

√
γ2

ND
∥w − w∗∥2.

We stress that this result implies that evolution of the NTK (i.e. feature learning) goes hand in hand
with the evolution of the sharpness, as we empirically show in Sec. 4.1. We are now ready to state
the result on the sharpness at convergence.
Proposition 5.3 (EoS). Let (E, V ) evolve with GD with stepsize η = η0γ

2 on the loss of Eq. 4
towards a minimizer (E∗, V∗). Assume the corresponding solution in latent space (w∗, e∗, v∗) is

marginally stable 3. Then, λmax[γ
2∇2L(E∗, V∗)] ∈

[
2
η0
, 2
η0

+ η0γ
2∥w∗∥2

ND

]
.

Implications for NTP. Consider γ = 1 in Thm. 5.1. The dynamics of (w, e, v) are width-
dependent. Let us take N → ∞ in the equation above to amplify this effect: the system becomes
linear

w+ = w − η0(v · ID + e)(w − w∗), e+ = e, v+ = v.

While w evolves from w0 as expected from standard NTK theory [4], e, v stay clamped at initial-
ization. Applying Lemma 5.2 with γ = O(1), the Hessian and the NTK have the same largest
eigenvalue at large width (at rate O(

√
N)). This agrees with our intuition, as under NTP the predic-

tor converges to a linear model in the large N limit, and thus R vanishes. Also, this proves that the
sharpness has no dependency on the learning rate in the width limit (we observe this, e.g., in Fig. 1
and throughout all our experiments). This derivation is also in line with our discussion in Sec. 4.1:
we only have sharpening under feature learning, and for the same reason we cannot observe NTP at
the edge of stability as N → ∞ (see stepsize dependency in Prop. 5.3), as also noted empirically
by [16].

Implications for µP. The following result immediately follows by inspection of the equations in
Thm 5.1, combined with Prop. C.1.

Corollary 5.4. Consider µP (γ =
√
N ) and let (E, V ) evolve with GD with stepsize η = η0γ

2

on the loss of Eq. 4. Then, the equations governing the evolution of (w, e, v) (defined in Thm. 5.1)
in latent space have no width dependency – this holds at any finite width and not just at the limit.
Initialization of (w, e, v) is instead width-dependent, yet the error from N → ∞ case scales in
expectation like 1/

√
N .

2Recall: |D| = D in our simplified setting.
3In a dynamical system sense: some eigenvalues of the Jacobian have unit norm, others have norm < 1.
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The corollary shows that µP trajectories at different widths align in the latent space (w, e, v), albeit
with a vanishing perturbation in the initial condition (see Prop. C.1). While NTP’s dynamics for e
and v become slower as the width increases, for µP their evolution laws are width independent. This
implies that if the dynamics converge towards a minimizer for e and v, this will be at the sharpness
value predicted by Prop. 5.3. Under µP, where γ2 ∝ N , this value will be width-independent, as Su-
per Consistency would suggest. We stress that Prop. 5.3 characterizes the sharpness at convergence
(i.e. at infinite time). At finite time, there is still a discrepancy between the λmax(Θ) and the sharp-
ness of the order of the residual term 1/

√
D∥w−w∗∥ (Lemma 5.2). Finally, we stress that Prop. 5.3

prescribes the right scaling for the Hessian by including the preconditioning factor of γ2. Thus, we
do not prove that at any finite time, the whole sharpness trajectory is width-independent, nor we are
estimating converge rates in N at finite time. Indeed, there will be a finite-size dependence coming
from the initial conditions. We leave a precise characterization of the whole sharpness dynamics
across the training trajectory for future work.

6 Discussion & Conclusions

On Feature Learning Parametrizations. In this paper, we have shown how certain properties of
the loss Hessian evolve almost identically across training for different model sizes, and named this
property Super Consistency. We have also compared the sharpness dynamics under different scaling
limits and parameterizations, and related Super Consistency of the landscape to learning rate trans-
fer. Beyond being able to distinguish feature learning (rich) and kernel (lazy) parametrization, we
have also shown how other suboptimal feature learning parametrizations have sharpness dynamics
violating Super Consistency through finite-size accumulations. This seems to suggest that Super
Consistency of the landscape is an important discriminant when it comes to hyperparameter transfer
beyond the rich/lazy regimes. We foresee that our paper could spark further research interest at the
intersection between the scaling limits of neural networks and optimization theory.

On the NTK and Hessian dynamics. In Section 4.1 we have drawn the connection between pro-
gressive sharpening and NTK evolution in the early phase of training. However, Figure 3 (b), shows
how the NTK eigenvalues at different widths accumulate finite-size effects over time and diverge
from each other, while the Hessian eigenvalues are Super Consistent. This suggests that other forces
are at play after progressive sharpening, such as Self-Stabilization [38]. In fact, progressive sharpen-
ing on one hand, and Self-Stabilization on the other, make the stability threshold a stable attractor
of the sharpness dynamics. Gaining theoretical understanding for these complex interactions in the
context of scaling limits is an exciting area of future research.

Design of Step-size Tuners. In most of our experiments, we rely on a constant step size η0. How-
ever, an alternative is to use a step-size tuner, i.e. to automatically choose η0 based on some criteria
of the local landscape [39]. Our results open directions into some possible investigations and design
choices for new step size tuners. For instance, do step size tuners transfer with the width and depth
of the architecture? Given our results on the role of warmup schedule to improve transfer, it seems
plausible to design step size tuners that use EoS results to achieve optimal learning rate transfer
under different parameterizations.

Limitations. One of the underlying assumptions of the argument presented here is that the sharpness
is an important property of the landscape when it comes to step size selection. Indeed, the results
in Cohen et al. [16] establish a more intricate relationship between sharpness and learning rate. We
discuss this in Sec. A.2. Overall, our theory on Super Consistency does not exclude the existence of
other factors that might influence the optimal learning rate. Hyperparameter transfer requires Super
Consistency of the landscape, thus we expect other potential factors to have this property. Finally, we
note that due to the high computational cost of Hessian estimation, we do not perform experiments
at a larger scale than presented here. It would be interesting to see if Super Consistency still holds
at an even larger scale.
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A Related works

Hyperparameter search. Hyperparameter tuning [40] has been paramount in order to obtain good
performance when training deep learning models. With the emergence of large language models,
finding the optimal hyperparameters has become unfeasible in terms of computational resources.
Classical approaches based on grid searching [41] over a range of learning rates, even with improve-
ments such as successive halving [42, 43] require training times on the order of weeks on large
datasets, making them largely impractical. Bayesian optimization [44, 45] methods aim to reduce
the search space for the optimal HPs by choosing what parameters to tune over in the next itera-
tion, based on the previous iterations. A different approach for HP search involves formulating the
problem as an optimization over the HP space and solving it through gradient descent [46–48].

Learning rate transfer. While meta-learning and neural architecture search (NAS) literature pro-
vide methods for finding the optimal learning rate in neural networks, these are still dependent on
the model size and can become costly for larger architectures. Parameter transfer methods have been
studied in the literature, for learning rate transfer across datasets [49], and in the context of reusing
previous hyperparameter optimizations for new tasks [50]. Perrone et al. [51] and Horváth et al. [52]
proposed methods based on Bayesian optimization for hyperparameter transfer in various regimes.
Yang and Hu [5], Yang et al. [6, 8], and Yang and Littwin [53] used the tensor programs framework
to derive a model parameterization technique which leads to feature learning and learning rate trans-
fer through width and depth, termed µP. Bordelon et al. [7] used the DMFT framework [20, 54]
to derive the Depth-µP limit, leading to optimal learning rate transfer across depth is models with
residual connections. For MLPs, Jelassi et al. [55] the depth dependence of the µP learning rates.
Finally, conditions on the networks and its dynamics to achieve hyperparameter transfer have been
analyzed in Yaida [56].

Training on the Edge of Stability. The choice of learning rate has been coined as one of the
important aspects of training deep neural networks [57]. One phenomenon studied in the optimiza-
tion literature is the fact that under gradient descent (GD), neural networks have sharpness close to
2/step size, termed the Edge of Stability (EoS) [16, 38, 58–60], with the extension to Adam being
introduced by Cohen et al. [61]. Iyer et al. [62] study the maximal learning rate for ReLU networks
and establish a relationship between this learning rate and the width and depth of the model. Smith
and Topin [63] and Y. Li et al. [64] study the effect of large initial learning rates on neural network
training. Lewkowycz et al. [15], Kalra and Barkeshli [65], and Kalra et al. [28] show empirically
that the learning rate at initialization can lead the “catapult” phenomena. Song and Yun [36] analyze
the trajectory of gradient descent in a two-layer fully connected network, showing that the initial-
ization has a crucial role in controlling the evolution of the optimization. Finally, early evidence
of Super Consistency was shown in Fig. 3 of Sagun et al. [11], where it was shown that at end of
training the Hessian spectrum is similar across model sizes.

