
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Beyond Fine-Tuning: A Systematic Study
of Sampling Techniques in
Personalized Image Generation

Anonymous authors
Paper under double-blind review

Abstract

Personalized text-to-image generation focuses on creating customized
images based on user-defined concepts and text descriptions. A good
balance between learned concept fidelity and its ability to be generated
in different contexts is a major challenge in this task. Modern
personalization techniques often strive to find this balance through
diverse fine-tuning parameterizations and enhanced sampling methods
that integrate superclass trajectories into the backward diffusion process.
Improved sampling methods present a cost-effective, training-free way
to enhance already fine-tuned models. However, outside of fine-tuning
approaches, there is no systematic analysis of sampling methods in
the personalised generation literature. Most sampling techniques are
introduced alongside fixed fine-tuning parameterizations, which makes it
difficult to identify the impact of sampling on the generation outcomes
and whether it can be applied with other fine-tuning strategies. Moreover,
they don’t compare with the naive sampling approaches, so the intuition
of how the superclass trajectory affects the sampling process remains
underexplored. In this work, we propose a systematic and comprehensive
analysis of personalized generation sampling strategies beyond the fine-
tuning methods. We explore various combinations of concept and superclass
trajectories, developing a deep understanding of how superclass influence
generation outputs. Based on these results, we demonstrate that even a
weighted mix of the concept and superclass trajectory can establish a strong
baseline that enhances the adaptability of concepts across different contexts
and can be effectively transferred to any training strategy, including
various fine-tuning parameterizations, text embedding optimization, and
hypernetworks. We analyze all methods through the lens of the trade-
off between concept fidelity, editability, and computational efficiency,
ultimately providing a framework to determine which sampling method
is most suitable for specific scenarios.

1 Introduction

Diffusion-based text-to-image generation models (Ramesh et al., 2022; Saharia et al.,
2022; Rombach et al., 2022a), trained on large datasets, have recently achieved impressive
results in generating photorealistic images from textual prompts. Despite their advanced
performance, these models are limited when it comes to generating user-defined concepts,
which are difficult to describe accurately with text alone. This limitation has led to a
growing interest in the field of subject-driven text-to-image generation (Ruiz et al., 2023;
Gal et al., 2022). In this task, given a small image dataset (3-5 images) of a given subject, we
want to introduce the knowledge of this subject into the pre-trained text-to-image diffusion
model and learn to generate it in different contexts described by textual prompts.
Simultaneously preserving the identity of the concept and the ability to adapt it to the
new context is a difficult balance to achieve and the main challenge in personalized image
generation. On the one hand, the model must generate high-fidelity images of the concepts,
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even if it has never encountered them during the pre-training phase. On the other hand, the
model should not overfit in order to retain the ability to follow different textual descriptions
of the scenes.
To achieve a better balance between concept fidelity and editability, modern methods
introduce a variety of training process improvements. These include fine-tuning
parameterizations (Ruiz et al., 2023; Gal et al., 2022; Kumari et al., 2023; Han et al., 2023;
Tewel et al., 2023; Qiu et al., 2024), regularizations (Ruiz et al., 2023; Kumari et al., 2023),
and encoder-based paradigms (Wei et al., 2023). For more detailed review see Appendix A.
Another direction is to utilize sampling methods applied after training to enhance an already
fine-tuned model. The main idea of such methods (Zhou et al., 2023; Gu et al., 2024) is
to combine the sampling trajectories of prompts with concept and superclass tokens (e.g.,
for a dog concept we mix trajectories for two prompts: ”a purple V*” and ”a purple dog”,
see Figure 1). The sampling-based approaches can provide a cost-effective, training-free
way to improve the balance between concept identity and its editability. While fine-tuning
and sampling methods are two distinct strategies to addressing the same issue, current
research often does not distinguish between these methodologies. As an example, current
works (Zhou et al., 2023; Gu et al., 2024) introduce complex sampling procedures alongside
fixed fine-tuning, leaving unclear the impact of sampling on generation results and whether
it can be integrated with other fine-tuning strategies. Furthermore, they do not compare
the proposed strategies against naive sampling approaches, resulting in a lack of insight into
how superclass trajectories influence the sampling process. In summary, the personalized
generation sampling process remains underexplored, with three main open challenges: (1)
The impact of superclass trajectory integration is under-researched, as previous work has
not fully elucidated how the incorporation of superclass trajectories affects the generation
output. (2) Simple sampling baselines are often overlooked, and their potential remains
undervalued. (3) Limitations imposed by fine-tuning strategies; current sampling methods
are almost always tied to specific fine-tuning schemes, which restricts the ability to study
sampling independently and hampers fair comparisons between different approaches.
To address these challenges, we propose several contributions aimed at advancing
the understanding and application of sampling strategies in personalized text-to-image
generation. Our work explores the impact of sampling methods beyond fine-tuning
strategies, establishing simple yet powerful baselines. Specifically, we make the following
key contributions:
1. A systematic and comprehensive analysis of how superclass trajectories
influence the sampling process. We investigate various combinations of concept and
superclass trajectories, including switching, mixed, and masked sampling techniques, along
with their hybrid variants. We carefully ablate hyperparameters across all methods, assess
their importance, and retain only the most impactful ones.
2. A finetuning-independent evaluation of various sampling strategies. We
compare various sampling methods, including naive approaches, applied to a fixed fine-tuned
model to analyze the impact of the sampling beyond the fine-tuning strategy. Moreover,
we demonstrate how these strategies can be applied effectively across different fine-tuning
methods, including various fine-tuning parameterizations, text embedding optimization, and
hypernetworks.
3. A framework for selecting the most suitable sampling method for specific
generation tasks. We perform a fair comparison of sampling methods based on trade-offs
between concept fidelity, adaptability, and computational efficiency and build a framework
for determining the most appropriate sampling method for specific scenarios.

