
LMTurk: Few-Shot Learners as Crowdsourcing Workers in a
Language-Model-as-a-Service Framework

Mengjie Zhao† Fei Mi‡ Yasheng Wang‡ Minglei Li*

Xin Jiang‡ Qun Liu‡ Hinrich Schütze†

†CIS, LMU Munich ‡Huawei Noah’s Ark Lab *Huawei Technologies Co., Ltd.
mzhao@cis.lmu.de, {mifei2,wangyasheng,jiang.xin,qun.liu}@huawei.com

Abstract

Vast efforts have been devoted to creating high-
performance few-shot learners, i.e., large-scale
pretrained language models (PLMs) that per-
form well with little downstream task train-
ing data. Training PLMs has incurred signif-
icant cost, but utilizing the few-shot learners
is still challenging due to their enormous size.
This work focuses on a crucial question: How
to make effective use of these few-shot learn-
ers? We propose LMTurk, a novel approach
that treats few-shot learners as crowdsourcing
workers. The rationale is that crowdsourcing
workers are in fact few-shot learners: They
are shown a few illustrative examples to learn
about a task and then start annotating. LMTurk
employs few-shot learners built upon PLMs as
workers. We show that the resulting annota-
tions can be utilized to train models that solve
the task well and are small enough to be deploy-
able in practical scenarios. Active learning is
integrated into LMTurk to reduce the amount of
queries made to PLMs, minimizing the compu-
tational cost of running PLM inference passes.
Altogether, LMTurk is an important step to-
wards making effective use of current PLMs.1

1 Introduction

Equipped with prolific linguistic features (Liu et al.,
2019; Tenney et al., 2019; Belinkov and Glass,
2019; Rogers et al., 2020) and rich world knowl-
edge (Petroni et al., 2019; Poerner et al., 2020;
Kassner et al., 2021), large-scale pretrained lan-
guage models (PLMs) have been shown to be ver-
satile: They are now basic building blocks (Bom-
masani et al., 2021) of systems solving diverse NLP
tasks in many languages (Wang et al., 2018, 2019;
Hu et al., 2020; Xu et al., 2020; Khashabi et al.,
2021; Park et al., 2021; Adelani et al., 2021).

Recent work shows that PLMs are effective
few-shot learners (Brown et al., 2020; Schick and
Schütze, 2021b; Gao et al., 2021; Tam et al., 2021)

1Resources are available at: github.com/lmturk

S

U

A

D

Small model S predicts unlabelled data U.
Select data D from U with active learning.
LMTurkers A annotate and aggregate labels of D.
Training a new small model S.

Converting a PLM to LMTurker with few-shot gold data G of task T.

G

Figure 1: LMTurk overview; best viewed in color. We
few-shot adapt PLMs to task T (left) and then use them
as crowdsourcing workers in active learning. We show
that these PLM workers are effective in training a small
model S through a customized active learning loop
(right). LMTurk is a novel way to take advantage of
large-scale PLMs: It creates models small enough to be
deployed in resource-limited real-world settings.

through priming (Brown et al., 2020; Tsimpoukelli
et al., 2021) or prompting (Li and Liang, 2021; Liu
et al., 2021b; Lester et al., 2021; Zhao and Schütze,
2021). Developing few-shot learners is crucial be-
cause current NLP systems require much more data
than humans (Yin et al., 2020). Few-shot learners
tend to perform well; however, they still fall behind
systems trained with abundant data. Furthermore,
the enormous size of PLMs hinders their deploy-
ment in practice. For example, it is challenging
to fit the 11 billion T5-XXL (Raffel et al., 2020)
model on a single regular GPU.

Our goal in this paper is to devise methods that
make more effective use of current few-shot learn-
ers. This is crucial because an increasing number

github.com/lmturk

of gigantic few-shot learners are trained; how to use
them effectively is thus an important question. In
particular, we want an alternative to hard-to-deploy
huge models. At the same time, we want to take
full advantage of the PLMs’ strengths: Their versa-
tility ensures wide applicability across tasks; their
vast store of knowledge about language and the
world (learned in pretraining) manifests in the data
efficiency of few-shot learners, reducing labor and
time consumption in data annotation.

In this work, we propose LMTurk, Language
Model as mechanical Turk. Our basic idea (see
Figure 1) is that, for an NLP task T, we treat few-
shot learners as non-expert workers, resembling
crowdsourcing workers that annotate resources for
human language technology. We are inspired by the
fact that we can view a crowdsourcing worker as a
type of few-shot learner: A few examples demon-
strating T teach her enough about T to conduct ef-
fective annotation. For example, Snow et al. (2008)
train workers with a few examples of annotating
emotion; He et al. (2015) conduct short training
sessions for workers before annotation; Lee et al.
(2021) train workers with learning curricula.

Snow et al. (2008) pioneered crowdsourcing in
NLP (Howe et al., 2006; Howe, 2008), motivated
by the high cost of TreeBank annotation (Marcus
et al., 1993; Miller et al., 1993). Crowdsourcing
organizes human workers over the Web to annotate
data. Workers need not be experts to be effective,
resulting in reduced per-label cost. Active learning
(Hachey et al., 2005; Felder and Brent, 2009) can
be incorporated (Laws et al., 2011) to further de-
crease annotation cost, by lowering the number of
labels to be annotated. LMTurk treats PLM-based
few-shot learners as non-expert workers that pro-
duce training sets, which are then used to train a
small machine learning model S specialized for
T. This scenario is analogous to active learning.
We achieve two benefits: (i) low annotation cost
because humans only need to annotate a few shots
of data; (ii) solving practical NLP tasks with small
models that are more real-world deployable.

LMTurk resonates with Laws et al. (2011)’s ear-
lier idea of combining crowdsourcing and active
learning. They consider human workers as “noisy
annotators” while we explore the utilization of mod-
ern NLP few-shot learners (built upon machine
learning models) as workers – which have the ad-
vantage of being free, instantly interactive, fast,
responsive, and non-stopping.

Our contributions: (i) We propose LMTurk, a
method that uses few-shot learners as crowdsourc-
ing workers. Figure 1 shows the overview of LM-
Turk. (ii) We vary an array of important design
choices, identifying strengths and weaknesses of
LMTurk. (iii) Unlike much work on active learning
in a synthetic oracle setting, we develop methods
for handling the varying quality of annotation that
does not come from an oracle. (iv) We extensively
evaluate LMTurk on five datasets, showing that
LMTurk can guide a small model S to progres-
sively improve on T. S can then be deployed in
practical scenarios. (v) This is the first work show-
ing that few-shot learners give rise to effective NLP
models through crowdsourcing and active learning
– with the benefits of low annotation cost and prac-
tical deployability.

2 Related Work

Few-shot learners in NLP. Significant progress
has been made in developing (Devlin et al., 2019;
Peters et al., 2018; Yang et al., 2019; Brown
et al., 2020), understanding (Liu et al., 2019; Ten-
ney et al., 2019; Belinkov and Glass, 2019; He-
witt and Liang, 2019; Hewitt and Manning, 2019;
Zhao et al., 2020a; Rogers et al., 2020), and uti-
lizing (Houlsby et al., 2019; Zhao et al., 2020b;
Brown et al., 2020; Li and Liang, 2021; Schick
and Schütze, 2021a; Lester et al., 2021; Mi et al.,
2021a) PLMs. Brown et al. (2020), Schick and
Schütze (2021a), and Liu et al. (2021b) show that
PLMs can serve as data-efficient few-shot learners,
through priming or prompting (Liu et al., 2021a).
For example, GPT3 achieves near state-of-the-art
performance on COPA (Roemmele et al., 2011)
with only 32 annotated data.