Scaling limits The study of scaling limits for neural network was pioneered by the seminal work
of Neal [66] on the equivalence between infinite width networks and Gaussian Processes, and more
recently extended in different settings and architectures [67–69] and under gradient descent training,
leading to the Neural Tangent Kernel (NTK) [4, 19, 18, 70] or "lazy" limit [71]. The rich feature
learning infinite width limit has been studied using different frameworks, either Tensor programs
[5] or DMFT [20, 54]. The main motivation behind these works is to maximize feature learning as
the width is scaled up. In the two-layer case, the network’s infinite-width dynamics have also been
studied using other tools, such as optimal transport [72, 73] or mean-field theory [74]. The infinite
depth analysis of 1/

√
depth-scaled residual networks was introduced in [75], and later applied to

the Transformers (used here) in [76]. The infinite width-and-depth limit of this class of residual
networks have been studied in Hayou and Yang [77] and Hayou [78] at initialization and in Bordelon
et al. [7], Yang et al. [8] for the training dynamics. Without the 1/

√
depth-scaling, the joint limit

has mainly been studied at initialization [79–84]. Deviations from the infinite dynamics can also
be studied using perturbative approaches [85–87]. Finally, it is worth mentioning that a method to
control and measure feature learning have been recently proposed in Chizat and Netrapalli [88].

Scaling limits and Hyperparameter transfer It is worth mentioning that while for width limits
feature learning is a clear discriminant between NTK and mean-field limits, the issue becomes more
subtle with depth limits. In fact, there exist a family of infinite depth limits that admit feature
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learning (α ∈ [1/2, 1] in Eq. 1, with an appropriate depth correction to the learning rate). [8]
classifies the depth limits in terms of the feature diversity exponent, a measure that quantifies the
diversity between the features of different layers. With respect to this measure, α = 1/2 is the one
that maximizes it. Bordelon et al. [7] try to quantify the finite-size approximation to the infinite
(continuous) model, arguing that hyperparameter transfer is achieved faster for models that have
lower discretization error to the infinite model’s dynamics.

A.1 Learning Rate Transfer and Scaling Limits

Our results on the early training dynamics complement the analysis of Vyas et al. [9] and Kalra et al.
[28] on the consistency of the loss and the sharpness in the first few steps of training. However,
we further extend it, showing how while the loss curves depart later in training (with “wider/deeper
being better"), the consistency of the sharpness’ dynamics is maintained longer in time and does not
accumulate finite-size effects over time. Furthermore, our work explains some of the experimental
results on the lack of progressive sharpening under the NTP parameterization [16] (Appendix H),
by relating it to the lack of feature learning and the consequent absence of hyperparameter transfer.
Our results on the role of feature learning are also compatible with [89], where it is theoretically
shown that the non linear dynamics exhibits progressive sharpening in a simple non linear model.
Our results are also in line with the recent experiments on the evolution of the sharpness for ReLU
MLPs trained with gradient descent under µP [28] (e.g. Figure 1). We extend these results to include
the width (in)-dependence behaviour of the convergent stability point, a crucial aspect for successful
hyperparameter transfer.

Finally, It is worth mentioning that there exist a family of infinite depth limits that admit feature
learning (α ∈ [1/2, 1] in Eq. 1, with an appropriate depth correction to the learning rate). Most
of our experiments focus on models with a single layer per residual block, which exhibit transfer
more consistently under the µP-

√
depth setting (i.e. α = 1/2) and it is considered optimal in terms

of feature diversity across blocks [8]. We adopt the same depth scaling with our experiments with
Transformers — which have multiple layers per block. Under this setting, both Bordelon et al. [7]
(e.g. Fig. 3) and Yang et al. [8] (Fig. 16) show good (albeit at time slightly worse) transfer across
depth with Adam. More broadly, we expect that a scaling limit that admits learning rate transfer
would find a corresponding width/depth-independent behaviour in the sharpness dynamics.

A.2 Sharpness and Optimal Step Size

One of the underlying assumptions to explain why super consistent sharpness causes hyperparameter
transfer is that the sharpness influences the optimal learning rate. Although this is well-established in
classic optimization [2], Edge of Stability tells a story of a more intricate relationship: the choice of
the learning rate also influences the sharpness. Also recent works on step size tuners show evidence
of a more complex interaction in the joint dynamics of step size and sharpness [39], a relation that
still has to be fully understood and could be leveraged to design better step size tuners. However,
the sharpness is still arguably a very good proxy for understanding the trainability of the model
at large learning rates. For instance, Gilmer et al. [90] argue that maintaining a small sharpness
in neural network optimization favors training at large learning rates. Interestingly, in Cohen et al.
[16] (Appendix F) it is shown that choosing the step size as 1/λt at any step is suboptimal. The
reason could be that gradient directions are not aligned with the largest curvature. Alternatively,
one could claim there is another, more sophisticated, functional relationship between sharpness and
the maximum step size allowed. Indeed, the “catapult mechanism”[15] shows the maximum stable
learning rate is carch/λ0, where carch depends on the architecture. On a related note, Gur-Ari et
al. [17] shows that after the first few steps, the gradient direction is aligned with the top Hessian
eigenvectors, underlying once again the importance of the sharpness and the first few eigenvalues in
this phase of training, which we show here to be super consistent (Fig. 2).

B Experiments in the absence of a valid scaling limit

B.1 µP without 1/
√

depth scaling of the residual branches

We first study the effect of increasing the depth in a model without the 1/
√
L-scaling of the residual

branches, which results in exploding activations (and sharpness) as the depth increases. See Figure
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6, where we first show that (top row) there is no learning rate transfer, and there is no consistent
sharpness either. For instance, notice how the sharpness for the model of depth 24 quickly reaches
its EoS value at its optimal learning rate of 0.068 (and larger models, e.g. depth 36 diverge). On the
other hand, for the same learning rate the smaller depth models struggle to reach EoS at the same
speed. This suggests that for the smaller-depth model, the learning rate can be safely increased.
Indeed, the optimal learning rate for the smaller depth model is significantly larger, where the model
reaches the EoS value very fast (optimal lr: 0.53). The larger depth models are not trainable at these
larger learning rates.

In the bottom row of Figure 6, we show that by adding a linear warmup scheduler in the first phase of
training, the network is progressively more trainable at larger step-sizes, and the sharpness reaches
its stability threshold at any width/depth that is trainable [90]. This suggests that the diverging initial
sharpness can be counteracted with initial small learning rates. Also, we notice a better transfer,
indicating that a sustained period of depth-independent sharpness can help learning rate transfer. On
the other hand we do not observe good transfer after the first epoch, which correlates with the fact
that the sharpness is not consistent due to a blow up with depth at initialization.
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Figure 6: µP without 1/
√

depth scaling of the residual branches for ConvNets trained using SGD
on CIFAR10. (Top row): no warmup. (Bottom row): 200 steps of linear warmup. Right column:
sharpness dynamics in the first epoch for the optimal learning rates for the models of depth 3 and
depth 24. Notice how in the first epoch (Left column) there is no learning rate transfer in both
cases. This correlates with the fact that that the training starts at an increasing sharpness with depth,
which causes no consistency the dynamics (and divergent behaviour at large learning rates). Adding
warmup alleviates this issue, allowing the model to reach edge of stability and improve learning
rate transfer (middle column). One step in the sharpness plot corresponds to 2 batches. Parameters:
batch size= 128, epochs= 20, using data augmentation.

B.2 Standard Parameterization (SP) experiments

Following the SP formulation introduced in [5], we analyze the sharpness and learning rate transfer
under this regime in Figure 7. Note that our experiments use a fixed learning rate η. While Yang
and Hu [5] use a width scaled learning rate in order to parameterize SP as a kernel limit in infinite
width, the SP definition that we use does not have a well defined limit and thus diverges as the width
is increased. For more details, we refer the reader to (Yang and Hu [5], Appendix J.3).

B.3 µP - disabling residuals

We also provide training runs of models parameterized with µP, while disabling the residuals. Note
that the models quickly become untrainable under this regime when increasing the depth. This
phenomenon is due to the vanishing curvature experienced by these models, as shown in Figure 8,
which leads to vanishing signal.
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Figure 7: Standard Parameterization (SP) for ConvNets trained using SGD on CIFAR10, for varying
number of learning rate warmup steps. (Left column) No warmup, (Middle column) 1000 warmup
steps and (Right column) 2000 warmup steps. Note that under SP, in the beginning the training starts
from a high curvature, which means that large step sizes would lead to divergent behaviour. Adding
warmup alleviates this issue, allowing the model to reach edge of stability and improve learning rate
transfer. One step corresponds to 10 batches. Parameters: batch size=256, epochs=20, using data
augmentation.
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Figure 8: µP parameterization on ConvNets with residuals disabled (τ = 0) trained on CIFAR10.
(Left) Learning rate transfer plot, showing that under this setting, the optimal learning rate transfers,
but with increasingly larger shifts when increasing the depth due to the vanishing signal. (Right)
Sharpness evolution during training, showing that the dynamics are following a depth independent
trajectory for the optimal learning rate (0.5275). Note that deeper models become much harder
to train when residuals are disabled, motivated by the observation that the the depth 24 model suf-
fers from vanishing curvature at larger learning rates. The spikes in the plot are due to the curva-
ture approaching 0 in log-scale. One step corresponds to 10 batches. Parameters: batch size=256,
epochs=20, using data augmentation.

