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Figure 1: Left: The mainstream paradigm of text-to-portrait customization. Right: SPF-Portrait
excellently achieves customized target semantics across various portrait attribute dimensions while
significantly mitigating the disruption of the original model’s behavior.

ABSTRACT

Fine-tuning a pre-trained text-to-image (T2I) diffusion model on a tailored portrait
dataset is the mainstream method for text-to-portrait customization. However, ex-
isting methods often severely impact the original model’s behavior (e.g., changes
in ID, posture, layout, etc.) while customizing portrait. To address this issue,
we propose SPF-Portrait, a pioneering work to achieve pure text-to-portrait cus-
tomization, which necessitates direct text-conditioned personalized portrait gener-
ation and introduces differences purely through target attributes while preserving
the original model’s behavior before and after portrait customization. To elimi-
nate the interference of conventional customization on the original model, SPF-
Portrait designs an additional dual-path alignment stage after the standard fine-
tuning. This stage introduces the pre-trained T2I diffusion model as a reference
for the fine-tuned model and achieves behavioral alignment by contrastively con-
straining intermediate features in diffusion models between the dual paths. To ac-
curately align target-unrelated attributes with the original behavior without affect-
ing the effectiveness of the target response, we propose a novel Semantic-Aware
Fine Control Map, which perceives the desired response region of target seman-
tics to adaptively guide the alignment process, preventing over-alignment of the
customized portrait with the original portrait. Furthermore, to improve the fidelity
of target attribute, we introduce a novel target response enhancement mechanism
that utilizes our proposed representation bias as a supervisory signal to mitigate
the cross-modal discrepancy in direct text-image supervision, thereby reinforcing
the performance of target attributes and the overall quality of the portraits. Exten-
sive experiments demonstrate the superiority of our method.

1 INTRODUCTION

Text-to-portrait customization (Huang et al., 2023; Han et al., 2024; He et al., 2024) is widely re-
searched due to its significant application in fields such as advertising and social media. As shown
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in Fig. 1 (Left), fine-tuning on user-specific text-portrait image datasets (Rombach et al., 2022;
Ramesh et al., 2021; Saharia et al., 2022; Esser et al.) is the mainstream paradigm for text-to-portrait
customization. It allows pre-trained text-to-image (T2I) diffusion models to generate personalized
portrait attributes by incorporating target semantics into base text conditions. However, existing
fine-tuning methods primarily focus on improving the fidelity of target attributes, while neglect-
ing the significant disruption to the original model’s behavior during attribute customization (Guo
et al., 2024), resulting in changes in target-unrelated attributes, such as the original portrait’s iden-
tity, posture, background, layout, etc., as illustrated in Fig. 1 and Fig. 6. By visualizing the attention
map in Fig. 2 (a), we reveal that this is because the fine-tuned diffusion model struggles to identify
the response region of the target semantics (‘a V* hat’), leading to its expansion into other areas
unrelated to the target attributes. Consequently, when the fine-tuned model achieves the target se-
mantics, it causes unexpected responses in other areas, disrupting the original behavior. We define
this phenomenon as Semantic Pollution, which is detrimental and is often ignored before.

To address this issue, in this paper, we focus on a new task: Pure Text-to-Portrait Customiza-
tion (a T2I Customization), which aims to provide direct text-conditioned portrait personalization
while minimizing disruption to the original model caused by semantic pollution. Although previous
work (Wang et al., 2024b; Ye et al., 2025) like PuLID (Guo et al., 2024) attempts to mitigate the
impact on the original portrait caused by ID-image insertion (an I2I Customization). However, as an-
alyzed in Fig. 2 (b), the destruction to the original portrait caused by textual concept insertion is more
severe than image insertion, yet it has not been emphasized or specifically studied. Moreover, unlike
those methods limited to ID customization, our approach enables convenient text-controlled portrait
customization across fine-grained to global attributes, such as facial attributes, instance objects, and
styles, shown in Fig. | (Right). Based on our task setting, related research utilizes LoRA (Hu et al.,
2021) and its variants (Ding et al., 2023; Zhang et al., 2023b; Borse et al., 2024) to learn target se-
mantics in additional low-rank subspaces, reducing the impact on original model. However, they rely
solely on diffusion loss for learning without additional designed behavioral constraints, resulting in
limited effectiveness. Another line of work attempts to purify the understanding of text and separate
attributes from each other through embedding-level decoupling (Zhuang et al., 2024; Chen et al.,
2024)) or regularization on attention maps (Wang et al., 2024c; Han et al., 2025). When applied
to our task setting, they mitigate the influence on the original model for instance-level semantics
customization, but fail to purely customize refined portrait attributes, like skin texture or hairstyle,
as these fine-grained semantic concepts lack distinctive boundaries in the embedding space.

Given the limitations of existing approaches, we propose SPF-Portrait to achieve two specific
objectives for pure text-to-portrait customization: 1) effective and high-quality adaptation of T2I
diffusion models to various customized portrait attributes and 2) minimization of the disruption
from semantic pollution to the original model. To initially obtain the T2I capability of the target
attributes, we first fine-tune the pre-trained T2I diffusion model based on standard paradigm (Rom-
bach et al., 2022). To eliminate semantic pollution, SPF-Portrait incorporates an additional stage,
namely a dual-path alignment, which introduces the frozen pre-trained T2I diffusion model as the
anchor of original behavior for the fine-tuned model. We contrastively constrain variant attention
features and diffusion backbone features from the corresponding cross-attention layers between the
dual paths. This enables the customized portrait to align both locally and globally with the original
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model’s behavior. Furthermore, to ensure that the alignment process only affects target-unrelated
attributes, thereby avoiding the suppression of target attributes, we propose a novel Semantic-Aware
Fine Control Map (SFCM), which accurately perceives the response regions of target semantics to
spatially guide the alignment of intermediate features. Moreover, to enhance the fidelity of the tar-
get attributes, we propose an innovative response enhancement mechanism for the target semantics.
By supervising the representation bias of target semantics between the one-step prediction and the
ground truth image, we mitigate the cross-modal gaps inherent in direct text-image supervision,
thereby enhancing the performance of target attributes while improving the overall quality of the
image. Extensive experiments show that SPF-Portrait achieves state-of-the-art (SOTA) performance
in preventing semantic pollution for pure text-to-portrait customization.

In summary, our contributions are as follows: e We propose a new task named pure text-to-portrait
customization, which requires direct text-driven portrait personalization and purely inserts target
portrait attributes while minimizing disruption to the original model’s behavior. To achieve this, we
develop SPF-Portrait, a pioneering work that addresses semantic pollution for pure customization
with an additional dual-path alignment stage. ¢ We introduce a novel Semantic-Aware Fine Control
Map to spatially guide the alignment process, precisely aligning target-unrelated attributes with
original portrait while ensuring the effective response of target semantics. ¢ We design an innovative
response enhancement mechanism to improve the fidelity of target attributes and overall quality of
the image by alleviating cross-modal gaps in direct text-image supervision. ® Extensive quantitative
and qualitative experimental results demonstrate the superiority of our SPF-Portrait.