2 Preliminaries

Stable Diffusion Model As a base model in this work, we utilize Stable
Diffusion (Rombach et al., 2022b), one of the most widely used diffusion model in research.
Stable Diffusion is a large text-to-image model that is trained on pairs (x, P ), where x is an
image and P is a text prompt describing it. Stable Diffusion includes the CLIP (Radford
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et al., 2021) text encoder ET , which is used to obtain the text conditional embedding
p = ET (P ), the encoder E, which transforms the input image into the latent space z = E(x),
the decoder D, which reconstructs the input image from the latent x ≈ D(z), and a UNet-
based (Ronneberger et al., 2015) conditional diffusion model εθ. The denoising process
is performed in the latent space. With a randomly sampled noise ε ∼ N(0, I), the time
step t and the coefficients controlling the noise schedule we obtain a noisy latent code:
zt = αtz + σtε. The goal of UNet εθ is to predict the noise from the noisy latent:

min
θ

Ep,z,ε,t

[
∥ε − εθ(zt, p)∥2

2

]
(1)

During inference, a random noise zT ∼ N(0, I) is denoised step by step to z0, using DDIM
sampling Song et al. (2020): zt−1 = DDIM(t, zt, εθ(zt, p)), t = T, . . . , 1. The resulting image
is obtained through the decoder as D(z0).
Classifier-free guidance A commonly used technique to improve the generation quality
of conditional diffusion models post-training is classifier-free sampling (Ho & Salimans,
2022). Given the current noisy sample zt and condition p, the diffusion model outputs the
predictions of the conditional noise εθ(zt, ET (p)) and unconditional noise εθ(zt) (conditioned
on null text). Then an updated prediction

ε̃θ(zt, p) = εθ(zt) + ω(εθ(zt, p) − εθ(zt)) (2)
will be used to sample zt−1, where ω is a guidance scale.
Finetuning for Personalized Text-to-Image Generation Let C = {x}N

i=1 be a small
image set of images with a specific concept. A special text token V ∗ can be bind to it, using
the following fine-tuning objective:

min
θ

Ez=E(x),x∈C,ε,t

[∥∥ε − εθ(zt, pC)
∥∥2

2

]
(3)

where pC = ET (P C) is a text embedding of the prompt P C =”a photo of a V*”

3 Methods

Given a model εθ, already fine-tuned by (3) for a specific concept, we can identify two
distinct sampling approaches, each maximizing one of the objectives: concept fidelity or
editability:

Sampling with concept: ε̃θ(zt, pC) = εθ(zt) + ω(εθ(zt, pC) − εθ(zt)) (4)
Sampling with superclass: ε̃θ(zt, pS) = εθ(zt) + ω(εθ(zt, pS) − εθ(zt)) (5)

Here, pC represents a concept prompt embedding (for example, ”a V* with a city in the
background”) and pS indicates a superclass prompt embedding (”a backpack with a city in
the background”) where the concept token V ∗ is replaced by a superclass token (”backpack”).
The extended fine-tuning of the model εθ enhances its ability to accurately reproduce the
concept generated via (4). However, this improvement comes at the cost of overlooking
the contextual information supplied by the prompt P C (see Figure 1a). Conversely, the
generation via (5) ensures the highest alignment with the text prompt, though at the expense
of preserving the concept’s identity (see Figure 1b).
This raises the question of whether we can integrate the two sampling strategies (4) and (5)
to obtain the optimal balance between the high fidelity of the learned concept identity and
its adaptability to various contexts.

3.1 Mixed sampling

One reasonable approach for incorporating superclass into the generation process (Zhou
et al., 2023) is to modify the sampling strategy by adding guidance to the superclass prompt
(see Figure 1c):

ε̃MX
θ (zt, pS , pC) = εθ(zt) + ωs(εθ(zt, pS) − εθ(zt)) + ωc(εθ(zt, pC) − εθ(zt)) (6)
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(b) Sampling with superclass (d) Switching sampling

(c) Mixed sampling(a) Sampling with concept

"a purple V*" decoder"a purple dog"

Figure 1: Visualization of Different Sampling Strategies. (a) Usual sampling with
concept reproduces the concept but does not align closely with the text prompt. (b)
Generation with superclass effectively captures the context derived from the prompt but
produces a random superclass representative (e.g., dog). (c-d) Mixed and Switching
sampling strategies enhance context preservation while maintaining the identity of the
concept.
By adjusting the ratio between the concept guidance scale ωc and the superclass guidance
scale ωs, we can either amplify or diminish the influence of the concept or superclass, thus
varying the trade-off between concept and context fidelity. In Figure 2, you can observe
how the generated output alters with increasing superclass influence. For instance, in the
teapot example, as we raise the superclass guidance scale, the context, which was initially
poorly represented through sampling with the concept, gradually becomes more accurate.
However, excessive superclass influence may result in a loss of concept identity preservation,
as illustrated in the dog example.