B.4 µP experiments for full batch GD

In this section, we investigate the effect of µP and on learning rate transfer and sharpness, when
trained with full batch gradient descent. We subsampled 5000 sampled from CIFAR10 in a stratified
fashion (i.e. 500 sampled from each of the 10 classes) and proceeded to train residual ConvNets
under the µP parameterization with GD, following a similar procedure as [16]. Our findings show
that under µP, when using a large enough learning rate, the models are able to achieve edge of
stability, as well as have learning rate transfer. This is empirically shown in Figure 9, where we can
see that while the sharpness has the typical oscillations around the EoS threshold studied by [16], it
still does maintain a width-independent trend during training.
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Figure 9: Residual ConvNets trained using (full batch) GD on a 5000 sample subset of CIFAR10.
(Left) Learning rate transfer plot, showing that the optimal learning rate transfers across different
widths; the slight shift in the transfer plot is due to the oscillations around the EoS threshold seen
in (middle) and (right). (Middle) Sharpness dynamics during training, showing a consistent width
independent dynamic throughout the whole training procedure; dashed line represents 2/η. (Right)
Training loss dynamic during time for the optimal learning rate (0.76), showing the wider-is-better
behaviour of the µP parameterization, as well as the oscillations induced by the EoS regime. Param-
eters: batch size= 256, no warmup, using data augmentation.

C Analysis of a Two-Layer Linear Network

Recall the definition of our model:

L(E, V ) =
1

2

∥∥∥∥ 1

γ
√
ND

XEV − Y

∥∥∥∥2 (6)

0 20 40
iteration

10 5

10 3

10 1

101

103 NTP loss

N = 300
N = 1000

0 20 40
iteration

10 5

10 3

10 1

101

103
P loss

N = 300
N = 1000

Figure 10: Evolution of loss under µP and NTP for the toy example of Section 5: 1
2∥

1√
NDγ

EV −
w∗∥2, where w∗ = 1 ∈ RD, D = 100. This is a minimal example of transfer captured by our theory:
µP trajectories align. Different linestyles correspond to different values of η0 (grid is different for
µP and NTP).

Under the previous assumptions regarding the data, we have that:

∂E =
1

γ2ND
EV V ⊤ − 1

γ
√
ND

w∗V
⊤.

∂V =
1

γ2ND
E⊤EV − 1

γ
√
ND

E⊤w∗.

C.1 Relationship between sharpness and residual, and Gauss-Newton

The following bound leverages a Gauss-Newton decomposition and leads analytical insights sup-
porting Sec. 4.1. Proof of Lemma 5.2, which we restate here.
Lemma (GN bound). Let γ2∇2L = G +R be Gauss-Newton decomposition4 (see Sec. 4.1) of the
Hessian for the loss in Eq. 4, with G = K⊤K, where K ∈ RD×(ND+N).
Let us denote the NTK matrix Θ = KK⊤ ∈ RD×D. Then

Θ(E, V ) = e+ v · ID
4Recall: |D| = D in our simplified setting.
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and

|λmax[γ
2∇2L(E, V )]− λmax[Θ(E, V )]| ≤

√
γ2

ND
∥w − w∗∥2.

The result above is actually more general: it indicates that the eigenvalues of the positive semidefinite
portion of the Hessian G = K⊤K are fully5 characterized by the eigenvalues a smaller matrix
Θ = KK⊤. Furthermore, in our model Θ has a closed form that depends only on the variables e, v.

Proof. The Hessian blocks become:

∂EE =
1

γ2ND
ID ⊗ V V ⊤ ∈ RND×ND (7)

∂EV =
1

γ2ND
E ⊗ V +

1

γ
√
ND

(
1

γ
√
ND

EV − w∗

)
⊗ IN ∈ RND×N (8)

∂V E =
1

γ2ND
E⊤ ⊗ V ⊤ +

1

γ
√
ND

(
1

γ
√
ND

V ⊤E⊤ − w⊤
∗

)
⊗ IN ∈ RN×ND (9)

∂V V =
1

γ2ND
E⊤E ∈ RN×N (10)

Using these definitions, we can separate the Hessian H into a sum of 2 matrices, where one depends
on the residual and one does not.

∇2L(E, V ) =
1

γ2ND

(
ID ⊗ V V ⊤ E ⊗ V
E⊤ ⊗ V ⊤ E⊤E

)
︸ ︷︷ ︸

G(E,V )

+
1

γ
√
ND

(
0 IN ⊗ (w − w∗)

IN ⊗ (w − w∗)
⊤ 0

)
︸ ︷︷ ︸

R(E,V )

(11)

hence our quantity of interest:

γ2∇2L(E, V ) =
1

ND

(
ID ⊗ V V ⊤ E ⊗ V
E⊤ ⊗ V ⊤ E⊤E

)
︸ ︷︷ ︸

G(E,V )

+

√
γ2

ND

(
0 IN ⊗ (w − w∗)

IN ⊗ (w − w∗)
⊤ 0

)
︸ ︷︷ ︸

R(E,V )

,

(12)

where w = 1
γ
√
ND

EV .

Study of G. Note that

G(E, V ) = K⊤K, K⊤ =
1√
ND

(
ID ⊗ V
E⊤

)
. (13)

By an SVD decomposition, it is easy to see that, the nonzero eigenvalues of G = K⊤K are the same
as the nonzero eigenvalues of Θ = KK⊤:

Θ(E, V ) =
1

ND

(
ID ⊗ V ⊤ E

)(ID ⊗ V
E⊤

)
=

1

ND
EE⊤+

1

ND
V ⊤V ID = e+v ·ID ∈ RD×D.

(14)

where e, v are the quantities found in the main paper, and we therefore have

λmax[G(E, V )] = λmax[Θ(E, V )] = λmax

[
1

ND
EE⊤

]
+

1

ND
V ⊤V. (15)

5Simple application of the SVD decomposition.
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Study of R and of the residual. Note that R(E, V ) has both positive and negative eigenvalues,
with spectrum symmetric along the real line. It is easy to show that

λmax[R(E, V )] = −λmin[R(E, V )] =

√
γ2

ND
∥w − w∗∥.

Using the fact that G is Hermitian, we can apply Weyl’s inequality to obtain a bound on the deviation
of the sharpness from the maximum eigenvalue of G in terms of the residual:

λmax[Θ(E, V )]−
√

γ2

ND
∥w − w∗∥2 ≤ λmax[γ

2∇2L(E, V )] ≤ λmax[Θ(E, V )] +

√
γ2

ND
∥w − w∗∥2.

(16)

Which finally yields:

|λmax[γ
2∇2L(E, V )]− λmax[Θ(E, V )]| ≤

√
γ2

ND
∥w − w∗∥2. (17)

C.2 Proof of Thm.5.1

We divide the proof into two parts. In the first part, we study the evolution of the unnormalized
quantities EE⊤, V ⊤V and EV . Then, we study how normalization affects the dynamics.

Part one: dynamics in a smaller space. We go step by step recalling the gradient descent equa-
tions at the beginning of this section.

Dynamics of EV . We have :
E+V+ = (E − η∂E)(V − η∂V )

= EV − η∂EV − ηE∂V + η2∂E∂V

= EV − η0
ND

EV V ⊤V +
γη0√
ND

w∗V
⊤V − η0

ND
EE⊤EV +

γη0√
ND

EE⊤w∗

+

(
η0
ND

EV V ⊤ − γη0√
ND

w∗V
⊤
)(

η0
ND

E⊤EV − γη0√
ND

E⊤w∗

)
= EV − η0

ND
EV V ⊤V +

γη0√
ND

w∗V
⊤V − η0

ND
EE⊤EV +

γη0√
ND

EE⊤w∗

+
η20

N2D2
EV V ⊤E⊤EV − η20γ

N
3
2D

3
2

EV V ⊤E⊤w∗ −
η20γ

N
3
2D

3
2

w∗V
⊤E⊤EV +

γ2η20
ND

w∗V
⊤E⊤w∗

Let us rename
w̃ = EV, ṽ = V ⊤V, ẽ = EE⊤

then the equation becomes more compact:

w̃+ = w̃ − η0
ND

ṽw̃ +
γη0√
ND

ṽw∗ −
η0
ND

ẽw̃ +
γη0√
ND

ẽw∗

+
η20

N2D2
(w̃w̃⊤)w̃ − η20γ

N
3
2D

3
2

(w̃w̃⊤)w∗ −
η20γ

N
3
2D

3
2

(w∗w̃
⊤)w̃ +

γ2η20
ND

(w∗w̃
⊤)w∗

(18)
Note that no quantities appear in the equation for w̃+ besides w̃, ṽ, ẽ. We will see that these do not
appear also in the equations for ṽ, ẽ.