2 RELATED WORK

Fine-tuning for Pure T2I Customization. Numerous works (Zhang et al., 2023a; Wang et al.,
2024b; Ruiz et al., 2023; Huang et al., 2024) extend existing T2I diffusion models (Rombach et al.,
2022; Lin et al., 2024) to various customization tasks, primarily through fine-tuning. To mitigate
the impact on the original model, PEFT-based methods (Wu et al., 2024; Zhang et al., 2023b; Borse
et al., 2024) adapt to new concepts by introducing additional parameters outside of the original
model. LoRA (Hu et al., 2021) achieves this through low-rank linear layers, while AdaLoRA (Zhang
et al., 2023b) further enhances this by adaptively allocating low-rank budgets across layers based on
learned importance scores. Related studies (Han et al., 2023; Qiu et al., 2023; Liu et al., 2023) also
attempt to improve the preservation of prior knowledge during fine-tuning, for example, by focusing
solely on fine-tuning key parameters through singular value decomposition and maintaining the
orthogonality of weight matrices. Although these methods reduce disruption to the original model
by preserving pre-trained knowledge, their reliance solely on diffusion loss lacks specific alignment
constraints with original behavior, limiting their effectiveness of pure T2I customization.

Decoupling Control for T2I Customization. Decoupling control mechanisms aim to prevent the
hindrance to textual control (Qi et al., 2024; Gao et al., 2024; Chang et al., 2024). To achieve decou-
pling within textual concepts, Magnet (Zhuang et al., 2024) and TEBopt (Chen et al., 2024) analyze
and optimize condition embedding without requiring additional training. TokenCompose (Wang
et al., 2024¢c) and STORM (Han et al., 2025) leverage attention map repositioning for precise spa-
tial alignment. Although these decoupling methods are not initially designed for T2I customization
tasks, their strategies are inherently beneficial for pure attribute customization and can be applied
to our task. They can reduce instance-level attribute coupling in portrait customization but struggle
with refined portrait attributes due to their lack of distinctiveness in the embedding space.

Task Distinction with Text-driven Image Editing. For image editing with a T2I model, (Brooks
et al., 2023; Jiao et al., 2025; Kim et al., 2022) enable attribute manipulation through textual in-
structions, while (Ju et al., 2024; Kim et al., 2025) require mask input for precise, localized edits.
Although integrating text-driven editing methods (Deutch et al., 2024; Wang et al., 2024a) into the
T2I model pipeline can yield results comparable to ours. However, unlike these editing methods,
which operate on a fixed image to adjust or refine existing content, we customize the T2I model
itself to generate new target attributes from text while preserving its original generation behavior.

3 METHODOLOGY
SPF-Portrait can build upon both UNet-based and Diffusion Transformer-based (DiT-based) diffu-

sion models for pure text-to-portrait customization. In this section, we detail our methodology based
on the Unet architecture and provide the DiT-based implementation in the Appendix D.
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Figure 3: The Dual-Path Alignment Pipeline of SPF-Portrait. The text in blue is the Base text, while those
in red is the Target text. The upper path is the Reference Path, while the lower path is the .

3.1 PRELIMINARY

T2I Diffusion Models generate images based on text input through a forward diffusion process and
a reverse denoising process (Ho et al., 2020; Saharia et al., 2022). The diffusion process follows the
Markov chain to transform an image sample x into noisy samples x1.7 by adding Gaussian noise €
over T steps. The denoising process employs a denoising model €y to predict the added noise using
x¢, t, and textual conditions y as inputs, where 6 denotes the learnable parameters and ¢ € [0, 7] is
the timestep of diffusion process. The optimization process can be described as:

Lairr =Eqpg cano)(|l€ — oz, t, E)[|3), (1)

where F = T4.,+(y) denotes textual features, obtained from the textual conditions y encoded by the
text encoder Tiegt.

3.2 DUAL-PATH ALIGNMENT PIPELINE

SPF-Portrait accomplishes the two aforementioned objectives for pure text-to-portrait customization
by two stages of training. In the first stage, we fine-tune the pre-trained T2I model on the user-
specific text-portrait image dataset, following the standard paradigm (Rombach et al., 2022). It aims
to achieve the preliminary adaptation of the model to target portrait attributes without considering
interference with the original model. In the second stage, we design a dual-path pipeline and utilize
contrastive alignment to eliminate semantic pollution from the first stage. Specifically, as shown in
Fig. 3, the proposed dual paths including: (i) Reference Path is the frozen model loading from the
original pre-trained T2I model. In contrastive alignment, it only takes base text ypqse (“A woman in
a brown jacket, with a curtain background, ...... ) as input, serving as a stable reference on behalf of
the original model’s behavior; and (ii) Response Path is the fine-tuned model initially resumed from
the first stage. During the contrastive alignment, it is trainable and takes complete text: [Ypase, Ytar]
as input. [Ypase, Ytar] represents the concatenated text prompt (“A woman in a brown jacket, with
a curtain background, ...... V* hairstyle”). The textual feature inputs for the two paths can be
represented as:

Reference Path: Ebase Treat (Ybase)s

2

TES

Response Path: {Ebase = Tieat (Woase, Yiarlynaee:
tar = Tteat ([Yoases Ytar])lysar s

where F; 97, and E,,, respectively represent the encoded feature segments specific to the yqs. and
Yiar portions. Based on the dual paths, the contrastive alignment process first extracts the attention
features F,.¢ and F,.s from the reference path and the response path. These features are derived
from a variant of the standard attention mechanism, i.e. Attention (K, Q, Q). They represent the
response of the UNet features (). and Q.. to the basic textual features Fyqse, Where Q,.y and

Qs are features from the corresponding UNet cross-attention layer on the contrastive paths. By
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constraining the similarity between the variant attention features F...y and F,., from each cross-
attention layer, SPF-Portrait encourages the representation of the base text in the response path to
approach the behavior of the original model as:
TCf(Erasp) Q;I:e
Fref = SOftHlaX(—b\/g L)@Qrey
Kres(EpSs)) QT
Fres = SOftmaX(M)Qresv 3)

\/E
»Ctext—consislent = Z ‘ - F

TES
where K,.; and K., denote the keys of E;;fe and F;2% in the dual paths. L is the number of the
attention layer in the denoising model. To improve consistency in fine-grained content, we further
constrain the UNet features () from contrastive paths, which contain comprehensive information on

portrait details and structures, e.g., posture, layout etc. (Chung et al., 2024; Mo et al., 2024):

)
2

“4)

2
ﬁﬁne grained — § H Q7 ef re 5|y

3.3 SEMANTIC-AWARE FINE CONTROL MAP

Although such a dual-path contrastive approach can align cus-
tomized portraits with original behavior both locally and globally,
this vanilla alignment of intermediate features is too coarse and
lacks precise control over the regions where alignment is applied.
As shown in Fig. 4, it tends to suppress the responsiveness of target
semantics, leading to the failure of target attribute customization.
To address this issue, we propose a Semantic-Aware Fine Control
Map (SFCM) that spatially guides the alignment process within ap- Figure 4: The Motivation of
propriate regions, ensuring the effective response of target seman- SFCM. The vanilla alignment re-
tics. Specifically, during contrastive alignment, the spatial differ- sults in the over-alignment of the
ence in noise predictions between dual paths can be used to serve customized portrait with the orig-