3.2 Switching sampling

Another solution of how to combine the superclass sampling trajectory with the concept
sampling trajectory is to condition several steps at the superclass prompt embedding pS ,
then at the switching step tsw switch to the concept prompt embedding pC (see Figure 1d).
In this case (2) will be rewritten in the following form

ε̃SW
θ (zt, pS , pC , tsw) = εθ(zt) +

{
ω(εθ(zt, pS) − εθ(zt)), t > T − tsw

ω(εθ(zt, pC) − εθ(zt)), otherwise (7)

By increasing the switching step tsw, we can amplify the influence of the superclass and thus
improve context preservation. Up to 10 steps can effectively recover context that has been
poorly generated through standard sampling with concept, as demonstrated in the teapot
example in Figure 2. Nonetheless, this strategy may result in notable degradation of the
concept’s identity. The effect of the superclass can be so intense that the concept loses its
original attributes and takes on excessive characteristics from the superclass, as evidenced
by the dog example in Figure 2.
This sampling procedure is similar to Photoswap Gu et al. (2024) approach adapted to
the personalization task. The main difference is that in switched sampling we take the
noise predictions entirely from the superclass trajectory for the first tsw steps, whereas in
Photoswap only the self- and cross-attention maps and features are taken from the superclass
for the first tsw steps. However, as we show in the Section 4, the results of these two methods
are almost indistinguishable.
The aforementioned methods can be flexibly combined, we refer to this type of sampling as
multi-stage sampling:

ε̃MS
θ (zt, pS , pC) = εθ(zt) +

{
(ωs + ωc)(εθ(zt, pS) − εθ(zt)) t > T − tsw

ωs(εθ(zt, pS) − εθ(zt)) + ωc(εθ(zt, pC) − εθ(zt)) otherwise
(8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

This combination enables a greater influence of the superclass on the generated output and
enhances alignment with the text prompt. However, it is important to consider that as the
influence of the superclass increases, the more the concept’s identity is lost.

3.3 Masked sampling

Sampling with a superclass prompt hinders the preservation of concept identity, whereas
sampling with a concept prompt disrupts contextual adaptation. To address this challenge,
restricting the image regions impacted by each sampling approach could be beneficial. This
can be effectively achieved through masking.
Suppose at each diffusion step we could obtain a concept mask Mt, then we can utilize it in
the mixed sampling. Specifically, we apply this mask to the concept trajectory, ensuring it
only influences relevant regions:

εM
θ (zt, pS , pC) = εθ(zt) + ω(εθ(zt, pC) − εθ(zt)) ⊙ Mt + ω(εθ(zt, pS) − εθ(zt)) ⊙ Mt (9)

Moreover, to enhance the alignment between regions inside and outside the mask, and to
gently amplify the influence of the superclass within the mask—especially in cases where
prompts alter the object’s appearance (like color or outfit)—we can apply mixed sampling
within the mask:

εM
θ (zt, pS , pC) = εθ(zt) + ωc(εθ(zt, pC) − εθ(zt)) ⊙ Mt

+ ωc(εθ(zt, pS) − εθ(zt)) ⊙ Mt

+ (ωc + ωs)(εθ(zt, pS) − εθ(zt)) ⊙ Mt

(10)

The generation process begins with mixed sampling for a limited number of steps, thereby
enhancing the robustness of mask generation. Subsequently, we apply masked sampling as
described in (10), using the concept mask Mt(q). This mask is derived by averaging the
cross-attention maps associated with the concept identifier token across all U-Net layers and
binarizing it using a threshold determined by the quantile q.

ε̃M
θ (zt, pS , pC) =

{
ε̃MX

θ (zt, pS , pC , ω0
c , ω0

s), t > T − tsw

εM
θ (zt, pS , pC , ωc, ωs, q), otherwise, (11)

where εM
θ (zt, pS , pC , ωc, ωs, q) is computed as in (10).

Equation 11 summarizes full masked sampling algorithm. Increasing the quantile q reduces
the area influenced by the concept, thereby expanding the region impacted by the superclass
(see Appendix E) and enhancing the influence of the context, as illustrated in Figure 2.

3.4 Other approaches

ProFusion The main contribution of the Profusion (Zhou et al., 2023) sampling method
is a novel technique to enforce the concept preservation combined with Mixed Sampling. A
sampling step in this approach consist of the following stages: (1) we predict xt → x̃t−1
through the usual diffusion backward sampling process with concept (2) after that we make
a forward diffusion step x̃t−1 → x̃t (3) finally, we again make a backward step with the
Mixed sampling x̃t → xt−1. The first two steps define Fusion Step and have a special
hyperparameter r that controls its intensity(e.g. the influence on the result). In case r = 0
we get Mixed sampling.
Photoswap In these method author propose to replace self-attention features, cross-
attention maps and self-attention maps in the concept trajectory with those from the
superclass during several initial steps. Thus, the method has three hyperparameters: (1)
tSF the number of initial steps during which the self-attention features are replaced, (2)tCM

the same parameter for cross-attention maps, and (3) tSM for self-attention maps.