However, little to no work discusses or explores
the actual practical utility of these few-shot learn-
ers. We aim to develop effective methods of utiliz-
ing them in practical scenarios.

Crowdsourcing has a long history in human
language technology (Alonso et al., 2008; Callison-
Burch, 2009; Trautmann et al., 2020); specialized
workshops were organized (Callison-Burch and
Dredze, 2010; Paun and Hovy, 2019). It has numer-
ous applications (Yuen et al., 2011), but we focus
on its application as voting systems. To reduce per-
label cost, crowdsourcing organizes non-expert hu-
man workers distributed across the Web for annota-
tion, instead of employing linguistic experts (Jami-
son and Gurevych, 2015; Bhardwaj et al., 2019;

Nangia et al., 2021). Snow et al. (2008) show
that averaging ten crowdsourced labels matches
an expert-level label for recognizing textual entail-
ment (Dagan et al., 2006). Paun et al. (2018) show
that incorporating structure in annotation models is
important. Measuring label disagreements is also
crucial (Dumitrache et al., 2021).

LMTurk utilizes NLP few-shot learners as non-
expert workers. The few-shot training data can be
viewed as the examples shown to humans before
annotating. The process is free, fast, responsive,
and non-stopping.

Active learning (AL; Cohn et al. (1996); Settles
(2009)) strives to reduce the number of examples
to be annotated via identifying informative exam-
ples with acquisition functions. Settles and Craven
(2008) evaluate AL algorithms for sequence label-
ing. Zhang et al. (2017); Shen et al. (2017); Sid-
dhant and Lipton (2018) apply AL to deep neural
networks. Simpson and Gurevych (2018) devise
a scalable Bayesian preference learning method
for identifying convincing arguments. Lee et al.
(2020) propose to consider user feedback in AL
systems. Ein-Dor et al. (2020) explore AL for
BERT. Schröder and Niekler (2020) review text
classification with AL. Liang et al. (2020); Mar-
gatina et al. (2021) integrate contrastive learning
into AL. Zhang and Plank (2021) identify examples
with datamap (Swayamdipta et al., 2020).

We incorporate AL in LMTurk to reduce the
amount of examples to be annotated by PLMs, re-
ducing the computational cost of running several in-
ference passes. This contributes to a more environ-
mentally friendly (Strubell et al., 2019; Schwartz
et al., 2020; Patterson et al., 2021) scenario.

Perhaps closest to our work, Yoo et al. (2021)
conduct data augmentation via priming GPT3
and Wang et al. (2021) mix human- and GPT3-
annotated data, focusing on cost analysis. GPT3
is utilized in a Language-Model-as-a-Service form
by OpenAI, which is not free.2 Also, strategies
of priming GPT3 may not generalize well to other
PLMs. For example, priming strategies have to
adapt to GPT3’s maximum sequence length. How-
ever, maximum sequence length – as a hyperpa-
rameter – could vary across PLMs. In this work,
we prompt publicly available free PLMs. This also
makes the process more flexible; for example, the
PLM can be updated with gradient descent.

2https://beta.openai.com/pricing

3 LMTurk

3.1 Training few-shot learners
We first adapt a PLM to task T with a few-shot
human-labeled gold dataset G = {Gtrain;Gdev} of
T. This procedure mimics one of the initial but
crucial steps in crowdsourcing: A few example an-
notations are shown to the workers, demonstrating
T; workers learn about the task and then start anno-
tating (Snow et al., 2008; He et al., 2015; Roit et al.,
2020; Trautmann et al., 2020; Lee et al., 2021).

We achieve this adaptation through P-Tuning
(Liu et al., 2021b). Taking movie review classi-
fication as an example, the goal is to associate a
binary label y from {-1, +1} to an input sentence
x = (x1, ..., xn) where xi refers to a token. Un-
like finetuning and its variants (Devlin et al., 2019;
Houlsby et al., 2019; Zhao et al., 2020b) that train
a classifier head, P-Tuning reformulates a sentence
into a cloze-style query; the PLM is then requested
to respond to the query with an answer selected
from a list of candidates. Concretely, an input pair

(x, y) = (“watching it leaves you giddy.”, -1)

is reformulated to:

“[v] watching it leaves you giddy. It is [MASK] .”

in which the underlined tokens are prompting
words that give the model a hint about T. “[v]” –
whose trainable embedding vector is randomly ini-
tialized – is a prompting token injecting extra free
parameters. The PLM is then requested to pick a
word from {“bad”, “good”} to fill in the position of
“[MASK]”. A mapping {“bad”→ -1, “good”→ +1}
is used to transform the selected answer to a label
such that standard evaluation measures like accu-
racy can be computed. Prompting has been shown
to effectively adapt a PLM to T with only a few
annotations; see (Liu et al., 2021a) for a compre-
hensive review of prompting. We refer to a PLM
adapted to T as an LMTurker A.

We select prompting words and mappings based
on the small development set Gdev. §4.2 provides
details on prompting and datasets.

3.2 Aggregating annotations
Individual workers are subject to annotation bi-
ases (Snow et al., 2008); therefore, crowdsourcing
often collects labels from several workers (Yuen
et al., 2011) for an example x and then aggregates
them for quality control (Alonso et al., 2008). It
is straightforward to obtain a group of LMTurkers

https://beta.openai.com/pricing

A = {A1, ..., Ak}, by adapting the PLM to T with
k different prompts. A querying sentence x is then
annotated by every LMTurker, resulting in a list
of labels y = [y1, ..., yk]. We evaluate different
methods aggregating y to a single label ŷ.

BestWorker. Among the k LMTurkers, we pick
the one performing best on the dev set Gdev.

MajorityVoting. We select the most frequent
label in y = [y1, ..., yk] as ŷ.

To estimate an LMTurker’s confidence on label
yi, we compare the logits3 computed by the PLM:

yi = argmax(logit(y1),..., logit(yN)),

where N refers to the label set size, e.g., N=2 for
y from {-1, +1}. We then can evaluate several
methods of aggregating annotations according to
PLM logits.

LogitVoting. We average the logits from all k
LMTurkers {A1, ..., Ak} to compute ŷ:

ŷ = argmax(1
k

∑k
i=1 logit(y1i),...,

1
k

∑k
i=1 logit(yNi)).

WeightedLogitVoting. We use LMTurkers’ per-
formance on Gdev to weight their logits and then
aggregate the predictions:

ŷ = argmax(
∑k

i=1 wilogit(y1i),...,
∑k

i=1 wilogit(yNi))

wi = f(Ai,Gdev)/
∑k

i=1 f(Ai,Gdev)

where f(Ai,Gdev) is the performance of the ith
LMTurker Ai on Gdev.

We collect and aggregate annotations from five
LMTurkers, i.e., we use k=5 in our experiments.

