

SPF-PORTRAIT: TOWARDS PURE TEXT-TO-PORTRAIT CUSTOMIZATION WITH SEMANTIC POLLUTION-FREE FINE-TUNING

Anonymous authors

Paper under double-blind review

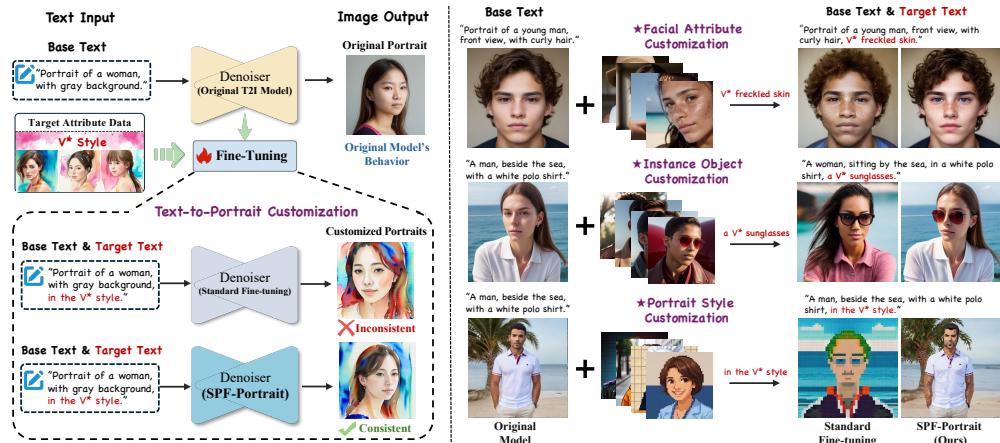


Figure 1: **Left:** The mainstream paradigm of text-to-portrait customization. **Right:** SPF-Portrait excellently achieves customized target semantics across various portrait attribute dimensions while significantly mitigating the disruption of the original model’s behavior.

ABSTRACT

Fine-tuning a pre-trained text-to-image (T2I) diffusion model on a tailored portrait dataset is the mainstream method for text-to-portrait customization. However, existing methods often severely impact the original model’s behavior (e.g., changes in ID, posture, layout, etc.) while customizing portrait. To address this issue, we propose **SPF-Portrait**, a pioneering work to achieve pure text-to-portrait customization, which necessitates direct text-conditioned personalized portrait generation and introduces differences purely through target attributes while preserving the original model’s behavior before and after portrait customization. To eliminate the interference of conventional customization on the original model, SPF-Portrait designs an additional dual-path alignment stage after the standard fine-tuning. This stage introduces the pre-trained T2I diffusion model as a reference for the fine-tuned model and achieves behavioral alignment by contrastively constraining intermediate features in diffusion models between the dual paths. To accurately align target-unrelated attributes with the original behavior without affecting the effectiveness of the target response, we propose a novel Semantic-Aware Fine Control Map, which perceives the desired response region of target semantics to adaptively guide the alignment process, preventing over-alignment of the customized portrait with the original portrait. Furthermore, to improve the fidelity of target attribute, we introduce a novel target response enhancement mechanism that utilizes our proposed representation bias as a supervisory signal to mitigate the cross-modal discrepancy in direct text-image supervision, thereby reinforcing the performance of target attributes and the overall quality of the portraits. Extensive experiments demonstrate the superiority of our method.

1 INTRODUCTION

Text-to-portrait customization (Huang et al., 2023; Han et al., 2024; He et al., 2024) is widely researched due to its significant application in fields such as advertising and social media. As shown

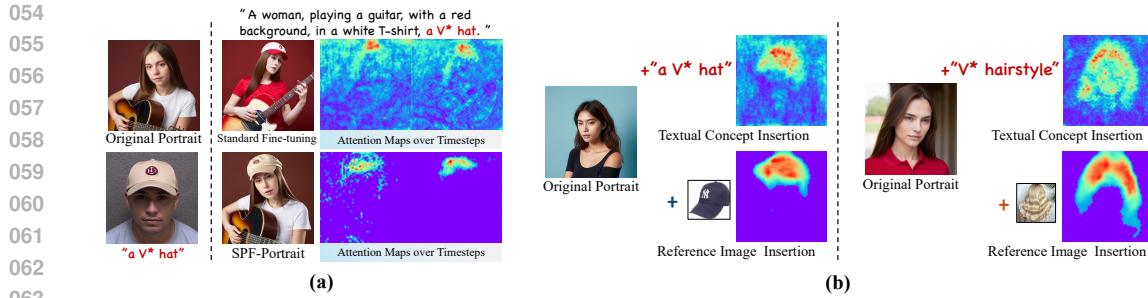


Figure 2: (a) **Visualization of the Attention Map** reflects the response regions of the target semantics ‘a V* hat’. (b) **Comparison of Interference with Original Portrait**. In customization tasks based on T2I foundational models, the reference image insertion provides a more well-defined and decoupled condition to the basic text condition than the textual concept insertion. The fine-tuned model can better determine the target response region, limiting interference with other regions. To intuitively observe the difference, we simultaneously increase the visualization threshold of the attention map for the target condition.

in Fig. 1 (Left), fine-tuning on user-specific text-portrait image datasets (Rombach et al., 2022; Ramesh et al., 2021; Saharia et al., 2022; Esser et al.) is the mainstream paradigm for text-to-portrait customization. It allows pre-trained text-to-image (T2I) diffusion models to generate personalized portrait attributes by incorporating target semantics into base text conditions. However, existing fine-tuning methods primarily focus on improving the fidelity of target attributes, while neglecting the significant disruption to the original model’s behavior during attribute customization (Guo et al., 2024), resulting in changes in target-unrelated attributes, such as the original portrait’s identity, posture, background, layout, etc., as illustrated in Fig. 1 and Fig. 6. By visualizing the attention map in Fig. 2 (a), we reveal that this is because the fine-tuned diffusion model struggles to identify the response region of the target semantics (‘a V* hat’), leading to its expansion into other areas unrelated to the target attributes. Consequently, when the fine-tuned model achieves the target semantics, it causes unexpected responses in other areas, disrupting the original behavior. We define this phenomenon as ***Semantic Pollution***, which is detrimental and is often ignored before.

To address this issue, in this paper, we focus on a new task: **Pure Text-to-Portrait Customization** (a T2I Customization), which aims to provide direct text-conditioned portrait personalization while minimizing disruption to the original model caused by semantic pollution. Although previous work (Wang et al., 2024b; Ye et al., 2025) like PuLID (Guo et al., 2024) attempts to mitigate the impact on the original portrait caused by ID-image insertion (an I2I Customization). However, as analyzed in Fig. 2 (b), the destruction to the original portrait caused by textual concept insertion is more severe than image insertion, yet it has not been emphasized or specifically studied. Moreover, unlike those methods limited to ID customization, our approach enables convenient text-controlled portrait customization across fine-grained to global attributes, such as facial attributes, instance objects, and styles, shown in Fig. 1 (Right). Based on our task setting, related research utilizes LoRA (Hu et al., 2021) and its variants (Ding et al., 2023; Zhang et al., 2023b; Borse et al., 2024) to learn target semantics in additional low-rank subspaces, reducing the impact on original model. However, they rely solely on diffusion loss for learning without additional designed behavioral constraints, resulting in limited effectiveness. Another line of work attempts to purify the understanding of text and separate attributes from each other through embedding-level decoupling (Zhuang et al., 2024; Chen et al., 2024) or regularization on attention maps (Wang et al., 2024c; Han et al., 2025). When applied to our task setting, they mitigate the influence on the original model for instance-level semantics customization, but fail to purely customize refined portrait attributes, like skin texture or hairstyle, as these fine-grained semantic concepts lack distinctive boundaries in the embedding space.

Given the limitations of existing approaches, we propose **SPF-Portrait** to achieve two specific objectives for pure text-to-portrait customization: 1) effective and high-quality adaptation of T2I diffusion models to various customized portrait attributes and 2) minimization of the disruption from semantic pollution to the original model. To initially obtain the T2I capability of the target attributes, we first fine-tune the pre-trained T2I diffusion model based on standard paradigm (Rombach et al., 2022). To eliminate semantic pollution, SPF-Portrait incorporates an additional stage, namely a dual-path alignment, which introduces the frozen pre-trained T2I diffusion model as the anchor of original behavior for the fine-tuned model. We contrastively constrain variant attention features and diffusion backbone features from the corresponding cross-attention layers between the dual paths. This enables the customized portrait to align both locally and globally with the original

model’s behavior. Furthermore, to ensure that the alignment process only affects target-unrelated attributes, thereby avoiding the suppression of target attributes, we propose a novel Semantic-Aware Fine Control Map (SFCM), which accurately perceives the response regions of target semantics to spatially guide the alignment of intermediate features. Moreover, to enhance the fidelity of the target attributes, we propose an innovative response enhancement mechanism for the target semantics. By supervising the representation bias of target semantics between the one-step prediction and the ground truth image, we mitigate the cross-modal gaps inherent in direct text-image supervision, thereby enhancing the performance of target attributes while improving the overall quality of the image. Extensive experiments show that SPF-Portrait achieves state-of-the-art (SOTA) performance in preventing semantic pollution for pure text-to-portrait customization.

In summary, our contributions are as follows: • We propose a new task named pure text-to-portrait customization, which requires direct text-driven portrait personalization and purely inserts target portrait attributes while minimizing disruption to the original model’s behavior. To achieve this, we develop SPF-Portrait, a pioneering work that addresses semantic pollution for pure customization with an additional dual-path alignment stage. • We introduce a novel Semantic-Aware Fine Control Map to spatially guide the alignment process, precisely aligning target-unrelated attributes with original portrait while ensuring the effective response of target semantics. • We design an innovative response enhancement mechanism to improve the fidelity of target attributes and overall quality of the image by alleviating cross-modal gaps in direct text-image supervision. • Extensive quantitative and qualitative experimental results demonstrate the superiority of our SPF-Portrait.

2 RELATED WORK

Fine-tuning for Pure T2I Customization. Numerous works (Zhang et al., 2023a; Wang et al., 2024b; Ruiz et al., 2023; Huang et al., 2024) extend existing T2I diffusion models (Rombach et al., 2022; Lin et al., 2024) to various customization tasks, primarily through fine-tuning. To mitigate the impact on the original model, PEFT-based methods (Wu et al., 2024; Zhang et al., 2023b; Borse et al., 2024) adapt to new concepts by introducing additional parameters outside of the original model. LoRA (Hu et al., 2021) achieves this through low-rank linear layers, while AdaLoRA (Zhang et al., 2023b) further enhances this by adaptively allocating low-rank budgets across layers based on learned importance scores. Related studies (Han et al., 2023; Qiu et al., 2023; Liu et al., 2023) also attempt to improve the preservation of prior knowledge during fine-tuning, for example, by focusing solely on fine-tuning key parameters through singular value decomposition and maintaining the orthogonality of weight matrices. Although these methods reduce disruption to the original model by preserving pre-trained knowledge, their reliance solely on diffusion loss lacks specific alignment constraints with original behavior, limiting their effectiveness of pure T2I customization.

Decoupling Control for T2I Customization. Decoupling control mechanisms aim to prevent the hindrance to textual control (Qi et al., 2024; Gao et al., 2024; Chang et al., 2024). To achieve decoupling within textual concepts, Magnet (Zhuang et al., 2024) and TEBopt (Chen et al., 2024) analyze and optimize condition embedding without requiring additional training. TokenCompose (Wang et al., 2024c) and STORM (Han et al., 2025) leverage attention map repositioning for precise spatial alignment. Although these decoupling methods are not initially designed for T2I customization tasks, their strategies are inherently beneficial for pure attribute customization and can be applied to our task. They can reduce instance-level attribute coupling in portrait customization but struggle with refined portrait attributes due to their lack of distinctiveness in the embedding space.

Task Distinction with Text-driven Image Editing. For image editing with a T2I model, (Brooks et al., 2023; Jiao et al., 2025; Kim et al., 2022) enable attribute manipulation through textual instructions, while (Ju et al., 2024; Kim et al., 2025) require mask input for precise, localized edits. Although integrating text-driven editing methods (Deutch et al., 2024; Wang et al., 2024a) into the T2I model pipeline can yield results comparable to ours. However, unlike these editing methods, which operate on a fixed image to adjust or refine existing content, we customize the T2I model itself to generate new target attributes from text while preserving its original generation behavior.