+ “V* hairstyle”

Original Portrait

as a prior knowledge for target response, forming a soft map M: inal portrait.
M= |€9(xtv t, E;;fe) — €y (xtv t, [ngﬁm Eta?“])|a &)

where €,/ and €y represent the noise prediction in the response and reference paths, respectively,

6" denotes the learnable parameters of the model in the response path. [E7]SS,, Ei,,| represents
complete textual feature input of the response path. | - | denotes element-wise absolute value. As an-
alyzed in Fig. 2, due to semantic pollution causing the target response regions to diffuse into areas of
unrelated attributes, the noise difference M is unable to accurately characterize the target response
regions. Inspired by the insight that a phrase in the base text exhibits the lower semantic relevance to
the target text, the regions highlighted by this phrase in M represent the higher degree of semantic
pollution and should be excluded from M. Based on this principle, we design the Semantic-Aware
process to refine the soft map, which essentially involves progressively eliminating semantic pollu-
tion. For the input base text portion in the response path, we split it into multiple phrases, as shown
in “Phrase embedding Attention Map” of Fig. 3. Concretely, for each textural feature of the phrase

Epes [i], i = {1,2,--- , P} (P is the number of phrases in base text), we compute its mean of the
cross-attention maps across all the denoising UNet layers to localize highlighted regions Ap,s[?] as:

Aba ee = Z ba se . 6)
where A7, [i] = AttentionMap(Ey¢2 [i], j) represents the attention map of the i-th phrase embed-
ding EJ¢% [i] at the j-th layer. Subsequently, to quantify the degree of exclusion, we leverage the

representation capabilities of CLIP to calculate the similarity between Ey,, and each E7¢3 [i]. We
then weigh the Apase [i] based on the similarity and use it to refine the soft map M:

M M- ZAbase (1 _'7( ))>

1=1
7(i) =Dcrip(Epgselil, Brar)

)
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where D¢ rp represents the cosine similarity in the CLIP embedding space. All attention maps

Apaseli] are upsampled at a resolution of 64 x 64, i.e. the same size as soft map M. M is the final
map of our SFCM, as shown in Fig. 3 and Fig. 4, it represents the desired target response regions and
can effectively prevent over-alignment with original portrait by precisely controlling the alignment
process. Therefore, the text-consistent and fine-grained alignment constraints in Eq. 3 and Eq. 4 can
be modified as follows:

‘ 2
L —text = Z;zl H(’szef ~ Fles) © (1= M)HQ’

Laroie = Ty (@~ @) o (1= T ®

where ® denotes the hadamard product.

3.4 RESPONSE ENHANCEMENT VIA REPRESENTATION BIAS

In text-to-portrait customization, an excellent response to the target semantics and high-quality por-
trait output are essential. To reinforce the fidelity of the target attribute, previous works (Avrahami
et al., 2022; Kim et al., 2022) directly apply cross-modal text-image supervision in CLIP space by
employing the target text to supervise the one-step prediction (Yin et al., 2024), formulated as:

ﬁclip =1- DCLIP (Tvision (Lit—m) - Ttefct(Etar))a
EL'\t V 1 - thG (/x\ta tv Ttext([Eggze; Etar]) (9)

ii't%O = — —
vV Ot VOt ’
where Tyision and Tye,+ denote the CLIP vision and text encoders, respectively, and Z;_,¢ denotes
the one-step prediction of x; in the ¢-th timestep.

However, direct text-image supervi- o
sion in Eq. 9 overlooks the cross- 5
modal representation gap between |,

text and image, causing the model to \
overfit the textual description during
optimization. As illustrated in Fig. 5,
it ultimately leads to degradation of ..;
the visual quality of the generated s

1100 5x100 T 1x104 5x10¢

xt-Image

portraits. To address this issue, we Training Step Superision

(2) (b)
propose a novel target response en-
hancement mechanism that achieves Figure 5: Comparison with Direct Text-Image Supervision. (a)

an effect similar to supervision within illustrates the Image-Reward (IR) and CLIP Text-Alignment Score
the same modality, improving the fi- (CLIP-T) across training steps. Image-Reward (Xu et al., 2023) is

. . . a metric used to evaluate image quality. (b) displays samples from
Sﬁlltzn;fh'tfglﬁ ctlaraglett ?)t(t)?ttr);litteovigﬂf the target attribute fine-tuning dataset, direct text-image supervi-
uri 1gh-quality utput.

] sion (Avrahami et al., 2022), and our method.
Specifically, we propose a represen-

tation bias A(+, -), representing the difference between the representations of the CLIP textual space
and the CLIP visual space (Abdelfattah et al., 2023; Xue et al., 2022). By introducing the ground
truth image x( (an arbitrary image with the target attribute), we obtain the representation bias be-
tween target text and ground truth image x, i.e. A(xo, Et.r), as well as that between target text
and one-step prediction &0, i.e. A(£1—0, Ftar), formulated as:

A(.’IJ(), Etar) = Twision (.’EO) — Ttext (Etar)7
A(£t~>07 Etar) = Twision (‘%tﬁo) — Ttext (Etar)v
Subsequently, we constrain the similarity of these two representation biases:
Lenhanced=1 _DCLIP(A(it%OaEtar% A(anEtar))- (11)

As shown in Fig. 5, this loss simultaneously enhances the performance of the target semantics while
ensuring the high quality of the portrait output. Finally, the overall optimization objective can be
represented as:

(10)

ESPF = ﬁdiff + /\1£M—text + >\2£M—ﬁne + )\3£enhacneda (12)

alignment response

where A1, Ao and A3 are the hyperparameters.
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Figure 6: Qualitative Comparisons between Our Method and SOTA Methods in terms of diverse person-
alized attributes such as hairstyle, age, and image style. For each target attribute, we evaluate two cases using
different random seeds. More results are provided in Appendix Fig. 16 and Fig. 19.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. We adopt the SD1.5 (Rombach et al., 2022) and SD3.5-M (Esser et al.,
2024) as our base model. The hyperparameters A1, A2 and A3 are set to 0.2, 0.1 and 0.6. More
details about the experiments are provided in the Appendix.

Dataset. Our training set contains 230K diverse portraits with new attributes (e.g., skin textures,
hairstyles), captioned by GPT-40 (Achiam et al., 2023) and Cambrian-1 (Tong et al., 2024). For
evaluation, we create a test set of 5K triples, each with: (1) an original caption, (2) its corresponding
original portrait, and (3) a target caption of customized attributes. More details are in the Appendix.