3.3 Training a small model S
After adapting LMTurkers to T through prompting
with the few-shot gold dataset G, we next train
a small model S specialized to solve T. Though
large PLMs are versatile and strong performers,
training and inference are faster and more efficient
for small models: They are more deployable in
resource-restricted scenarios, e.g., on edge devices
(Jiao et al., 2020).

We mimic pool-based active learning (AL; Set-
tles (2009)) to train S. The motivation is to avoid
frequent querying of LMTurkers A because energy
and time consumption of PLM inference is costly
when the number of queries and |A| are large.

Concretely, pool-based AL assumes a large col-
lection of unlabeled data U = {x1, ...,xM} for T.

3Calibration can be conducted to further improve the esti-
mation (Guo et al., 2017). We leave this to future work.

S is first trained with G = {Gtrain;Gdev}. After
that, a group of examples B from U is sampled
(c.f. §3.3.1), which LMTurkers annotate. Next, the
annotated and aggregated examples B′ are concate-
nated with G to train S . The procedure is repeated
iteratively, such that the training data for S keeps
expanding. We denote as Sj the model trained af-
ter the jth iteration. Note that S is trained from
scratch in each iteration (Cohn et al., 1994).

3.3.1 AL acquisition function

At the beginning of the jth iteration, a straightfor-
ward strategy of sampling B from U is random
sampling. AL promises to select a more informa-
tive B such that the trained Sj performs better, un-
der the same budget. These strategies – or acquisi-
tion functions – rely on Sj−1, i.e., S from the previ-
ous iteration: Sj−1 is employed to infer U to obtain
labels and logits Pj−1 = {(y1, c1), ..., (yM , cM)};
each ci contains the logits of the N labels; yi =
argmax(ci). We explore two common AL acquisi-
tion functions: Entropy (Roy and McCallum, 2001)
and LeastConfident (Lewis and Gale, 1994).

Entropy selects from Pj−1 examples with the
largest prediction entropy, computed using c. Large
entropy of an example x implies that Sj−1 is un-
sure about which label to select; x is then a query
made to LMTurkers to obtain its label ŷ. (x, ŷ) is
subsequently added to Gtrain for training Sj .

LeastConfident selects from Pj−1 examples for
which the maximum logit in c is the smallest. Se-
lected examples are then annotated and added to
Gtrain for training Sj .

Our AL setup is fairly standard, both in terms of
acquisition functions and iterative enlargement by
new sampled data B at iteration j labeled by Sj−1.

3.3.2 Considering annotation quality

As in any realistic AL scenario, annotations are not
perfect: LMTurkers do not score perfectly on T.
As a result, annotation quality of LMTurkers needs
to be taken into consideration before training Sj .
Denoting the training data of Sj as Dj , we explore
a strategy of processing Dj , based on LMTurker
logits l.

InstanceTresholding. We preserve examples
(x, ŷ, l) ∈ Dj for which entropy computed on l is
smallest. Gtrain is always preserved because it is
human-labeled gold data. Note that this is different
from the strategy of sampling B, where we select
from Pj−1 examples to which Sj−1 is most unsure

(computed with c). We evaluate4 the effectiveness
of processing Dj before training Sj in §5.6.

3.4 Summary of LMTurk
LMTurk can be viewed as intermediate between
self training (Yarowsky, 1995; Abney, 2004; Lee
et al., 2013; Mi et al., 2021b) and AL. Unlike self
training, LMTurk employs external models provide
labels to S . Different from the artificial setup used
in many AL experiments, the provided labels do
not have oracle quality; so S must use the annota-
tions more carefully. We next conduct experiments
investigating the effectiveness of LMTurk.

4 Datasets and Setup

4.1 Dataset
We evaluate LMTurk on five datasets: Binary
(SST2) and fine-grained (five classes) sentiment
classification (SST5) with the Stanford Sentiment
TreeBank (Socher et al., 2013); news article topic
classification with the AG’s News Corpus (AG-
News; Zhang et al. (2015)); recognizing textual en-
tailment (RTE; Dagan et al. (2006)); assessing lin-
guistic acceptability (CoLA; Warstadt et al. (2019)).
Appendix §A reports dataset statistics. SST2/SST5
and AGNews are widely used in crowdsourcing
and AL (Laws et al., 2011; Ein-Dor et al., 2020;
Margatina et al., 2021; Zhang and Plank, 2021).
RTE and CoLA assess the models’ ability to un-
derstand textual entailment and linguistic phenom-
ena – as opposed to text categorization. We report
Matthew’s correlation coefficient for CoLA and
accuracy for the others (Wang et al., 2018).

Few-shot datasets. Recall LMTurk uses a small
human-annotated dataset G = {Gtrain;Gdev}. De-
noting n as the number of shots per class, we sam-
ple Gntrain and Gndev for each of n ∈ {8, 16, 32}.
For SST2, RTE, and CoLA, we use the train and
dev sets of GLUE (Wang et al., 2018); Gntrain and
Gndev are sampled from the train set; the dev set is
used as the test set. For SST5 and AGNews, we
use the official datasets; Gntrain (Gndev) is sampled
from the train (dev) set; we report performance on
the test set. We repeat the sampling process with
three random seeds.

4.2 Training setup
Brown et al. (2020) show that large model size is

4Motivated by Wang et al. (2017), we also investigate the
effectiveness of weighting training examples. However, we
do not observe noticeable improvements of task performance.
We list more details in Appendix §E.

Schick and Schütze (2021a,b) Gao et al. (2021) Ours

SST2 n/a 93.0±0.6 93.08±0.62
SST5 n/a 49.5±1.7 46.70±0.93
RTE 69.8 71.1±5.3 70.88±1.70

AGN. 86.3±0.0 n/a 87.71±0.07
CoLA n/a 21.8±15.9 19.71±1.89

Table 1: LMTurkers achieve comparable few-shot per-
formance with the literature. We refer to PET results
in Schick and Schütze (2021a,b) and results of Prompt-
based FT (auto) + demonstrations in Gao et al. (2021).

necessary for strong few-shot performance. We
use ALBERT-XXLarge-v2 (Lan et al., 2020) – of
size 223M parameters – as our large PLM, which is
adapted to be an LMTurkerA of T with G. With pa-
rameter reuse, ALBERT-XXLarge-v2 outperforms
larger models like the 334M BERT-large (Devlin
et al., 2019). In contrast, S must be small to be de-
ployable in practical scenarios. We use TinyBERT-
General-4L-312D (Jiao et al., 2020), which has
14.5M parameters.

We train – with prompting – the large PLM with
G for 100 batch steps using batch size 16, AdamW
(Loshchilov and Hutter, 2019) and learning rate
5e-4 with linear decay. We prompt the large PLM
five times to obtain five LMTurkers; Appendix §C
shows prompting details. At each iteration, we fine-
tune S for 20 epochs using batch size 32, Adam
(Kingma and Ba, 2015) and learning rate 5e-5.
Each experiment is run with three different ran-
dom seeds. We use PyTorch (Paszke et al., 2019)
and HuggingFace (Wolf et al., 2020).

5 Experiment

5.1 Few-shot performance (non-iterative)
We compare few-shot performance of LMTurkers
and the small model S when only G is used. LM-
Turker performance is comparable to prior work
(Schick and Schütze, 2021a,b; Gao et al., 2021) as
shown in Table 1.