3 METHODOLOGY

SPF-Portrait can build upon both UNet-based and Diffusion Transformer-based (DiT-based) diffusion models for pure text-to-portrait customization. In this section, we detail our methodology based on the Unet architecture and provide the DiT-based implementation in the Appendix D.

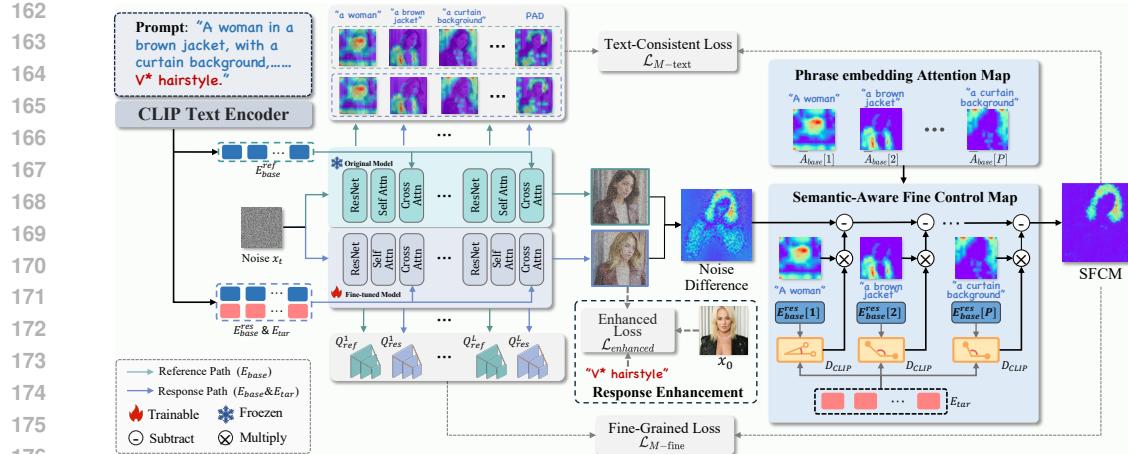


Figure 3: **The Dual-Path Alignment Pipeline of SPF-Portrait.** The text in **blue** is the **Base text**, while those in **red** is the **Target text**. The upper path is the **Reference Path**, while the lower path is the **Response Path**.

3.1 PRELIMINARY

T2I Diffusion Models generate images based on text input through a forward diffusion process and a reverse denoising process (Ho et al., 2020; Saharia et al., 2022). The diffusion process follows the Markov chain to transform an image sample x_0 into noisy samples $x_{1:T}$ by adding Gaussian noise ϵ over T steps. The denoising process employs a denoising model ϵ_θ to predict the added noise using x_t , t , and textual conditions y as inputs, where θ denotes the learnable parameters and $t \in [0, T]$ is the timestep of diffusion process. The optimization process can be described as:

$$\mathcal{L}_{diff} = \mathbb{E}_{x_0, \epsilon \sim \mathcal{N}(0, 1), t} (\|\epsilon - \epsilon_\theta(x_t, t, E)\|_2^2), \quad (1)$$

where $E = \tau_{text}(y)$ denotes textual features, obtained from the textual conditions y encoded by the text encoder τ_{text} .

3.2 DUAL-PATH ALIGNMENT PIPELINE

SPF-Portrait accomplishes the two aforementioned objectives for pure text-to-portrait customization by two stages of training. **In the first stage**, we fine-tune the pre-trained T2I model on the user-specific text-portrait image dataset, following the standard paradigm (Rombach et al., 2022). It aims to achieve the preliminary adaptation of the model to target portrait attributes without considering interference with the original model. **In the second stage**, we design a dual-path pipeline and utilize contrastive alignment to eliminate semantic pollution from the first stage. Specifically, as shown in Fig. 3, the proposed dual paths including: (i) **Reference Path** is the frozen model loading from the original pre-trained T2I model. In contrastive alignment, it only takes base text y_{base} (“A woman in a brown jacket, with a curtain background,”) as input, serving as a stable reference on behalf of the original model’s behavior; and (ii) **Response Path** is the fine-tuned model initially resumed from the first stage. During the contrastive alignment, it is trainable and takes complete text: $[y_{base}, y_{tar}]$ as input. $[y_{base}, y_{tar}]$ represents the concatenated text prompt (“A woman in a brown jacket, with a curtain background, V* hairstyle”). The textual feature inputs for the two paths can be represented as:

$$\left\{ \begin{array}{l} \text{Reference Path: } E_{base}^{ref} = \tau_{text}(y_{base}), \\ \text{Response Path: } \begin{cases} E_{base}^{res} = \tau_{text}([y_{base}, y_{tar}])|_{y_{base}}, \\ E_{tar} = \tau_{text}([y_{base}, y_{tar}])|_{y_{tar}}, \end{cases} \end{array} \right. \quad (2)$$

where E_{base}^{res} and E_{tar} respectively represent the encoded feature segments specific to the y_{base} and y_{tar} portions. Based on the dual paths, the contrastive alignment process first extracts the attention features \mathcal{F}_{ref} and \mathcal{F}_{res} from the reference path and the response path. These features are derived from a variant of the standard attention mechanism, i.e. Attention (K, Q, Q). They represent the response of the UNet features Q_{ref} and Q_{res} to the basic textual features E_{base} , where Q_{ref} and Q_{res} are features from the corresponding UNet cross-attention layer on the contrastive paths. By

216 constraining the similarity between the variant attention features \mathcal{F}_{ref} and \mathcal{F}_{res} from each cross-
 217 attention layer, SPF-Portrait encourages the representation of the base text in the response path to
 218 approach the behavior of the original model as:

$$\begin{cases} \mathcal{F}_{ref} = \text{Softmax}\left(\frac{K_{ref}(E_{base}^{ref})}{\sqrt{d}} Q_{ref}^T\right) Q_{ref}, \\ \mathcal{F}_{res} = \text{Softmax}\left(\frac{K_{res}(E_{base}^{res})}{\sqrt{d}} Q_{res}^T\right) Q_{res}, \\ \mathcal{L}_{\text{text-consistent}} = \sum_{j=1}^L \left\| \mathcal{F}_{ref}^j - \mathcal{F}_{res}^j \right\|_2^2, \end{cases} \quad (3)$$

225 where K_{ref} and K_{res} denote the keys of E_{base}^{ref} and E_{base}^{res} in the dual paths. L is the number of the
 226 attention layer in the denoising model. To improve consistency in fine-grained content, we further
 227 constrain the UNet features Q from contrastive paths, which contain comprehensive information on
 228 portrait details and structures, e.g., posture, layout, etc. (Chung et al., 2024; Mo et al., 2024):

$$\mathcal{L}_{\text{fine-grained}} = \sum_{j=1}^L \left\| Q_{ref}^j - Q_{res}^j \right\|_2^2. \quad (4)$$

3.3 SEMANTIC-AWARE FINE CONTROL MAP

232 Although such a dual-path contrastive approach can align customized portraits with original behavior both locally and globally,
 233 this vanilla alignment of intermediate features is too coarse and
 234 lacks precise control over the regions where alignment is applied.
 235 As shown in Fig. 4, it tends to suppress the responsiveness of target
 236 semantics, leading to the failure of target attribute customization.
 237 To address this issue, we propose a Semantic-Aware Fine Control
 238 Map (SFCM) that spatially guides the alignment process within ap-
 239 propriate regions, ensuring the effective response of target seman-
 240 tics. Specifically, during contrastive alignment, the spatial differ-
 241 ence in noise predictions between dual paths can be used to serve
 242 as a prior knowledge for target response, forming a soft map \mathcal{M} :

$$\mathcal{M} = |\epsilon_{\theta}(x_t, t, E_{base}^{ref}) - \epsilon_{\theta'}(x_t, t, [E_{base}^{res}, E_{tar}])|, \quad (5)$$

243 where $\epsilon_{\theta'}$ and ϵ_{θ} represent the noise prediction in the response and reference paths, respectively,
 244 θ' denotes the learnable parameters of the model in the response path. $[E_{base}^{res}, E_{tar}]$ represents
 245 complete textual feature input of the response path. $|\cdot|$ denotes element-wise absolute value. As an-
 246 alyzed in Fig. 2, due to semantic pollution causing the target response regions to diffuse into areas of
 247 unrelated attributes, the noise difference \mathcal{M} is unable to accurately characterize the target response
 248 regions. Inspired by the insight that a phrase in the base text exhibits the lower semantic relevance to
 249 the target text, the regions highlighted by this phrase in \mathcal{M} represent the higher degree of semantic
 250 pollution and should be excluded from \mathcal{M} . Based on this principle, we design the Semantic-Aware
 251 process to refine the soft map, which essentially involves progressively eliminating semantic pollu-
 252 tion. For the input base text portion in the response path, we split it into multiple phrases, as shown
 253 in ‘‘Phrase embedding Attention Map’’ of Fig. 3. Concretely, for each textural feature of the phrase
 254 $E_{base}^{res}[i]$, $i = \{1, 2, \dots, P\}$ (P is the number of phrases in base text), we compute its mean of the
 255 cross-attention maps across all the denoising UNet layers to localize highlighted regions $\bar{A}_{base}[i]$ as:

$$\bar{A}_{base}[i] = \frac{1}{L} \sum_{j=1}^L (A_{base}^j[i]), \quad (6)$$

256 where $A_{base}^j[i] = \text{AttentionMap}(E_{base}^{res}[i], j)$ represents the attention map of the i -th phrase embed-
 257 ding $E_{base}^{res}[i]$ at the j -th layer. Subsequently, to quantify the degree of exclusion, we leverage the
 258 representation capabilities of CLIP to calculate the similarity between E_{tar} and each $E_{base}^{res}[i]$. We
 259 then weigh the $\bar{A}_{base}[i]$ based on the similarity and use it to refine the soft map \mathcal{M} :

$$\begin{aligned} \widehat{\mathcal{M}} &= \mathcal{M} - \sum_{i=1}^P \bar{A}_{base}[i] \cdot (1 - \gamma(i)), \\ \gamma(i) &= D_{CLIP}(E_{base}^{res}[i], E_{tar}), \end{aligned} \quad (7)$$

Figure 4: **The Motivation of SFCM.** The vanilla alignment results in the over-alignment of the customized portrait with the original portrait.

where D_{CLIP} represents the cosine similarity in the CLIP embedding space. All attention maps $\bar{\mathcal{A}}_{base}[i]$ are upsampled at a resolution of 64×64 , i.e. the same size as soft map \mathcal{M} . $\widehat{\mathcal{M}}$ is the final map of our SFCM, as shown in Fig. 3 and Fig. 4, it represents the desired target response regions and can effectively prevent over-alignment with original portrait by precisely controlling the alignment process. Therefore, the text-consistent and fine-grained alignment constraints in Eq. 3 and Eq. 4 can be modified as follows:

$$\begin{aligned}\mathcal{L}_{M-\text{text}} &= \sum_{j=1}^L \left\| (\mathcal{F}_{ref}^j - \mathcal{F}_{res}^j) \odot (1 - \widehat{\mathcal{M}}) \right\|_2^2, \\ \mathcal{L}_{M-\text{fine}} &= \sum_{j=1}^L \left\| (Q_{ref}^j - Q_{res}^j) \odot (1 - \widehat{\mathcal{M}}) \right\|_2^2,\end{aligned}\quad (8)$$

where \odot denotes the hadamard product.

3.4 RESPONSE ENHANCEMENT VIA REPRESENTATION BIAS

In text-to-portrait customization, an excellent response to the target semantics and high-quality portrait output are essential. To reinforce the fidelity of the target attribute, previous works (Avrahami et al., 2022; Kim et al., 2022) directly apply cross-modal text-image supervision in CLIP space by employing the target text to supervise the one-step prediction (Yin et al., 2024), formulated as:

$$\begin{aligned}\mathcal{L}_{clip} &= 1 - D_{CLIP}(\tau_{vision}(\hat{x}_{t \rightarrow 0}) - \tau_{text}(E_{tar})), \\ \hat{x}_{t \rightarrow 0} &= \frac{\hat{x}_t}{\sqrt{\alpha_t}} - \frac{\sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(\hat{x}_t, t, \tau_{text}([E_{base}^{res}, E_{tar}]))}{\sqrt{\bar{\alpha}_t}},\end{aligned}\quad (9)$$

where τ_{vision} and τ_{text} denote the CLIP vision and text encoders, respectively, and $\hat{x}_{t \rightarrow 0}$ denotes the one-step prediction of x_t in the t -th timestep.

