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Abstract

Vast efforts have been devoted to creating high-
performance few-shot learners, i.e., large-scale
pretrained language models (PLMs) that per-
form well with little downstream task train-
ing data. Training PLMs has incurred signif-
icant cost, but utilizing the few-shot learners
is still challenging due to their enormous size.
This work focuses on a crucial question: How
to make effective use of these few-shot learn-
ers? We propose LMTurk, a novel approach
that treats few-shot learners as crowdsourcing
workers. The rationale is that crowdsourcing
workers are in fact few-shot learners: They
are shown a few illustrative examples to learn
about a task and then start annotating. LMTurk
employs few-shot learners built upon PLMs as
workers. We show that the resulting annota-
tions can be utilized to train models that solve
the task well and are small enough to be deploy-
able in practical scenarios. Active learning is
integrated into LMTurk to reduce the amount of
queries made to PLMs, minimizing the compu-
tational cost of running PLM inference passes.
Altogether, LMTurk is an important step to-
wards making effective use of current PLMs.1

1 Introduction

Equipped with prolific linguistic features (Liu et al.,
2019; Tenney et al., 2019; Belinkov and Glass,
2019; Rogers et al., 2020) and rich world knowl-
edge (Petroni et al., 2019; Poerner et al., 2020;
Kassner et al., 2021), large-scale pretrained lan-
guage models (PLMs) have been shown to be ver-
satile: They are now basic building blocks (Bom-
masani et al., 2021) of systems solving diverse NLP
tasks in many languages (Wang et al., 2018, 2019;
Hu et al., 2020; Xu et al., 2020; Khashabi et al.,
2021; Park et al., 2021; Adelani et al., 2021).

Recent work shows that PLMs are effective
few-shot learners (Brown et al., 2020; Schick and
Schütze, 2021b; Gao et al., 2021; Tam et al., 2021)

1Resources are available at: github.com/lmturk
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Figure 1: LMTurk overview; best viewed in color. We
few-shot adapt PLMs to task T (left) and then use them
as crowdsourcing workers in active learning. We show
that these PLM workers are effective in training a small
model S through a customized active learning loop
(right). LMTurk is a novel way to take advantage of
large-scale PLMs: It creates models small enough to be
deployed in resource-limited real-world settings.

through priming (Brown et al., 2020; Tsimpoukelli
et al., 2021) or prompting (Li and Liang, 2021; Liu
et al., 2021b; Lester et al., 2021; Zhao and Schütze,
2021). Developing few-shot learners is crucial be-
cause current NLP systems require much more data
than humans (Yin et al., 2020). Few-shot learners
tend to perform well; however, they still fall behind
systems trained with abundant data. Furthermore,
the enormous size of PLMs hinders their deploy-
ment in practice. For example, it is challenging
to fit the 11 billion T5-XXL (Raffel et al., 2020)
model on a single regular GPU.

Our goal in this paper is to devise methods that
make more effective use of current few-shot learn-
ers. This is crucial because an increasing number

github.com/lmturk


of gigantic few-shot learners are trained; how to use
them effectively is thus an important question. In
particular, we want an alternative to hard-to-deploy
huge models. At the same time, we want to take
full advantage of the PLMs’ strengths: Their versa-
tility ensures wide applicability across tasks; their
vast store of knowledge about language and the
world (learned in pretraining) manifests in the data
efficiency of few-shot learners, reducing labor and
time consumption in data annotation.

In this work, we propose LMTurk, Language
Model as mechanical Turk. Our basic idea (see
Figure 1) is that, for an NLP task T, we treat few-
shot learners as non-expert workers, resembling
crowdsourcing workers that annotate resources for
human language technology. We are inspired by the
fact that we can view a crowdsourcing worker as a
type of few-shot learner: A few examples demon-
strating T teach her enough about T to conduct ef-
fective annotation. For example, Snow et al. (2008)
train workers with a few examples of annotating
emotion; He et al. (2015) conduct short training
sessions for workers before annotation; Lee et al.
(2021) train workers with learning curricula.

Snow et al. (2008) pioneered crowdsourcing in
NLP (Howe et al., 2006; Howe, 2008), motivated
by the high cost of TreeBank annotation (Marcus
et al., 1993; Miller et al., 1993). Crowdsourcing
organizes human workers over the Web to annotate
data. Workers need not be experts to be effective,
resulting in reduced per-label cost. Active learning
(Hachey et al., 2005; Felder and Brent, 2009) can
be incorporated (Laws et al., 2011) to further de-
crease annotation cost, by lowering the number of
labels to be annotated. LMTurk treats PLM-based
few-shot learners as non-expert workers that pro-
duce training sets, which are then used to train a
small machine learning model S specialized for
T. This scenario is analogous to active learning.
We achieve two benefits: (i) low annotation cost
because humans only need to annotate a few shots
of data; (ii) solving practical NLP tasks with small
models that are more real-world deployable.