Figure 2 compares performance of LMTurkers
and S. Appendix §B Table 3 reports numeric val-
ues. LMTurkers perform clearly better than S on
CoLA, SST5, AGNews, and SST2; e.g., for SST2,
for train/dev size 16, LMTurker accuracy is 93.08%
vs. 75.83% for S. LMTurkers’ superiority over S
on RTE is modest. As an inference task, RTE
is more challenging than classification (e.g., AG-
News). We hypothesize that current few-shot learn-
ers require more data than G32 to process difficult
tasks better than S . Scaling up to even larger PLMs
is also a promising direction (Brown et al., 2020;

Figure 2: Few-shot test set performance of LMTurkers
and S . We use the few-shot gold datasets G8 (top), G16
(middle), and G32 (bottom).

Lester et al., 2021).
Overall, LMTurkers outperform S with clear

margins, evidencing that their annotations can
serve as supervisions for training S. We next con-
duct iterative training to improve performance of
S on T with supervisions from LMTurkers.

5.2 Iterative training
We investigate the effectiveness of LMTurk by sim-
ulating scenarios analogous to active learning. Con-
cretely, we compare three schemes of annotating
the sampled data B at each annotation iteration j:

• Active learning (AL). We use B’s gold labels
to show how S performs with expert annota-
tions. Gold labels are ideal, but costly because
expert annotators need to be employed.

• Self training (ST). We use Sj−1, the model
trained in the previous iteration, to annotate
B (Yarowsky, 1995; Abney, 2004; Lee et al.,

Figure 3: Improving S with active learning (blue), self
training (orange), and LMTurk (green). Free markers
at step zero show LMTurker performances; colors dis-
tinguish random seeds. Three acquisition functions are:
Entropy (•), LeastConfident (�), random sampling
($). At iteration j, each experiment is repeated
three times; we show mean and standard deviation.
Appendix Figure 9 visualizes more results.

2013). ST trades supervision quality for an-
notation cost; no extra cost is introduced. Be-
cause there is no external supervision, ST is
expected to be a baseline.

• LMTurk. We query the LMTurkers to anno-
tate B. LMTurkers are machine learning mod-
els, so there is no human labor. Based on the
findings in Figure 2, LMTurker supervisions

are expected to have better quality than those
of ST. Yet LMTurk could fall behind AL be-
cause LMTurker labels are not gold labels.

When sampling B from U at each iteration j,
we consider the strategies described in §3.3. We
employ Random for all three schemes and En-
tropy/LeastConfident for AL/LMTurk. Entropy
and LeastConfident rely on Sj−1. Regarding the
number of sampled examples, we experiment with
|B|=100 and |B|=400 for SST2, SST5, AGNews,
CoLA. Due to RTE’s small size, we use |B|=20
and |B|=100. We run for 15 iterations of improv-
ing S. To aggregate annotations from LMTurkers,
we use MajorityVoting (§3.2), which is widely used
in crowdsourcing. See §5.3 for a comparison of
various aggregation methods.

Figure 3 compares AL, ST, and LMTurk. ST
(orange) noticeably helps S to perform progres-
sively better on AGNews, e.g., when comparing
S15 to S0 shown in the first row, especially when
|B|=400. However, we do not identify clear im-
provements when looking at other tasks. Except for
RTE-G8, ST clearly falls behind AL and LMTurk.
This inferior performance meets our expectation
because there is no external supervision assisting
S to perform better on T. In what follows, we omit
ST for clearer visualization and discussion.

AL (blue) performs the best in most experiments.
However, this comes with extra costs that are not
negligible: At each iteration, human annotators
need to annotate 100–400 sentences.

LMTurk (green) holds a position between AL
and ST on AGNews, SST2, SST5, and CoLA.
Somehow surprisingly, LMTurk performs almost
comparably to AL on SST2. Unlike AL, LMTurk
requires very little human labor; the only human
annotation throughout the entire process is the few-
shot gold dataset G. In contrast, AL has high human
annotation cost, e.g., 1000–4000 examples by iter-
ation ten. LMTurk also shows clear performance
improvements over ST.

Results on RTE are noisy; we conjecture this
is due to its very small test set (277 examples).
We do not observe performance improvement of
S along the iterations in experiment RTE-G32-
|B|=100, likely due to saturated task performance:
TinyBERT-General-4L-312D (S) achieves 66.6%
on RTE for the full train set (Jiao et al., 2020).

Comparing sampling strategies. Entropy (•)
and LeastConfident (�) outperform random sam-
pling ($) in AGNews and SST2 with noticeable

Figure 4: Comparing strategies of aggregating LM-
Turker annotations. We compare LMTurk (green) with
AL (blue). Strategies: LogitVoting ($), MajorityVot-
ing (�), WeightedLogitVoting (�), BestWorker (:).
AL uses gold labels without aggregation (•).

margins – for both AL and LMTurk, especially
when |B|=400. They also surpass random sam-
pling when using LMTurk for SST5 and CoLA
with G8. In other words, Entropy and LeastCon-
fident assist LMTurk to achieve the same perfor-
mance as of using random sampling, but with fewer
annotations. For example in AGNews-G8-|B|=100,
LeastConfident at iteration six already achieves
comparable performance as random sampling at
iteration eleven. This is economically and environ-
mentally beneficial because the number of queries
made to LMTurkers, i.e., the cost of running infer-
ence passes on the array of large PLMs, is signifi-
cantly reduced.

Overall, we show that LMTurk can be used to
create datasets for training a specialized model S of
solving T in practical scenarios. To reduce compu-
tational cost, we use only Entropy in what follows.

5.3 Design choice 1: Aggregation strategies

Figure 4 compares effectiveness of different strate-
gies of aggregating LMTurker annotations (§3.2).
Looking at SST5 and AGNews results (top two
images), we observe that committee-style aggre-
gation (LogitVoting ($), MajorityVoting (�), and
WeightedLogitVoting (�)) generally outperforms
BestWorker (:), which simply relies on the LM-
Turker performing best on Gdev. LMTurkers per-
form well on these two datasets as shown by the
free markers at iteration zero; ensembling their pre-
dictions results in higher-quality datasets.

0 20 40 60 80 100
Iteration

0.78

0.80

0.82

0.85

0.88

0.90

0.93 AGNews; 32; | | = 100

AL
LMTurk

0 100 200 300 400 500
Iteration

0.70

0.75

0.80

0.85

0.90

0.95 SST2; 32; | | = 100

AL
LMTurk

Figure 5: Running more iterations of improving S with
AL and LMTurk. Sampling strategy Entropy is used for
both methods; WeightedLogitVoting is used for aggre-
gating LMTurker annotations.

In contrast, BestWorker (:) has stellar per-
formance on RTE (bottom-left), outperforming
committee-style aggregation. Note that even the
LMTurkers do not perform really well in this ex-
periment, as shown by the free markers at itera-
tion zero – some LMTurkers even perform worse
than S. Ensembling these low-quality annotations
seems a worse option than simply relying on the
best LMTurker. For CoLA, we observe comparable
performance of different aggregation strategies.