Dynamics of V ⊤V . Let us write down here the equations for −η∂V and −η∂⊤
V for ease of reference:

− η∂⊤
V = − η0

ND
V ⊤E⊤E +

γη0√
ND

w⊤
∗ E

− η∂V = − η0
ND

E⊤EV +
γη0√
ND

E⊤w∗
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we have

V ⊤
+ V+ = (V − η∂V )

⊤(V − η∂V )

= V ⊤V − η∂⊤
V V − ηV ⊤∂V + η2∂⊤

V ∂V

= V ⊤V − η0
ND

V ⊤E⊤EV +
γη0√
ND

w⊤
∗ EV − η0

ND
V ⊤E⊤EV +

γη0√
ND

V ⊤E⊤w∗

+

(
− η0
ND

V ⊤E⊤E +
γη0√
ND

w⊤
∗ E

)(
− η0
ND

E⊤EV +
γη0√
ND

E⊤w∗

)
= V ⊤V − η0

ND
V ⊤E⊤EV +

γη0√
ND

w⊤
∗ EV − η0

ND
V ⊤E⊤EV +

γη0√
ND

V ⊤E⊤w∗

+
η20

N2D2
V ⊤E⊤EE⊤EV − η20γ

N
3
2D

3
2

w⊤
∗ EE⊤EV − η20γ

N
3
2D

3
2

V ⊤E⊤EE⊤w∗ +
γ2η20
ND

w⊤
∗ EE⊤w∗.

Using our notation, equations get yet again simpler:

ṽ+ = ṽ − 2
η0
ND

w̃⊤w̃ + 2
γη0√
ND

w⊤
∗ w̃ +

η20
N2D2

w̃⊤ẽw̃ − 2
η20γ

N
3
2D

3
2

w⊤
∗ ẽw̃ +

γ2η20
ND

w⊤
∗ ẽw∗.

(19)
Note that again no quantities appear in the equation for ṽ+ besides w̃, ṽ, ẽ.

Dynamics of E⊤E. For convenience, recall:

−η∂E = − η0
ND

EV V ⊤ +
γη0√
ND

w∗V
⊤

−η∂⊤
E = − η0

ND
V V ⊤E⊤ +

γη0√
ND

V w⊤
∗ .

we have

E+E
⊤
+ = (E − η∂E)(E − η∂E)

⊤

= EE⊤ − η∂EE
⊤ − ηE∂⊤

E + η2∂E∂
⊤
E

= EE⊤ − η0
ND

EV V ⊤E⊤ +
γη0√
ND

w∗V
⊤E⊤ − η0

ND
EV V ⊤E⊤ +

γη0√
ND

EV w⊤
∗

+

(
− η0
ND

EV V ⊤ +
γη0√
ND

w∗V
⊤
)(

− η0
ND

V V ⊤E⊤ +
γη0√
ND

V w⊤
∗

)
= EE⊤ − η0

ND
EV V ⊤E⊤ +

γη0√
ND

w∗V
⊤E⊤ − η0

ND
EV V ⊤E⊤ +

γη0√
ND

EV w⊤
∗

+
η20

N2D2
EV V ⊤V V ⊤E⊤ − γη20

N
3
2D

3
2

w∗V
⊤V V ⊤E⊤ − γη20

N
3
2D

3
2

EV V ⊤V w⊤
∗ +

γ2η20
N2D2

w∗V
⊤V w⊤

∗ .

Using our notation, equations get yet again simpler:

ẽ+ = ẽ− 2
η0
ND

w̃w̃⊤ +
γη0√
ND

w∗w̃
⊤ +

γη0√
ND

w̃w⊤
∗

+
η20

N2D2
ṽw̃w̃⊤ − γη20

N
3
2D

3
2

ṽw∗w̃
⊤ − γη20

N
3
2D

3
2

ṽw̃w⊤
∗ +

η20γ
2

ND
ṽw∗w

⊤
∗ .

(20)

Part two: Normalization. Consider scalar reparameterizations.

w = αww̃, e = αeẽ, v = αv ṽ

While we gave the form of these normalizers already in the paper, we keep it more general here to
real numbers and show that the right normalizers arise directly.

Reparameterization of EV . We have
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w+ = αww̃
+

= (αww̃)−
η0
ND

ṽ(αww̃) +
γη0αw√
ND

ṽw∗ −
η0
ND

ẽ(αww̃) +
γη0αw√
ND

ẽw∗

+
η20

N2D2
(w̃w̃⊤)(αww̃)−

η20γ

N
3
2D

3
2

(αww̃w̃
⊤)w∗ −

η20γ

N
3
2D

3
2

(w∗w̃
⊤)(αww̃) +

γ2η20
ND

(w∗(αww̃)
⊤)w∗

= (αww̃)−
η0

NDαv
(αv ṽ)(αww̃) +

γη0αw√
NDαv

(αv ṽ)w∗ −
η0

NDαe
(αeẽ)(αww̃) +

γη0αw√
NDαe

(αeẽ)w∗

+
η20

N2D2α2
w

(α2
ww̃w̃

⊤)(αww̃)−
η20γ

N
3
2D

3
2αw

(α2
ww̃w̃

⊤)w∗ −
η20γ

N
3
2D

3
2αw

(αww∗w̃
⊤)(αww̃) +

γ2η20
ND

(αww∗w̃
⊤)w∗

= w − η0
NDαv

vw +
γη0αw√
NDαv

vw∗ −
η0

NDαe
ew +

γη0αw√
NDαe

ew∗

+
η20

N2D2α2
w

ww⊤w − η20γ

N
3
2D

3
2αw

(ww⊤)w∗ −
η20γ

N
3
2D

3
2αw

(w∗w
⊤)w +

γ2η20
ND

(w∗w
⊤)w∗.

We would like αw, αe, αv to be such that on the right-hand side we have no width dependency. To
do that we need (first and second line refer to first and second lines in the equation)

αv ∝ 1

N
, αw ∝ αv

√
N

γ
, αe ∝

1

N
, αw ∝ αe

√
N

γ

αw ∝ 1

N
, αw ∝ γ

N
3
2D

3
2

, γ2 ∝ N

where proportionality can depend on any factor (e.g. d) except of course N . Crucially note that the
equations require γ ∝

√
N . So this can be done for µP but not for NTP (except if d ≃ N ).

Further, we need

αw, αe, αv ∝ 1

N
.

To get that w → w∗, we choose (as in the main paper)

αw =
1

γ
√
ND

=
1

N
√
D

(for µP ), αe =
1

ND
, αv =

1

ND
.

So, we get

w+ = w − η0
NDαv

vw +
γη0αw√
NDαv

vw∗ −
η0

NDαe
ew +

γη0αw√
NDαe

ew∗

+
η20

N2D2α2
w

ww⊤w − η20γ

N
3
2D

3
2αw

(ww⊤)w∗ −
η20γ

N
3
2D

3
2αw

(w∗w
⊤)w +

γ2η20
ND

(w∗w
⊤)w∗

= w − η0vw + η0vw∗ − η0ew + η0ew∗

+
η20γ

2

ND
ww⊤w − η20γ

2

ND
(ww⊤)w∗ −

η20γ
2

ND
(w∗w

⊤)w +
γ2η20
ND

(w∗w
⊤)w∗

Reparameterization of V ⊤V . Recall that

ṽ+ = ṽ − 2
η0
ND

w̃⊤w̃ + 2
γη0√
ND

w⊤
∗ w̃ +

η20
N2D2

w̃⊤ẽw̃ − 2
η20γ

N
3
2D

3
2

w⊤
∗ ẽw̃ +

γ2η20
ND

w⊤
∗ ẽw∗

This implies, after scaling
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v+ = αv ṽ
+

= (αv ṽ)− 2
η0αv

ND
w̃⊤w̃ + 2

γη0αv√
ND

w⊤
∗ w̃

+
η20αv

N2D2
w̃⊤ẽw̃ − 2

η20γαv

N
3
2D

3
2

w⊤
∗ ẽw̃ +

γ2η20αv

ND
w⊤

∗ ẽw∗

= v − 2
η0αv

NDα2
w

w⊤w + 2
γη0αv√
NDαw

w⊤
∗ w

+
η20αv

N2D2α2
wαe

w⊤ew − 2
η20γαv

N
3
2D

3
2αwαe

w⊤
∗ ew +

γ2η20αv

NDαe
w⊤

∗ ew∗

It is easy to see that the choice αw, αe, αv ∝ 1
N in addition with γ =

√
N gives independence of

the RHS to width.