Evaluation Metrics. We evaluate three key aspects: (1) preservation of the original model’s behav-
ior, (2) responsiveness to target semantics, and (3) overall image quality. Concretely, we employ
FID (Heusel et al., 2017), LPIPS (Zhang et al., 2018), identity similarity (ID), CLIP Image Score
(CLIP-I) (Radford et al., 2021), and segmentation consistency (Kirillov et al., 2023) (Seg-Cons)
to measure the consistency between the original and customized portraits. We use the CLIP Text-
Alignment Score (CLIP-T) (Radford et al., 2021) to evaluate the responsiveness to target semantics.
For overall image quality assessment, we use HPSv2 (Wu et al., 2023) and MPS (Zhang et al., 2024).
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Figure 7: (a) Results of continuous replacements and additions of target semantics in pure text-to-portrait
customization. More results are shown in Appendix Fig. 17. (b) Results of extending our method to achieve
general pure T2I customization. More results are provided in Appendix Fig. 18.

4.2 QUALITATIVE EVALUATION

Comparison with SOTAs. We qualitatively compare our method with the SOTA approaches, in-
cluding standard fine-tuning (Rombach et al., 2022), PEFT-based methods such as LoRA (Hu et al.,
2021) and AdaLoRA (Zhang et al., 2023b), and decoupled methods such as Tokencompose (Wang
etal., 2024c), Magenet (Zhuang et al., 2024), and STORM (Han et al., 2025). As shown in Fig. 6, al-
though LoRA and AdalLoRA tend to retain the original behavior in some cases, their performance is
unstable in detail alignment. For instance, in the customization of “V* age”, LoRA causes a notice-
able change in identity in both cases, while in the second case of hairstyle customization, AdaLoRA
completely transforms the portrait posture. Magnet, TokenCompose and STORM naively follow
the input text conditions entirely, ignoring the preservation of the original model’s behavior across
all test cases. For example, the customization of “V* style” results in a complete alteration of the
portrait in all cases. In contrast, our method purely customizes the target attributes while preserving
the original model’s behavior in aspects such as background, pose, and identity. It demonstrates that
our approach effectively addresses semantic pollution during portrait customization.

Continuous Customization. Based on real-world application scenarios, we conducted a qualita-
tive evaluation of our method in continuous portrait customization task. As shown in Fig. 7 (a), our
method reliably excels in the continuous replacement and addition of target semantics, which effec-
tively customizes portrait attributes while mitigating interference with original behavior. It indicates
that SPF-Portrait has the potential to play a role in the application of continuous Al portrait creation.

Extension to General T2I Customization. Although in this paper, we primarily focus on pure
text-to-portrait customization due to its application value and the challenging need for more precise
attribute customization. However, as shown in Fig. 7 (b), we attempt to apply SPF-Portrait to Gen-
eral T2I Customization. The excellent experimental results demonstrate the feasibility of extending
our method to address the issue of semantic pollution in general T2I customization.

Table 1: Quantitative Comparison Results. In our specific pairwise comparison, unlike general
image generation, lower FID values reflect greater consistency with the original model’s behavior.
Notably, the underlined values in “Ours (w/o SFCM)” are unusually low because the generated
portraits may overly align with the original portraits. The results of the ablation study are based on
SD1.5, while the SD3.5-based results are provided in the Appendix.

Method Preservation Responsiveness Overall
FID (}) LPIPS(}) ID(T) CLIP-I(1) Seg-Cons (1) CLIP-T (1) HPSv2 (1) MPS(1)
Standard Fine-tuning (Rombach et al., 2022) | 20.41 0.57 0.21 0.63 57.77 0.24 0.21 0.67
LoRA (Hu et al., 2021) 9.82 0.38 0.52 0.71 58.37 027 0.23 1.21
AdaLoRA (Zhang et al., 2023b) 7.38 0.40 0.39 0.80 64.86 0.23 0.24 1.10
TokenCompose (Wang et al., 2024c) 10.93 0.41 0.32 0.81 40.22 0.27 0.24 0.71
Magnet (Zhuang et al., 2024) 18.92 0.48 0.38 0.61 32.87 0.26 0.26 0.97
STORM (Han et al., 2025) 17.30 0.54 0.27 0.60 30.04 0.26 0.24 0.70
Ours (SD 3.5-M) 4.27 0.30 0.65 0.82 77.18 0.32 0.30 1.83
Ours (SD 1.5) 4.50 0.35 0.55 0.83 75.74 0.30 0.28 1.49
Ours (W/0 Lyj—text) 497 0.39 0.48 0.60 61.39 0.28 0.23 1.13
Ours (W/0 Ls— fine) 6.74 0.42 0.32 0.71 41.62 0.27 0.21 1.22
Ours (W/0 Lenhanced) 4.52 0.37 0.49 0.81 74.38 0.22 0.23 1.40
Ours (w/o SFCM) 4.13 0.14 0.73 0.88 80.03 0.17 0.23 1.09
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Figure 9: Qualitative Ablation Study. We independently ablate the losses and the SFCM module.

4.3 QUANTITATIVE EVALUATION

Metric Evaluation. Tab. 1 shows the quantitative results of our method against baselines on the test
set. Both our method based on SD1.5 (Rombach et al., 2022) and SD3.5-M (Esser et al., 2024) show
substantial improvement in preserving the original behavior compared to all competitors, achieving
state-of-the-art performance across all metrics. It is notable that our method significantly outper-
forms competitors in “Seg-Cons”, demonstrating pixel-level alignment precision that far surpasses
other approaches. The optimal CLIP-T and overall scores confirm that our method enhances the
response to target semantics and achieves higher-quality portrait customization.

User Study. We conduct a user study to have @ = o sewiorconsseney = Tt vt Respomsiveness == Acsthetc Prference
comprehensive assessment of our method. We — ous LoRA Ous AdLoRA
. . . . . 90% — 10% 87% — 13%
design three dimensions for evaluation: Orig- 7% — % 7% E—
inal Behavior Consistency (OBC), Target At- e - o o
tribute Responsiveness (TAR), and Aesthetic ™" . folenCompoe - Ous - i
Preference (AP). We invite 32 participants from o - B -
. . . 97% —3% 96% —4%
different social backgrounds, with each test ses-  ous STORM  Ours Standard Fine-tuning
. . . 96% — 4% 97% — 3%
sion lasting about 30 minutes. Users perform 5% E_—" %0 — %
pairwise comparisons between our method and = - e -

50% 50%
Figure 8: User Study. The percentages show the pro-
portion of users who select the corresponding method.

competitors in three dimensions. The results
are as shown in Fig. 8, our method defeats
all competitors in all dimensions, especially in
OBC and TAR. This highlights our powerful ability in preserving the original model’s behavior
while purely adapting to new attributes. Please refer to the Appendix for more details.

4.4 ABLATION STUDY

To validate the effectiveness of different components of our method, we conduct thorough ablation
studies. Qualitative results, shown in Fig. 9, indicate that the absence of £, _¢c.¢ results in weaker
alignment of base text response with the original portrait, while the lack of L/ fine leads to in-
consistencies in detailed content, such as portrait posture. Without L, panceq, the fidelity of the
target attribute significantly degrades, failing to follow the action of ‘holding’ and with a tendency
to disrupt the spatial coherence of the “V* toy bear”. Superior performance across all metrics of
quantitative results in the ablation part of Tab. | further confirm these visual observations. Notably,
“w/o SFCM” shows superior preservation metrics in Table 1. However, as shown in Figure 9, it
disregards the target semantics and over-aligns the target attribute with the original portrait. Such
outcomes represent a failure that should not be overlooked in our task.