3.5 Evaluation protocol for sampling techniques

The study of sampling methods involves several key steps.
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Figure 2: Effects of Superclass Influence on Different Sampling Methods. For
Mixed Sampling, the influence is adjusted by varying the superclass guidance scale ωs =
[1.0, 3.5, 5.0] with ωc = 7.0 − ωs. For Switching Sampling, we vary the switching step
tsw = [3, 7, 20] . For Masked Sampling, the mask is modified by altering the thresholding
quantile q = [0.3, 0.5, 0.9].
The first step is to select a fundamental fine-tune model on the basis of which we can compare
different sampling techniques. For each model, we propose constructing a complete Pareto
front of the Mixed sampling. We chose Mixed sampling as our baseline because it is the
simplest efficient method, characterized by a single hyperparameter.
It is essential to select a model whose Pareto frontier exhibits a sufficiently large length;
this allows for a clearer distinction between the varying parameters. Additionally, this front
should lie within the optimal balance between concept fidelity and editability comparing to
other fine-tuning methods. By doing so, we can examine sampling not only in scenarios
where the model performs poorly but also ensure that sampling does not undermine
performance in cases where the model excels.
Once the base model is chosen, we fix it and proceed to compare different sampling
techniques. For each method, we demonstrate its behaviour at different hyperparameter
values. We illustrate the optimal points with generation examples and prove our findings
with user study.

4 Experiments

Figure 3: Mixed sampling Pareto
frontiers for different fine-tuning
methods.

Dataset For evaluation, we use the
Dreambooth (Ruiz et al., 2023) dataset.
It contains 30 concepts of different categories,
including pets, interior decoration, toys,
backpacks, etc. For each concept, we used
25 contextual text prompts, which include
accessorisation, appearance and background
modification. For each concept we generate
10 images per prompt. In total, there are 750
unique concept-prompt pairs and a total of 7500
images for robust evaluation.
Evaluation Metrics To estimate the concept
identity preservation we use the Image Similarity
(IS) between real and generated images as in
(Ruiz et al., 2023). Higher values of this metric
usually indicate better subject fidelity. However,
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it should be noted that the more the generated images are aligned with the contextual
prompt, the less they resemble the original images. So, even if the identity of the concept is
perfectly preserved the metric will be lower. To estimate the alignment between generated
images and contextual prompts (TS) we calculate the CLIP similarity of the prompt and
generated images (Ruiz et al., 2023; Gal et al., 2022).
Selecting base fine-tuning model In the initial phase, it is essential to choose a
foundational fine-tuning model to facilitate the comparison of different sampling methods.
To this end, we train five distinct models for each concept, implementing diverse fine-tuning
parameterizations (Ruiz et al., 2023; Han et al., 2023), optimizing text embeddings (Gal
et al., 2022; Kumari et al., 2023), and leveraging a pre-trained hypernetwork (Wei et al.,
2023). A comprehensive description of the model training and inference procedures can be
found in Appendix B.
For each model, we conduct a full evaluation of the Mixed sampling by varying the parameter
ωs within the range of 0 to 7.0, while deriving ωc as 7.0 − ωs. Figure 3 illustrates the Mixed
sampling Pareto frontiers for all aforementioned methods. The method shows the expected
behaviour, as the superclass guidance scale increases the text similarity improves as well,
but the more diverse generation we get the more we lose on the image similarity. Notably,
the results indicate that the Mixed sampling method significantly enhances text similarity
across all models. Furthermore, for each model, it is feasible to select a value for ωs such that
image similarity remains relatively unchanged, while text similarity is markedly improved.
The Pareto frontier obtained from the SVDiff model achieves a favorable balance between
text and image similarity; therefore, this model has been chosen for subsequent evaluations
of various sampling methods.
Computational efficiency of sampling methods Switching sampling maintains the
same number of U-Net calls and batch size as typical inference with the concept. In contrast,
Mixed, Multi-stage, Masked, and Photoswap sampling require a batch size that is twice as
large. Lastly, ProFusion necessitates the same batch size as Mixed sampling but performs
twice as many U-Net inferences compared to all other sampling methods.
Proposed sampling techniques analysis In Figure 4, the Pareto frontiers for Mixed
and Switching sampling are illustrated. For the Switching sampling, the curve is obtained
by varying the switching step tsw = [1, 3, 5, 7, 10, 20, 30, 40]. We observe that the Switching
sampling curves lie below the Mixed sampling curve and exhibit lower values of image
similarity. This indicates that Switching sampling impacts concept identity more negatively.
Additionally, we evaluated Multi-stage sampling with various hyperparameters. In Figure 4,
each Multi-stage sampling curve is generated by fixing the switching step while varying the
superclass guidance scale ωs = [1.0, 3.0, 5.0]. The plots reveal that the curves for Multi-stage
sampling fall between the Mixed and Switching Pareto Frontiers. Only the curves with high
values of the switching step cross the Pareto frontier of Mixed sampling; however, these
points correspond to very low values of image similarity, thereby compromising concept
identity.
Figure 5 presents the Pareto frontier for different Masked sampling hyperparameters. For
all curves, we fixed the following hyperparameters: tsw = 3, ωs = 3.5, ωc = 3.5, as these
parameters correspond to the optimal point for Multi-stage and Mixed samplings. Each
curve for Masked sampling is derived by varying the quantile q = [0.3, 0.5, 0.7, 0.9], which
controls the mask binarization threshold. Some points on these curves cross the Mixed
sampling Pareto frontier, indicating an optimal balance between image and text similarity.
However, this result is unstable, as the curves exhibit chaotic behavior, suggesting that
the generation results are difficult to predict and that the methods require computationally
intensive hyperparameter tuning. This instability can be attributed to the noisiness of the
cross-attention masks, particularly in the early stages of generation (see Appendix E).
Comparison with existing sampling methods To fairly compare our results with
Photoswap (Gu et al., 2024) and ProFusion (Zhou et al., 2023), which were initially proposed
alongside fixed fine-tuning methods, we reimplemented both approaches using the same fixed
SVDiff models to eliminate any influence from differing training methods.
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Figure 4: Pareto Frontier curves for
Mixed, Switching and Multi-stage Sampling
methods. Each Multi-stage sampling curve is
generated by fixing the switching step while
varying the superclass guidance scale ωs =
[1.0, 3.0, 5.0].