Under our choices

αw =
1

γ
√
ND

=
1

N
√
D

(for µP ), αe =
1

ND
, αv =

1

ND
,

we get

v+ = v +
η0γ

2

ND

[
−2w⊤w + 2w⊤

∗ w
]
+

η20γ
2

ND

[
w⊤ew − 2w⊤

∗ ew + w⊤
∗ ew∗

]
Reparameterization of EE⊤. Let’s substitute the scaled version in the equations

e+ = αeẽ
+

= e− 2
η0αe

NDα2
w

ww⊤ +
γη0αe√
NDαw

w∗w
⊤ +

γη0αe√
NDαw

ww⊤
∗

+
η20αe

N2D2α2
wαv

vww⊤ − γη20αe

N
3
2D

3
2αvαw

vw∗w
⊤ − γη20αe

N
3
2D

3
2αvαw

vww⊤
∗ +

η20γ
2αe

NDαv
vw∗w

⊤
∗ .

With our choices

αw =
1

γ
√
ND

=
1

N
√
D

(for µP ), αe =
1

ND
, αv =

1

ND
.

we get

e+ = e+
η0γ

2

ND

[
−2ww⊤ + w∗w

⊤ + ww⊤
∗
]
+

η20γ
2

ND

[
vww⊤ − vw∗w

⊤ − vww⊤
∗ + vw∗w

⊤
∗
]

C.2.1 Initialization

Proposition C.1. At initialization, as N → ∞, e P→ e∞ := 1
D ID and v

P→ v∞ := 1
D . Moreover,

errors from ∞− initialization scale as 1√
N

in expectation: E|v−v∞|2,E|eij−e∞i,j |2 ≤ 2
ND , ∀i, j ∈

[D]. While for γ = 1 (NTP) w at initialization is in the limit Gaussian with elementwise variance

1/D, for γ =
√
N (µP ) we have w

P→ w∞ := 0, with elementwise variations scaling as 1√
N

:
E|wi − w∞

i |2 = 1
ND , ∀i ∈ [D].

First, note that trivially
E[wi] = 0,

and

E[wi]
2 =

1

γ2ND

N∑
j,j′=1

E[EijEij′VjVj′ ] =
1

Dγ2
.
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Next:

E[eij ] =
1

ND

N∑
k=1

E[EikEjk] =
1

D
δij ,

and

E[e2ij ] =
1

N2D2

N∑
k,k′=1

E[EikEjkEik′Ejk′ ].

For i ̸= j

E[e2ij ] =
1

N2D2

N∑
k,k′=1

E[EikEik′ ]E[EjkEjk′ ] =
1

ND2
(i ̸= j)

For i = j

E[e2ij ] =
1

N2D2

N∑
k,k′=1

E[E2
ikE

2
ik′ ]

=
1

N2D2

∑
k ̸=k′

E[E2
ik]E[E2

ik′ ] +
1

N2D2

N∑
k=1

E[E4
ik]

=
N(N − 1)

N2D2
+

3

ND2

=
N + 2

ND2
(i = j).

So

Var[eij ] =
N + 2

ND2
− 1

D2
=

2

ND2
.

Finally:

E[v] =
1

ND

N∑
i=1

E[ViVi] =
1

D
,

and

E[v2] =
1

N2D2

N∑
i,i′=1

E[ViViVi′Vi′ ] =
1

N2D2

N∑
i ̸=i′

E[V 2
i ]E[V 2

i′ ]+
1

N2D2

N∑
i=1

E[V 4
i ] =

N − 1

ND2
+

3

ND2
=

N + 2

ND2
.

So

Var[v] =
2

ND2
.

C.2.2 Proof of Prop. 5.3

EoS Basic Derivation on quadratic (global linear dynamics). In quadratic potentials 1
2w

⊤Hw,
we are at EOS if and only if η = 2/λmax(H). The proof of this can be translated into a Jacobian
argument on the gradient update map. The update map here is w+ = (I − ηH)w, which has
Jacobian I − ηH . The eigenvalues of this map are in the range [1 − λmax(H)η, 1 − λmin(H)η],
where bounds are tight. For asymptotic stability (i.e. we converge), we have the necessary condition
λmax(H) < 2/η, which guarantees all eigenvalues are in the range (−1, 1). To be at edge of
stability means λmax(H) = 2/η, that is if and only if the Jacobian has eigenvalues in [−1, 1], with
an eigenvalue equal to −1.

Remark: What changes here? We are dealing with a nonlinear transition map where the Jacobian
has explicit O(η2) terms. To be precise in this setting, we need to carefully study the Jacobian and
cannot assume its first-order approximation in η0, i.e. I − η0∇2L, is accurate.
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Proof. We need to compute the Jacobian for the dynamical system G : (w, e, v) → (w+, e+, v+).
Note that – specifically at w = w∗,

∂w+

∂w

∣∣
w=w∗ = ID − η0(e+ vI) +

η20γ
2

ND
w∗ ⊗ w⊤

∗ ,
∂w+

∂e

∣∣
w=w∗ = 0,

∂w+

∂v

∣∣
w=w∗ = 0

(21)

∂e+

∂w

∣∣
w=w∗ = ⋆,

∂e+

∂e

∣∣
w=w∗ = ID2 ,

∂e+

∂v

∣∣
w=w∗ = 0

(22)

∂v+

∂w

∣∣
w=w∗ = ⋆,

∂v+

∂e

∣∣
w=w∗ = ⋆,

∂v+

∂v

∣∣
w=w∗ = 1

(23)

where we do not care about the values with a ⋆ because anyway the resulting matrix is lower-
triangular:

JG(w∗, e∗, v∗) =

I − η0(v∗I + e∗) +
η2
0γ

2

ND w∗ ⊗ w⊤
∗ 0 0

⋆ I 0
⋆ ⋆ I


As in the quadratic setting, to be at the edge of stability, we require this matrix to have eigenvalues
in [−1, 1], with at least an eigenvalue precisely equal to −1. Without loss in generality, we discuss
eigenvalues in descending order for each one of our matrices:

λ1 ≥ λ2 ≥ · · · ≥ λD.

Note that JG(w∗, e∗, v∗) is block lower-triangular, hence its eigenvalues are

λ(JG(w∗, e∗, v∗)) = λ

(
I − η0(v∗I + e∗) +

η20γ
2

ND
w∗ ⊗ w⊤

∗

)
∪ {1}.

The necessary condition for being at the edge of stability is then

λD(I − η0Θ
∗ +

η20γ
2

ND
w∗ ⊗ w⊤

∗ ) = −1.

where Θ∗ := v∗I + e∗. We then ask the question: for which combination of Θ∗ and η0s can this
happen? Note that for any eigenvalue index k (eigenvalues sorted in descending order), η0 ≥ 0 and
Θ∗ ⪰ 0:

λk(I − η0Θ
∗) = 1− η0λD−k(Θ

∗),

Thus:
λD(I − η0Θ

∗) = 1− η0λ1(Θ
∗), λ1(I − η0Θ

∗) = 1− η0λD(Θ∗).

Let us set Γ∗ = I−η0Θ
∗ – a matrix of which we know the eigenvalues. The matrix we want to study

is a rank-1 O(η20) perturbation: Γ∗ + P where P =
η2
0γ

2

ND w∗ ⊗ w⊤
∗ . Intuitively, this perturbation

matrix P does not modify much the eigenvalues.

To start, note that the CourantFischer Theorem [91] implies (see e.g. [92], exercise 10.2.2.):

λD(Γ∗) ≤ λD(Γ∗ + P )

Next, recall Weyl’s inequality for Hermitian (in this case, symmetric) matrices:

λi+j−1(Γ
∗ + P ) ≤ λi(Γ

∗) + λj(P )

Apply this to j = 1, i = D, we get

λD(Γ∗ + P ) ≤ λD(Γ∗) + λ1(P ).

All in all, we proved the bound

λD(Γ∗) ≤ λD(Γ∗ + P ) ≤ λD(Γ∗) + λ1(P ).
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Notice that this implies, given the structure of P ,

λD(Γ∗) ≤ λD(Γ∗ + P ) ≤ λD(Γ∗) +
η20γ

2

ND
∥w∗∥2.

For EoS, we require λD(Γ∗ + P ) = −1. Hence we necessarily need

λD(Γ∗) ∈
[
−1− η20γ

2

ND
∥w∗∥2,−1

]
.

Recall that λD(Γ∗) = λD(I − η0Θ
∗) = 1− η0λ1(Θ

∗), hence the condition is

−1− η20γ
2

ND
∥w∗∥2 ≤ 1− η0λ1(Θ

∗) ≤ −1.

This implies

−2− η20γ
2

ND
∥w∗∥2 ≤ −η0λ1(Θ

∗) ≤ −2.

Dividing everything by η0,

− 2

η0
− η0γ

2

ND
∥w∗∥2 ≤ −λ1(Θ

∗) ≤ − 2

η0
,

hence
2

η0
≤ λ1(Θ

∗) ≤ 2

η0
+

η0γ
2

ND
∥w∗∥2

To conclude, note that λ1(Θ
∗) coincides with the Hessian λ1.