5 CONCLUSION

In this paper, we propose SPF-Portrait, a novel fine-tuning framework designed to address the issue
of Semantic Pollution for pure text-to-portrait customization. By introducing the original model as
a reference path and utilizing contrastive alignment, we achieve the goals of purely achieving the
customized semantics. We precisely retain the original model’s behavior and ensure an effective re-
sponse to target semantics by innovatively designing a Semantic-Aware Fine-Control Map to guide
the alignment process and a response enhancement mechanism for target semantics. Extensive ex-
periments show that our method can achieve the SOTA performance. However, we acknowledge
that our SFCM approach, which relies on attention maps, is less effective with abstract descriptions
like the background is softly blurred.” This limitation underscores the need for more generalizable
mechanisms to preserve model behavior across varied text descriptions.
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APPENDIX

A  OVERVIEW OF THE APPENDIX

* The explanation of mathematical notations in SPF-Portrait is provided in Tab. 2.
* The use of large language models (LLMs) is provided in Sec. B.

* The implementation details of the SPF-Portrait are provided in Sec. C.

* DiT-based implementation of the SPF-Portrait is provided in Sec. D.

* The analysis of the fine-tuning architecture is provided in Sec. E.

* The analysis of the fine-tuned model is provided in Sec. F.

* The sensitivity analysis of loss is provided in Sec. G.

* The ablation study of the training stage is provided in Sec. H.

* Details of the user study are provided in Sec. J.

* More experimental results are shown in Fig. 16, Fig. 17 and Fig. 18.

Table 2: Mathematical Notations in SPF-Portrait

Symbol | Description

0 Original clean image sample in diffusion process

T1.T Noisy samples generated through forward diffusion process over T steps
€ Gaussian noise added during diffusion process

€0 Denoising model with learnable parameters 6

t Diffusion timestep, ¢ € [0, T

Y Textual conditions/input prompts

E Textual features, E' = Tiex (y)

Text Text encoder

Ubase Base text prompt (original description)

Yar Target text prompt (customized attributes)

Eret Reference path’s base text features

Erve Response path’s base text features

Eiar Target text features

Fret Attention features from reference path

Fres Attention features from response path

Qref UNet features from reference path’s cross-attention layer
Qres UNet features from response path’s cross-attention layer
Krer Key for E[, in reference path

Kies Key for Ei;;. in response path

d Dimension scaling factor in attention computation

L Number of attention layers in denoising model

M Soft map of spatial difference in noise predictions

M\ Final Semantic-Aware Fine Control Map (SFCM)
Abpase|d] Mean attention map for i-th phrase in base text

~(1) CLIP similarity score between phrases

Al ) Difference vector between CLIP visual/text spaces

T One-step prediction in diffusion process

oy, Oy Noise schedule parameters in diffusion process

A1, A2, A3 | Loss weighting hyperparameters

® Hadamard (element-wise) product operator
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B THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to aid or polish the writing of this manuscript. Specif-
ically, we used Claude-4-Sonnet solely for language polishing and grammatical refinement of the
written text. All research contributions, including the main ideas, technical approaches, experimen-
tal work, and scientific insights presented in this paper, are entirely the work of the human authors.
The LLM usage was limited to improving the clarity and readability of the already-written content
without altering the substance or meaning of our work.

C IMPLEMENTATION DETAILS OF SPF-PORTRAIT

C.1 DETAILS OF TRAINING

As shown in Fig. 10, the training process of our approach consists of two stages: fine-tuning with all
the parameters updated in the first stage and contrastive alignment learning in the second stage. In the
first stage, we employ standard fine-tuning (Rombach et al., 2022) to learn target attributes, which
aims to enable the T2I model to rapidly adapt to the target concepts of our dataset. For this stage,
we train the model using 8 V100 GPUs with a batch size of 8, iterating for 2 epochs and a learning
rate of le-5. In the second stage, the training process follows the approach outlined in the main text.
The goal is to enable the T2I model to grasp pure target concepts without compromising the original
model’s performance, thereby preventing semantic pollution caused by the target text. Due to the
additional memory consumption of the dual-branch architecture, we set the batch size to 2, iterating
for 5 epochs with a learning rate of 5e-5. We summarize the complete training procedure of TAPO
in Algorithm. 1. The same dataset and optimizer (AdamW with default parameters: betal=0.9,
beta2=0.999, weight decay=0.01) are used for both the first and second stages.

i Semantic Aware n
27N Fine Control

‘Alignment

Self-Atten *

Cross-Atten *

ResNet *

Self-Atten *

Dual-Path Learning Pipeline

Text-Consistent
Loss

Fine-Grained
Loss

Target Response

Diffusion
Loss
Enhanced
Loss

Cross-Atten *

Ejase & Etar

Stagel: Naive Fine-Tuning Stage2: Contrastive Alignment Learning

Figure 10: Our overall training pipeline.

Due to the dual-path training framework in second stage, which requires an additional frozen original
model compared to standard fine-tuning, our approach incurs extra memory costs and increased
computation time. We provide the corresponding resource consumption details in Tab. 3. The frozen
model (which doesn’t participate parameter updates) adds only SGB of GPU memory overhead
under typical FP32 precision settings.

Table 3: Computation Time and Memory Usage of Training under Different Data Types. The
data in bold represents our implementation configuration.

Method Data Type
FP16 FP32 BF16
Stage-1 (w/o reference path) 1.92s/iter (17GB)  2.28s/iter (23GB) 1.90s/iter (18GB)
Stage-2 (w/ reference path) 2.10s/iter 21GB)  3.26s/iter (28GB) 2.15s/iter (18GB)
Standard Fine-tuning (Rombach et al., 2022)  1.92s/iter (17GB)  2.28s/iter (23GB) 1.90s/iter (18GB)
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Algorithm 1 SPF-Portrait Training Procedure

1: Input: Pre-trained T2I model 6, portrait dataset D, base text Ypase, target text yr
2: Hyperparameters: A\, A2, A3

3: Output: Fine-tuned model 6’

4: procedure STAGE1: STANDARD FINE-TUNING

5: Initialize 6’ + 6,

6: for each training step do

7 Sample (.’L‘(), Ybase ytar) ~D

8: Encode text: E < Tiext([Ubase, Ytar])

9: Sample ¢ ~ U(0,T), e ~ N(0,1)
10: Compute x; < /o + /1 — ae
11: Predict noise: € < €g/ (24,1, E)

12: Update ¢ using Laier = ||€ — €||3 Eq. 1
13: end for

14: end procedure
15: procedure STAGE2: DUAL-PATH CONTRASTIVE LEARNING

16: Freeze reference model: 6 < 6

17: Initialize response model from Stagel

18: for each training step do

19: Sample (130, Ybase ytar) ~D

20: Sample ¢ ~ U(0,T), e ~ N(0,1)