Figure 5: Pareto frontiers curves for Masked
sampling. Each Masked sampling curve
is derived by varying the quantile q =
[0.3, 0.5, 0.7, 0.9], which controls the mask
binarization threshold; tsw = 3, ωs = 3.5 are
fixed.

Figure 6: Examples of the generation outputs for different sampling methods.

We will first discuss the Photoswap method. In Figure 7, the Pareto front for this method
is illustrated. This curve was obtained by varying three hyperparameters: (tSF , tCM , tSM )
= [(1, 10, 15), (5, 15, 20), (10, 20, 25)], with the last combination representing the optimal
values proposed in the original work (Gu et al., 2024). As shown in Figure 7, the curve for
this method is nearly indistinguishable from that of Switching sampling. This leads us to
conclude that altering the self and cross-attention maps across all layers of the U-Net affects
generation almost equally as using the entire noise prediction from the superclass trajectory.
Additionally, the ProFusion Pareto frontiers are illustrated in Figure 7. Since Mixed
sampling is part of the ProFusion method, we evaluated it in the same manner by fixing
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Figure 7: Pareto frontiers curves for
Photoswap (Gu et al., 2024) and
ProFusion (Zhou et al., 2023).

Figure 8: The overall results of different
sampling methods against main personalized
generation baselines.

Figure 9: Examples of the generation outputs for Mixed and ProFusion sampling methods
in comparison to the main personalized generation baselines.
all parameters and varying ωs. We assessed this method using two levels of fusion step
intensity r and constructed a distinct curve with a fixed ωs = 3.5 and various r =
[0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0]. As observed, with decreasing fusion step intensity
r, the curve converges more closely to the Mixed sampling curve. However, when the fusion
step intensity is high, this method significantly enhances concept preservation and results
in image similarity even higher than the standard sampling with concepts.
User study In addition to the CLIP metrics, we also conducted a human evaluation.
For each sampling method we took the optimal point in terms of CLIP metric and
visual generation assessment and generated 16000 pairs comparing different sampling
techniques and base personalization methods (Dreambooth(DB), Custom Diffusion(CD),
Textual Inversion(TI) and ELITE) with Mixed Sampling as a strong and effective baseline.
See Appendix D for more details.
Given an original image of the concept, a text prompt, and 2 generated images (Mixed
versus the competitor’s), we asked users to answer the following questions: 1) ”Which image
is more consistent with the text prompt?” to evaluate text similarity 2) ”Which image better
represents the original image?” for image similarity 3) ”Which image is generally better in
terms of alignment with the prompt and concept identity preservation?” to evaluate the
general impression. We provide an example of a comparison in the Appendix D.
Combining the results of the user study (Table 1) and the insights from Figure 8, which
illustrates the improvements of the examined techniques against the main personalized
generation baselines, we find that all sampling methods enhance the performance of the
fine-tuned model in either concept or context preservation.
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Table 1: User study results of the pairwise comparison of SVDDiff with Mixed sampling
method versus other baselines. The values in the table show the win rate. ”TS” stands for
text similarity, ”IS” - image similarity, and ”All” corresponds to general impression.

SVDiff
Base Switch Multi-stage Masked Photoswap ProFusion DB TI ELITE CD

TS 0.52 0.51 0.51 0.51 0.53 0.49 0.74 0.67 0.64 0.51
IS 0.37 0.47 0.50 0.59 0.70 0.35 0.40 0.74 0.73 0.53
All 0.41 0.48 0.50 0.59 0.69 0.37 0.59 0.77 0.75 0.53