Note on marginal stability (sufficient conditions). At the same time, for stability, we need (sufficient
condition)

−1 ≤ λD(Γ∗ + P ) ≤ λ1(Γ
∗ + P ) ≤ 1.

The condition −1 ≤ λD(Γ∗ + P ) is implied by −1 ≤ λD(Γ∗) (Courant-Fischer). This yields

−1 ≤ 1− η0λ1(Θ
∗),

that is
η0 ≤ 2

λ1(Θ∗)
.

Next, we need λ1(Γ
∗ + P ) ≤ 1. A sufficient condition for this is (again by Weyl)

λ1(Γ
∗) + λ1(P ) ≤ 1,

which implies

λ1(Γ
∗) ≤ 1− η20γ

2

ND
∥w∗∥2.

That is

1− η0λD(Θ∗) ≤ 1− η20γ
2

ND
∥w∗∥2,

i.e.
η20γ

2

ND
∥w∗∥2 ≤ η0λD(Θ∗),

that is

η0 ≤ λD(Θ∗)ND

γ2∥w∗∥2
.

All in all a sufficient condition for marginal stability is

η0 ≤ min

{
2

λ1(Θ∗)
,
λD(Θ∗)ND

γ2∥w∗∥2

}
.

The bound is not vacuous in the case of N ≥ D and different data points.
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Note. What we provided above is a sufficient condition for marginal stability (all eigenvalues in
[−1, 1]). This is derived just for interest of the reader but does not affect the result: indeed, a
sufficient condition can be not tight (as likely the case here). What we instead proved is that if we
are at EoS, than necessarily (i.e., in every instance of the problem) 2

η0
≤ λ1(Θ

∗) ≤ 2
η0

+
η2
0γ

2

ND ∥w∗∥2.

C.3 Theory for Standard Parametrization (SP)

As in µP and NTP, we consider the simplified loss

L(E, V ) =
1

2
∥EV − w∗∥2 (24)

where E ∈ RD×N , V ∈ RN×1. Compared to µP and NTP, normalizing factors appear in the initial-
ization: Eij ∼ N (0, 1/D), Vj ∼ N (0, 1/N), ∀i, j. Gradients are ∂E = EV V ⊤ − w∗V

⊤, ∂V =
E⊤EV − E⊤w∗.

C.3.1 Dynamics equations, same form as µP and NTP

Let us rename w = EV, v = V ⊤V, e = EE⊤, then the dynamics gradient descent with stepsize η

becomes, in (w, e, v) ∈ RD+D2+1 space:

w+ = w − η(v · ID + e)(w − w∗) + η2(ww⊤ − w∗w
⊤)(w − w∗).

e+ = e+ η
[
−2ww⊤ + w∗w

⊤ + ww⊤
∗
]
+ η2

[
vww⊤ − vw∗w

⊤ − vww⊤
∗ + vw∗w

⊤
∗
]
.

v+ = v + η
[
−2w⊤w + 2w⊤

∗ w
]
+ η2

[
w⊤ew − 2w⊤

∗ ew + w⊤
∗ ew∗

]
.

Hence, under SP, (w, e, v) at different widths have width-independent evolution laws in RD+D2+1 –
same happens under µ P. However, in contrast to µP, initialization of this system does not converge
as N → ∞. Hence, actual dynamics across widths are drastically different, as we will see next.

C.3.2 Initialization

First, note that trivially E[wi] = 0, and E[wi]
2 =

∑N
j,j′=1 E[EijEij′VjVj′ ] =

∑N
j=1 E[E2

ijV
2
j ] =

1
D . This makes sense since the forward pass is normalized. However, at initialization:

E[eij ] =
N∑

k=1

E[EikEjk] =
N

D
δij ,

that already includes a dependency on the width N , further: E[e2ij ] =∑N
k,k′=1 E[EikEjkEik′Ejk′ ]. Hence

E[e2ij ] =
N∑

k,k′=1

E[EikEik′ ]E[EjkEjk′ ] =

N∑
k=1

E[E2
ik]E[E2

jk] =
N

D2
(i ̸= j),

E[e2ij ] =
N∑

k,k′=1

E[E2
ikE

2
ik′ ] =

∑
k ̸=k′

E[E2
ik]E[E2

ik′ ]+

N∑
k=1

E[E4
ik] =

N(N − 1)

D2
+
3N

D2
=

N(N + 2)

D2
(i = j).

So Var[eij ] = O
(

N
D2

)
. Finally:

E[v] =
N∑
i=1

E[ViVi] = 1,

E[v2] =
N∑

i,i′=1

E[ViViVi′Vi′ ] =

N∑
i ̸=i′

E[V 2
i ]E[V 2

i′ ] +

N∑
i=1

E[V 4
i ] =

N(N − 1)

N2
+

3N

N2
=

N(N + 2)

N2
.

So Var[v] = O
(

1
N2

)
.
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C.3.3 Conclusion

While the laws (w, e, v) → (w+, e+, v+) are not width dependent in SP, e has initialization of scale
O(N). As such, while the forward pass (i.e. w) is O(1) at initialization, the trajectory of (w, e, v)
under gradient descent starts at a width-dependent point (O(1), O(N), O(1)); hence it is drastically
different at different widths. Further, the NTK (v · ID + e) is also O(N), and this controls the
evolution of the forward pass w: w+ = w− η(v · ID + e)(w−w∗) +O(η2). We therefore validate
also in this simple setting the derivation by [5]: if η = O(1), forward pass of SP blows up after one
step of gradient descent.
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D Connection between the eigenvalues of the Hessian and NTK matrix

Recall that for MSE loss and one-dimensional output f(x), the Gauss-Newton decomposition of the
Hessian H reads:

H = G +R =

|D|∑
i=1

∇θf(xi)∇θf(xi)
⊤ +

|D|∑
i=1

∇2
θf(xi)(yi − f(xi)), (25)

where G is the Gaussian-Newton matrix. This can be generalized to (1) different loss functions and
(2) multidimensional output f(x) ∈ Rk, where k is the dimension of the logits (i.e. the number of
classes in classification problems). Here we notice that in (2) we exactly preserve the connection
between GGN and NTK’s spectra, while in (1) we have an extra term in G that causes a deviation
from the exact correspondence. However, we show that this deviation is largely negligible in practice,
in the sense that G will have the same spectrum as the NTK as training progresses, and G still
dominates R, as one would expect from the experiments in the main text (e.g Fig. 1). We begin by
defining the Gauss-Newton matrix (GN) in the case of cross-entropy loss, following [12]:

G =

|D|∑
i=1

∇θf(xi)H̄L∇θf(xi)
⊤

where now ∇θf(xi) ∈ RkP , and H̄L ∈ RkP×kP is a block-diagonal matrix where the k×k Hessian
of the loss (HL) with respect to model output is repeated P times. Again, we can stack the Jacobian
vectors ∇θf(xi) for all the datapoints into K ∈ R|D|×kP , thus:

G = K⊤H̄LK (26)
For MSE loss, H̄L is the identity, hence the correspondence to the NTK matrix is maintained (same
sharpness). However, for the cross-entropy loss, the first derivative of the loss with respect to the
model output ∆ := ∇f(x)L can be shown to be ∆ = σ(f(x)) − y, where y is the one hot vector
encoding the true classes, and σ(·) denotes the softmax activation. Hence, for the Hessian, we have:

[HL]ij = δijσ(f(x))i − σ(f(x))iσ(f(x))j , (27)
which in general deviates from the identity. However, during training the model increase the proba-
bility of correct predictions, and thus HL gets closer to the identity, thus having an asymptotically
negligible effect on the Gauss-Newton matrix G and its correspondence to the NTK.
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Figure 11: Norm of the residual and top eigenvalue of the GN matrix, where the vector field shows
the evolution of these quantities during training for a fixed learning rate. Left: µP- note that all curves
have a sharpening phase, after which the residual continues to decrease. Right: NTP - Increasing
the width reduces the sharpening, since it approaches the infinite width limit where the NTK matrix
becomes asymptotically constant.

We now perform experiments to test whether G dominates the residual for cross-entropy loss, in
order to support our claim on the connection between feature learning and optimization. We plot the
evolution of the largest eigenvalue of the GN matrix and the residual norm through time in Figure 11
for µP and NTP. The largest eigenvalue of this matrix is computed using a power iteration algorithm
based on the implementation provided in [93]. Note that while for µP we observe a large amount
of progressive sharpening during training, for NTP the sharpness becomes asymptotically constant.
The architecture used for the plot is a convolutional neural network as described in J, trained on
CIFAR-10 for 10 epochs using cross-entropy loss. These experiments confirm the results obtained
for MSE loss in the main text (Fig. 5).
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E Late-time dynamics and batch size ablations

E.1 Late-time dynamics

It was noted in [16] (Appendix C) that with cross-entropy loss (adopted here), the sharpness de-
creases towards the end of training. Here in Fig. 12, we show that while the dynamics are remark-
ably consistent during the first part of training, they diverge during the phase transition in which the
sharpness begins to drop, with wider models starting to exhibit the sharpness drop earlier. Hence, this
transition point is highly width-dependent, and it coincides with a slight shift in the optimal learning
rate. This late phase happens when the classifier maximizes the margin between classes [16], and
can be largely prevented by using data augmentation techniques, as we exemplify in Sec.E.2.
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Figure 12: Late-time dynamics. We study the same setting as in Fig. 26 (for µP), under longer
training time. Notice how when training longer, the sharpness decreases once the model gets closer
to convergence. In this phase, there is a shift of the optimal learning rate, as the bottom row shows.