However, direct text-image supervision in Eq. 9 overlooks the cross-modal representation gap between text and image, causing the model to overfit the textual description during optimization. As illustrated in Fig. 5, it ultimately leads to degradation of the visual quality of the generated portraits. To address this issue, we propose a novel target response enhancement mechanism that achieves an effect similar to supervision within the same modality, improving the fidelity of the target attribute while ensuring high-quality portrait output. Specifically, we propose a representation bias $\Delta(\cdot, \cdot)$, representing the difference between the representations of the CLIP textual space and the CLIP visual space (Abdelfattah et al., 2023; Xue et al., 2022). By introducing the ground truth image x_0 (an arbitrary image with the target attribute), we obtain the representation bias between target text and ground truth image x_0 , i.e. $\Delta(x_0, E_{tar})$, as well as that between target text and one-step prediction $\hat{x}_{t \rightarrow 0}$, i.e. $\Delta(\hat{x}_{t \rightarrow 0}, E_{tar})$, formulated as:

$$\begin{aligned}\Delta(x_0, E_{tar}) &= \tau_{vision}(x_0) - \tau_{text}(E_{tar}), \\ \Delta(\hat{x}_{t \rightarrow 0}, E_{tar}) &= \tau_{vision}(\hat{x}_{t \rightarrow 0}) - \tau_{text}(E_{tar}),\end{aligned}\quad (10)$$

Subsequently, we constrain the similarity of these two representation biases:

$$\mathcal{L}_{enhanced} = 1 - D_{CLIP}(\Delta(\hat{x}_{t \rightarrow 0}, E_{tar}), \Delta(x_0, E_{tar})).\quad (11)$$

As shown in Fig. 5, this loss simultaneously enhances the performance of the target semantics while ensuring the high quality of the portrait output. Finally, the overall optimization objective can be represented as:

$$\mathcal{L}_{SPF} = \mathcal{L}_{diff} + \underbrace{\lambda_1 \mathcal{L}_{M-\text{text}} + \lambda_2 \mathcal{L}_{M-\text{fine}}}_{\text{alignment}} + \underbrace{\lambda_3 \mathcal{L}_{enhanced}}_{\text{response}},\quad (12)$$

where λ_1 , λ_2 and λ_3 are the hyperparameters.

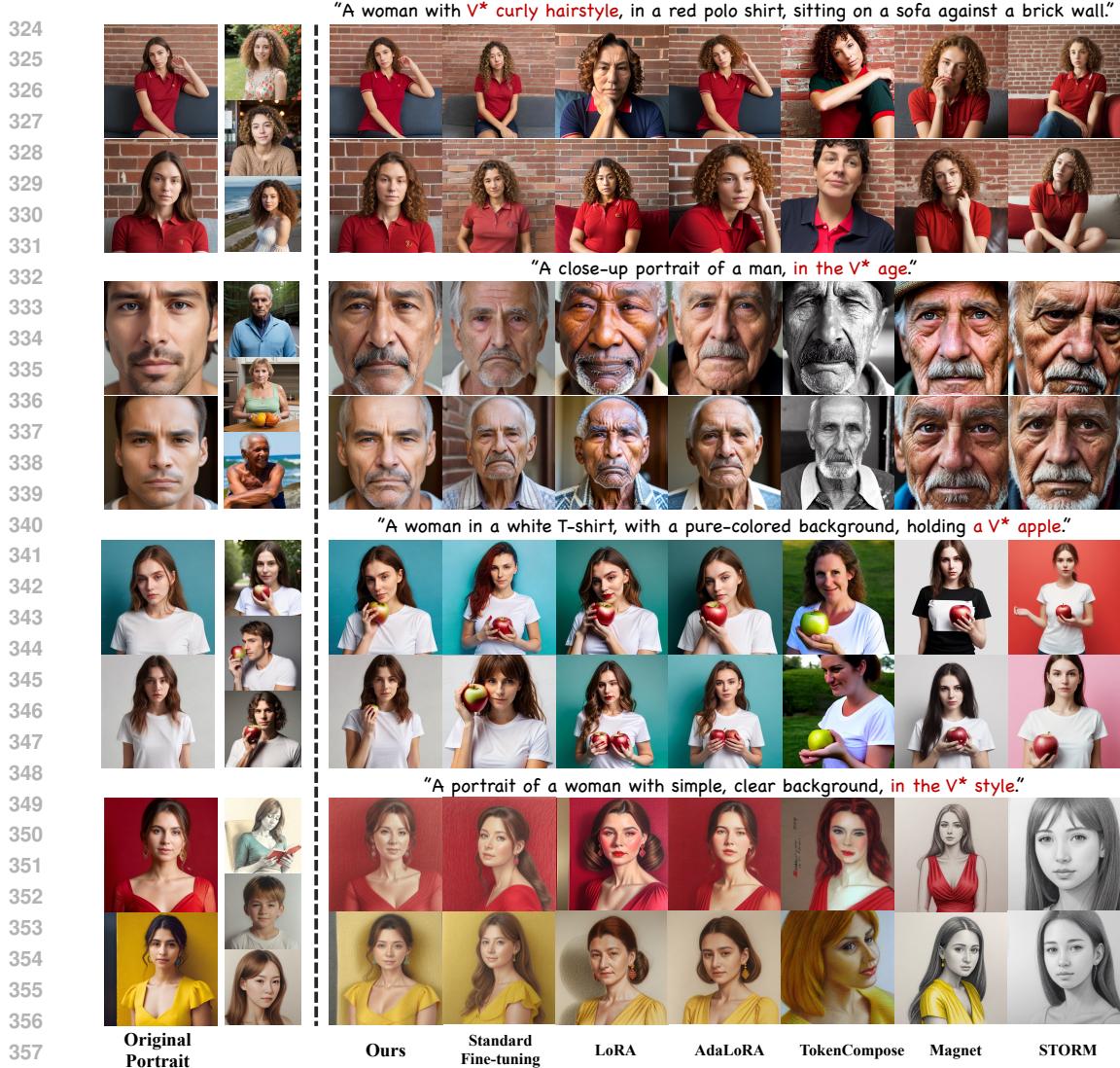


Figure 6: **Qualitative Comparisons between Our Method and SOTA Methods** in terms of diverse personalized attributes such as hairstyle, age, and image style. For each target attribute, we evaluate two cases using different random seeds. More results are provided in Appendix Fig. 16 and Fig. 19.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. We adopt the SD1.5 (Rombach et al., 2022) and SD3.5-M (Esser et al., 2024) as our base model. The hyperparameters λ_1 , λ_2 and λ_3 are set to 0.2, 0.1 and 0.6. More details about the experiments are provided in the Appendix.

Dataset. Our training set contains 230K diverse portraits with new attributes (e.g., skin textures, hairstyles), captioned by GPT-4o (Achiam et al., 2023) and Cambrian-1 (Tong et al., 2024). For evaluation, we create a test set of 5K triples, each with: (1) an original caption, (2) its corresponding original portrait, and (3) a target caption of customized attributes. More details are in the Appendix.

Evaluation Metrics. We evaluate three key aspects: (1) preservation of the original model’s behavior, (2) responsiveness to target semantics, and (3) overall image quality. Concretely, we employ FID (Heusel et al., 2017), LPIPS (Zhang et al., 2018), identity similarity (ID), CLIP Image Score (CLIP-I) (Radford et al., 2021), and segmentation consistency (Kirillov et al., 2023) (Seg-Cons) to measure the consistency between the original and customized portraits. We use the CLIP Text-Alignment Score (CLIP-T) (Radford et al., 2021) to evaluate the responsiveness to target semantics. For overall image quality assessment, we use HPSv2 (Wu et al., 2023) and MPS (Zhang et al., 2024).

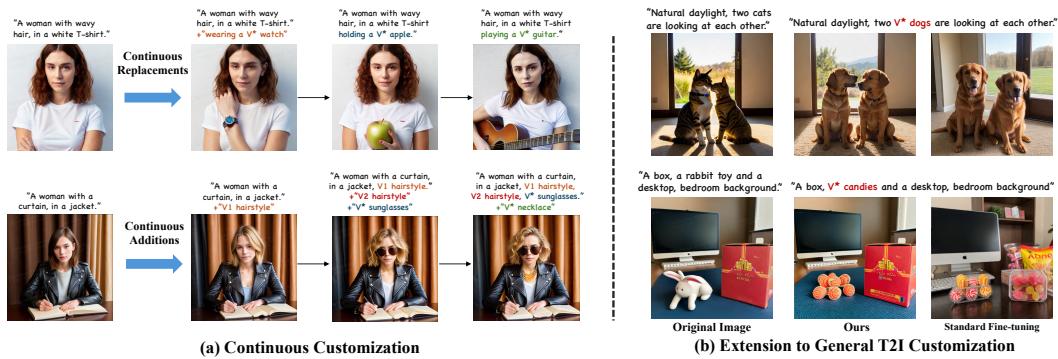


Figure 7: (a) Results of continuous replacements and additions of target semantics in pure text-to-portrait customization. More results are shown in Appendix Fig. 17. (b) Results of extending our method to achieve general pure T2I customization. More results are provided in Appendix Fig. 18.

4.2 QUALITATIVE EVALUATION

Comparison with SOTAs. We qualitatively compare our method with the SOTA approaches, including standard fine-tuning (Rombach et al., 2022), PEFT-based methods such as LoRA (Hu et al., 2021) and AdaLoRA (Zhang et al., 2023b), and decoupled methods such as Tokencompose (Wang et al., 2024c), Magenet (Zhuang et al., 2024), and STORM (Han et al., 2025). As shown in Fig. 6, although LoRA and AdaLoRA tend to retain the original behavior in some cases, their performance is unstable in detail alignment. For instance, in the customization of “V* age”, LoRA causes a noticeable change in identity in both cases, while in the second case of hairstyle customization, AdaLoRA completely transforms the portrait posture. Magnet, TokenCompose and STORM naively follow the input text conditions entirely, ignoring the preservation of the original model’s behavior across all test cases. For example, the customization of “V* style” results in a complete alteration of the portrait in all cases. In contrast, our method purely customizes the target attributes while preserving the original model’s behavior in aspects such as background, pose, and identity. It demonstrates that our approach effectively addresses semantic pollution during portrait customization.

Continuous Customization. Based on real-world application scenarios, we conducted a qualitative evaluation of our method in continuous portrait customization task. As shown in Fig. 7 (a), our method reliably excels in the continuous replacement and addition of target semantics, which effectively customizes portrait attributes while mitigating interference with original behavior. It indicates that SPF-Portrait has the potential to play a role in the application of continuous AI portrait creation.

Extension to General T2I Customization. Although in this paper, we primarily focus on pure text-to-portrait customization due to its application value and the challenging need for more precise attribute customization. However, as shown in Fig. 7 (b), we attempt to apply SPF-Portrait to General T2I Customization. The excellent experimental results demonstrate the feasibility of extending our method to address the issue of semantic pollution in general T2I customization.

Table 1: **Quantitative Comparison Results.** In our specific pairwise comparison, unlike general image generation, lower FID values reflect greater consistency with the original model’s behavior. Notably, the underlined values in “Ours (w/o SFCM)” are unusually low because the generated portraits may overly align with the original portraits. The results of the ablation study are based on SD1.5, while the SD3.5-based results are provided in the *Appendix*.