A framework for selecting sampling method In this section we provide an overall
analysis of the performance of different sampling methods in terms of concept fidelity,
alignment with text prompt and computational efficiency. In our conclusions, we rely mainly
on the results of the user study, as current studies show that the CLIP metrics do not always
match human perception. In case the user study doesn’t reveal the difference between the
performance of different methods, we draw conclusions based on the metrics and visual
examples.
According to the Figure 6 standard sampling sometimes fails to align well with the text
prompt. Fortunately, there are alternative sampling methods that can enhance text
similarity.
As the user study and CLIP-metrics show Mixed, Switching, Multi-stage and Masked
sampling show the comparable performance in terms of text similarity. The simplest and
most cost-effective option is Switching Sampling. This method increases text similarity
without adding to the computational load. However, sometimes it can compromise the
preservation of concepts.
Mixed Sampling addresses this issue more effectively and generally provides stable results
while maintaining both concept and context (see Figure 6). The trade-off is that it requires
double the batch size compared to Switching Sampling.
Another viable option is Masked Sampling, which can yield better concept fidelity outcomes
in situations where Mixing and Switching struggle to balance context and concept. However,
it demands careful tuning of hyperparameters and may produce inconsistent results because
of the cross-attention masks noisiness.
Finally, ProFusion not only enhances text similarity but also preserves a high level of concept
preservation (see Figure 9), as indicated by user feedback. The downside is that it requires
twice the U-Net inference compared to Mixed Sampling and require careful selection of many
hyperparameters.

5 Conclusion

In this work, we investigate the role of sampling methods in enhancing personalized text-to-
image generation, focusing on their interaction with fine-tuning strategies and their impact
on concept fidelity and adaptability. Through systematic evaluations, we demonstrate
that integrating superclass trajectories into the sampling process can lead to significant
improvements, offering a flexible approach to balancing concept preservation and the ability
to follow diverse textual prompts. Our analysis provides a comprehensive framework for
understanding the trade-offs between different sampling techniques and their application
in a variety of generative scenarios. We hope that this study will inspire further research
into decoupling fine-tuning from sampling to better explore the potential of these methods
independently.
Regarding the limitations of sampling techniques, we highlight two main issues. First,
the sampling methods require careful tuning of hyperparameters, and finding the optimal
configuration for each technique can be challenging. Second, some of the more advanced
sampling techniques, such as ProFusion, come with a higher computational cost, making
them less practical for real-time or large-scale applications compared to simpler alternatives.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

References
Hong Chen, Yipeng Zhang, Simin Wu, Xin Wang, Xuguang Duan, Yuwei Zhou, and Wenwu

Zhu. Disenbooth: Identity-preserving disentangled tuning for subject-driven text-to-image
generation. In The Twelfth International Conference on Learning Representations, 2023.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation
using textual inversion. arXiv preprint arXiv:2208.01618, 2022.

Jing Gu, Yilin Wang, Nanxuan Zhao, Tsu-Jui Fu, Wei Xiong, Qing Liu, Zhifei Zhang,
He Zhang, Jianming Zhang, HyunJoon Jung, et al. Photoswap: Personalized subject
swapping in images. Advances in Neural Information Processing Systems, 36, 2024.

Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng
Yang. Svdiff: Compact parameter space for diffusion fine-tuning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7323–7334, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-
concept customization of text-to-image diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1931–1941, 2023.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang,
Adrian Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal
finetuning. Advances in Neural Information Processing Systems, 36, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International conference
on machine learning, pp. 8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International
conference on machine learning, pp. 8821–8831. Pmlr, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10684–10695,
2022a.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10684–10695,
2022b.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pp. 234–241. Springer, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir
Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22500–22510, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances
in neural information processing systems, 35:36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
arXiv preprint arXiv:2010.02502, 2020.

Yoad Tewel, Rinon Gal, Gal Chechik, and Yuval Atzmon. Key-locked rank one editing for
text-to-image personalization. In ACM SIGGRAPH 2023 Conference Proceedings, pp.
1–11, 2023.

Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo.
Elite: Encoding visual concepts into textual embeddings for customized text-to-image
generation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 15943–15953, 2023.

Yufan Zhou, Ruiyi Zhang, Tong Sun, and Jinhui Xu. Enhancing detail preservation for
customized text-to-image generation: A regularization-free approach. arXiv preprint
arXiv:2305.13579, 2023.