LMTurk resonates with Laws et al. (2011)’s ear-
lier idea of combining crowdsourcing and active
learning. They consider human workers as “noisy
annotators” while we explore the utilization of mod-
ern NLP few-shot learners (built upon machine
learning models) as workers – which have the ad-
vantage of being free, instantly interactive, fast,
responsive, and non-stopping.

Our contributions: (i) We propose LMTurk, a
method that uses few-shot learners as crowdsourc-
ing workers. Figure 1 shows the overview of LM-
Turk. (ii) We vary an array of important design
choices, identifying strengths and weaknesses of
LMTurk. (iii) Unlike much work on active learning
in a synthetic oracle setting, we develop methods
for handling the varying quality of annotation that
does not come from an oracle. (iv) We extensively
evaluate LMTurk on five datasets, showing that
LMTurk can guide a small model S to progres-
sively improve on T. S can then be deployed in
practical scenarios. (v) This is the first work show-
ing that few-shot learners give rise to effective NLP
models through crowdsourcing and active learning
– with the benefits of low annotation cost and prac-
tical deployability.

2 Related Work

Few-shot learners in NLP. Significant progress
has been made in developing (Devlin et al., 2019;
Peters et al., 2018; Yang et al., 2019; Brown
et al., 2020), understanding (Liu et al., 2019; Ten-
ney et al., 2019; Belinkov and Glass, 2019; He-
witt and Liang, 2019; Hewitt and Manning, 2019;
Zhao et al., 2020a; Rogers et al., 2020), and uti-
lizing (Houlsby et al., 2019; Zhao et al., 2020b;
Brown et al., 2020; Li and Liang, 2021; Schick
and Schütze, 2021a; Lester et al., 2021; Mi et al.,
2021a) PLMs. Brown et al. (2020), Schick and
Schütze (2021a), and Liu et al. (2021b) show that
PLMs can serve as data-efficient few-shot learners,
through priming or prompting (Liu et al., 2021a).
For example, GPT3 achieves near state-of-the-art
performance on COPA (Roemmele et al., 2011)
with only 32 annotated data.

However, little to no work discusses or explores
the actual practical utility of these few-shot learn-
ers. We aim to develop effective methods of utiliz-
ing them in practical scenarios.

Crowdsourcing has a long history in human
language technology (Alonso et al., 2008; Callison-
Burch, 2009; Trautmann et al., 2020); specialized
workshops were organized (Callison-Burch and
Dredze, 2010; Paun and Hovy, 2019). It has numer-
ous applications (Yuen et al., 2011), but we focus
on its application as voting systems. To reduce per-
label cost, crowdsourcing organizes non-expert hu-
man workers distributed across the Web for annota-
tion, instead of employing linguistic experts (Jami-
son and Gurevych, 2015; Bhardwaj et al., 2019;



Nangia et al., 2021). Snow et al. (2008) show
that averaging ten crowdsourced labels matches
an expert-level label for recognizing textual entail-
ment (Dagan et al., 2006). Paun et al. (2018) show
that incorporating structure in annotation models is
important. Measuring label disagreements is also
crucial (Dumitrache et al., 2021).

LMTurk utilizes NLP few-shot learners as non-
expert workers. The few-shot training data can be
viewed as the examples shown to humans before
annotating. The process is free, fast, responsive,
and non-stopping.

Active learning (AL; Cohn et al. (1996); Settles
(2009)) strives to reduce the number of examples
to be annotated via identifying informative exam-
ples with acquisition functions. Settles and Craven
(2008) evaluate AL algorithms for sequence label-
ing. Zhang et al. (2017); Shen et al. (2017); Sid-
dhant and Lipton (2018) apply AL to deep neural
networks. Simpson and Gurevych (2018) devise
a scalable Bayesian preference learning method
for identifying convincing arguments. Lee et al.
(2020) propose to consider user feedback in AL
systems. Ein-Dor et al. (2020) explore AL for
BERT. Schröder and Niekler (2020) review text
classification with AL. Liang et al. (2020); Mar-
gatina et al. (2021) integrate contrastive learning
into AL. Zhang and Plank (2021) identify examples
with datamap (Swayamdipta et al., 2020).

We incorporate AL in LMTurk to reduce the
amount of examples to be annotated by PLMs, re-
ducing the computational cost of running several in-
ference passes. This contributes to a more environ-
mentally friendly (Strubell et al., 2019; Schwartz
et al., 2020; Patterson et al., 2021) scenario.

Perhaps closest to our work, Yoo et al. (2021)
conduct data augmentation via priming GPT3
and Wang et al. (2021) mix human- and GPT3-
annotated data, focusing on cost analysis. GPT3
is utilized in a Language-Model-as-a-Service form
by OpenAI, which is not free.2 Also, strategies
of priming GPT3 may not generalize well to other
PLMs. For example, priming strategies have to
adapt to GPT3’s maximum sequence length. How-
ever, maximum sequence length – as a hyperpa-
rameter – could vary across PLMs. In this work,
we prompt publicly available free PLMs. This also
makes the process more flexible; for example, the
PLM can be updated with gradient descent.