Method	Preservation					Responsiveness		Overall	
	FID (↓)	LPIPS (↓)	ID (↑)	CLIP-I (↑)	Seg-Cons (↑)	CLIP-T (↑)	HPSv2 (↑)	MPS(↑)	
Standard Fine-tuning (Rombach et al., 2022)	20.41	0.57	0.21	0.63	57.77	0.24	0.21	0.67	
LoRA (Hu et al., 2021)	9.82	0.38	0.52	0.71	58.37	0.27	0.23	1.21	
AdaLoRA (Zhang et al., 2023b)	7.38	0.40	0.39	0.80	64.86	0.23	0.24	1.10	
TokenCompose (Wang et al., 2024c)	10.93	0.41	0.32	0.81	40.22	0.27	0.24	0.71	
Magnet (Zhuang et al., 2024)	18.92	0.48	0.38	0.61	32.87	0.26	0.26	0.97	
STORM (Han et al., 2025)	17.30	0.54	0.27	0.60	30.04	0.26	0.24	0.70	
Ours (SD 3.5-M)	4.27	0.30	0.65	0.82	77.18	0.32	0.30	1.83	
Ours (SD 1.5)	4.50	0.35	0.55	0.83	75.74	0.30	0.28	1.49	
Ours (w/o $\mathcal{L}_{M\text{-text}}$)	4.97	0.39	0.48	0.60	61.39	0.28	0.23	1.13	
Ours (w/o $\mathcal{L}_{M\text{-fine}}$)	6.74	0.42	0.32	0.71	41.62	0.27	0.21	1.22	
Ours (w/o $\mathcal{L}_{\text{enhanced}}$)	4.52	0.37	0.49	0.81	74.38	0.22	0.23	1.40	
Ours (w/o SFCM)	4.13	0.14	0.73	0.88	80.03	0.17	0.23	1.09	

Figure 9: **Qualitative Ablation Study.** We independently ablate the losses and the SFCM module.

4.3 QUANTITATIVE EVALUATION

Metric Evaluation. Tab. 1 shows the quantitative results of our method against baselines on the test set. Both our method based on SD1.5 (Rombach et al., 2022) and SD3.5-M (Esser et al., 2024) show substantial improvement in preserving the original behavior compared to all competitors, achieving state-of-the-art performance across all metrics. It is notable that our method significantly outperforms competitors in “Seg-Cons”, demonstrating pixel-level alignment precision that far surpasses other approaches. The optimal CLIP-T and overall scores confirm that our method enhances the response to target semantics and achieves higher-quality portrait customization.

User Study. We conduct a user study to have a comprehensive assessment of our method. We design three dimensions for evaluation: Original Behavior Consistency (OBC), Target Attribute Responsiveness (TAR), and Aesthetic Preference (AP). We invite 32 participants from different social backgrounds, with each test session lasting about 30 minutes. Users perform pairwise comparisons between our method and competitors in three dimensions. The results are as shown in Fig. 8, our method defeats all competitors in all dimensions, especially in OBC and TAR. This highlights our powerful ability in preserving the original model’s behavior while purely adapting to new attributes. Please refer to the *Appendix* for more details.

4.4 ABLATION STUDY

To validate the effectiveness of different components of our method, we conduct thorough ablation studies. Qualitative results, shown in Fig. 9, indicate that the absence of \mathcal{L}_{M-text} results in weaker alignment of base text response with the original portrait, while the lack of \mathcal{L}_{M-fine} leads to inconsistencies in detailed content, such as portrait posture. Without $\mathcal{L}_{enhanced}$, the fidelity of the target attribute significantly degrades, failing to follow the action of ‘holding’ and with a tendency to disrupt the spatial coherence of the “V* toy bear”. Superior performance across all metrics of quantitative results in the ablation part of Tab. 1 further confirm these visual observations. Notably, “w/o SFCM” shows superior preservation metrics in Table 1. However, as shown in Figure 9, it disregards the target semantics and over-aligns the target attribute with the original portrait. Such outcomes represent a failure that should not be overlooked in our task.

5 CONCLUSION

In this paper, we propose SPF-Portrait, a novel fine-tuning framework designed to address the issue of Semantic Pollution for pure text-to-portrait customization. By introducing the original model as a reference path and utilizing contrastive alignment, we achieve the goals of purely achieving the customized semantics. We precisely retain the original model’s behavior and ensure an effective response to target semantics by innovatively designing a Semantic-Aware Fine-Control Map to guide the alignment process and a response enhancement mechanism for target semantics. Extensive experiments show that our method can achieve the SOTA performance. However, we acknowledge that our SFCM approach, which relies on attention maps, is less effective with abstract descriptions like “the background is softly blurred.” This limitation underscores the need for more generalizable mechanisms to preserve model behavior across varied text descriptions.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. In this study, no animal experimentation was in-
489 volved. All datasets used, including Pick-a-pic and our collecting video preference dataset, were
490 sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have
491 taken care to avoid any biases or discriminatory outcomes in our research process. No personally
492 identifiable information was used, and no experiments were conducted that could raise privacy or
493 security concerns. We are committed to maintaining transparency and integrity throughout the re-
494 search process.495
496 REPRODUCIBILITY STATEMENT
497498 To ensure reproducibility, we have made the following efforts: (1) We will release our code and the
499 collected dataset. (2) We provide experiments setup in Sec. 4 and the more details about training
500 process are presented in Appendix. C including training steps, model configurations, and hardware
501 details. (3) We elaborate on our evaluation protocol in detail in Sec. 4. We believe these measures
502 will enable other researchers to reproduce our work and further advance the field.503
504 REFERENCES
505506 Rabab Abdelfattah, Qing Guo, Xiaoguang Li, Xiaofeng Wang, and Song Wang. Cdul: Clip-driven
507 unsupervised learning for multi-label image classification. In *Proceedings of the IEEE/CVF in-*
508 *ternational conference on computer vision*, pp. 1348–1357, 2023. 6
509 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
510 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
511 report. *arXiv preprint arXiv:2303.08774*, 2023. 7
512 Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
513 natural images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
514 *recognition*, pp. 18208–18218, 2022. 6
515 Shubhankar Borse, Shreya Kadambi, Nilesh Prasad Pandey, Kartikeya Bhardwaj, Viswanath Gan-
516 pathy, Sweta Priyadarshi, Risheek Garrepalli, Rafael Esteves, Munawar Hayat, and Fatih Porikli.
517 Foura: Fourier low rank adaptation. *arXiv preprint arXiv:2406.08798*, 2024. 2, 3
518
519 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
520 editing instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
521 *Recognition*, pp. 18392–18402, 2023. 3
522
523 Minghong Cai, Xiaodong Cun, Xiaoyu Li, Wenze Liu, Zhaoyang Zhang, Yong Zhang, Ying Shan,
524 and Xiangyu Yue. Dictral: Exploring attention control in multi-modal diffusion transformer for
525 tuning-free multi-prompt longer video generation. In *Proceedings of the Computer Vision and*
526 *Pattern Recognition Conference*, pp. 7763–7772, 2025. 19
527
528 Yingshan Chang, Yasi Zhang, Zhiyuan Fang, Ying Nian Wu, Yonatan Bisk, and Feng Gao. Skews in
529 the phenomenon space hinder generalization in text-to-image generation. In *European Conference*
530 *on Computer Vision*, pp. 422–439. Springer, 2024. 3
531
532 Chieh-Yun Chen, Chiang Tseng, Li-Wu Tsao, and Hong-Han Shuai. A cat is a cat (not a dog!): Un-
533 raveling information mix-ups in text-to-image encoders through causal analysis and embedding
534 optimization. *arXiv preprint arXiv:2410.00321*, 2024. 2, 3
535
536 Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach
537 for adapting large-scale diffusion models for style transfer. In *Proceedings of the IEEE/CVF*
538 *Conference on Computer Vision and Pattern Recognition*, pp. 8795–8805, 2024. 5
539
540 Gilad Deutch, Rinon Gal, Daniel Garibi, Or Patashnik, and Daniel Cohen-Or. Turboedit: Text-based
541 image editing using few-step diffusion models. In *SIGGRAPH Asia 2024 Conference Papers*, pp.
542 1–12, 2024. 3, 22

540 Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
 541 Sparse low-rank adaptation of pre-trained language models. *arXiv preprint arXiv:2311.11696*,
 542 2023. 2

543

544 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 545 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 546 high-resolution image synthesis, 2024. URL <https://arxiv.org/abs/2403.03206>, 2. 2

547

548 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 549 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 550 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
 551 2024. 7, 9, 18

552

553 Junyao Gao, Yanchen Liu, Yanan Sun, Yinhao Tang, Yanhong Zeng, Kai Chen, and Cairong Zhao.
 Styleshot: A snapshot on any style. *arXiv preprint arXiv:2407.01414*, 2024. 3

554

555 Zinan Guo, Yanze Wu, Zhuowei Chen, Lang Chen, Peng Zhang, and Qian He. Pulid: Pure and
 lightning id customization via contrastive alignment. *arXiv preprint arXiv:2404.16022*, 2024. 2

556

557 Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdif:
 558 Compact parameter space for diffusion fine-tuning. In *Proceedings of the IEEE/CVF Interna-*

559 *tional Conference on Computer Vision*, pp. 7323–7334, 2023. 3

560

561 Woojung Han, Yeonkyung Lee, Chanyoung Kim, Kwanghyun Park, and Seong Jae Hwang. Spatial
 562 transport optimization by repositioning attention map for training-free text-to-image synthesis. In
 563 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 564 June 2025. 2, 3, 8, 19

565

566 Yue Han, Junwei Zhu, Keke He, Xu Chen, Yanhao Ge, Wei Li, Xiangtai Li, Jiangning Zhang,
 567 Chengjie Wang, and Yong Liu. Face-adapter for pre-trained diffusion models with fine-grained id
 and attribute control. In *European Conference on Computer Vision*, pp. 20–36. Springer, 2024. 1

568

569 Xilin He, Cheng Luo, Xiaole Xian, Bing Li, Siyang Song, Muhammad Haris Khan, Weicheng Xie,
 570 Linlin Shen, and Zongyuan Ge. Synfer: Towards boosting facial expression recognition with
 571 synthetic data. *arXiv preprint arXiv:2410.09865*, 2024. 1

572

573 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 574 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*

575 *neural information processing systems*, 30, 2017. 7

576

577 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*

578 *neural information processing systems*, 33:6840–6851, 2020. 4

579

580 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 581 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*

582 *arXiv:2106.09685*, 2021. 2, 3, 8, 19

583

584 Mengqi Huang, Zhendong Mao, Mingcong Liu, Qian He, and Yongdong Zhang. Realcustom: Nar-
 585 rowing real text word for real-time open-domain text-to-image customization. In *Proceedings of*

586 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7476–7485, 2024. 3

587

588 Ziqi Huang, Kelvin CK Chan, Yuming Jiang, and Ziwei Liu. Collaborative diffusion for multi-
 589 modal face generation and editing. In *Proceedings of the IEEE/CVF Conference on Computer*

590 *Vision and Pattern Recognition*, pp. 6080–6090, 2023. 1

591

592 Guanlong Jiao, Biqing Huang, Kuan-Chieh Wang, and Renjie Liao. Unedit-flow: Unleashing in-
 593 version and editing in the era of flow models. *arXiv preprint arXiv:2504.13109*, 2025. 3

594

595 Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan, and Qiang Xu. Brushnet: A plug-and-
 596 play image inpainting model with decomposed dual-branch diffusion. In *European Conference*

597 *on Computer Vision*, pp. 150–168. Springer, 2024. 3, 22

594 Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
 595 for robust image manipulation. In *Proceedings of the IEEE/CVF conference on computer vision*
 596 and pattern recognition, pp. 2426–2435, 2022. 3, 6, 22

597 Sora Kim, Sungho Suh, and Minsik Lee. Rad: Region-aware diffusion models for image inpainting.
 598 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2439–2448,
 599 2025. 3

600 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 601 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Pro-
 602 ceedings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.
 603 7

604 Yudong Li, Xianxu Hou, Zheng Dezh, Linlin Shen, and Zhe Zhao. Flip-80m: 80 million visual-
 605 linguistic pairs for facial language-image pre-training. In *Proceedings of the 32nd ACM Interna-
 606 tional Conference on Multimedia*, pp. 58–67, 2024. 18

607 Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
 608 distillation. *arXiv preprint arXiv:2402.13929*, 2024. 3

609 Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
 610 Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
 611 factorization. *arXiv preprint arXiv:2311.06243*, 2023. 3

612 Sicheng Mo, Fangzhou Mu, Kuan Heng Lin, Yanli Liu, Bochen Guan, Yin Li, and Bolei Zhou.
 613 Freecontrol: Training-free spatial control of any text-to-image diffusion model with any condi-
 614 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 615 pp. 7465–7475, 2024. 5