A Related Work

Personalized Generation Due to the considerable success of large text-to-image models
Ramesh et al. (2022; 2021); Saharia et al. (2022); Rombach et al. (2022a), the field of
personalized generation has been actively developed. The challenge is to customize a text-
to-image model to generate specific concepts that are specified using several input images.
Many different approaches Ruiz et al. (2023); Gal et al. (2022); Kumari et al. (2023); Han
et al. (2023); Qiu et al. (2024); Zhou et al. (2023); Wei et al. (2023); Tewel et al. (2023)
have been proposed to solve this problem and they can be divided into the following groups:
pseudo-token optimization Gal et al. (2022); Zhou et al. (2023); Chen et al. (2023); Tewel
et al. (2023), diffusion fune-tuning Ruiz et al. (2023); Kumari et al. (2023); Zhou et al.
(2023), and encoder-based Wei et al. (2023). The pseudo-token paradigm adjusts the text
encoder to convert the concept token into the proper embedding for the diffusion model.
Such embedding can be optimized directly Gal et al. (2022); Tewel et al. (2023) or can be
generated by other neural networks Chen et al. (2023); Zhou et al. (2023). Such approaches
usually require a small number of parameters to optimize but lose the visual features of
the target concept. Diffusion fine-tuning based methods optimize almost all Ruiz et al.
(2023) or parts Kumari et al. (2023) of the model to reconstruct the training images of the
concept. This allows to learn the input concept with high accuracy, but the model due to
overfitting may lose the ability to edit it when generated with different text prompts. To
reduce overfitting and the memory used, different lightweight parameterizations Han et al.
(2023); Tewel et al. (2023); Hu et al. (2021) have been proposed that preserve edibility but
at the cost of degrading concept fidelity. Encoder-based methods Wei et al. (2023) allow
one forward pass of an encoder that has been trained on a large dataset of many different
objects to embed the input concept. This dramatically speeds up the process of learning
a new concept and such a model is highly editable, but the quality of recovering concept
details may be low. Generally, the main problem with existing personalized generation
approaches is that they struggle to simultaneously recover a concept with high quality and
generate it in a variety of scenes.
Sampling strategies Much work has been devoted to the study of sampling for text-to-
image diffusion models, not only in the task of personalized generation, but also in image
editing. In this paper, we investigate a narrower question: how we can optimally combine the
two trajectories on superclass and concept to simultaneously have high concept fidelity and
high editability. The ProFusion paper Zhou et al. (2023) considered one way of combining
these trajectories (mixed sampling), which we analyze in detail in our paper (see Section
3.1), and show its properties and problems. In ProFusion, authors additionally proposed a
more complex sampling procedure, which we observed to be redundant compared to mixed
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sampling, as can be seen in our experiments (see Section 4). In Photoswap Gu et al. (2024)
authors consider another way of combining trajectories by superclass and concept, which
turns out to be almost identical to the switching sampling strategy that we discuss in detail
in Section 3.2. We show why this strategy fails to achieve simultaneous improvements in
concept reconstruction and editability. In the paper, we propose a more efficient way of
combining these two trajectories that achieves an optimal balance between the two key
features of personalized generation: concept reconstruction and its editability.

B Training details

The Stable Diffusion-2-base model is used for all experiments. For the Dreambooth,
Custom Diffusion and Textual Inversion methods we used the implementation from https:
//github.com/huggingface/diffusers.
SVDiff We implement the method based on the https://github.com/mkshing/
svdiff-pytorch. The parametrization is applied to all text encoder and U-Net layers.
The models for all concepts were trained for 1600 using Adam optimizer with batch size =
1, learning rate = 0.001, learning rate 1d = 0.000001, betas = (0.9, 0.999), epsilon = 1e-8
and weight decay = 0.01.
Dreambooth All query, key, value layers in text encoder and U-Net were trained during
fine-tuning. The models for all concepts were trained for 400 steps using Adam optimizer
with batch size = 1, learning rate = 0.001, betas = (0.9, 0.999), epsilon = 1e-8 and weight
decay = 0.01.
Custom Diffusion The models for all concepts were trained for 1600 steps using Adam
optimizer with batch size = 1, learning rate = 0.00001, betas = (0.9, 0.999), epsilon = 1e-8
and weight decay = 0.01.
Textual Inversion The models for all concepts were trained for 10000 steps using Adam
optimizer with batch size = 1, learning rate = 0.005, betas = (0.9, 0.999), epsilon = 1e-8
and weight decay = 0.01.
ELITE We used pre-trained model from the official repo https://github.com/csyxwei/
ELITE with λ = 0.6 and inference hyperparams from the original paper.

C Data preparation

For each concept, we used inpainting augmentations to create the training dataset. We
took an original image and segmented it using the Segment Anything model on top of the
CLIP cross-attention maps. Then we crop the concept from the original image, apply affine
transformations to it, and inpaint the background. We used 10 augmentation prompts,
different from the evaluation prompts, and sampled 3 images per prompt, resulting in a
total of 30 training images per concept. We commit to open-source the augmented datasets
for each concept after publication.

D User Study

We provide an example of a task in the user study in Figure 10. In total, we collected 48864
answers from a 200 unique users for a 16000 unique pairs. For each task, a user was presented
with three questions: 1) ”Which image is more consistent with the text prompt?” 2) ”Which
image better represents the original image?” 3) ”Which image is generally better in terms of
alignment with the prompt and concept identity preservation?”. For each question, a user
gives one of the three answers: ”1”, ”2”, or ”Can’t decide”.
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Figure 10: An example of a task in the user study

E Cross-Attention Masks

Figure 11: Visualization of the cross-attention masks for Masked sampling examples. Here,
q defines the thresholding quantile and t the denoising step.

F Additional Examples

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 12: Additional examples of the generation outputs for different sampling methods.
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Figure 13: Additional examples of the generation outputs for Mixed and ProFusion sampling
methods in comparison to the main personalized generation baselines.
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G Dreambooth results

We conduct additional analysis of different sampling methods in combination with
Dreambooth. Figure 14 shows that Mixed Sampling still overperforms Switching and
Photoswap, while Multi-stage and Masked struggle to provide an additional improvement
over the simple baseline. Figure 15 shows that all methods allow for improvement TS with
a negligent decrease in IS while Mixed Sampling provides the best IS among all samplings.

Figure 14: CLIP metrics for different sampling strategies on top of a Dreambooth fine-
tuning method.