E.2 The effect of Batch Size and Data Augmentation

Batch Size We test what happens to the sharpness and optimal learning rate when the batch size is
increased. The sharpness is well-known to increase with the batch size, as it is shown also in Cohen
et al. [16] and Jastrzkebski et al. [31].
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Figure 13: Batch size ablation on a three layer convolutional network. The red dashed line indicates
the sharpness of 4/η0, only shown for the largest learning rate where the sharpness rises above the
EoS threshold. Parameters: dataset: CIFAR-10, with data augmentation, epochs = 50. The learning
rate shown above are: (0.32, 0.88, 2.45)

Here we add that under µP, the batch size we tested (128, 256, 512) do not influence significantly the
width-independence phenomenon of the sharpness, as we summarize in Fig. 13. We observe good
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learning rate transfer across all the tested batch sizes. We also observe that the optimal learning rate
increases with the batch sizes by roughly a factor of 2.

Data Augmentation We repeat the same experiment, varying the batch size, but this time we turn
on data augmentation using standard transformations (random crops, horizontal flips, 10-degrees
rotations). The results are in Fig. 14 (to compare with Fig. 13). Notice how data augmentation has
a stabilizing effect on the sharpness, delaying the late phase of training where the sharpness drops,
as analyzed in Sec. E.1 [16, 28]. On the other hand, Thus, under regularization techniques such as
data augmentation, we should expect better hyperparameter transfer.
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Figure 14: Batch size ablation. The red dashed line indicates the sharpness of 4/η0, only shown
for the largest learning rate where the sharpness rises above the EoS threshold. Parameters: dataset:
CIFAR-10, without data augmentation, epochs = 50. The learning rate shown above are: (0.32,
0.88, 2.45)

F Large-Scale experiments, more Datasets and Optimizers

We provide empirical validation of our findings and show that in realistic architectures, such as
Transformers (ViTs, GPT-2) and ResNets, we achieve width (or depth, respectively) independent
sharpness. These results empirically demonstrate that our findings extend to different modalities
and architectures.

F.1 GPT-2 experiments on WikiText

Figure 15 shows the transfer of a GPT-2 model trained on WikiText for 40 epochs with Depth-µP and
Adam, without learning rate scaling. A similar plot but for µP (without the depth parameterization)
is presented in Figure 16. Note that the sharpness exhibits a width independent behaviour.

10 4 10 3

Learning Rate

3 × 100

4 × 100

Tr
ai

n 
Lo

ss

Depth
2
4
8
16

0 10 20 30 40
Epoch

101

102

103
Depth
2
4
8
16
Learning Rate
0.00037
0.0009

Figure 15: GPT-2 trained on WikiText using Adam, with fixed learning rate, width 512. Note
that due to the structure of the transformer block containing k ≥ 2 layers per block, the transfer
is imperfect and thus the sharpness is also not super consistent. Here, in contrast to Depth-µP’s
prescription in Table 1, we do not rescale the learning rate by 1/

√
L. See also App. J.
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Figure 16: Post-LN Transformers (similar to GPT-2) trained with Adam on WikiText-2 parameter-
ized with µP showing learning transfer in width (a) and super consistent sharpness evolution (b).
HPs: 2 layers, 2 heads, 20 epochs, batch size 512, 100 warmup steps, sequence length 35.

F.2 ConvNets Experiments on Larger Datasets and Adam(W)

Figures 17 and 18 show residual ConvNets parameterized with µP and Depth-µP respectively trained
on TinyImagenet, and Figure 19 shows the evolution of a similar model parameterized with µP
trained on Imagenet. Similarly, we study the evolution of residual ConvNets when trained with
Adam on CIFAR-10 with 1 and 2 layers per block in Figure 20. Finally, we show the results of
training residual ConvNets under µP with Adam and AdamW in Figure 21.
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Figure 17: Residual convolutional networks (ResNets) trained on Tiny-ImageNet with stochastic
gradient descent. Left figure shows the learning rate transfers across width in ResNets parameterized
with µP. Right figure shows that for a fixed learning rate, the sharpness becomes width independent
during training. Parameters: batch size 64, epochs 10.
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Figure 18: Residual convolutional networks trained on Tiny-ImageNet with stochastic gradient de-
scent. Left figure shows the learning rate transfers across depth in ResNets parameterized with
Depth−µP. Right figure shows that for a fixed learning rate, the sharpness becomes depth indepen-
dent during training. Parameters: batch size 64, epochs 10.
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Figure 19: Residual convolutional networks (ResNets) trained on ImageNet with stochastic gradient
descent. Left figure shows the learning rate transfers across width in ResNets parameterized with µP.
Right figure shows that for a fixed learning rate, the sharpness becomes width independent during
training. Parameters: batch size 128, epochs 1.
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Figure 20: ConvNets trained with Adam with fixed learning rate on CIFAR-10. (a) One layer per
block, showing that the learning rate transfers and we have sharpness Super Consistency. (b) When
training with k = 2 layers per block, notice that the transfer worsens. While the effect is subtle in
this setting, it translates to the sharpness accumulating finite-size effects during training. Here, we
use the Depth-µP prescription for Adam reported in Table 1.

G Time Evolution of other Spectral Quantities

In this section we present convergence rates for various other spectral quantities of interest. In Fig-
ure 22, we show the same Super Consistency of the landscape in the case of Depth-µP, as exhibited
in the width case in Figure 2. In Figure 23, we present the convergence rate of the largest NTK
eigenvalue, sharpness and loss respectively, as well as the evolution of the Hessian trace during time.
Figure 24 (a) shows the loss curve evolution under µP and NTP regime. Note in Figure 24 (b) and
(c) how the sharpness achieves a near EoS value in the case of µP, whereas for NTP wider networks
have a sharpness that remains closer to initialization. Finally, in Figure 25 we show that in the case
of having multiple linear layers per block, this leads to violations of Super Consistency, and thus
imperfect learning rate transfer. Note that this is the same case as in the GPT-2 plots illustrated in
Figure 15.
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Figure 21: Convolutional networks trained with Adam (top) and AdamW (bottom, weight decay
0.001) on CIFAR-10 parameterized with µP showing learning transfer in width (a) and super consis-
tent sharpness evolution (b). HPs: 20 epochs, 3 layers, no skips, batch size 256, 200 warmup steps.
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Figure 22: Convergence rates with respect to time for the losses and sharpnesses shown in Figure 4.

H Sharpness evolution in Random Feature Models

In this section, we compare the NTP and µP parameterizations to a random feature model, i.e. a
model where we all the weights of the intermediate layers are frozen to their value at initialization,
and only the final readout layer is trained. Crucially, this model does not learn features by construc-
tion for any learning rate and any width. The results are shown in Fig. 26. Notice how the transfer in
the random feature model is achieved only at very large widths compared to µP. However, the trans-
fer is better than in NTP. This is in line with our claim, as under a random feature model increasing
the learning rate does not induce more feature learning, as is the case in NTP.
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Figure 23: (a) Convergence rate of the largest NTK eigenvalue in width at multiple steps during
training.(b) Convergence rate of the sharpness in width at multiple steps during training. Note that
the largest NTK eigenvalue starts width independent for both learning rates, but becomes width de-
pendent during training, as opposed to the sharpness which maintains a width independent dynamic
throughout the whole optimization process (see Fig. 24). (c) Loss convergence rate in width; note
that the loss accumulates finite-size effects during time, exhibiting a wider is better effect during
training. (d) Hessian trace evolution during training at various widths. Unlike the sharpness, the
trace has a width dependent period at the beginning of training, but approaches a width-indepedent
threshold. Details: Residual ConvNet trained on CIFAR10 with cross-entropy loss.
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Figure 24: Early training dynamics in µP (top row) and NTP parameterization (bottom row). (a)
Loss curves. (b): Sharpness dynamics. Notice how for µP progressive sharpening until EoS (black
dashed line) is achieved at any width and with comparable speed, while for NTP the time to EoS
progressively increase with width. Also, the loss curves start to depart from each other as training
progresses, while λ stays at EoS for a more sustained period ot time. (c) Sharpness vs width at
selected time steps. For µP, λ converges very fast in width, while in NTP it diminishes. Other
parameters: architecture: Three-layer convolutional network. Dataset: CIFAR-10, without data
augmentation. B = 128, epochs = 1, learning rate η0 = 0.8 for µP and 8 for NTP. The reported
width is the size of the readout layer.
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Figure 25: Dynamics of some of the eigenvalues of the Hessian (left) and NTK (right) under Depth-
µP scaling with k = 2 layers per residual block. We observe violations on Super Consistency in
both cases. The model is the same as in Fig. 4 (center). This is compatible with absence of learning
rate transfer.
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Figure 26: Learning rate transfer plot (top row) and sharpness dynamics (bottom row) for a three-
layer convolutional network and three different settings. (a) random feature model (only the readout
layer is trained), (b) and (c) correspond to µP and NTP parameterizations, respectively. In random
feature learning, the absence of feature learning prevents the sharpness’ evolution at any width, thus
learning rate transfer coincides with the convergence of the sharpness λ at initialization. Also notice
how for NTP, the progressive sharpening converges to λ = 2/η0 at a much lower speed as the
width increases, in line with the early dynamics reported in Fig. 24. Other parameters: B = 128,
epochs = 20 for the µP/NTP models and 10 for the random feature model, dataset: CIFAR-10,
without data augmentation.