2https://beta.openai.com/pricing

3 LMTurk

3.1 Training few-shot learners
We first adapt a PLM to task T with a few-shot
human-labeled gold dataset G = {Gtrain;Gdev} of
T. This procedure mimics one of the initial but
crucial steps in crowdsourcing: A few example an-
notations are shown to the workers, demonstrating
T; workers learn about the task and then start anno-
tating (Snow et al., 2008; He et al., 2015; Roit et al.,
2020; Trautmann et al., 2020; Lee et al., 2021).

We achieve this adaptation through P-Tuning
(Liu et al., 2021b). Taking movie review classi-
fication as an example, the goal is to associate a
binary label y from {-1, +1} to an input sentence
x = (x1, ..., xn) where xi refers to a token. Un-
like finetuning and its variants (Devlin et al., 2019;
Houlsby et al., 2019; Zhao et al., 2020b) that train
a classifier head, P-Tuning reformulates a sentence
into a cloze-style query; the PLM is then requested
to respond to the query with an answer selected
from a list of candidates. Concretely, an input pair

(x, y) = (“watching it leaves you giddy.”, -1)

is reformulated to:

“[v] watching it leaves you giddy. It is [MASK] .”

in which the underlined tokens are prompting
words that give the model a hint about T. “[v]” –
whose trainable embedding vector is randomly ini-
tialized – is a prompting token injecting extra free
parameters. The PLM is then requested to pick a
word from {“bad”, “good”} to fill in the position of
“[MASK]”. A mapping {“bad”→ -1, “good”→ +1}
is used to transform the selected answer to a label
such that standard evaluation measures like accu-
racy can be computed. Prompting has been shown
to effectively adapt a PLM to T with only a few
annotations; see (Liu et al., 2021a) for a compre-
hensive review of prompting. We refer to a PLM
adapted to T as an LMTurker A.

We select prompting words and mappings based
on the small development set Gdev. §4.2 provides
details on prompting and datasets.

3.2 Aggregating annotations
Individual workers are subject to annotation bi-
ases (Snow et al., 2008); therefore, crowdsourcing
often collects labels from several workers (Yuen
et al., 2011) for an example x and then aggregates
them for quality control (Alonso et al., 2008). It
is straightforward to obtain a group of LMTurkers

https://beta.openai.com/pricing


A = {A1, ..., Ak}, by adapting the PLM to T with
k different prompts. A querying sentence x is then
annotated by every LMTurker, resulting in a list
of labels y = [y1, ..., yk]. We evaluate different
methods aggregating y to a single label ŷ.

BestWorker. Among the k LMTurkers, we pick
the one performing best on the dev set Gdev.

MajorityVoting. We select the most frequent
label in y = [y1, ..., yk] as ŷ.

To estimate an LMTurker’s confidence on label
yi, we compare the logits3 computed by the PLM:

yi = argmax(logit(y1),..., logit(yN )),

where N refers to the label set size, e.g., N=2 for
y from {-1, +1}. We then can evaluate several
methods of aggregating annotations according to
PLM logits.

LogitVoting. We average the logits from all k
LMTurkers {A1, ..., Ak} to compute ŷ:

ŷ = argmax( 1
k

∑k
i=1 logit(y1i ),...,

1
k

∑k
i=1 logit(yNi )).

WeightedLogitVoting. We use LMTurkers’ per-
formance on Gdev to weight their logits and then
aggregate the predictions:

ŷ = argmax(
∑k

i=1 wilogit(y1i ),...,
∑k

i=1 wilogit(yNi ))

wi = f(Ai,Gdev)/
∑k

i=1 f(Ai,Gdev)

where f(Ai,Gdev) is the performance of the ith
LMTurker Ai on Gdev.

We collect and aggregate annotations from five
LMTurkers, i.e., we use k=5 in our experiments.

3.3 Training a small model S
After adapting LMTurkers to T through prompting
with the few-shot gold dataset G, we next train
a small model S specialized to solve T. Though
large PLMs are versatile and strong performers,
training and inference are faster and more efficient
for small models: They are more deployable in
resource-restricted scenarios, e.g., on edge devices
(Jiao et al., 2020).

We mimic pool-based active learning (AL; Set-
tles (2009)) to train S. The motivation is to avoid
frequent querying of LMTurkers A because energy
and time consumption of PLM inference is costly
when the number of queries and |A| are large.

Concretely, pool-based AL assumes a large col-
lection of unlabeled data U = {x1, ...,xM} for T.

3Calibration can be conducted to further improve the esti-
mation (Guo et al., 2017). We leave this to future work.

