
GROD: Enhancing Generalization of Transformer
with Out-of-Distribution Detection

Yijin Zhou 1 Yuguang Wang 1 2 3 4

Abstract
Transformer networks face challenges in gener-
alizing to Out-of-Distribution (OOD) datasets,
that is, data whose distribution differs from that
seen during training. Utilizing an OOD de-
tection framework based on Probably Approxi-
mately Correct (PAC) theory, the proposed Gen-
erate Rounded OOD Data (GROD) algorithm,
a novel approach to enhancing transformer net-
works’ generalization across various natural lan-
guage processing and computer vision datasets,
improves transformers’ ability to in-distribution
(ID) data boundary decision-making and detect
outliers effectively. By incorporating synthetic
outlier generation and penalizing OOD misclas-
sification within the loss function, GROD re-
fines model parameters and ensures robust perfor-
mance. Empirical evaluations show that GROD
achieves state-of-the-art (SOTA) results in natu-
ral language processing (NLP) and computer vi-
sion (CV) tasks, significantly reducing the SOTA
FPR@95 from 21.97% to 0.12%, and improv-
ing AUROC from 93.62% to 99.98% on im-
age classification tasks, and the SOTA FPR@95
by 12.89% and AUROC by 2.27% in detect-
ing semantic text outliers. The code is avail-
able at https://anonymous.4open.science/r/GROD-
OOD-Detection-with-transformers-B70F.

1. Introduction
Mainstream machine learning algorithms typically as-
sume data independence, called in-distribution (ID) data
(Krizhevsky et al., 2012; He et al., 2015). However, in
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Figure 1. Overview of GROD algorithm: In the fine-tuning stage,
GROD generates fake OOD data as part of the training data.
GROD then guides the training by incorporating the ID-OOD
classifier in the loss. In the inference stage, the features and ad-
justed LOGITS are input into the post-processor.

practical applications, data often follows the “open world”
assumption (Drummond & Shearer, 2006), where outliers
with different distributions can occur during inference. This
real-world challenge frequently degrades the performance
of AI models in prediction tasks. One remedy is to incor-
porate OOD detection techniques. This paper proposes a
new algorithm based on OOD detection for transformer net-
works, which can significantly improve their performance
in predicting outlier instances.

The transformer is a deep neural network architecture that
leverages an attention mechanism. It is renowned for its
powerful capabilities in a variety of deep learning models,
such as large language models, computer vision models,
and graph neural networks. OOD detection aims to iden-
tify and manage semantically distinct outliers, referred to
as OOD data. It requires the designed algorithm to detect
OOD instances and avoid making predictions on them, while
maintaining robust performance on ID data. By employing
OOD detection, we develop a new algorithm, which we call
Generate Rounded OOD Data (GROD), for fine-tuning a
transformer network to enhance its ability to predict the
unknown distribution. By taking account of the OOD Detec-
tion in network training, we can strengthen the recognition
of the in-distribution and out-distribution boundary.

We establish the OOD Detection PAC Learning Theorem
(Theorem 2.1). It demonstrates that penalizing the misclas-
sification of OOD data in the training loss of the transformer
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clarifies the decision boundary between inliers and outliers.
This condition ensures that the model possesses OOD De-
tection Learnability. Moreover, we quantify the learnability
by proving an error boundary regarding the transformer
model’s budget (the number of total trainable parameters)
(Theorem 2.2). We define GROD following these two the-
orems. When the network depth is substantial, the GROD-
enhanced transformer converges to the target mapping with
robust generalization capabilities. Our main contributions
are summarized as follows:

• We establish a PAC learning framework for OOD de-
tection applied to transformers, providing necessary
and sufficient conditions as well as error boundary esti-
mates for learnability.

• Inspired by the learning theory and empirical valida-
tion, we propose a novel OOD detection approach,
Generate Rounded OOD Data (GROD). This strategy
is theoretically grounded and high-quality in generat-
ing and representing features regardless of data types.

• We conduct comprehensive experiments to display the
state-of-the-art (SOTA) performance of GROD on im-
age and text datasets together with ablation studies and
visualizations for interpretability.

2. GROD algorithm
Notation. We introduce some notations regarding OOD
detection tasks. Formally, X and Y := {1, 2, · · · ,K,K +
1} denote the whole dataset and its label space. As subsets
in X , Xtrain, Xtest and XI represents the training dataset,
test dataset and ID dataset, respectively. YI := {1, · · · ,K}
denote the ID label space. l(y1,y2),y1,y2 ∈ Y denotes
the paired loss of the prediction and label of one data, and
L denotes the total loss. We depict the basic structure of
a transformer network as follows, which includes the fol-
lowing components: input embedding, positional encoding,
an encoder, a decoder and an output layer. For OOD detec-
tion tasks, which predominantly encompass classification
objectives, we directly connect an output layer subsequent
to the encoder to streamline the process. For clarity and
operational simplicity, we assume that the input data X is
processed by the input embedding and positional encoding
mechanisms. The encoder is an assembly of multiple at-
tention blocks, each comprising a self-attention layer and a
Feed-forward Fully Connected Network (FFCN). The self-
attention layer calculates matrices of key, query, and value,
to express the self-attention mechanism, where the hidden
dimensions for keys and queries are mh, and for values are
mV . Each individual data is transformed into τ tokens, with
each token having a dimension d̂. To quantify the computa-
tional overhead of a transformer block, we define the budget
m := (d̂, h,mh,mV , r), representing the parameter size of

one block. More details about notations and preliminaries
for theoretical analysis are illustrated in Appendix B.