5.4 Design choice 2: More iterations

We hypothesize that AL performance is an upper
bound for performance when S is trained with LM-
Turker annotations – recall that the AL annotations
are gold labels. Figure 5 compares AL and LM-
Turk when running 100 iterations of improving
S on AGNews and 500 iterations on SST2. As
expected, AL outperforms LMTurk because the
pool of human-annotated data expands. The per-
formance of S progressively approaches that of the
LMTurkers; LMTurk performs comparably to AL
in SST2, however, no human labor is required.

5.5 Design choice 3: Distilling logits

We can view LMTurk as a kind of distillation (Hin-
ton et al., 2015): The ability of LMTurkers to solve
T is progressively transferred to S. In this sec-
tion, we explore the utility of distillation: We train
S with predicted logits5 instead of discrete labels
from LMTurkers. Concretely, we train S by re-
ducing the KL divergence between its predicted
probability distribution (over the label set) and the
probability distribution from LMTurkers.

5Distilling with intermediate activations likely to further
improve performance of S. However, note that PLM inter-
mediate activations are not always available in a Language-
Model-as-a-Service framework.

Figure 6: Performance of AL and LMTurk with discrete
labels (•) vs. with KL divergence ($). Entropy is used
as the sampling strategy and WeightedLogitVoting
is used to aggregate worker annotations.

Figure 6 shows that training S with KL diver-
gence noticeably improves over discrete labels on
AGNews and SST5. This is expected: AGNews
and SST5 have larger label set size (four and five)
such that the probability distribution over the la-
bel set is more informative than that of the binary
classification tasks SST2 and RTE.

5.6 Design choice 4: Quality-based filtering

One key difference between AL and LMTurk is
that LMTurkers are not oracles: Their labels are
not perfect. Hence, it is reasonable to consider
processing the training data, denoted as Dj , for Sj ,
instead of using it indiscriminately as in AL.

InstanceTresholding (§3.3.2) preserves annota-
tions in Dj for which LMTurkers have the smallest
prediction entropy. Concretely, we rank all anno-
tations (x, ŷ, l) ∈ Dj by entropy(l) and then keep
the τ percent smallest. Note that we always pre-
serve the human-labeled few-shot data Gtrain. We
experiment with τ ∈ {10%, . . . , 90%, 100%}.

Figure 7 left shows the performance of S; Fig-
ure 7 right tracks the status of Dj . To measure
quality, we compute the accuracy of LMTurker an-
notations on Dj (compared to gold labels); see the
lineplots and the left y-axis. We also report the size
of Dj as scatter plots (right y-axis).

We observe that τ=10%, i.e., keeping only the
10% most certain examples, gives the worst perfor-
mance. This is most obvious at iteration three for
SST2: The performance drops to near the majority
baseline (≈50%). This is because D3 is small and

0 2 4 6 8 10 12 14
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

SST2; 8; | | = 100
Exp.
AL
LMTurk
PreseR.
0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

D
at

as
et

 Q
ua

lit
y

SST2; 8; | | = 100

0

200

400

600

800

1000

1200

1400

D
at

as
et

 S
iz

e

0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.28

0.30

0.33

0.35

0.38

0.40

0.43

0.45

SST5; 8; | | = 100
Exp.
AL
LMTurk
PreseR.
0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.40

0.50

0.60

0.70

0.80

0.90

1.00
D

at
as

et
 Q

ua
lit

y

SST5; 8; | | = 100

0

200

400

600

800

1000

1200

1400

1600

D
at

as
et

 S
iz

e

0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
AGNews; 8; | | = 100

Exp.
AL
LMTurk
PreseR.
0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
at

as
et

 Q
ua

lit
y

AGNews; 8; | | = 100

0

200

400

600

800

1000

1200

1400

1600

D
at

as
et

 S
iz

e

0.1
0.8
0.9
1.0

Figure 7: Training S with examples for which LMTurk-
ers have low entropy. We report performance of S (left),
number and quality (measured by accuracy) of the pre-
served examples (right) at each iteration.

unbalanced: It has eight negative (from Gtrain) and
38 positive examples. However, using all the LM-
Turker annotations (τ=100%) may not be optimal
either. This is noticeable when looking at SST5:
τ=90% and τ=80% are better options.

We see that there is a trade-off between Dj’s
quality and size from Figure 7 right. Being con-
servative, i.e., preserving only a handful of anno-
tations from LMTurkers, results in a small, but
high-quality Dj ; using all the annotations indis-
criminately leads to a large Dj with low quality.
This experiment highlights a key difference be-
tween LMTurk and AL: LMTurker annotations are
not perfect and taking the annotation quality into
consideration when training S is crucial.

6 Conclusion

In this work, our focus is the research question:
How to make effective use of current few-shot learn-
ers? We propose LMTurk, a simple yet effective
method that considers PLM-based few-shot learn-
ers as non-expert annotators in crowdsourcing; ac-
tive learning strategies are incorporated to reduce
the cost of annotation. We further show that pro-
cessing the annotations from LMTurkers can be
beneficial.

Future work may combine LMTurker annota-
tions with human annotators in a human-in-the-
loop setup (Monarch, 2021) to increase the overall
utility of invested resources (Bai et al., 2021). Scal-
ing up to even larger PLMs likely to further boost
model performances (Kaplan et al., 2020; Brown
et al., 2020) Applying LMTurk to multilingual few-
shot learners (Zhao et al., 2021; Winata et al., 2021;
Lin et al., 2021) is also promising.

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments and suggestions. MZ and HS
were supported by the European Research Coun-
cil (ERC# 740516) and the German Federal Min-
istry of Education and Research (BMBF, grant
#01IS18036A).

References
Steven Abney. 2004. Understanding the Yarowsky al-

gorithm. Computational Linguistics, 30(3):365–395.

David Ifeoluwa Adelani, Jade Abbott, Graham Neu-
big, Daniel D’souza, Julia Kreutzer, Constantine Lig-
nos, Chester Palen-Michel, Happy Buzaaba, Shruti
Rijhwani, Sebastian Ruder, Stephen Mayhew, Is-
rael Abebe Azime, Shamsuddeen H. Muhammad,
Chris Chinenye Emezue, Joyce Nakatumba-Nabende,
Perez Ogayo, Aremu Anuoluwapo, Catherine Gitau,
Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yi-
mam, Tajuddeen Rabiu Gwadabe, Ignatius Ezeani,
Rubungo Andre Niyongabo, Jonathan Mukiibi, Ver-
rah Otiende, Iroro Orife, Davis David, Samba Ngom,
Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi,
Gerald Muriuki, Emmanuel Anebi, Chiamaka Chuk-
wuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel
Oyerinde, Clemencia Siro, Tobius Saul Bateesa,
Temilola Oloyede, Yvonne Wambui, Victor Akin-
ode, Deborah Nabagereka, Maurice Katusiime, Ayo-
dele Awokoya, Mouhamadane MBOUP, Dibora Ge-
breyohannes, Henok Tilaye, Kelechi Nwaike, De-
gaga Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named Entity
Recognition for African Languages. Transactions
of the Association for Computational Linguistics,
9:1116–1131.

Omar Alonso, Daniel E. Rose, and Benjamin Stewart.
2008. Crowdsourcing for relevance evaluation. SI-
GIR Forum, 42(2):9–15.