S is first trained with G = {Gtrain;Gdev}. After
that, a group of examples B from U is sampled
(c.f. §3.3.1), which LMTurkers annotate. Next, the
annotated and aggregated examples B′ are concate-
nated with G to train S . The procedure is repeated
iteratively, such that the training data for S keeps
expanding. We denote as Sj the model trained af-
ter the jth iteration. Note that S is trained from
scratch in each iteration (Cohn et al., 1994).

3.3.1 AL acquisition function

At the beginning of the jth iteration, a straightfor-
ward strategy of sampling B from U is random
sampling. AL promises to select a more informa-
tive B such that the trained Sj performs better, un-
der the same budget. These strategies – or acquisi-
tion functions – rely on Sj−1, i.e., S from the previ-
ous iteration: Sj−1 is employed to infer U to obtain
labels and logits Pj−1 = {(y1, c1), ..., (yM , cM )};
each ci contains the logits of the N labels; yi =
argmax(ci). We explore two common AL acquisi-
tion functions: Entropy (Roy and McCallum, 2001)
and LeastConfident (Lewis and Gale, 1994).

Entropy selects from Pj−1 examples with the
largest prediction entropy, computed using c. Large
entropy of an example x implies that Sj−1 is un-
sure about which label to select; x is then a query
made to LMTurkers to obtain its label ŷ. (x, ŷ) is
subsequently added to Gtrain for training Sj .

LeastConfident selects from Pj−1 examples for
which the maximum logit in c is the smallest. Se-
lected examples are then annotated and added to
Gtrain for training Sj .

Our AL setup is fairly standard, both in terms of
acquisition functions and iterative enlargement by
new sampled data B at iteration j labeled by Sj−1.

3.3.2 Considering annotation quality

As in any realistic AL scenario, annotations are not
perfect: LMTurkers do not score perfectly on T.
As a result, annotation quality of LMTurkers needs
to be taken into consideration before training Sj .
Denoting the training data of Sj as Dj , we explore
a strategy of processing Dj , based on LMTurker
logits l.

InstanceTresholding. We preserve examples
(x, ŷ, l) ∈ Dj for which entropy computed on l is
smallest. Gtrain is always preserved because it is
human-labeled gold data. Note that this is different
from the strategy of sampling B, where we select
from Pj−1 examples to which Sj−1 is most unsure



(computed with c). We evaluate4 the effectiveness
of processing Dj before training Sj in §5.6.

3.4 Summary of LMTurk
LMTurk can be viewed as intermediate between
self training (Yarowsky, 1995; Abney, 2004; Lee
et al., 2013; Mi et al., 2021b) and AL. Unlike self
training, LMTurk employs external models provide
labels to S . Different from the artificial setup used
in many AL experiments, the provided labels do
not have oracle quality; so S must use the annota-
tions more carefully. We next conduct experiments
investigating the effectiveness of LMTurk.

4 Datasets and Setup

4.1 Dataset
We evaluate LMTurk on five datasets: Binary
(SST2) and fine-grained (five classes) sentiment
classification (SST5) with the Stanford Sentiment
TreeBank (Socher et al., 2013); news article topic
classification with the AG’s News Corpus (AG-
News; Zhang et al. (2015)); recognizing textual en-
tailment (RTE; Dagan et al. (2006)); assessing lin-
guistic acceptability (CoLA; Warstadt et al. (2019)).
Appendix §A reports dataset statistics. SST2/SST5
and AGNews are widely used in crowdsourcing
and AL (Laws et al., 2011; Ein-Dor et al., 2020;
Margatina et al., 2021; Zhang and Plank, 2021).
RTE and CoLA assess the models’ ability to un-
derstand textual entailment and linguistic phenom-
ena – as opposed to text categorization. We report
Matthew’s correlation coefficient for CoLA and
accuracy for the others (Wang et al., 2018).

Few-shot datasets. Recall LMTurk uses a small
human-annotated dataset G = {Gtrain;Gdev}. De-
noting n as the number of shots per class, we sam-
ple Gntrain and Gndev for each of n ∈ {8, 16, 32}.
For SST2, RTE, and CoLA, we use the train and
dev sets of GLUE (Wang et al., 2018); Gntrain and
Gndev are sampled from the train set; the dev set is
used as the test set. For SST5 and AGNews, we
use the official datasets; Gntrain (Gndev) is sampled
from the train (dev) set; we report performance on
the test set. We repeat the sampling process with
three random seeds.

4.2 Training setup
Brown et al. (2020) show that large model size is

4Motivated by Wang et al. (2017), we also investigate the
effectiveness of weighting training examples. However, we
do not observe noticeable improvements of task performance.
We list more details in Appendix §E.