21: Compute z; < \/ayxo + /1 — aye

22: B Tiext(Ybase)>  €rer < €0(x4, t, EFL.) (Eq. 2) > # Reference path (frozen)

23: EE ., Euar < Tiext([Ybase, Ytar])s €res <— €07 (24, T, [Efes., Erar]) (Eq. 2) > # Response path
(trainable)

24: # Compute SFCM

25: M < |€rer — €res| (EQ. )

26: Split £, into phrases [E1, ..., Ep]

27: fori =1to P do _

28: Apaeli] = + 371 Al li] (Eq. 6)

29: 7(@) <= Dcvrie(Ei, Erar)

30: end for ~

31 M M= Apgeeli] - (1 = 4(i)) (Bq. 7)

32: # Feature extraction and alignment

33: for each cross-attention layer j do

34: Extract F;, Fies, QL) Qtes

35: E]\lftext — ﬁMftE:xl + ”(]:rjef - ]:rjeS) © (1 - -/\//l\)HQ (Eq. 8)

36: EM—ﬁne <~ L:M—ﬁne + ||( gef - Qges) © (1 - M)”Q (Eq 8)

37: end for

38: # Response enhancement

39: o + T — Yoo GutTien (Bl Frorl) (Bg, )

40: A(i'tHOa E[a.r) — Tvision(i't%O) - Ttext(Eta.r)s A(l’o, Ela.r) — Tvision(xo) - Ttext(Etar)

41: Lenhanced <= 1 — Devip(A (2450, Far), A(wo, Erar)) (Eq. 11)

42: # Total loss and update

43: Lspr < Laitt + A1 L1 —text + A2 L —fine + A3 Lenhanced (Eq. 12)

44: Update 6’ using Vg Lspr

45: end for
46: end procedure
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C.2 DETAILS OF TRAINING DATASET

Our work focuses on preventing semantic pollution in fine-tuning portrait T2I models while enabling
the model to learn the concepts from the target attributes. To achieve this, we constructed a dataset
containing various image-text pairs related to portrait concepts for training the T2I diffusion model.

Considering the quality and diversity of the dataset, we utilized widely adopted community (civiti)
checkpoints for portrait generation as the checkpoints for the Stable Diffusion (SD) model, includ-
ing RealVisXL_V1.0 and HumanModel, to generate portrait images encompassing a wide range of
attributes. The attribute statistics and corresponding samples are shown in Fig. 11, respectively.

To improve dataset quality, we focus on two aspects: 1) enhancing image-text alignment using
FLIP (Li et al., 2024), a CLIP checkpoint specifically for portraits, to retain the top 30% of matching
pairs, and 2) improving visual fidelity by filtering images with a Human Aesthetic Preference Score
(HPS) and Image-Reward (IR).

Image Style Facial Attributes Accessories

K
L

AN

§ Portrait, woman, pure Portrait, man, wearing i Portrait of woman, sof Portrait of woman, § Portrait, woman, a Portrait, woman,
i color background, aT-shirt, V2 style i § lighting and earthy egant, wearingared | ; casual hoodie with a wearing the V* golde!
V1 style i i tones create awarm, dress, V* makeup, | i front pocket, V* i i hooked, freckled skin }
i V* laughing i ired-toned background. 3 § necklace i i
Object Appearance Clothing
— ~ I

i | Portrait, girl, g ycoloré
background, smiling, |
holding a V* toy bear |

Portrait of a man, in ' i Portrait, girl, upper ortrait, boy, wearin;
s mid age, V* beards, : H ody, a dress, playin; V* coat, laughing
ick wall background. } H a V* guitar

E Portrait, man, a suit,
i living room

i background, wearing a
E V * watch on the hand,

view, V* hairstyle

Figure 11: Examples of our training datasets.

D DIT-BASED IMPLEMENTATION OF SPF-PORTRAIT

To demonstrate the generalization of our SPF-Portrait on advanced diffusion architectures, we con-
duct experiments using SD3.5-M (Esser et al., 2024) as the base model. SD3.5-M utilized the
DiT (Peebles & Xie, 2023) as the backbone and employs rectified flow to reformulate the denoising
process as an ordinary differential equation. The core of these methods is to train a neural network
v,¢ to satisfy the velocity field by minimizing the Flow Matching objective:

Lrp—aiff = Eie(0,1],m~p: |0 (2t) — vo(2)||. (13)

where x; = (1 —t)xg + tz1. The main modifications for DiT involve two aspects: 1) Attention
feature enhancement: MM-DiT blocks use self-attention on concatenated image-text features instead
of cross-attention interaction. 2) Attention map collection: Since SD3.5 introduces the additional TS
text encoder, phrase attention map computation must consider attention maps from both encoders.

Dual-Path. In the second stage, our dual-path architecture comprises two branches: 1) Reference
Path — it loads the original pre-trained model (now a DiT-based diffusion model) and takes only the
base text embedding E;jge as input, using its intermediate representations to anchor the original
model’s behavior; 2) Response Path — it is initialized from the stage-one standard fine-tuned model
(also converted to a DiT-based diffusion backbone) and accepts both base embeddings E]° and

. base
target text embeddings F},;.
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Alignment Process. Specifically, in the MM-DiT block, we use the key and value from visual
features as the K% and V,;,, while using text feature query as Q*** The text consistent loss can be
calculate as follow:

tat (pref gvisT .
fref :Softmax( Tef( basc) ref ) V18

Vd ref?
txt res vis
fres = SOftl’IlaX(%)‘/’Tvgs7 (14)
2

L -7 j
Etexl—consistem = Zj:l H]:ref - ‘ij'es 9

where L denotes the MM-DiT layer number here. To enhance consistency in fine-grained content,
we further constrain the visual features QV*® from contrastive paths, and the fine-grained loss can be
reformulated as:

L 2
_ vis, J vis, j
[fﬁne-grained - § HQref — YWres J H2 . (15)
j=1

Since SD 3.5 builds upon Rectified Flow, we reformulate the noise difference in Eq. 5 to represent
the velocity difference in our dual-path architecture:

= [vo(21,t, Epeae) — vy (w0, [Bfie, Brarl)l, (16)

Regarding the Phrase Embedding Attention Map, we follow (Wei et al., 2024; Cai et al., 2025) by
extracting attention maps of the corresponding tokens encoded by T5 and CLIP. The map can be
calculated as:

L
1 . i .
Aba95 = 2L z : base CLIP ] + Aiase,TS [Z]) (17)

We subsequently compute the SFCM following the same procedure as Eq. 7:

M M ZAbase (1 _’7( ))a

=1
7(i) =Dcrip(Epgselil, Brar )

(18)

Through the above modifications, we demonstrate that our framework is also compatible with the
DiT architecture. The quantitative and ablation results are shown Tab. 4 and qualitative results are
presented in Fig. 21.