616 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 617 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023. 18

618 Tianhao Qi, Shancheng Fang, Yanze Wu, Hongtao Xie, Jiawei Liu, Lang Chen, Qian He, and Yong-
 619 dong Zhang. Deadiff: An efficient stylization diffusion model with disentangled representations.
 620 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 621 8693–8702, 2024. 3

622 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
 623 and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. *Advances
 624 in Neural Information Processing Systems*, 36:79320–79362, 2023. 3

625 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 626 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 627 models from natural language supervision. In *International conference on machine learning*, pp.
 628 8748–8763. PmlR, 2021. 7

629 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 630 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 631 learning*, pp. 8821–8831. Pmlr, 2021. 2

632 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 633 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF con-
 634 ference on computer vision and pattern recognition*, pp. 10684–10695, 2022. 2, 3, 4, 7, 8, 9, 16,
 635 19

636 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 637 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 638 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 639 22510, 2023. 3

640 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 641 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 642 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 643 tion processing systems*, 35:36479–36494, 2022. 2, 4

648 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 649 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
 650 vision-centric exploration of multimodal llms. *arXiv preprint arXiv:2406.16860*, 2024. 7

651

652 Fangyikang Wang, Hubery Yin, Yuejiang Dong, Huminhao Zhu, Chao Zhang, Hanbin Zhao, Hui
 653 Qian, and Chen Li. Belm: Bidirectional explicit linear multi-step sampler for exact inversion in
 654 diffusion models. *arXiv preprint arXiv:2410.07273*, 2024a. 3, 22

655 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 656 Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*,
 657 2024b. 2, 3

658

659 Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Text-to-
 660 image diffusion with token-level supervision. In *Proceedings of the IEEE/CVF Conference on*
 661 *Computer Vision and Pattern Recognition*, pp. 8553–8564, 2024c. 2, 3, 8, 19

662 Tianyi Wei, Dongdong Chen, Yifan Zhou, and Xingang Pan. Enhancing mmdit-based text-to-image
 663 models for similar subject generation. *arXiv preprint arXiv:2411.18301*, 2024. 19

664

665 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 666 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 667 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023. 7

668

669 Yujia Wu, Yiming Shi, Jiwei Wei, Chengwei Sun, Yang Yang, and Heng Tao Shen. Difflora: Gener-
 670 ating personalized low-rank adaptation weights with diffusion. *arXiv preprint arXiv:2408.06740*,
 671 2024. 3

672

673 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 674 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
 675 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 15903–15935, 2023. 6

676

677 Hongwei Xue, Yuchong Sun, Bei Liu, Jianlong Fu, Ruihua Song, Houqiang Li, and Jiebo Luo. Clip-
 678 vip: Adapting pre-trained image-text model to video-language representation alignment. *arXiv*
preprint arXiv:2209.06430, 2022. 6

679

680 Fulong Ye, Miao Hua, Pengze Zhang, Xinghui Li, Qichao Sun, Songtao Zhao, Qian He, and Xin-
 681 glong Wu. Dreamid: High-fidelity and fast diffusion-based face swapping via triplet id group
 682 learning. *arXiv preprint arXiv:2504.14509*, 2025. 2

683

684 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 685 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023. 20

686

687 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 688 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*
 689 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024. 6

690

691 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 692 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 693 pp. 3836–3847, 2023a. 3

694

695 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
 696 Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
 697 efficient fine-tuning. *arXiv preprint arXiv:2303.10512*, 2023b. 2, 3, 8, 19

698

699 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 700 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 701 *computer vision and pattern recognition*, pp. 586–595, 2018. 7

702

703 Sixian Zhang, Bohan Wang, Junqiang Wu, Yan Li, Tingting Gao, Di Zhang, and Zhongyuan Wang.
 704 Learning multi-dimensional human preference for text-to-image generation. In *Proceedings of*
 705 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8018–8027,
 706 June 2024. 7

702 Chenyi Zhuang, Ying Hu, and Pan Gao. Magnet: We never know how text-to-image diffusion mod-
703 els work, until we learn how vision-language models function. *arXiv preprint arXiv:2409.19967*,
704 2024. 2, 3, 8, 19
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **APPENDIX**
757758 **A OVERVIEW OF THE APPENDIX**
759

760 • The explanation of mathematical notations in SPF-Portrait is provided in Tab. 2.
 761 • The use of large language models (LLMs) is provided in Sec. B.
 762 • The implementation details of the SPF-Portrait are provided in Sec. C.
 763 • DiT-based implementation of the SPF-Portrait is provided in Sec. D.
 764 • The analysis of the fine-tuning architecture is provided in Sec. E.
 765 • The analysis of the fine-tuned model is provided in Sec. F.
 766 • The sensitivity analysis of loss is provided in Sec. G.
 767 • The ablation study of the training stage is provided in Sec. H.
 768 • Details of the user study are provided in Sec. J.
 769 • More experimental results are shown in Fig. 16, Fig. 17 and Fig. 18.

773 Table 2: Mathematical Notations in SPF-Portrait
774

775 Symbol	776 Description
777 x_0	778 Original clean image sample in diffusion process
778 $x_{1:T}$	779 Noisy samples generated through forward diffusion process over T steps
779 ϵ	780 Gaussian noise added during diffusion process
780 ϵ_θ	781 Denoising model with learnable parameters θ
781 t	782 Diffusion timestep, $t \in [0, T]$
782 y	783 Textual conditions/input prompts
783 E	784 Textual features, $E = \tau_{\text{text}}(y)$
784 τ_{text}	785 Text encoder
785 y_{base}	786 Base text prompt (original description)
786 y_{tar}	787 Target text prompt (customized attributes)
787 $E_{\text{base}}^{\text{ref}}$	788 Reference path's base text features
788 $E_{\text{base}}^{\text{res}}$	789 Response path's base text features
789 E_{tar}	790 Target text features
790 \mathcal{F}_{ref}	791 Attention features from reference path
791 \mathcal{F}_{res}	792 Attention features from response path
792 Q_{ref}	793 UNet features from reference path's cross-attention layer
793 Q_{res}	794 UNet features from response path's cross-attention layer
794 K_{ref}	795 Key for $E_{\text{base}}^{\text{ref}}$ in reference path
795 K_{res}	796 Key for $E_{\text{base}}^{\text{res}}$ in response path
796 d	797 Dimension scaling factor in attention computation
797 L	798 Number of attention layers in denoising model
798 \mathcal{M}	799 Soft map of spatial difference in noise predictions
799 $\widehat{\mathcal{M}}$	800 Final Semantic-Aware Fine Control Map (SFCM)
800 $\bar{A}_{\text{base}}[i]$	801 Mean attention map for i-th phrase in base text
801 $\gamma(i)$	802 CLIP similarity score between phrases
802 $\Delta(\cdot, \cdot)$	803 Difference vector between CLIP visual/text spaces
803 $\hat{x}_{t \rightarrow 0}$	804 One-step prediction in diffusion process
804 $\alpha_t, \bar{\alpha}_t$	805 Noise schedule parameters in diffusion process
805 $\lambda_1, \lambda_2, \lambda_3$	806 Loss weighting hyperparameters
806 \odot	807 Hadamard (element-wise) product operator

808
809

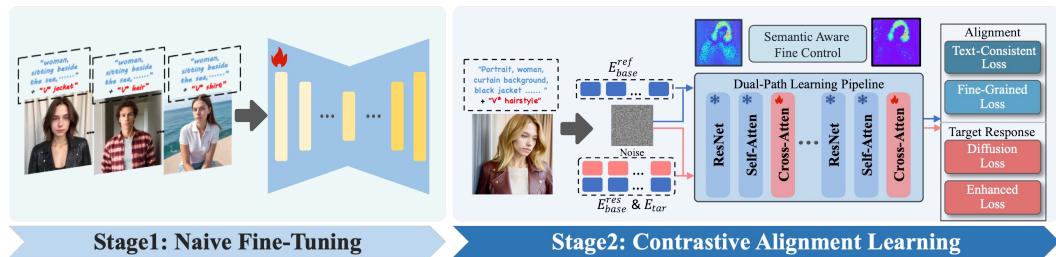
810 B THE USE OF LARGE LANGUAGE MODELS (LLMs)

811
 812 Large Language Models (LLMs) were used to aid or polish the writing of this manuscript. Spec-
 813 ifically, we used Claude-4-Sonnet solely for language polishing and grammatical refinement of the
 814 written text. All research contributions, including the main ideas, technical approaches, experimen-
 815 tal work, and scientific insights presented in this paper, are entirely the work of the human authors.
 816 The LLM usage was limited to improving the clarity and readability of the already-written content
 817 without altering the substance or meaning of our work.

818 819 C IMPLEMENTATION DETAILS OF SPF-PORTRAIT

820 821 C.1 DETAILS OF TRAINING

822 As shown in Fig. 10, the training process of our approach consists of two stages: fine-tuning with all
 823 the parameters updated in the first stage and contrastive alignment learning in the second stage. In the
 824 first stage, we employ standard fine-tuning (Rombach et al., 2022) to learn target attributes, which
 825 aims to enable the T2I model to rapidly adapt to the target concepts of our dataset. For this stage,
 826 we train the model using 8 V100 GPUs with a batch size of 8, iterating for 2 epochs and a learning
 827 rate of 1e-5. In the second stage, the training process follows the approach outlined in the main text.
 828 The goal is to enable the T2I model to grasp pure target concepts without compromising the original
 829 model’s performance, thereby preventing semantic pollution caused by the target text. Due to the
 830 additional memory consumption of the dual-branch architecture, we set the batch size to 2, iterating
 831 for 5 epochs with a learning rate of 5e-5. We summarize the complete training procedure of TAPO
 832 in Algorithm 1. The same dataset and optimizer (AdamW with default parameters: beta1=0.9,
 833 beta2=0.999, weight decay=0.01) are used for both the first and second stages.



834
 835 Figure 10: Our overall training pipeline.
 836
 837

838 Due to the dual-path training framework in second stage, which requires an additional frozen original
 839 model compared to standard fine-tuning, our approach incurs extra memory costs and increased
 840 computation time. We provide the corresponding resource consumption details in Tab. 3. The frozen
 841 model (which doesn’t participate parameter updates) adds only 5GB of GPU memory overhead
 842 under typical FP32 precision settings.

843 Table 3: **Computation Time and Memory Usage of Training under Different Data Types.** The
 844 data in bold represents our implementation configuration.