Fan Bai, Alan Ritter, and Wei Xu. 2021. Pre-train or an-
notate? domain adaptation with a constrained budget.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages

https://doi.org/10.1162/0891201041850876
https://doi.org/10.1162/0891201041850876
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1145/1480506.1480508
https://aclanthology.org/2021.emnlp-main.409
https://aclanthology.org/2021.emnlp-main.409

5002–5015, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Sangnie Bhardwaj, Samarth Aggarwal, and Mausam
Mausam. 2019. CaRB: A crowdsourced benchmark
for open IE. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 6262–6267, Hong Kong, China. Association
for Computational Linguistics.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Chris Callison-Burch. 2009. Fast, cheap, and creative:
Evaluating translation quality using Amazon’s Me-
chanical Turk. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 286–295, Singapore. Association
for Computational Linguistics.

Chris Callison-Burch and Mark Dredze, editors. 2010.
Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s
Mechanical Turk. Association for Computational Lin-
guistics, Los Angeles.

David Cohn, Les Atlas, and Richard Ladner. 1994. Im-
proving generalization with active learning. Machine
learning, 15(2):201–221.

David A Cohn, Zoubin Ghahramani, and Michael I
Jordan. 1996. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177–190,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Anca Dumitrache, Oana Inel, Benjamin Timmermans,
Carlos Ortiz, Robert-Jan Sips, Lora Aroyo, and Chris
Welty. 2021. Empirical methodology for crowdsourc-
ing ground truth. Semantic Web, 12(3):1–19.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.
Active Learning for BERT: An Empirical Study. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7949–7962, Online. Association for Computa-
tional Linguistics.

Richard M Felder and Rebecca Brent. 2009. Active
learning: An introduction. ASQ higher education
brief, 2(4):1–5.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321–1330. PMLR.

Ben Hachey, Beatrice Alex, and Markus Becker. 2005.
Investigating the effects of selective sampling on the
annotation task. In Proceedings of the Ninth Confer-
ence on Computational Natural Language Learning
(CoNLL-2005), pages 144–151, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
643–653, Lisbon, Portugal. Association for Compu-
tational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/D19-1651
https://doi.org/10.18653/v1/D19-1651
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/D09-1030
https://aclanthology.org/D09-1030
https://aclanthology.org/D09-1030
https://aclanthology.org/W10-0700
https://aclanthology.org/W10-0700
https://aclanthology.org/W10-0700
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://aclanthology.org/W05-0619
https://aclanthology.org/W05-0619
https://doi.org/10.18653/v1/D15-1076
https://doi.org/10.18653/v1/D15-1076
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Jeff Howe. 2008. Crowdsourcing: How the power of
the crowd is driving the future of business. Random
House.

Jeff Howe et al. 2006. The rise of crowdsourcing. Wired
magazine, 14(6):1–4.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
4411–4421. PMLR.

Emily Jamison and Iryna Gurevych. 2015. Noise or
additional information? leveraging crowdsource an-
notation item agreement for natural language tasks.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
291–297, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Nora Kassner, Philipp Dufter, and Hinrich Schütze.
2021. Multilingual LAMA: Investigating knowledge
in multilingual pretrained language models. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3250–3258, Online.
Association for Computational Linguistics.

Daniel Khashabi, Arman Cohan, Siamak Shakeri, Pe-
dram Hosseini, Pouya Pezeshkpour, Malihe Alikhani,
Moin Aminnaseri, Marzieh Bitaab, Faeze Brahman,
Sarik Ghazarian, Mozhdeh Gheini, Arman Kabiri,
Rabeeh Karimi Mahabagdi, Omid Memarrast, Ah-
madreza Mosallanezhad, Erfan Noury, Shahab Raji,
Mohammad Sadegh Rasooli, Sepideh Sadeghi, Er-
fan Sadeqi Azer, Niloofar Safi Samghabadi, Mahsa
Shafaei, Saber Sheybani, Ali Tazarv, and Yadollah
Yaghoobzadeh. 2021. ParsiNLU: A suite of language
understanding challenges for Persian. Transactions
of the Association for Computational Linguistics,
9:1147–1162.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Florian Laws, Christian Scheible, and Hinrich Schütze.
2011. Active learning with Amazon Mechanical
Turk. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1546–1556, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Dong-Hyun Lee et al. 2013. Pseudo-label: The simple
and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in
representation learning, ICML, volume 3, page 896.

Ji-Ung Lee, Jan-Christoph Klie, and Iryna Gurevych.
2021. Annotation curricula to implicitly train non-
expert annotators. arXiv preprint arXiv:2106.02382.

Ji-Ung Lee, Christian M. Meyer, and Iryna Gurevych.
2020. Empowering Active Learning to Jointly Op-
timize System and User Demands. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4233–4247, On-
line. Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

David D Lewis and William A Gale. 1994. A sequential
algorithm for training text classifiers. In SIGIR’94,
pages 3–12. Springer.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/D15-1035
https://doi.org/10.18653/v1/D15-1035
https://doi.org/10.18653/v1/D15-1035
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://aclanthology.org/2021.eacl-main.284
https://aclanthology.org/2021.eacl-main.284
https://doi.org/10.1162/tacl_a_00419
https://doi.org/10.1162/tacl_a_00419
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/D11-1143
https://aclanthology.org/D11-1143
https://doi.org/10.18653/v1/2020.acl-main.390
https://doi.org/10.18653/v1/2020.acl-main.390
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Weixin Liang, James Zou, and Zhou Yu. 2020. ALICE:
Active learning with contrastive natural language ex-
planations. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4380–4391, Online. Association
for Computational Linguistics.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, et al. 2021.
Few-shot learning with multilingual language models.
arXiv preprint arXiv:2112.10668.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. arXiv preprint arXiv:2103.10385.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 650–663, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Fei Mi, Yitong Li, Yasheng Wang, Xin Jiang, and Qun
Liu. 2021a. Cins: Comprehensive instruction for few-
shot learning in task-oriented dialog systems. arXiv
preprint arXiv:2109.04645.

Fei Mi, Wanhao Zhou, Lingjing Kong, Fengyu Cai,
Minlie Huang, and Boi Faltings. 2021b. Self-training
improves pre-training for few-shot learning in task-
oriented dialog systems. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1887–1898.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A semantic concordance.
In Human Language Technology: Proceedings of
a Workshop Held at Plainsboro, New Jersey, March
21-24, 1993.

Robert Munro Monarch. 2021. Human-in-the-Loop
Machine Learning: Active learning and annotation
for human-centered AI. Simon and Schuster.

Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex
Warstadt, Clara Vania, and Samuel R. Bowman. 2021.
What ingredients make for an effective crowdsourc-
ing protocol for difficult NLU data collection tasks?
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1221–1235, Online. Association for Computational
Linguistics.

Sungjoon Park, Jihyung Moon, Sung-Dong Kim,
Won Ik Cho, Jiyoon Han, Jangwon Park, Chisung
Song, Junseong Kim, Yongsook Song, Tae Hwan
Oh, Joohong Lee, Juhyun Oh, Sungwon Lyu, Young
kuk Jeong, Inkwon Lee, Sang gyu Seo, Dongjun Lee,
Hyunwoo Kim, Myeonghwa Lee, Seongbo Jang, Se-
ungwon Do, Sunkyoung Kim, Kyungtae Lim, Jong-
won Lee, Kyumin Park, Jamin Shin, Seonghyun
Kim, Lucy Park, Alice H. Oh, Jung-Woo Ha, and
Kyunghyun Cho. 2021. KLUE: Korean language
understanding evaluation. ArXiv, abs/2105.09680.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Carbon
emissions and large neural network training. arXiv
preprint arXiv:2104.10350.

Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk
Hovy, Udo Kruschwitz, and Massimo Poesio. 2018.
Comparing Bayesian models of annotation. Transac-
tions of the Association for Computational Linguis-
tics, 6:571–585.

Silviu Paun and Dirk Hovy, editors. 2019. Proceedings
of the First Workshop on Aggregating and Analysing
Crowdsourced Annotations for NLP. Association for
Computational Linguistics, Hong Kong, China.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.355
https://doi.org/10.18653/v1/2020.emnlp-main.355
https://doi.org/10.18653/v1/2020.emnlp-main.355
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/2021.emnlp-main.51
https://aclanthology.org/2021.emnlp-main.51
https://aclanthology.org/H93-1061
https://doi.org/10.18653/v1/2021.acl-long.98
https://doi.org/10.18653/v1/2021.acl-long.98
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1162/tacl_a_00040
https://aclanthology.org/D19-5900
https://aclanthology.org/D19-5900
https://aclanthology.org/D19-5900
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze. 2020.
E-BERT: Efficient-yet-effective entity embeddings
for BERT. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 803–818,
Online. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI Spring Symposium Series.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Paul Roit, Ayal Klein, Daniela Stepanov, Jonathan
Mamou, Julian Michael, Gabriel Stanovsky, Luke
Zettlemoyer, and Ido Dagan. 2020. Controlled
crowdsourcing for high-quality QA-SRL annotation.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7008–
7013, Online. Association for Computational Lin-
guistics.

Nicholas Roy and Andrew McCallum. 2001. Toward op-
timal active learning through monte carlo estimation
of error reduction. ICML, Williamstown, 2:441–448.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Christopher Schröder and Andreas Niekler. 2020.
A survey of active learning for text classifica-
tion using deep neural networks. arXiv preprint
arXiv:2008.07267.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green AI. Communications of the
ACM, 63(12):54–63.

Burr Settles. 2009. Active learning literature survey.

Burr Settles and Mark Craven. 2008. An analysis of
active learning strategies for sequence labeling tasks.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1070–1079, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kro-
nrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. In
Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Aditya Siddhant and Zachary C. Lipton. 2018. Deep
Bayesian active learning for natural language pro-
cessing: Results of a large-scale empirical study.
In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages
2904–2909, Brussels, Belgium. Association for Com-
putational Linguistics.

Edwin Simpson and Iryna Gurevych. 2018. Finding
convincing arguments using scalable Bayesian pref-
erence learning. Transactions of the Association for
Computational Linguistics, 6:357–371.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Ng. 2008. Cheap and fast – but is it good?
evaluating non-expert annotations for natural lan-
guage tasks. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Process-
ing, pages 254–263, Honolulu, Hawaii. Association
for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.findings-emnlp.71
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/2020.acl-main.626
https://doi.org/10.18653/v1/2020.acl-main.626
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://aclanthology.org/D08-1112
https://aclanthology.org/D08-1112
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.1162/tacl_a_00026
https://doi.org/10.1162/tacl_a_00026
https://doi.org/10.1162/tacl_a_00026
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746

Derek Tam, Rakesh R. Menon, Mohit Bansal, Shashank
Srivastava, and Colin Raffel. 2021. Improving and
simplifying pattern exploiting training. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4980–4991,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Sam Bowman, Dipanjan Das, and
Ellie Pavlick. 2019. What do you learn from con-
text? probing for sentence structure in contextualized
word representations. In International Conference
on Learning Representations.

Dietrich Trautmann, Johannes Daxenberger, Christian
Stab, Hinrich Schütze, and Iryna Gurevych. 2020.
Fine-grained argument unit recognition and classi-
fication. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):9048–9056.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi,
S. M. Ali Eslami, Oriol Vinyals, and Felix Hill. 2021.
Multimodal few-shot learning with frozen language
models. In Advances in Neural Information Process-
ing Systems.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1482–1488, Copenhagen, Denmark. Association for
Computational Linguistics.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021. Want to reduce la-
beling cost? GPT-3 can help. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 4195–4205, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin,
Rosanne Liu, Jason Yosinski, and Pascale Fung. 2021.
Language models are few-shot multilingual learners.
arXiv preprint arXiv:2109.07684.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A Chinese language understanding evalua-
tion benchmark. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4762–4772, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, Cambridge, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Wenpeng Yin, Nazneen Fatema Rajani, Dragomir
Radev, Richard Socher, and Caiming Xiong. 2020.
Universal natural language processing with limited
annotations: Try few-shot textual entailment as a
start. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8229–8239, Online. Association for
Computational Linguistics.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo
Lee, and Woomyoung Park. 2021. GPT3Mix: Lever-
aging large-scale language models for text augmen-
tation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2225–2239,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Man-Ching Yuen, Irwin King, and Kwong-Sak Leung.
2011. A survey of crowdsourcing systems. In 2011

https://aclanthology.org/2021.emnlp-main.407
https://aclanthology.org/2021.emnlp-main.407
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.1609/aaai.v34i05.6438
https://doi.org/10.1609/aaai.v34i05.6438
https://openreview.net/forum?id=WtmMyno9Tq2
https://openreview.net/forum?id=WtmMyno9Tq2
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/D17-1155
https://doi.org/10.18653/v1/D17-1155
https://aclanthology.org/2021.findings-emnlp.354
https://aclanthology.org/2021.findings-emnlp.354
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2020.coling-main.419
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://doi.org/10.1109/PASSAT/SocialCom.2011.203

IEEE Third International Conference on Privacy, Se-
curity, Risk and Trust and 2011 IEEE Third Interna-
tional Conference on Social Computing, pages 766–
773.

Mike Zhang and Barbara Plank. 2021. Cartography ac-
tive learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 395–
406, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Ye Zhang, Matthew Lease, and Byron C. Wallace. 2017.
Active discriminative text representation learning. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 3386–3392.
AAAI Press.

Mengjie Zhao, Philipp Dufter, Yadollah Yaghoobzadeh,
and Hinrich Schütze. 2020a. Quantifying the con-
textualization of word representations with seman-
tic class probing. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1219–1234, Online. Association for Computational
Linguistics.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schütze. 2020b. Masking as an efficient alter-
native to finetuning for pretrained language models.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2226–2241, Online. Association for Computa-
tional Linguistics.

Mengjie Zhao and Hinrich Schütze. 2021. Discrete and
soft prompting for multilingual models. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 8547–8555,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Mengjie Zhao, Yi Zhu, Ehsan Shareghi, Ivan Vulić, Roi
Reichart, Anna Korhonen, and Hinrich Schütze. 2021.
A closer look at few-shot crosslingual transfer: The
choice of shots matters. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5751–5767, Online. Association
for Computational Linguistics.

https://aclanthology.org/2021.findings-emnlp.36
https://aclanthology.org/2021.findings-emnlp.36
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.109
https://doi.org/10.18653/v1/2020.findings-emnlp.109
https://doi.org/10.18653/v1/2020.findings-emnlp.109
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://aclanthology.org/2021.emnlp-main.672
https://aclanthology.org/2021.emnlp-main.672
https://doi.org/10.18653/v1/2021.acl-long.447
https://doi.org/10.18653/v1/2021.acl-long.447

A Reproducibility Checklist

A.1 Computing infrastructure
We use four Tesla V100 GPUs to prompt each of
the LMTurkers, and a single Tesla V100 GPU is
used when finetuning the small model S.