Schick and Schütze (2021a,b) Gao et al. (2021) Ours

SST2 n/a 93.0±0.6 93.08±0.62
SST5 n/a 49.5±1.7 46.70±0.93
RTE 69.8 71.1±5.3 70.88±1.70

AGN. 86.3±0.0 n/a 87.71±0.07
CoLA n/a 21.8±15.9 19.71±1.89

Table 1: LMTurkers achieve comparable few-shot per-
formance with the literature. We refer to PET results
in Schick and Schütze (2021a,b) and results of Prompt-
based FT (auto) + demonstrations in Gao et al. (2021).

necessary for strong few-shot performance. We
use ALBERT-XXLarge-v2 (Lan et al., 2020) – of
size 223M parameters – as our large PLM, which is
adapted to be an LMTurkerA of T with G. With pa-
rameter reuse, ALBERT-XXLarge-v2 outperforms
larger models like the 334M BERT-large (Devlin
et al., 2019). In contrast, S must be small to be de-
ployable in practical scenarios. We use TinyBERT-
General-4L-312D (Jiao et al., 2020), which has
14.5M parameters.

We train – with prompting – the large PLM with
G for 100 batch steps using batch size 16, AdamW
(Loshchilov and Hutter, 2019) and learning rate
5e-4 with linear decay. We prompt the large PLM
five times to obtain five LMTurkers; Appendix §C
shows prompting details. At each iteration, we fine-
tune S for 20 epochs using batch size 32, Adam
(Kingma and Ba, 2015) and learning rate 5e-5.
Each experiment is run with three different ran-
dom seeds. We use PyTorch (Paszke et al., 2019)
and HuggingFace (Wolf et al., 2020).

5 Experiment

5.1 Few-shot performance (non-iterative)
We compare few-shot performance of LMTurkers
and the small model S when only G is used. LM-
Turker performance is comparable to prior work
(Schick and Schütze, 2021a,b; Gao et al., 2021) as
shown in Table 1.

Figure 2 compares performance of LMTurkers
and S. Appendix §B Table 3 reports numeric val-
ues. LMTurkers perform clearly better than S on
CoLA, SST5, AGNews, and SST2; e.g., for SST2,
for train/dev size 16, LMTurker accuracy is 93.08%
vs. 75.83% for S. LMTurkers’ superiority over S
on RTE is modest. As an inference task, RTE
is more challenging than classification (e.g., AG-
News). We hypothesize that current few-shot learn-
ers require more data than G32 to process difficult
tasks better than S . Scaling up to even larger PLMs
is also a promising direction (Brown et al., 2020;



Figure 2: Few-shot test set performance of LMTurkers
and S . We use the few-shot gold datasets G8 (top), G16
(middle), and G32 (bottom).

Lester et al., 2021).
Overall, LMTurkers outperform S with clear

margins, evidencing that their annotations can
serve as supervisions for training S. We next con-
duct iterative training to improve performance of
S on T with supervisions from LMTurkers.

5.2 Iterative training
We investigate the effectiveness of LMTurk by sim-
ulating scenarios analogous to active learning. Con-
cretely, we compare three schemes of annotating
the sampled data B at each annotation iteration j:

• Active learning (AL). We use B’s gold labels
to show how S performs with expert annota-
tions. Gold labels are ideal, but costly because
expert annotators need to be employed.

• Self training (ST). We use Sj−1, the model
trained in the previous iteration, to annotate
B (Yarowsky, 1995; Abney, 2004; Lee et al.,

Figure 3: Improving S with active learning (blue), self
training (orange), and LMTurk (green). Free markers
at step zero show LMTurker performances; colors dis-
tinguish random seeds. Three acquisition functions are:
Entropy (•), LeastConfident (�), random sampling
($). At iteration j, each experiment is repeated
three times; we show mean and standard deviation.
Appendix Figure 9 visualizes more results.

2013). ST trades supervision quality for an-
notation cost; no extra cost is introduced. Be-
cause there is no external supervision, ST is
expected to be a baseline.

• LMTurk. We query the LMTurkers to anno-
tate B. LMTurkers are machine learning mod-
els, so there is no human labor. Based on the
findings in Figure 2, LMTurker supervisions



are expected to have better quality than those
of ST. Yet LMTurk could fall behind AL be-
cause LMTurker labels are not gold labels.

When sampling B from U at each iteration j,
we consider the strategies described in §3.3. We
employ Random for all three schemes and En-
tropy/LeastConfident for AL/LMTurk. Entropy
and LeastConfident rely on Sj−1. Regarding the
number of sampled examples, we experiment with
|B|=100 and |B|=400 for SST2, SST5, AGNews,
CoLA. Due to RTE’s small size, we use |B|=20
and |B|=100. We run for 15 iterations of improv-
ing S. To aggregate annotations from LMTurkers,
we use MajorityVoting (§3.2), which is widely used
in crowdsourcing. See §5.3 for a comparison of
various aggregation methods.