845 846 Method	847 Data Type		
	848 FP16	849 FP32	850 BF16
851 Stage-1 (w/o reference path)	1.92s/iter (17GB)	2.28s/iter (23GB)	1.90s/iter (18GB)
852 Stage-2 (w/ reference path)	2.10s/iter (21GB)	3.26s/iter (28GB)	2.15s/iter (18GB)
853 Standard Fine-tuning (Rombach et al., 2022)	1.92s/iter (17GB)	2.28s/iter (23GB)	1.90s/iter (18GB)

864
865
866
867**Algorithm 1** SPF-Portrait Training Procedure

870 1: **Input:** Pre-trained T2I model θ_0 , portrait dataset \mathcal{D} , base text y_{base} , target text y_{tar}
871 2: **Hyperparameters:** $\lambda_1, \lambda_2, \lambda_3$
872 3: **Output:** Fine-tuned model θ'
873 4: **procedure** STAGE1: STANDARD FINE-TUNING
874 5: Initialize $\theta' \leftarrow \theta_0$
875 6: **for** each training step **do**
876 7: Sample $(x_0, y_{\text{base}}, y_{\text{tar}}) \sim \mathcal{D}$
877 8: Encode text: $E \leftarrow \tau_{\text{text}}([y_{\text{base}}, y_{\text{tar}}])$
878 9: Sample $t \sim \mathcal{U}(0, T)$, $\epsilon \sim \mathcal{N}(0, I)$
879 10: Compute $x_t \leftarrow \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon$
880 11: Predict noise: $\hat{\epsilon} \leftarrow \epsilon_{\theta'}(x_t, t, E)$
881 12: Update θ' using $\mathcal{L}_{\text{diff}} = \|\epsilon - \hat{\epsilon}\|_2^2$ Eq. 1
882 13: **end for**
883 14: **end procedure**
884 15: **procedure** STAGE2: DUAL-PATH CONTRASTIVE LEARNING
885 16: Freeze reference model: $\theta \leftarrow \theta_0$
886 17: Initialize response model from Stage1
887 18: **for** each training step **do**
888 19: Sample $(x_0, y_{\text{base}}, y_{\text{tar}}) \sim \mathcal{D}$
889 20: Sample $t \sim \mathcal{U}(0, T)$, $\epsilon \sim \mathcal{N}(0, I)$
890 21: Compute $x_t \leftarrow \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon$
891 22: $E_{\text{base}}^{\text{ref}} \leftarrow \tau_{\text{text}}(y_{\text{base}})$, $\epsilon_{\text{ref}} \leftarrow \epsilon_{\theta}(x_t, t, E_{\text{base}}^{\text{ref}})$ (Eq. 2) \triangleright # Reference path (frozen)
892 23: $E_{\text{base}}^{\text{res}}, E_{\text{tar}} \leftarrow \tau_{\text{text}}([y_{\text{base}}, y_{\text{tar}}])$, $\epsilon_{\text{res}} \leftarrow \epsilon_{\theta'}(x_t, t, [E_{\text{base}}^{\text{res}}, E_{\text{tar}}])$ (Eq. 2) \triangleright # Response path
893 24: # Compute SFCM
894 25: $\mathcal{M} \leftarrow |\epsilon_{\text{ref}} - \epsilon_{\text{res}}|$ (Eq. 5)
895 26: Split $E_{\text{base}}^{\text{res}}$ into phrases $[E_1, \dots, E_P]$
896 27: **for** $i = 1$ to P **do**
897 28: $\bar{A}_{\text{base}}[i] \leftarrow \frac{1}{L} \sum_{j=1}^L A_{\text{base}}^j[i]$ (Eq. 6)
898 29: $\gamma(i) \leftarrow D_{\text{CLIP}}(E_i, E_{\text{tar}})$
899 30: **end for**
900 31: $\widehat{\mathcal{M}} \leftarrow \mathcal{M} - \sum_{i=1}^P \bar{A}_{\text{base}}[i] \cdot (1 - \gamma(i))$ (Eq. 7)
901 32: # Feature extraction and alignment
902 33: **for** each cross-attention layer j **do**
903 34: Extract $\mathcal{F}_{\text{ref}}^j, \mathcal{F}_{\text{res}}^j, Q_{\text{ref}}^j, Q_{\text{res}}^j$
904 35: $\mathcal{L}_{M-\text{text}} \leftarrow \mathcal{L}_{M-\text{text}} + \|(\mathcal{F}_{\text{ref}}^j - \mathcal{F}_{\text{res}}^j) \odot (1 - \widehat{\mathcal{M}})\|_2$ (Eq. 8)
905 36: $\mathcal{L}_{M-\text{fine}} \leftarrow \mathcal{L}_{M-\text{fine}} + \|(Q_{\text{ref}}^j - Q_{\text{res}}^j) \odot (1 - \widehat{\mathcal{M}})\|_2$ (Eq. 8)
906 37: **end for**
907 38: # Response enhancement
908 39: $\hat{x}_0 \leftarrow \frac{\hat{x}_t}{\sqrt{\bar{\alpha}_t}} - \frac{\sqrt{1 - \bar{\alpha}_t}\epsilon_{\theta}(\hat{x}_t, t, \tau_{\text{text}}([E_{\text{base}}^{\text{res}}, E_{\text{tar}}]))}{\sqrt{\bar{\alpha}_t}}$ (Eq. 9)
909 40: $\Delta(\hat{x}_{t \rightarrow 0}, E_{\text{tar}}) \leftarrow \tau_{\text{vision}}(\hat{x}_{t \rightarrow 0}) - \tau_{\text{text}}(E_{\text{tar}})$, $\Delta(x_0, E_{\text{tar}}) \leftarrow \tau_{\text{vision}}(x_0) - \tau_{\text{text}}(E_{\text{tar}})$
910 41: $\mathcal{L}_{\text{enhanced}} \leftarrow 1 - D_{\text{CLIP}}(\Delta(\hat{x}_{t \rightarrow 0}, E_{\text{tar}}), \Delta(x_0, E_{\text{tar}}))$ (Eq. 11)
911 42: # Total loss and update
912 43: $\mathcal{L}_{\text{SPF}} \leftarrow \mathcal{L}_{\text{diff}} + \lambda_1 \mathcal{L}_{M-\text{text}} + \lambda_2 \mathcal{L}_{M-\text{fine}} + \lambda_3 \mathcal{L}_{\text{enhanced}}$ (Eq. 12)
913 44: Update θ' using $\nabla_{\theta'} \mathcal{L}_{\text{SPF}}$
914 45: **end for**
915 46: **end procedure**
916
917

918
919

C.2 DETAILS OF TRAINING DATASET

920
921
922

Our work focuses on preventing semantic pollution in fine-tuning portrait T2I models while enabling the model to learn the concepts from the target attributes. To achieve this, we constructed a dataset containing various image-text pairs related to portrait concepts for training the T2I diffusion model.

923
924
925

Considering the quality and diversity of the dataset, we utilized widely adopted community (civiti) checkpoints for portrait generation as the checkpoints for the Stable Diffusion (SD) model, including RealVisXL_V1.0 and HumanModel, to generate portrait images encompassing a wide range of attributes. The attribute statistics and corresponding samples are shown in Fig. 11, respectively.

926
927
928
929
930
931

To improve dataset quality, we focus on two aspects: 1) enhancing image-text alignment using FLIP (Li et al., 2024), a CLIP checkpoint specifically for portraits, to retain the top 30% of matching pairs, and 2) improving visual fidelity by filtering images with a Human Aesthetic Preference Score (HPS) and Image-Reward (IR).

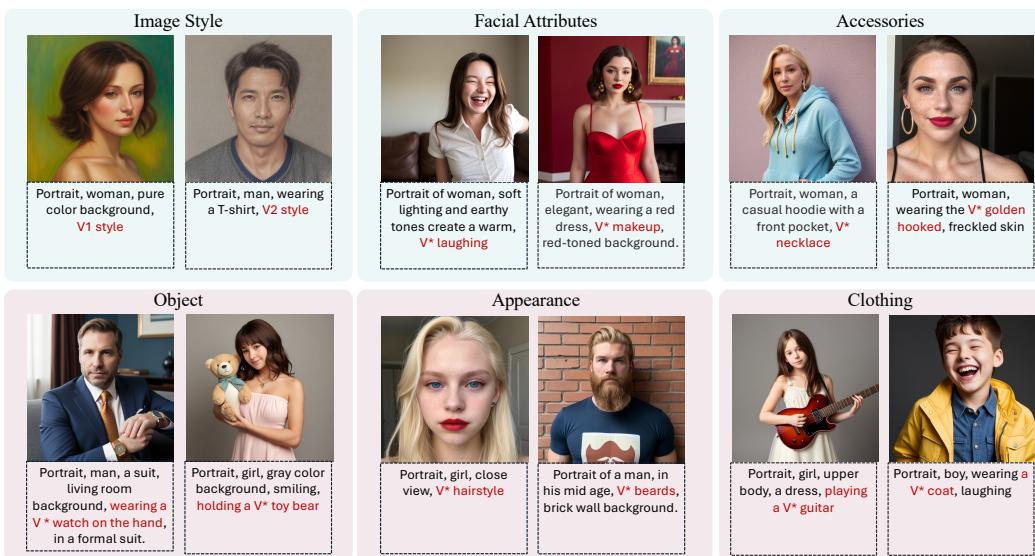


Figure 11: Examples of our training datasets.

950

951
952
953

D DIT-BASED IMPLEMENTATION OF SPF-PORTRAIT

954
955
956
957
958
959
960

To demonstrate the generalization of our SPF-Portrait on advanced diffusion architectures, we conduct experiments using SD3.5-M (Esser et al., 2024) as the base model. SD3.5-M utilized the DiT (Peebles & Xie, 2023) as the backbone and employs rectified flow to reformulate the denoising process as an ordinary differential equation. The core of these methods is to train a neural network $v_{t,\theta}$ to satisfy the velocity field by minimizing the Flow Matching objective:

$$\mathcal{L}_{RF-diff} = \mathbb{E}_{t \in [0,1], \mathbf{x}_t \sim p_t} \|\mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_\theta(\mathbf{x}_t)\|^2. \quad (13)$$

961
962
963
964
965
966

where $x_t = (1-t)x_0 + tx_1$. The main modifications for DiT involve two aspects: 1) Attention feature enhancement: MM-DiT blocks use self-attention on concatenated image-text features instead of cross-attention interaction. 2) Attention map collection: Since SD3.5 introduces the additional T5 text encoder, phrase attention map computation must consider attention maps from both encoders.

967
968
969
970
971

Dual-Path. In the second stage, our dual-path architecture comprises two branches: 1) Reference Path – it loads the original pre-trained model (now a DiT-based diffusion model) and takes only the base text embedding E_{base}^{ref} as input, using its intermediate representations to anchor the original model’s behavior; 2) Response Path – it is initialized from the stage-one standard fine-tuned model (also converted to a DiT-based diffusion backbone) and accepts both base embeddings E_{base}^{res} and target text embeddings E_{tar} .

972 **Alignment Process.** Specifically, in the MM-DiT block, we use the key and value from visual
 973 features as the K^{vis} and V^{vis} , while using text feature query as Q^{txt} . The text consistent loss can be
 974 calculate as follow:

$$\begin{cases} \mathcal{F}_{ref} = \text{Softmax}\left(\frac{Q_{ref}^{txt}(E_{base}^{ref}) K_{ref}^{vis^T}}{\sqrt{d}}\right) V^{vis}, \\ \mathcal{F}_{res} = \text{Softmax}\left(\frac{Q_{res}^{txt}(E_{base}^{res}) K_{res}^{vis^T}}{\sqrt{d}}\right) V^{vis}, \\ \mathcal{L}_{\text{text-consistent}} = \sum_{j=1}^L \left\| \mathcal{F}_{ref}^j - \mathcal{F}_{res}^j \right\|_2^2. \end{cases} \quad (14)$$

981 where L denotes the MM-DiT layer number here. To enhance consistency in fine-grained content,
 982 we further constrain the visual features Q^{vis} from contrastive paths, and the fine-grained loss can be
 983 reformulated as:

$$\mathcal{L}_{\text{fine-grained}} = \sum_{j=1}^L \left\| Q_{ref}^{vis, j} - Q_{res}^{vis, j} \right\|_2^2. \quad (15)$$

987 Since SD 3.5 builds upon Rectified Flow, we reformulate the noise difference in Eq. 5 to represent
 988 the velocity difference in our dual-path architecture:

$$\mathcal{M} = |v_{\theta}(x_t, t, E_{base}^{ref}) - v_{\theta'}(x_t, t, [E_{base}^{res}, E_{tar}])|, \quad (16)$$

992 Regarding the Phrase Embedding Attention Map, we follow (Wei et al., 2024; Cai et al., 2025) by
 993 extracting attention maps of the corresponding tokens encoded by T5 and CLIP. The map can be
 994 calculated as:

$$\bar{A}_{base}[i] = \frac{1}{2L} \sum_{j=1}^L (A_{base, CLIP}^j[i] + A_{base, T5}^j[i]). \quad (17)$$

998 We subsequently compute the SFCM following the same procedure as Eq. 7:

$$\begin{aligned} \widehat{\mathcal{M}} &= \mathcal{M} - \sum_{i=1}^P \bar{A}_{base}[i] \cdot (1 - \gamma(i)), \\ \gamma(i) &= D_{CLIP}(E_{base}^{res}[i], E_{tar}), \end{aligned} \quad (18)$$

1004 Through the above modifications, we demonstrate that our framework is also compatible with the
 1005 DiT architecture. The quantitative and ablation results are shown Tab. 4 and [qualitative results are](#)
 1006 [presented in Fig. 21](#).

1008 **Table 4: Quantitative and Ablation Results.** In our specific pairwise comparison, unlike general
 1009 image generation, lower FID values reflect greater consistency with the original model’s behavior.
 1010 Notably, the underlined values in “Ours (w/o SFCM)” are unusually low because the generated
 1011 portraits may overly align with the original portraits.