I Directional sharpness

In Figure 27 we provide the evolution of the directional sharpness, which captures the curvature
along the gradient direction during training under µP and Depth-µP respectively in ConvNets. Note
that, similar to the sharpness plots, the directional sharpness, defined as ∇θL⊤H∇θL

∥∇θL∥2 also follows a
width independent trajectory during training. This measure has been used, for instance, in Gur-Ari
et al. [17].

J Experimental details

The experiments were ran on A100 and H100 GPUs, with 80GB VRAM. Each experiment averaged
less than 24 hours total execution time. Unless stated otherwise, we use data augmentations, where
the random transformations are compositions of crops, horizontal flips, and 10-degree rotations.
Additionally, we provide further details on the models used in our experiments and the modifications
we have introduced.
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(b) Gradient-Hessian Alignment
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Figure 27: Convolutional networks trained with SGD on CIFAR-10 parameterized with µP (top) and
Depth-µP (bottom) showing learning transfer (a) and super consistent Hessian-gradient alignment
during training (b, d). HPs: (top) 100 warmup steps, batch size 256, 20 epochs, no residual connec-
tions (bottom) 200 warmup steps, batch size 128, 40 epochs, 1√

L
scaling (both) 6 layers, ReLU.
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Figure 28: Coordinate check in µP.

J.1 Hessian Computation

The implementations of our models are done in PyTorch. For the Hessian measurements, we use
PyHessian [94]. In particular, the library adopts the Power Iteration method for the top k Hessian
eigenvalues (i.e. including the sharpness) and the Hutchinson method for trace computation. Both
methods adopts Hessian vector products to avoid computing the whole Hessian. This reduces the
time complexity from quadratic to linear in the number of parameters. In both algorithms, we fix
the number of iterations and tolerance between consecutive eigenvalue computation to the default
values of 100 and 0.001, respectively. We measure the sharpness on the same fixed batch throughout
training.

SGD Among the equivalent ways of parametrizing then network with µP, we opt for the one that
rescales the learning rate by the width, i.e. η = η0γ

2 = η0N . This effectively sets the EoS threshold
to the width-dependent value of 2/(Nη0). In our plot, we take this scaling difference into account
by computing the eigenvalues of the scaled Hessian γ2H = NH . With respect to learning rate
transfer, such a rescaling makes intuitive sense, as it is η0 that is transferring, and not η.

Adam Adam updates are of the form θt+1 = θt − ηP−1
t+1mt+1, where mt is a momentum vector

computed in the exponential moving average fashion: mt+1 = β1mt + (1− β1)gt+1, where gt are
the gradient of the loss at time t. Pt+1 is a diagonal preconditioner of the form

Pt = (1− βt
1)

[
diag

(√
νt

1− βt
2

)
+ ϵI

]
,
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where νt := β2νt−1+(1−β2)g
2
t , where g2t is the element-wise squared gradients. In the experiments

of this paper, we consider the preconditioned Hessian P−1H , for which it is shown that its largest
eigenvalue converges to the EoS threshold of 2(1+β1)

η(1−β1)
in Cohen et al. [61]. Furthermore, we use

the Adam µP parametrization in Table 8 of Yang et al. [6], which rescales the learning rates of the
hidden layers (i.e. with both input and output dimensions that scale with N ) by 1/N . To account
for this, we further adjust the Hessian by computing H̃ = DP−1H , where D is a diagonal matrix
containing the learning rate for each parameter. We always report spectral quantities of H̃ in the
experiments with Adam. With these modifications, we expect λmax(H̃) = 2(1+β1)

(1−β1)
, which is 38 for

the full-batch case and the default β1 = 0.9. Indeed, this is what we observe in our experiments.
We stress that we expect Super Consistency of this preconditioned Hessian, where in µP different
layers may have a different dependence on the width [6]. Finally, we point out that in the Depth-µP
experiments, we reported the hessian of N/

√
LH . Although this produces results that deviate from

the prescription of Cohen et al. [61], it is sufficient to capture Super Consistency in depth, as each
layer has the same depth-dependence.

J.2 GPT-2

The backbone architecture in the experiments presented on Wikitext is the standard GPT-2 trans-
former introduced by [33], with the Depth-µP parameterization changes presented in [6, 8, 53].
Crucially, the following modifications are introduced by the µP parameterization:

• The attention map is rescaled by 1
dQ

, as opposed to 1√
dQ

• The residual branch is downscaled by 1√
L

, where L is the number of layers in the model

Our implementation is based on the implementation provided by Yang et al. [6], with the addition
of the residual scaling. This uses a different parametrization from the one reported in Table. 1 but
equivalent dynamics, obtainable using their “abc-rule". Similar to the experiments performed on
ViTs, the GPT-2 models are trained using Adam, where the base width is fixed and the depth is
varied (and vice versa for the Depth-µP case). In addition, for the fixed width, increasing depth
experiments, we place the layer normalization layer in front of the residual, following the Pre-LN
architecture, unless stated otherwise, and we do not use any learning rate warmup. Note that in this
setting we also train without the 1

√
L scaling of the learning rate that the theory would prescribe

(summarized in Table 1). This follows following the heuristic prescription of Bordelon et al. [7].
As in their case, we empirically observed that we did not get learning rate transfer if we used the
scaling. In the fixed depth, increasing width case, we use a linear rate warmup, with no decay, and
we use a standard Post-LN GPT-2 style architecture.

J.3 Vision Transformers (ViTs)

The ViT implementation is based on the work of [95] and follows the same tokenization and training
protocol. In order to follow the Depth-µP parameterization, we make the same modifications as
in J.2. The models are trained with Adam.

J.4 ResNet

We use convolutional neural networks with skip connections, with 3 × 3 kernels and stride 1. We
apply pooling after every 3rd layer, followed by a subsequent convolutional layer. Following Bor-
delon et al. [7] and Yang et al. [8], we downscale the residual branches by 1/

√
L. Note that in the

Depth-µP setting we also scale the learning rate as 1
√
L in these experiments.

J.5 Coordinate check for µP

In Figure 28 we check the coordinatewise evolution of the activations at hidden layers within a
ConvNet. Note that the evolution is width independent, as predicted by µP theory.
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K Summary of Feature Learning Parametrizations

Here we summarize the parametrizations used. In Table 1, we report the scaling of the learning rate,
output multiplier γ, depth-scaling exponents α for the residual branches for Depth-µP (both SGD
and Adam) [7, 8, 96]. µP is recovered as a special case, where the depth dependence is ignored.
Notice that this version of Depth-µP for Adam is obtained with a simplification, setting Adam’s ϵ
parameter to zero, where Sign-GD is recovered.

η γ α Non residual block layers

SGD η0γ
2 γ0N

1
2

1
2 1

Adam η0N
− 1

2L− 1
2 γ0N

1
2

1
2 L

1
2

Table 1: Summary of Parametrizations. The non residual block layers represent those trainable
vectors/matrices that are not in a residual block (typically, the first and last ones). For these layers,
we prescribe how to rescale both the weight variance and scaling multiplier.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide extensive evaluations for the claims in the paper on Super Consis-
tency and its relation to learning rate transfer.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion on the limitations of this work. In particular, when
it comes to the link between sharpness and optimal learning rate, and on the computational
resources required to get Hessian, which prevents larger scale experiments.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We explicitly state all the assumption and simplifications, as well as an orga-
nized appendix with all the proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed experimental details section, as well as formulas and
choice of hyperparameters. We will release the code upone acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the code upon acceptance
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have a dedicated experimental details Section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have run the experiments with multiple seeds, and provided error bars in
the plots (confidence intervals given by the Matplotlib Python library)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this info.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are conform with the code
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No societal impact for this largely theoretical work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not pose such risks, and only use public data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we provide info and citations for the packages that we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: not applicable.
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
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