Table 4: Quantitative and Ablation Results. In our specific pairwise comparison, unlike general
image generation, lower FID values reflect greater consistency with the original model’s behavior.
Notably, the underlined values in “Ours (w/o SFCM)” are unusually low because the generated
portraits may overly align with the original portraits.

Method Preservation Responsiveness Overall
FID(}) LPIPS(]) ID(f) CLIP-I(f) Seg-Cons (1) CLIP-T (1) HPSv2 (1)  MPS(1)
Standard Fine-tuning (Rombach et al., 2022) | 20.41 0.57 0.21 0.63 5777 0.24 0.21 0.67
LoRA (Hu et al., 2021) 9.82 0.38 0.52 0.71 58.37 0.27 0.23 1.21
AdaLoRA (Zhang et al., 2023b) 7.38 0.40 0.39 0.80 64.86 0.23 0.24 1.10
TokenCompose (Wang et al., 2024c) 10.93 0.41 0.32 0.81 40.22 0.27 0.24 0.71
Magnet (Zhuang et al., 2024) 18.92 0.48 0.38 0.61 32.87 0.26 0.26 0.97
STORM (Han et al., 2025) 17.30 0.54 0.27 0.60 30.04 0.26 0.24 0.70
Ours (SD3.5-M) 4.27 0.30 0.65 0.82 77.18 0.32 0.30 1.83
Ours (W/0 Lyi—text) 5.24 0.41 0.39 0.67 53.24 0.25 0.25 1.10
Ours (W/0 Las— fine) 7.72 0.48 0.27 0.54 31.94 0.22 0.25 1.18
Ours (w/o SECM) 3.72 0.11 0.89 0.92 87.24 0.12 0.23 1.14

E ANALYSIS OF FINE-TUNING ARCHITECTURE

During the contrastive learning of the second stage, our approach exclusively trains the parameters
in the cross-attention modules. We compare results across various network architectures, including
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“full-weight”, “LoRA on cross-attention”, and “additional adapters”. As illustrated in Fig. 12, all
architectures under our contrastive learning achieve some level of alignment. Notably, “LoRA on
cross-attention”, “Adapter on Cross-Atten” and “Cross-Atten(ours)” outperform the “full weights”
in alignment, this is because the diffusion model relies on the cross-attention mechanism for text-
conditioned control, and optimizing the most critical parameters enables a better understanding of
independent target attributes. However, “LoRA on Cross-Atten”, due to its limited learnable param-
eters, falls short in understanding the original behavior compared to our method. Ours achieves a
superior balance between alignment and attribute learning. “Adapter on Cross-Atten” achieves the
suboptimal performance, as it independently adjusts all the parameters of cross-attention module.
However, the isolated attention structure limits the interaction between target text features and base
text features, rendering in partial misalignment. The results in Tab. 5 further validate our conclu-
sions.

LoRA on Adapter on Cross-Atten

Original Full Weights Cross-Atten Cross-Atten (Ours)

“ A woman, upper
body, resting her
face on her hand,
sitting by the
beach “ + “V*
glasses”

“ A man sitting on
a sofa, wearing a
long-sleeve blue

shirt “ + “v*
beards”
“ A man with curly
\ hair, in a normal
it shirt “ + “playing a |~

A * guitar”
- | o

Figure 12: Comparison of results across different updated network architectures in our con-
trastive pipeline. “Full Weights” indicates that all network parameters are updated, “LoRA on
Cross-Atten” refers to the integration of LoRA into the Cross-Attention modules, and “Adapter on
Cross-Atten” denotes the addition of parallel cross-attention layers, akin to IP-adapter (Ye et al.,
2023).

Table 5: Quantitative Comparisons with other architecture.

Method Preservation Overall Responsiveness
FID () LPIPS() ID(1) CLIP-I(f) Seg-Cons(f) HPSv2(1) MPS(1) CLIP-T (1)
Full Weights 7.82 0.40 0.309 0.81 48.39 0.22 0.87 0.26
LoRA on Cross-Atten 7.10 0.39 0.487 0.61 68.37 0.24 1.21 0.26
Adapter on Cross-Atten 5.93 0.37 0.520 0.80 61.70 0.25 1.31 0.27
Ours | 450 0.35 0.55 0.83 75.74 0.28 1.49 0.30

F ANALYSIS OF THE FINE-TUNED MODEL

To further verify that our method purely learns the customized attributes without compromising
the original model and purely understands the target attributes, we solely use identical base text
to evaluate whether our method can reconstruct the original portraits after fine-tuning. As shown
in Fig. 13, standard fine-tuning markedly disrupts original response patterns, while our method
maintains near-identical performance to the original model. For example, in the top-right case, the
semantics of ‘woman’ is completely corrupted by standard fine-tuning, but we not only retain the
character but also maintain high consistency in other attributes. The outstanding reconstruction
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Figure 13: Reconstruction Results. The three portraits for each case are generated by the fine-tuned
model using only the same base text.

of portraits across varied scenes demonstrates our method’s substantive retention of the original
model’s pre-trained prior knowledge.

G SENSITIVITY ANALYSIS OF LOSS

To determine the optimal settings for the three loss hyperparameters, we conducted a comprehensive
sensitivity analysis. As shown in Fig. 14 The three segments of the plot correspond to the hyper-
parameters in Eq. 11 (A1 = Lar—tewts A2 = Lyi—fines A3 — Li—enhanced) , demonstrating
how FID scores vary with their values. Our analysis reveals that the optimal configuration occurs at
A1 = 0.2, A2 = 0.1, A3 = 0.6, achieving the best FID score of 4.503 reported in our main results. It
is noticed that the orange dashed line indicates the FID (4.013) of ”Ours(w/o SFCM)” from Tab. 1,
which exhibits over-alignment as visualized in Fig. 9.

12 ALy
lz - ['\/—/ e
s L
10 *
o
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o 3
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FID=4.503 (Best Performance)
.
4
FID=4.013 (Over alignment)
0.06 0.08 0.10 0.20 0.25 0.05 0.10 0.15 0.20 0.25 0.4 0.5 0.6 0.7 0.8

Figure 14: Sensitivity analysis of three loss components (A1 — Lar_seats A2 — Lar— fines
A3 — Lp—enhanced) With respect to FID scores.. FID varies with different parameter values
for each loss component. FID=4.503 (optimal performance) and FID=4.013 (over-alignment with
original model).

H ABLATION STUDY OF TRAINING STAGE

The main contribution of our method is the addition of an extra training stage on top of standard fine-
tuning. To demonstrate the effectiveness of the two-stage training strategy, we conduct an ablation
study on the training stages. As shown in Tab. 6, if only the second-stage contrastive learning is used,
the model struggles to learn clean target attributes, resulting in significantly poor performance on
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”CLIP-T.” On the other hand, with only stage 1, the model is entirely affected by semantic pollution,
failing to align with the original model behavior, thus performing worse on preservation metrics.

Table 6: Ablation Study of the training Stage.