Figure 3 compares AL, ST, and LMTurk. ST
(orange) noticeably helps S to perform progres-
sively better on AGNews, e.g., when comparing
S15 to S0 shown in the first row, especially when
|B|=400. However, we do not identify clear im-
provements when looking at other tasks. Except for
RTE-G8, ST clearly falls behind AL and LMTurk.
This inferior performance meets our expectation
because there is no external supervision assisting
S to perform better on T. In what follows, we omit
ST for clearer visualization and discussion.

AL (blue) performs the best in most experiments.
However, this comes with extra costs that are not
negligible: At each iteration, human annotators
need to annotate 100–400 sentences.

LMTurk (green) holds a position between AL
and ST on AGNews, SST2, SST5, and CoLA.
Somehow surprisingly, LMTurk performs almost
comparably to AL on SST2. Unlike AL, LMTurk
requires very little human labor; the only human
annotation throughout the entire process is the few-
shot gold dataset G. In contrast, AL has high human
annotation cost, e.g., 1000–4000 examples by iter-
ation ten. LMTurk also shows clear performance
improvements over ST.

Results on RTE are noisy; we conjecture this
is due to its very small test set (277 examples).
We do not observe performance improvement of
S along the iterations in experiment RTE-G32-
|B|=100, likely due to saturated task performance:
TinyBERT-General-4L-312D (S) achieves 66.6%
on RTE for the full train set (Jiao et al., 2020).

Comparing sampling strategies. Entropy (•)
and LeastConfident (�) outperform random sam-
pling ($) in AGNews and SST2 with noticeable

Figure 4: Comparing strategies of aggregating LM-
Turker annotations. We compare LMTurk (green) with
AL (blue). Strategies: LogitVoting ($), MajorityVot-
ing (�), WeightedLogitVoting (�), BestWorker (:).
AL uses gold labels without aggregation (•).

margins – for both AL and LMTurk, especially
when |B|=400. They also surpass random sam-
pling when using LMTurk for SST5 and CoLA
with G8. In other words, Entropy and LeastCon-
fident assist LMTurk to achieve the same perfor-
mance as of using random sampling, but with fewer
annotations. For example in AGNews-G8-|B|=100,
LeastConfident at iteration six already achieves
comparable performance as random sampling at
iteration eleven. This is economically and environ-
mentally beneficial because the number of queries
made to LMTurkers, i.e., the cost of running infer-
ence passes on the array of large PLMs, is signifi-
cantly reduced.

Overall, we show that LMTurk can be used to
create datasets for training a specialized model S of
solving T in practical scenarios. To reduce compu-
tational cost, we use only Entropy in what follows.

5.3 Design choice 1: Aggregation strategies

Figure 4 compares effectiveness of different strate-
gies of aggregating LMTurker annotations (§3.2).
Looking at SST5 and AGNews results (top two
images), we observe that committee-style aggre-
gation (LogitVoting ($), MajorityVoting (�), and
WeightedLogitVoting (�)) generally outperforms
BestWorker (:), which simply relies on the LM-
Turker performing best on Gdev. LMTurkers per-
form well on these two datasets as shown by the
free markers at iteration zero; ensembling their pre-
dictions results in higher-quality datasets.
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Figure 5: Running more iterations of improving S with
AL and LMTurk. Sampling strategy Entropy is used for
both methods; WeightedLogitVoting is used for aggre-
gating LMTurker annotations.

In contrast, BestWorker (:) has stellar per-
formance on RTE (bottom-left), outperforming
committee-style aggregation. Note that even the
LMTurkers do not perform really well in this ex-
periment, as shown by the free markers at itera-
tion zero – some LMTurkers even perform worse
than S. Ensembling these low-quality annotations
seems a worse option than simply relying on the
best LMTurker. For CoLA, we observe comparable
performance of different aggregation strategies.

5.4 Design choice 2: More iterations

We hypothesize that AL performance is an upper
bound for performance when S is trained with LM-
Turker annotations – recall that the AL annotations
are gold labels. Figure 5 compares AL and LM-
Turk when running 100 iterations of improving
S on AGNews and 500 iterations on SST2. As
expected, AL outperforms LMTurk because the
pool of human-annotated data expands. The per-
formance of S progressively approaches that of the
LMTurkers; LMTurk performs comparably to AL
in SST2, however, no human labor is required.

5.5 Design choice 3: Distilling logits

We can view LMTurk as a kind of distillation (Hin-
ton et al., 2015): The ability of LMTurkers to solve
T is progressively transferred to S. In this sec-
tion, we explore the utility of distillation: We train
S with predicted logits5 instead of discrete labels
from LMTurkers. Concretely, we train S by re-
ducing the KL divergence between its predicted
probability distribution (over the label set) and the
probability distribution from LMTurkers.

5Distilling with intermediate activations likely to further
improve performance of S. However, note that PLM inter-
mediate activations are not always available in a Language-
Model-as-a-Service framework.