Method	Preservation					Responsiveness		Overall	
	FID (\downarrow)	LPIPS (\downarrow)	ID (\uparrow)	CLIP-I (\uparrow)	Seg-Cons (\uparrow)	CLIP-T (\uparrow)	HPSv2 (\uparrow)	MPS (\uparrow)	
Standard Fine-tuning (Rombach et al., 2022)	20.41	0.57	0.21	0.63	57.77	0.24	0.21	0.67	
LoRA (Hu et al., 2021)	9.82	0.38	0.52	0.71	58.37	0.27	0.23	1.21	
AdaLoRA (Zhang et al., 2023b)	7.38	0.40	0.39	0.80	64.86	0.23	0.24	1.10	
TokenCompose (Wang et al., 2024c)	10.93	0.41	0.32	0.81	40.22	0.27	0.24	0.71	
Magnet (Zhuang et al., 2024)	18.92	0.48	0.38	0.61	32.87	0.26	0.26	0.97	
STORM (Han et al., 2025)	17.30	0.54	0.27	0.60	30.04	0.26	0.24	0.70	
Ours (SD3.5-M)	4.27	0.30	0.65	0.82	77.18	0.32	0.30	1.83	
Ours (w/o $\mathcal{L}_{M-\text{text}}$)	5.24	0.41	0.39	0.67	53.24	0.25	0.25	1.10	
Ours (w/o $\mathcal{L}_{M-\text{fine}}$)	7.72	0.48	0.27	0.54	31.94	0.22	0.25	1.18	
Ours (w/o SFCM)	<u>3.72</u>	<u>0.11</u>	<u>0.89</u>	<u>0.92</u>	<u>87.24</u>	0.12	0.23	1.14	

1022 E ANALYSIS OF FINE-TUNING ARCHITECTURE

1023 During the contrastive learning of the second stage, our approach exclusively trains the parameters
 1024 in the cross-attention modules. We compare results across various network architectures, including

“full-weight”, “LoRA on cross-attention”, and “additional adapters”. As illustrated in Fig. 12, all architectures under our contrastive learning achieve some level of alignment. Notably, “LoRA on cross-attention”, “Adapter on Cross-Atten” and “Cross-Atten(ours)” outperform the “full weights” in alignment, this is because the diffusion model relies on the cross-attention mechanism for text-conditioned control, and optimizing the most critical parameters enables a better understanding of independent target attributes. However, “LoRA on Cross-Atten”, due to its limited learnable parameters, falls short in understanding the original behavior compared to our method. Ours achieves a superior balance between alignment and attribute learning. “Adapter on Cross-Atten” achieves the suboptimal performance, as it independently adjusts all the parameters of cross-attention module. However, the isolated attention structure limits the interaction between target text features and base text features, rendering in partial misalignment. The results in Tab. 5 further validate our conclusions.



Figure 12: **Comparison of results across different updated network architectures in our contrastive pipeline.** “Full Weights” indicates that all network parameters are updated, “LoRA on Cross-Atten” refers to the integration of LoRA into the Cross-Attention modules, and “Adapter on Cross-Atten” denotes the addition of parallel cross-attention layers, akin to IP-adapter (Ye et al., 2023).

Table 5: **Quantitative Comparisons** with other architecture.

Method	Preservation					Overall		Responsiveness
	FID (↓)	LPIPS (↓)	ID (↑)	CLIP-I (↑)	Seg-Cons (↑)	HPSv2 (↑)	MPS(↑)	CLIP-T (↑)
Full Weights	7.82	0.40	0.309	0.81	48.39	0.22	0.87	0.26
LoRA on Cross-Atten	7.10	0.39	0.487	0.61	68.37	0.24	1.21	0.26
Adapter on Cross-Atten	5.93	0.37	0.520	0.80	61.70	0.25	1.31	0.27
Ours	4.50	0.35	0.55	0.83	75.74	0.28	1.49	0.30

F ANALYSIS OF THE FINE-TUNED MODEL

To further verify that our method purely learns the customized attributes without compromising the original model and purely understands the target attributes, we solely use identical base text to evaluate whether our method can reconstruct the original portraits after fine-tuning. As shown in Fig. 13, standard fine-tuning markedly disrupts original response patterns, while our method maintains near-identical performance to the original model. For example, in the top-right case, the semantics of ‘woman’ is completely corrupted by standard fine-tuning, but we not only retain the character but also maintain high consistency in other attributes. The outstanding reconstruction

Figure 13: **Reconstruction Results.** The three portraits for each case are generated by the fine-tuned model using only the same base text.

of portraits across varied scenes demonstrates our method’s substantive retention of the original model’s pre-trained prior knowledge.

G SENSITIVITY ANALYSIS OF LOSS

To determine the optimal settings for the three loss hyperparameters, we conducted a comprehensive sensitivity analysis. As shown in Fig. 14 The three segments of the plot correspond to the hyperparameters in Eq. 11 ($\lambda_1 \rightarrow \mathcal{L}_{M-text}$, $\lambda_2 \rightarrow \mathcal{L}_{M-fine}$, $\lambda_3 \rightarrow \mathcal{L}_{M-enhanced}$) , demonstrating how FID scores vary with their values. Our analysis reveals that the optimal configuration occurs at $\lambda_1 = 0.2$, $\lambda_2 = 0.1$, $\lambda_3 = 0.6$, achieving the best FID score of 4.503 reported in our main results. It is noticed that the orange dashed line indicates the FID (4.013) of "Ours(w/o SFCM)" from Tab. 1, which exhibits over-alignment as visualized in Fig. 9.

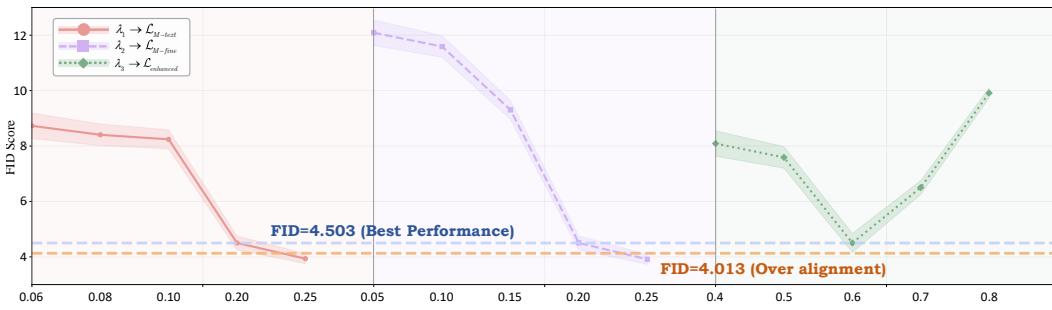


Figure 14: **Sensitivity analysis of three loss components** ($\lambda_1 \rightarrow \mathcal{L}_{M-text}$, $\lambda_2 \rightarrow \mathcal{L}_{M-fine}$, $\lambda_3 \rightarrow \mathcal{L}_{M-enhanced}$) **with respect to FID scores.** FID varies with different parameter values for each loss component. FID=4.503 (optimal performance) and FID=4.013 (over-alignment with original model).

H ABLATION STUDY OF TRAINING STAGE

The main contribution of our method is the addition of an extra training stage on top of standard fine-tuning. To demonstrate the effectiveness of the two-stage training strategy, we conduct an ablation study on the training stages. As shown in Tab. 6, if only the second-stage contrastive learning is used, the model struggles to learn clean target attributes, resulting in significantly poor performance on

1134 "CLIP-T." On the other hand, with only stage 1, the model is entirely affected by semantic pollution,
 1135 failing to align with the original model behavior, thus performing worse on preservation metrics.
 1136

1137 **Table 6: Ablation Study of the training Stage.**

Method	Preservation					Responsiveness	Overall	
	FID (↓)	LPPIPS (↓)	ID (↑)	CLIP-I (↑)	Seg-Cons (↑)		CLIP-T (↑)	HPSv2 (↑)
Only Stage-1 (Standard Fine-tuning)	20.41	0.57	0.21	0.63	57.77	0.24	0.21	0.67
Only Stage-2	7.18	0.38	0.13	0.71	63.72	0.19	0.24	1.12
Stage-1&2 (Ours)	4.50	0.35	0.55	0.83	75.74	0.30	0.28	1.49

1144

I DISCUSSION ABOUT EDITING METHODS

1145 As mentioned in the related work Sec. 2.3, incorporating text-driven editing methods (Deutch et al.,
 1146 2024; Wang et al., 2024a; Kim et al., 2022; Ju et al., 2024) into the T2I model pipeline can produce
 1147 similar results to ours. Here, we elaborate on the distinctions between our work and editing models
 1148 and demonstrate that the improvement on inversion-based editing models when replacing their T2I
 1149 model with ours.

1150 The core distinction of our work lies in preventing additional textual concepts from disrupting T2I
 1151 models, which fundamentally differs from I2I editing models that primarily focus on image manip-
 1152 ulation through precise local modifications. Although the visual results of our method are presented
 1153 in a pairwise comparison which may resemble those of editing work, the purpose is to demonstrate
 1154 that our incremental learning approach preserves the integrity of the original model.
 1155

1156 For an ideal AI-driven text-to-portrait creation, users aim for text to function like a brush in tra-
 1157 ditional painting, enabling targeted modifications to specific regions while preserving others un-
 1158 changed. With existing technology, users can only achieve this by combining text-driven editing
 1159 models, requiring: 1) Initial creation using a T2I model, 2) Refinement with an I2I editing model.
 1160 However, in our framework, the T2I model can directly modify images via controlled text input dur-
 1161 ing continuous generation, eliminating the need for additional I2I editing models. It can maintain
 1162 consistency across continuous generations by preserving identical content for shared text elements.
 1163 This makes the creative process more controllable, convenient, and aligned with intuition.
 1164

1165

J DETAILS OF USER STUDY

1166 We provide more details on our user study implementation. Besides qualitative and quantitative
 1167 comparisons, we also conduct a user study to determine whether our method is preferred by hu-
 1168 mans. We invite 32 participants from different social backgrounds and each test session lasts about
 1169 30 minutes. During the investigation, as illustrated in Fig. 15, we conducted a pairwise comparison
 1170 between our method and competitors across three key dimensions: 1) Original Behavior Consis-
 1171 tency, 2) Target Attribute Response, and 3) Aesthetic Preference. For "Original Behavior Consis-
 1172 tency", users were asked to select which of the two images better preserved consistency with the
 1173 original model's outputs. For "Target Attribute Responsiveness", users evaluated which image more
 1174 accurately reflected the target text description. For "Aesthetic Preference", users judged which im-
 1175 age aligned better with their aesthetic preferences, considering factors such as visual quality and the
 1176 absence of artifacts or distortions. This comprehensive evaluation framework ensures a thorough
 1177 and objective assessment of our method's performance relative to existing approaches.
 1178

1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

	Base Text	Original	Target Attribute	Target Text	Method-1	Method-2
The 13th of 138 question	"A woman, in a white Shirt."			+ "V* makeup"		
Original Behavior Consistency (the better method to keep consistent with original model's behavior)	<input type="radio"/>	<input type="radio"/>				
Target Attribute Responsiveness (the better method to match the target attribute)	<input type="radio"/>	<input type="radio"/>				
Aesthetic Preference (the better method to align your aesthetic standard)	<input type="radio"/>	<input type="radio"/>				
The 14th of 138 question	"Portrait, woman, close view."			+ "V1 style"		
Original Behavior Consistency (the better method to keep consistent with original model's behavior)	<input type="radio"/>	<input type="radio"/>				
Target Attribute Responsiveness (the better method to match the target attribute)	<input type="radio"/>	<input type="radio"/>				
Aesthetic Preference (the better method to align your aesthetic standard)	<input type="radio"/>	<input type="radio"/>				
The 15th of 138 question	"A Photo of woman, in a red dress."			+ "V2 style"		
Original Behavior Consistency (the better method to keep consistent with original model's behavior)	<input type="radio"/>	<input type="radio"/>				
Target Attribute Responsiveness (the better method to match the target attribute)	<input type="radio"/>	<input type="radio"/>				
Aesthetic Preference (the better method to align your aesthetic standard)	<input type="radio"/>	<input type="radio"/>				
The 16th of 138 question	"A close view of young man."			+ " V* freckled skin"		
Original Behavior Consistency (the better method to keep consistent with original model's behavior)	<input type="radio"/>	<input type="radio"/>				
Target Attribute Response (the better method to match the target attribute)	<input type="radio"/>	<input type="radio"/>				
Aesthetic Preference (the better method to align your aesthetic standard)	<input type="radio"/>	<input type="radio"/>				
Pre	4	5	6	...	35	Next
Turn to Page	[]					

Figure 15: The investigation page in user study.