Figure 15: Additional examples of the generation outputs for different sampling methods
on top of a Dreambooth fine-tuning method.
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H Complex Prompts Setting

We conduct a comparison of different sampling methods using a set of complex prompts. For
this analysis, we collected 10 prompts, each featuring multiple scene changes simultaneously,
including stylization, background, and outfit:
l i v e l o n g = [

”V∗ in a c h i e f o u t f i t in a n o s t a l g i c k i t chen f i l l e d with v intage f u r n i t u r e and s c a t t e r e d b i s c u i t ” ,
”V∗ s i t t i n g on a windows i l l in Tokyo at dusk , i l l um ina t ed by neon c i t y l i g h t s , us ing neon c o l o r p a l e t t e ” ,
”a vintage−s t y l e i l l u s t r a t i o n o f a V∗ s i t t i n g on a cobb l e s tone s t r e e t in Par i s during a ra iny evening , showcasing muted tones and s o f t grays ” ,
”an anime drawing o f a V∗ dres sed in a superhero cape , s oa r ing through the s k i e s above a b u s t l i n g c i t y during a sunset ” ,
”a ca r toon i sh i l l u s t r a t i o n o f a V∗ dres sed as a b a l l e r i n a per forming on a s tage in the s p o t l i g h t ” ,
” o i l pa in t ing o f a V∗ in S e a t t l e during a snowy f u l l moon night ” ,
”a d i g i t a l pa in t ing o f a V∗ in a wizard ’ s robe in a magical f o r e s t at midnight , accented with purp l e s and s p a r k l i n g s i l v e r tones ” ,
”a drawing o f a V∗ wearing a space helmet , f l o a t i n g among s t a r s in a cosmic landscape during a s t a r r y n ight ” ,
”a V∗ in a d e t e c t i v e o u t f i t in a foggy London s t r e e t during a ra iny evening , us ing muted grays and b lue s ” ,
”a V∗ wearing a p i r a t e hat exp l o r i ng a sandy beach at the sunset with a boat f l o a t i n g in the background ” ,

]

o b j e c t l o n g = [
”a d i g i t a l i l l u s t r a t i o n o f a V∗ on a windows i l l in Tokyo at dusk , i l l um ina t ed by neon c i t y l i g h t s , us ing neon c o l o r p a l e t t e ” ,
”a sketch o f a V∗ on a so f a in a cozy l i v i n g room , rendered in warm tones ” ,
”a wate r co l o r pa in t ing o f a V∗ on a wooden tab l e in a sunny backyard , surrounded by f l o w e r s and b u t t e r f l i e s ” ,
”a V∗ f l o a t i n g in a bathtub f i l l e d with bubbles and i l l um ina t ed by the warm glow o f evening s u n l i g h t f i l t e r i n g through a nearby window ” ,
”a charcoa l sketch o f a g iant V∗ surrounded by f l o a t i n g c louds during a s t a r r y night , where the moonlight c r e a t e s an e t h e r e a l glow ” ,
” o i l pa in t ing o f a V∗ in S e a t t l e during a snowy f u l l moon night ” ,
”a drawing o f a V∗ f l o a t i n g among s t a r s in a cosmic landscape during a s t a r r y n ight with a s p a c e c r a f t in the background ” ,
”a V∗ on a sandy beach next to the sand c a s t l e at the sunset with a f l o a i n g boat in the background ” ,
”an anime drawing V∗ on top o f a white rug in the f o r e s t with a smal l wooden house in the background ” ,
”a vintage−s t y l e i l l u s t r a t i o n o f a V∗ on a cobb l e s tone s t r e e t in Par i s during a ra iny evening , showcasing muted tones and s o f t grays ” ,

]

The results of this comparison are presented in Figures 16, 17. We observe that basic
sampling may struggle to preserve all the features specified by the prompts, whereas
advanced sampling techniques effectively restore them. The overall arrangement of methods
in the metric space closely mirrors that observed in the setting with simple prompts.

Figure 16: CLIP metrics for different sampling methods estimated on complex prompts.
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Figure 17: Additional examples of the generation outputs for different sampling methods
with complex prompts. We highlight parts of the prompt that are missing in Sampling
with concept while appearing in other methods.

I DINO Image Similarity
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(a) Pareto frontiers curves for Photoswap (Gu et al., 2024) and ProFusion (Zhou et al., 2023).

(b) The overall results of different sampling methods against main personalized generation baselines.

Figure 18: Comparison between CLIP-IS (left column) and DINO-IS (right column). We
observe that despite the choice of metric, different sampling techniques and finetuning
strategies have the same arrangement. The most noticeable difference is that SVDDiff
superiority over EILTE and TI is more pronounced. That strengthens our motivation to
select SVDDiff as the main backbone.

J PixArt-alpha & SD-XL

We conducted a series of experiments with different backbones. For SD-XL we use SVDDiff
as the finetuning method, while PixArt-alpha utilizes standard Dreambooth training. We
selected hyperparameters for the Switching, Masked, and Profusion the same way we did
for the experiments with SD2.
Figures 19, 20 show that Mixied Sampling follows the same pattern as for the SD2 and
allows to improve TS without dramatic loss in IS. Noticeably, Mixed Sampling for SD-XL
allows for improved IS and TS simultaneously. Profusion mirrors its behavior for the SD2
where it can improve IS better than Mixed Sampling while being worse at improving TS
and requiring twice as many computations.
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Figure 19: CLIP metrics for different
sampling methods estimated on PixArt
model.

Figure 20: CLIP metrics for different
sampling methods estimated on SD-XL
model.

K Updated Figure 1

Figure 21: Updated Figure 1 for Rebuttal.
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