Figure 6: Performance of AL and LMTurk with discrete
labels (•) vs. with KL divergence ($). Entropy is used
as the sampling strategy and WeightedLogitVoting
is used to aggregate worker annotations.

Figure 6 shows that training S with KL diver-
gence noticeably improves over discrete labels on
AGNews and SST5. This is expected: AGNews
and SST5 have larger label set size (four and five)
such that the probability distribution over the la-
bel set is more informative than that of the binary
classification tasks SST2 and RTE.

5.6 Design choice 4: Quality-based filtering

One key difference between AL and LMTurk is
that LMTurkers are not oracles: Their labels are
not perfect. Hence, it is reasonable to consider
processing the training data, denoted as Dj , for Sj ,
instead of using it indiscriminately as in AL.

InstanceTresholding (§3.3.2) preserves annota-
tions in Dj for which LMTurkers have the smallest
prediction entropy. Concretely, we rank all anno-
tations (x, ŷ, l) ∈ Dj by entropy(l) and then keep
the τ percent smallest. Note that we always pre-
serve the human-labeled few-shot data Gtrain. We
experiment with τ ∈ {10%, . . . , 90%, 100%}.

Figure 7 left shows the performance of S; Fig-
ure 7 right tracks the status of Dj . To measure
quality, we compute the accuracy of LMTurker an-
notations on Dj (compared to gold labels); see the
lineplots and the left y-axis. We also report the size
of Dj as scatter plots (right y-axis).

We observe that τ=10%, i.e., keeping only the
10% most certain examples, gives the worst perfor-
mance. This is most obvious at iteration three for
SST2: The performance drops to near the majority
baseline (≈50%). This is because D3 is small and
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Figure 7: Training S with examples for which LMTurk-
ers have low entropy. We report performance of S (left),
number and quality (measured by accuracy) of the pre-
served examples (right) at each iteration.

unbalanced: It has eight negative (from Gtrain) and
38 positive examples. However, using all the LM-
Turker annotations (τ=100%) may not be optimal
either. This is noticeable when looking at SST5:
τ=90% and τ=80% are better options.

We see that there is a trade-off between Dj’s
quality and size from Figure 7 right. Being con-
servative, i.e., preserving only a handful of anno-
tations from LMTurkers, results in a small, but
high-quality Dj ; using all the annotations indis-
criminately leads to a large Dj with low quality.
This experiment highlights a key difference be-
tween LMTurk and AL: LMTurker annotations are
not perfect and taking the annotation quality into
consideration when training S is crucial.

6 Conclusion

In this work, our focus is the research question:
How to make effective use of current few-shot learn-
ers? We propose LMTurk, a simple yet effective
method that considers PLM-based few-shot learn-
ers as non-expert annotators in crowdsourcing; ac-
tive learning strategies are incorporated to reduce
the cost of annotation. We further show that pro-
cessing the annotations from LMTurkers can be
beneficial.

Future work may combine LMTurker annota-
tions with human annotators in a human-in-the-
loop setup (Monarch, 2021) to increase the overall
utility of invested resources (Bai et al., 2021). Scal-
ing up to even larger PLMs likely to further boost
model performances (Kaplan et al., 2020; Brown
et al., 2020) Applying LMTurk to multilingual few-
shot learners (Zhao et al., 2021; Winata et al., 2021;
Lin et al., 2021) is also promising.
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A Reproducibility Checklist

A.1 Computing infrastructure
We use four Tesla V100 GPUs to prompt each of
the LMTurkers, and a single Tesla V100 GPU is
used when finetuning the small model S.

A.2 Datasets
For SST2, CoLA, and RTE, we use the
official datasets available on the benchmark
website gluebenchmark.com. We down-
load SST5 dataset from nlp.stanford.edu/
sentiment and AGNews from the link provided
by Zhang et al. (2015).

The number of testing examples of each dataset
is shown in Table 2. Note that for SST2, CoLA,
and RTE, Gdev is sampled from the training set,
and the dev set is used as the test set.

CoLA SST5 RTE AGNews SST2
1042 2210 277 7600 872

Table 2: Number of testing examples.

B Numerical Results

Table 3 reports the numerical value of Figure 2.

C Prompting Details

For each task, we list the five prompts employed to
adapt a PLM to a LMTurker. “[v]” is a prompting
token whose trainable embedding vector is ran-
domly initialized.

For SST5, we use following prompts:

• “[v] x It is [MASK].”

• “[v] x Such a [MASK] movie.”

• “x [v] It is pretty [MASK].”

• “It is [MASK] because x [v]”

• “x So it is [MASK]. [v]”

and the PLM picks a word from {“crap”, “bad”,
“normal”, “good”, “perfect”}. to fill the position of
“[MASK]”. The mapping {“crap”→ 1, “bad”→ 2,
“normal”→ 3, “good”→ 4, “perfect”→ 5 } is used
to convert model predictions to numerical values.