1242

1243

1244

1245

1246

1247

1248

1249

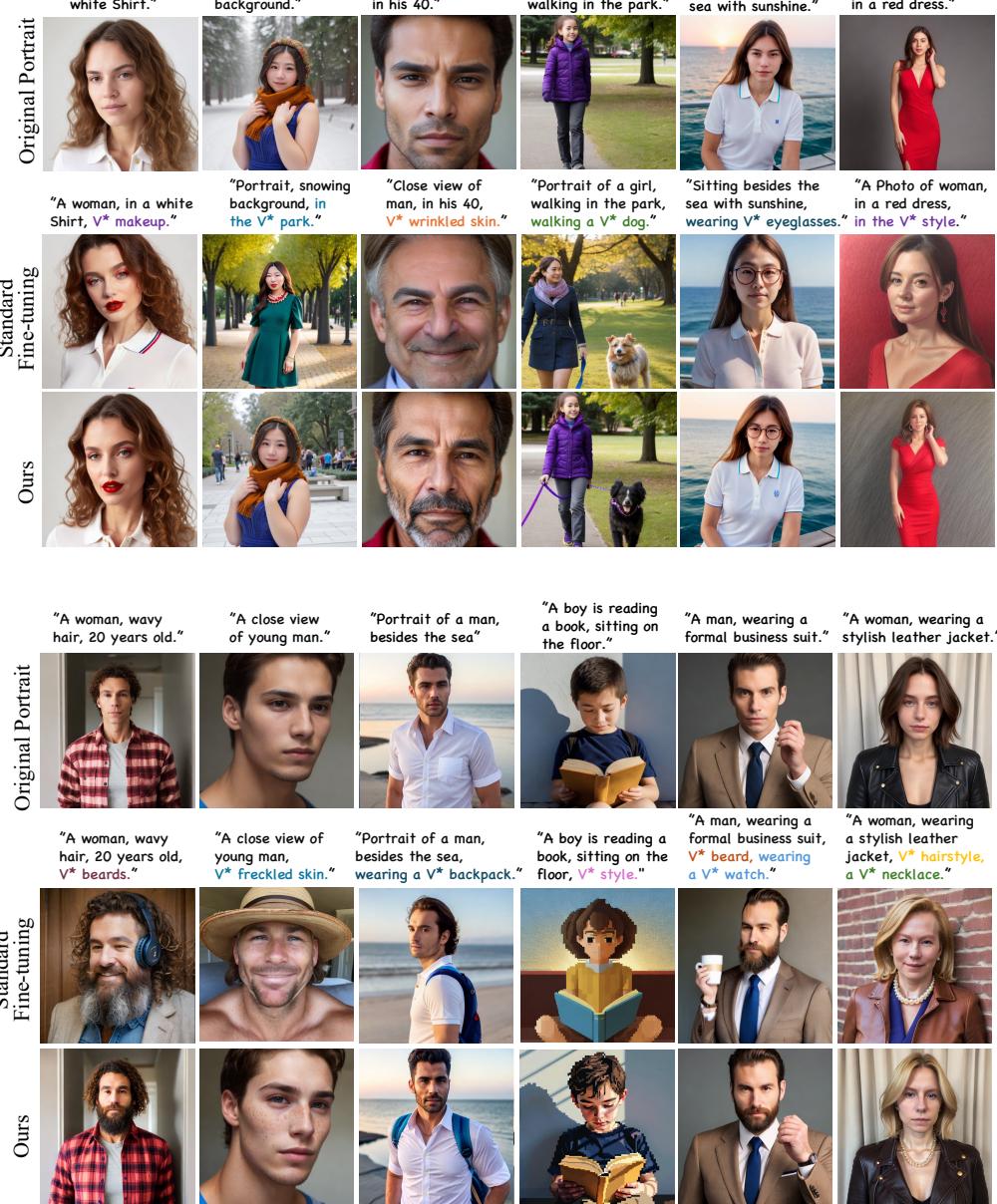


Figure 16: More Results of SPF-Portrait in Pure Text-to-Portrait Customization.

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

Figure 17: **More results of continuous replacements and additions of target semantics in text-to-portrait customization.** Our method demonstrates stable and excellent performance in continuous customization tasks, indicating its potential to play a role in the application scenarios of continuous AI portrait creation.

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

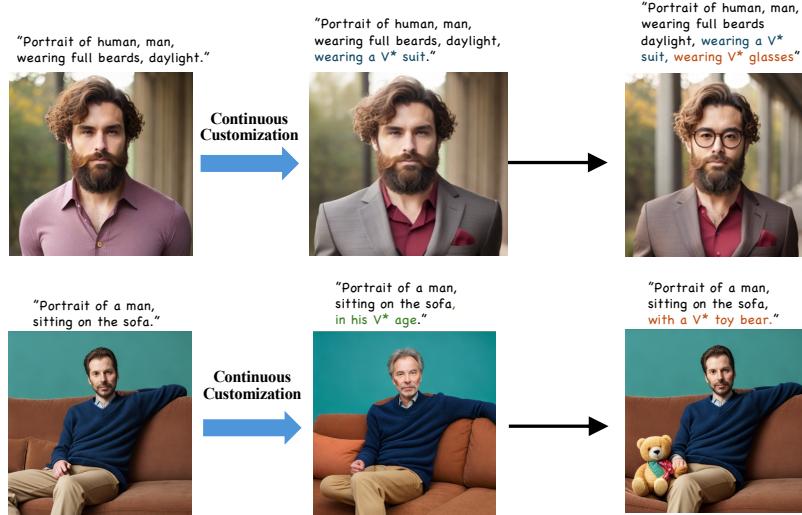
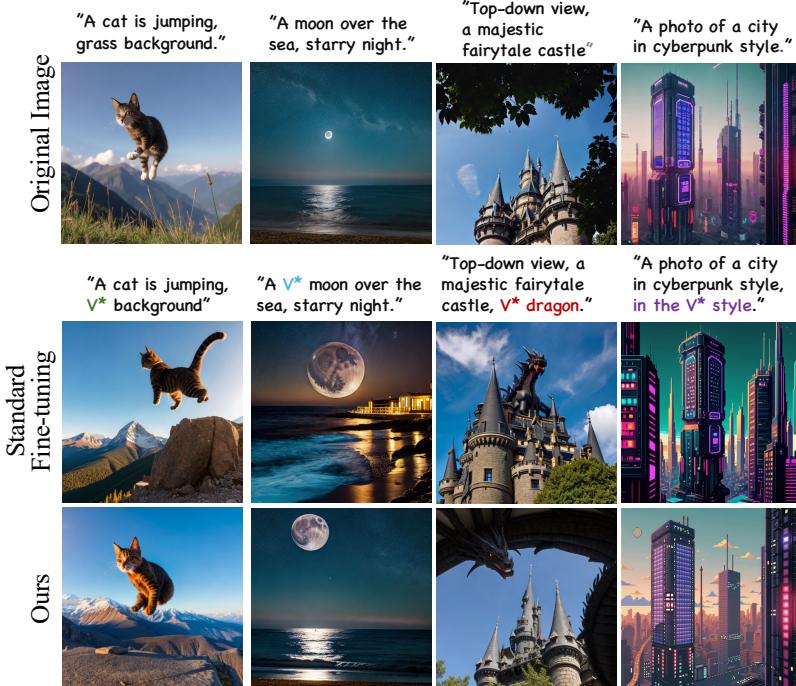


Figure 18: **More results of extending our method to the general Text-to-Image Customization.**

These excellent experimental results demonstrate the feasibility of extending our method to the general T2I Customization. Our method has the potential to address the issue of semantic pollution in fine-tuning for the pure general T2I Customization.

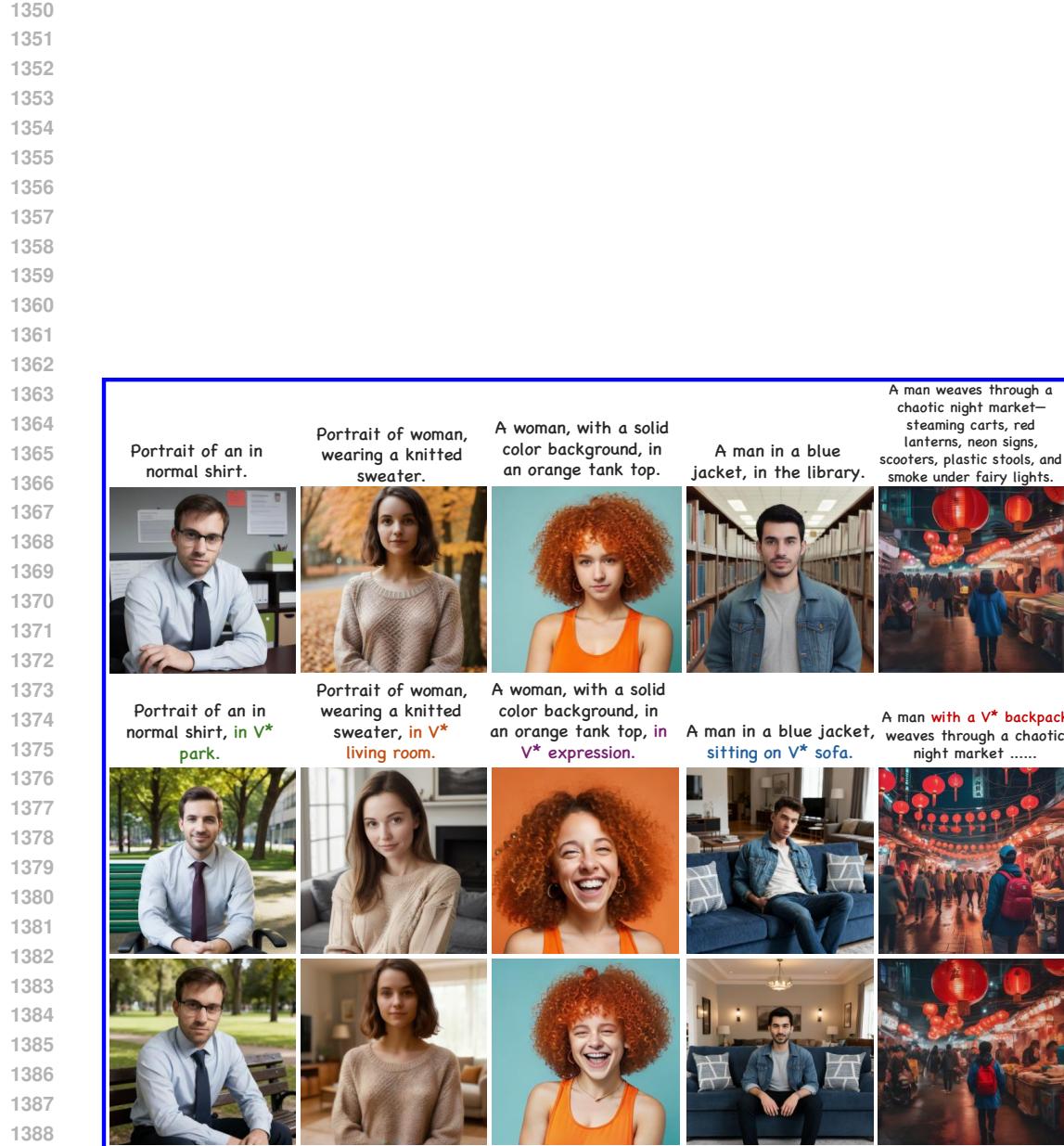


Figure 19: **More Results of SPF-Portrait in Pure Text-to-Portrait Customization.** We present results under various poses, expressions, backgrounds, and complex scenes.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

1437 Figure 20: **Results of SPF-Portrait in DiT-based Diffusion Model (Stable Diffusion 3.5-
1438 Medium).**

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1455 Figure 21: **Results of SPF-Portrait in ID Customization (Real Human Faces)**