Method Preservation Responsiveness Overall
FID () LPIPS(}) ID(f) CLIP-I(1) Seg-Cons (1) CLIP-T (1) HPSv2 (1) MPS(1)
Only Stage-1 (Standard Fine-tuning) ~ 20.41 0.57 0.21 0.63 57.77 0.24 0.21 0.67
Only Stage-2 7.18 0.38 0.13 0.71 63.72 0.19 0.24 1.12
Stage-1&2 (Ours) 4.50 0.35 0.55 0.83 75.74 0.30 0.28 1.49

I DISCUSSION ABOUT EDITING METHODS

As mentioned in the related work Sec. 2.3, incorporating text-driven editing methods (Deutch et al.,
2024; Wang et al., 2024a; Kim et al., 2022; Ju et al., 2024) into the T2I model pipeline can produce
similar results to ours. Here, we elaborate on the distinctions between our work and editing models
and demonstrate that the improvement on inversion-based editing models when replacing their T2I
model with ours.

The core distinction of our work lies in preventing additional textual concepts from disrupting T2I
models, which fundamentally differs from 121 editing models that primarily focus on image manip-
ulation through precise local modifications. Although the visual results of our method are presented
in a pairwise comparison which may resemble those of editing work, the purpose is to demonstrate
that our incremental learning approach preserves the integrity of the original model.

For an ideal Al-driven text-to-portrait creation, users aim for text to function like a brush in tra-
ditional painting, enabling targeted modifications to specific regions while preserving others un-
changed. With existing technology, users can only achieve this by combining text-driven editing
models, requiring: 1) Initial creation using a T2I model, 2) Refinement with an I2I editing model.
However, in our framework, the T2I model can directly modify images via controlled text input dur-
ing continuous generation, eliminating the need for additional I2I editing models. It can maintain
consistency across continuous generations by preserving identical content for shared text elements.
This makes the creative process more controllable, convenient, and aligned with intuition.

J DETAILS OF USER STUDY

We provide more details on our user study implementation. Besides qualitative and quantitative
comparisons, we also conduct a user study to determine whether our method is preferred by hu-
mans. We invite 32 participants from different social backgrounds and each test session lasts about
30 minutes. During the investigation, as illustrated in Fig. 15, we conducted a pairwise comparison
between our method and competitors across three key dimensions: 1) Original Behavior Consis-
tency, 2) Target Attribute Response, and 3) Aesthetic Preference. For ”Original Behavior Consis-
tency”, users were asked to select which of the two images better preserved consistency with the
original model’s outputs. For "Target Attribute Responsiveness”, users evaluated which image more
accurately reflected the target text description. For ”Aesthetic Preference”, users judged which im-
age aligned better with their aesthetic preferences, considering factors such as visual quality and the
absence of artifacts or distortions. This comprehensive evaluation framework ensures a thorough
and objective assessment of our method’s performance relative to existing approaches.
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Base Text Original Target Attribute Target Text Method-1 Method-2

The 13th of 138 question A ek, T . . a
white Shirt.” i +7V* makeup f
b A/
Original Behavior Consistency ( the better method to keep consistent with original model’s behavior) O O
Target Attribute Responsiveness ( the better method to match the target attribute) O O
Aesthetic Preference ( the better method to align your aesthetic standard) O O

Base Text Original Target Attribute Target Text Method-1 Method-2
i The 14th of 138 question ~ “Porrait woman,close L VI style”

Original Behavior Consistency ( the better method to keep consistent with original model’s behavior)

Target Attribute Responsiveness ( the better method to match the target attribute)

Aesthetic Preference ( the better method to align your aesthetic standard)

Base Text Original Target Attribute Target Text Method-1 Method-2
. B 8 j
'A Photo of woman, 1
The 15th of 138 question Photo ofavom ' f V2 style” | §

\

Original Behavior Consistency ( the better method to keep consistent with original model’s behavior)

Target Attribute Responsiveness ( the better method to match the target attribute)

O

Base Text Original Target Attribute Target Text  Method-1 Method-2

) b
; “Acl
The 16th of 138 question ofygu?;;f:" +7 V* freckled skin™
Y,

Original Behavior Consistency ( the better method to keep consistent with original model’s behavior)

Aesthetic Preference ( the better method to align your aesthetic standard)

Target Attribute Response ( the better method to match the target attribute)

Aesthetic Preference ( the better method to align your aesthetic standard)

Figure 15: The investigation page in user study.
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Figure 16: More Results of SPF-Portrait in Pure Text-to-Portrait Customization.
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“Portrait of human, man,

“Portrait of human, man, wearing full beards
“Portrait of human, man, wearing full beards, daylight, daylight, wearing a V*
wearing full beards, daylight.” wearing a V* suit.” suit, wearing V* glasses”

>

Continuous
Customization

"

“Portrait of a man, “Portrait of a man,
“Portrait of a man, sitting on the sofa,

sitting on the sofa,
with a V* toy bear.”

in his V* age.”

sitting on the sofa.”

Continuous
Customization

Figure 17: More results of continuous replacements and additions of target semantics in text-
to-portrait customization. Our method demonstrates stable and excellent performance in con-
tinuous customization tasks, indicating its potential to play a role in the application scenarios of
continuous Al portrait creation.

" - " “Top-down view,
A cat is jumping, A moon over the a majestic “A photo of a city
grass background.”

sea, starry night.” fairytale castle” in cyberpunk style.”

Original Image

“Top-down view, a “A photo of a city
“A cat is jumping, “A V* moon over the majestic fairytale in cyberpunk style,
V* background” sea, starry night.” castle, V* dragon.” in the V* style.”

Standard
Fine-tuning

Figure 18: More results of extending our method to the general Text-to-Image Customization.
These excellent experimental results demonstrate the feasibility of extending our method to the
general T2I Customization. Our method has the potential to address the issue of semantic pollution
in fine-tuning for the pure general T2I Customization.
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A man weaves through a

chaotic night market—
Portrait of woman, A woman, with a solid steaming carts, red

N N f . lanterns, neon signs,
wearing a knitted color background, in A man in a blue

K . X ! scooters, plastic stools, and
sweater. an orange tank top.  jacket, in the library. ~gmoke under fairy lights.

Portrait of an in
normal shirt.

A woman, with a solid
color background, in

! . . A man with a V* backpacK
an orange tank top, in A man in a blue jacket, weaves through a chaotic

living room. V* expression. sitting on V* sofa. night market ......

Portrait of an in wearing a knitted
normal shirt, in V* sweater, in V*

Figure 19: More Results of SPF-Portrait in Pure Text-to-Portrait Customization. We present
results under various poses, expressions, backgrounds, and complex scenes.

26



Under review as a conference paper at ICLR 2026

“A portrait of a woman, smiling gently,

7 74
“A young child sleeping soundly in a bed,
with a V* dog lying in his arms”

3= .
Original Standard
Portrait Fine-tuning

Ours

Figure 20: Results of SPF-Portrait in DiT-based Diffusion Model (Stable Diffusion 3.5-
Medium).

Original Portrait Ours 3“"‘”"""7" LoRA AdaLoRA TokenCompose Magnet
Fine-tuning

Figure 21: Results of SPF-Portrait in ID Customization (Real Human Faces)
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