For SST2, we use following prompts:

• “[v] x It is [MASK].”

• “[v] x Such a [MASK] movie.”

• “x [v] It is pretty [MASK].”

• “It is [MASK] because x [v]”

• “x So it is [MASK]. [v]”

and the PLM picks a word from {“bad”, “good”}
to fill the position of “[MASK]”. The mapping
{“bad”→ 0, “good”→ 1} is used.

For AGNews, we use following prompts:

• “[v] x It is about [MASK].”

• “x [v] Topic: [MASK].”

• “x [v] The text is about [MASK].”

• “x Topic: [MASK]. [v]”

• “x [v] [MASK].”

and the PLM picks a word from {“world”,
“sports”, “economy”, “technology”} to fill the po-
sition of “[MASK]”. The mapping {“world”→ 1,
“sports”→ 2, “economy”→ 3, “technology”→ 4 }
is used.

For CoLA, we use following prompts:

• “[v] x It sounds [MASK].”

• “[v] x The sentence is [MASK].”

• “[v] x It is a [MASK] sentence.”

• “x [v] [MASK].”

• “[v] x [MASK].”

and the PLM picks a word from {“wrong”, “ok”}
to fill the position of “[MASK]”. The mapping
{“wrong”→ 0, “okay”→ 1} is used.

For RTE, we use following prompts:

• “p Question: h? [v] Answer: [MASK].”

• “p [SEP] h? [MASK]. [v]”

• “p [SEP] h? [v] answer: [MASK].”

• “p [SEP] In short h. [MASK]. [v]”

• “[v] p [SEP] In short h. [MASK].”

where p and h refer to premise and hypothesis. The
PLM picks a word from {“No”, “Yes”} to fill the
position of “[MASK]”. The mapping {“No”→ 0,
“Yes”→ 1} is used.

gluebenchmark.com
nlp.stanford.edu/sentiment
nlp.stanford.edu/sentiment


G8 G16 G32

Workers S Workers S Workers S
91.13±0.52 91.93±1.09 91.97±0.83
91.63±0.68 93.08±0.62 91.70±1.78

SST2 90.18±1.00 67.63±8.01 91.74±1.04 75.83±1.35 91.21±1.83 76.37±3.16
90.83±0.58 90.79±0.47 91.13±0.24
90.52±1.84 91.67±1.36 93.23±0.37
41.37±1.55 45.16±2.13 45.91±0.96
42.32±2.04 45.96±2.12 48.64±0.59

SST5 40.57±2.70 28.47±1.61 46.70±0.93 34.97±1.51 50.53±0.94 33.47±2.79
37.69±1.34 42.53±2.43 43.32±3.42
38.05±2.60 42.96±0.69 45.72±1.43
68.95±1.47 68.35±2.29 71.72±1.96
54.99±3.76 57.64±3.23 58.48±3.59

RTE 62.70±1.33 57.30±1.79 70.88±1.70 61.50±0.78 68.47±1.19 62.93±0.74
50.42±2.07 58.60±1.62 59.33±4.72
51.99±4.45 57.88±2.83 60.41±2.47
75.39±5.25 83.06±0.83 84.92±0.28
85.40±1.43 87.71±0.07 87.79±1.08

AGNews 78.83±4.77 66.37±2.95 83.59±2.96 69.40±0.93 87.39±1.29 76.53±0.41
85.07±1.09 87.69±0.04 87.17±0.67
79.95±0.86 80.15±3.38 83.32±0.59
0.14±1.43 11.81±7.82 19.88±3.30
2.42±4.84 15.23±7.07 22.51±0.96

CoLA 7.40±8.12 0.97±4.40 19.71±1.89 4.27±3.26 26.34±1.54 2.50±2.41
9.91±7.98 17.14±2.48 18.15±0.63

15.33±2.15 19.66±0.48 27.58±7.09

Table 3: Few-shot performance of the five LMTurkers and the small model S. Each experiment is repeated three
times and we report mean and standard deviation.

Figure 8: Weighting the training instances from LM-
Turkers.

D More Visualizations

Figure 9 visualizes the performance of S when
different |G| and |B| are used.

E Instance Weighting

Following Wang et al. (2017), we associate each
example (x, ŷ, l) ∈ Dj with weight 1-entropy(l)
when computing the loss during training Sj . We
can interpret this weight as a measure of the cer-
tainty of the LMTurkers ensemble.

Figure 8 reports the performance of S when us-
ing instance weighting, however, the impacts are
less noticeable.



Figure 9: Improving S with active learning (blue), self training (orange), and LMTurk (green). Free markers at step
zero show LMTurker performances; colors distinguish random seeds. Three acquisition functions are: Entropy (•),
LeastConfident (�), random sampling ($). At iteration j, each experiment is repeated three times; we show
mean and standard deviation. We evaluate different |G| and |B|.
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