A.2 Datasets
For SST2, CoLA, and RTE, we use the
official datasets available on the benchmark
website gluebenchmark.com. We down-
load SST5 dataset from nlp.stanford.edu/
sentiment and AGNews from the link provided
by Zhang et al. (2015).

The number of testing examples of each dataset
is shown in Table 2. Note that for SST2, CoLA,
and RTE, Gdev is sampled from the training set,
and the dev set is used as the test set.

CoLA SST5 RTE AGNews SST2
1042 2210 277 7600 872

Table 2: Number of testing examples.

B Numerical Results

Table 3 reports the numerical value of Figure 2.

C Prompting Details

For each task, we list the five prompts employed to
adapt a PLM to a LMTurker. “[v]” is a prompting
token whose trainable embedding vector is ran-
domly initialized.

For SST5, we use following prompts:

• “[v] x It is [MASK].”

• “[v] x Such a [MASK] movie.”

• “x [v] It is pretty [MASK].”

• “It is [MASK] because x [v]”

• “x So it is [MASK]. [v]”

and the PLM picks a word from {“crap”, “bad”,
“normal”, “good”, “perfect”}. to fill the position of
“[MASK]”. The mapping {“crap”→ 1, “bad”→ 2,
“normal”→ 3, “good”→ 4, “perfect”→ 5 } is used
to convert model predictions to numerical values.

For SST2, we use following prompts:

• “[v] x It is [MASK].”

• “[v] x Such a [MASK] movie.”

• “x [v] It is pretty [MASK].”

• “It is [MASK] because x [v]”

• “x So it is [MASK]. [v]”

and the PLM picks a word from {“bad”, “good”}
to fill the position of “[MASK]”. The mapping
{“bad”→ 0, “good”→ 1} is used.

For AGNews, we use following prompts:

• “[v] x It is about [MASK].”

• “x [v] Topic: [MASK].”

• “x [v] The text is about [MASK].”

• “x Topic: [MASK]. [v]”

• “x [v] [MASK].”

and the PLM picks a word from {“world”,
“sports”, “economy”, “technology”} to fill the po-
sition of “[MASK]”. The mapping {“world”→ 1,
“sports”→ 2, “economy”→ 3, “technology”→ 4 }
is used.

For CoLA, we use following prompts:

• “[v] x It sounds [MASK].”

• “[v] x The sentence is [MASK].”

• “[v] x It is a [MASK] sentence.”

• “x [v] [MASK].”

• “[v] x [MASK].”

and the PLM picks a word from {“wrong”, “ok”}
to fill the position of “[MASK]”. The mapping
{“wrong”→ 0, “okay”→ 1} is used.

For RTE, we use following prompts:

• “p Question: h? [v] Answer: [MASK].”

• “p [SEP] h? [MASK]. [v]”

• “p [SEP] h? [v] answer: [MASK].”

• “p [SEP] In short h. [MASK]. [v]”

• “[v] p [SEP] In short h. [MASK].”

where p and h refer to premise and hypothesis. The
PLM picks a word from {“No”, “Yes”} to fill the
position of “[MASK]”. The mapping {“No”→ 0,
“Yes”→ 1} is used.

gluebenchmark.com
nlp.stanford.edu/sentiment
nlp.stanford.edu/sentiment

G8 G16 G32

Workers S Workers S Workers S
91.13±0.52 91.93±1.09 91.97±0.83
91.63±0.68 93.08±0.62 91.70±1.78

SST2 90.18±1.00 67.63±8.01 91.74±1.04 75.83±1.35 91.21±1.83 76.37±3.16
90.83±0.58 90.79±0.47 91.13±0.24
90.52±1.84 91.67±1.36 93.23±0.37
41.37±1.55 45.16±2.13 45.91±0.96
42.32±2.04 45.96±2.12 48.64±0.59

SST5 40.57±2.70 28.47±1.61 46.70±0.93 34.97±1.51 50.53±0.94 33.47±2.79
37.69±1.34 42.53±2.43 43.32±3.42
38.05±2.60 42.96±0.69 45.72±1.43
68.95±1.47 68.35±2.29 71.72±1.96
54.99±3.76 57.64±3.23 58.48±3.59

RTE 62.70±1.33 57.30±1.79 70.88±1.70 61.50±0.78 68.47±1.19 62.93±0.74
50.42±2.07 58.60±1.62 59.33±4.72
51.99±4.45 57.88±2.83 60.41±2.47
75.39±5.25 83.06±0.83 84.92±0.28
85.40±1.43 87.71±0.07 87.79±1.08

AGNews 78.83±4.77 66.37±2.95 83.59±2.96 69.40±0.93 87.39±1.29 76.53±0.41
85.07±1.09 87.69±0.04 87.17±0.67
79.95±0.86 80.15±3.38 83.32±0.59
0.14±1.43 11.81±7.82 19.88±3.30
2.42±4.84 15.23±7.07 22.51±0.96

CoLA 7.40±8.12 0.97±4.40 19.71±1.89 4.27±3.26 26.34±1.54 2.50±2.41
9.91±7.98 17.14±2.48 18.15±0.63

15.33±2.15 19.66±0.48 27.58±7.09

Table 3: Few-shot performance of the five LMTurkers and the small model S. Each experiment is repeated three
times and we report mean and standard deviation.

Figure 8: Weighting the training instances from LM-
Turkers.

D More Visualizations

Figure 9 visualizes the performance of S when
different |G| and |B| are used.

E Instance Weighting

Following Wang et al. (2017), we associate each
example (x, ŷ, l) ∈ Dj with weight 1-entropy(l)
when computing the loss during training Sj . We
can interpret this weight as a measure of the cer-
tainty of the LMTurkers ensemble.

Figure 8 reports the performance of S when us-
ing instance weighting, however, the impacts are
less noticeable.

Figure 9: Improving S with active learning (blue), self training (orange), and LMTurk (green). Free markers at step
zero show LMTurker performances; colors distinguish random seeds. Three acquisition functions are: Entropy (•),
LeastConfident (�), random sampling ($). At iteration j, each experiment is repeated three times; we show
mean and standard deviation. We evaluate different |G| and |B|.

	Introduction
	Related Work
	LMTurk
	Training few-shot learners
	Aggregating annotations
	Training a small model S
	AL acquisition function
	Considering annotation quality

	Summary of LMTurk

	Datasets and Setup
	Dataset
	Training setup

	Experiment
	Few-shot performance (non-iterative)
	Iterative training
	Design choice 1: Aggregation strategies
	Design choice 2: More iterations
	Design choice 3: Distilling logits
	Design choice 4: Quality-based filtering

	Conclusion
	Reproducibility Checklist
	Computing infrastructure
	Datasets

	Numerical Results
	Prompting Details
	More Visualizations
	Instance Weighting