Framework overview. As illustrated in Figure 1, GROD
contains several pivotal steps. Firstly, a binary ID-OOD
classification loss function is added for fine-tuning the trans-
former. This adjustment aligns more closely with the trans-
former’s learnable conditions in the proposed theory. To
effectively leverage this binary classification loss, we intro-
duce a novel strategy for synthesizing high-quality OOD
data for training. To minimize computational overhead
while leveraging high-quality embeddings for enhanced ef-
ficiency, GROD generates virtual OOD embeddings, rather
than utilizing original data. Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) projections
are employed to generate global and inter-class outliers
respectively, utilizing overall ID information and distinct
features for each ID data category. Next, a filtering mech-
anism is applied to remove synthetic ID-like outliers and
maintain a reasonable ratio of ID and OOD. This refined
dataset together with the binary loss then serve to fine-tune
the transformer under GROD framework. During the test-
ing phase, embeddings and prediction LOGITS are extracted
from the GROD-enhanced transformer. These outputs are
reformulated for post-processing. The post-processor, VIM
(Wang et al., 2022), is applied to get the final prediction.

Recognize boundary ID features by PCA and LDA pro-
jections. Let Xtrain denote the input to the transformer
backbone, which is transformed into a feature representation
F ∈ Rn×s in the feature space:

F = Feat ◦ Blockn(Xtrain), (1)

where Feat(·) is the process to obtain features. For instance,
in ViT models, Feat(·) represents extracting CLS tokens.
Subsequently, we generate synthetic OOD vectors using
PCA for global outliers and LDA for inter-class distinc-
tions. LDA is selected for its ID-separating ability, but is
only used when B/K > 2 to guarantee the robustness of
generated OOD, where B is the batch size. We display
formulas for combining PCA and LDA projections as the
PCA-only condition is included. Specifically, we first find
data with maximum and minimum values of each dimension
in projection spaces. F is projected by

FPCA = PCA(F), FLDA,i = LDA(F ,Y)|y=i, i ∈ YI .
(2)

Features are mapped from Rd to Rnum, num ≤ d.
Then target vectors are acquired, denoted as vMPCA,j =

argmaxv∈FPCA
vj , vMLDA,i,j = argmaxv∈FLDA,i

vj for
maximum and vmPCA,j , vmLDA,i,j for minimum, i ∈
YI , j ∈ S := {1, · · · s}. The sets V̂PCA :=
{vMPCA,j and vmPCA,j , j ∈ S} and V̂LDA,i :=
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{vMLDA,i,j and vmLDA,i,j , j ∈ S}, i ∈ YI are the boundary
points in the projection spaces, which are mapped back to
the original feature space:

VPCA = PCA−1(V̂PCA),

VLDA,i = LDA−1(V̂LDA,i), i ∈ YI ,
(3)

where PCA−1 and LDA−1 are the inverse mappings of
PCA and LDA according to set theory.

Generate fake OOD data. Boundary points, while ini-
tially within ID, are extended into OOD regions. Firstly, the
centers of every training batch and category are calculated
by µPCA =

∑
v∈F v

|F| and µLDA,ik =
∑

v∈F v|y=ik

Bik
, where

ik ∈ {i = 1, · · · ,K : |F|y=i| > 1} := I . Then we gen-
erate Gaussian mixture fake OOD data with expectations
UOOD:

UOOD ={v + α
v − µ

||v − µ||2 + ϵ
: v ∈ VPCA, µ = µPCA or

v ∈ VLDA,ik , µ = µLDA,ik , ik ∈ I},
(4)

where ϵ = 10−7, α is a hyperparameter representing exten-
sion proportion of L2 norm. Gaussian mixture fake OOD
data are generated with distribution

DOOD =
1

|UOOD|
∑

µOOD∈UOOD

N (µOOD, α/3 · IOOD), (5)

where IOOD is the identity matrix. We denote the set of
these fake OOD data as F̂OOD := F̂OOD

PCA ∪ (∪ik∈IF̂OOD
LDA,ik

),
where F̂OOD

PCA and F̂OOD
LDA,ik

are clusters consist of num data
points each, in the Gaussian distribution with expectations
µPCA and µLDA,ik respectively.

Filter OOD data. We propose the Mahalanobis distance
filtering mechanism and random filtration, improving the
generation quality of outliers. The Mahalanobis distance fil-
tering mechanism is a strategy to eliminate ID-like synthetic
OOD data. It calculates the Mahalanobis distance from each
synthetic outlier to the global and inter-class ID centers,
and filters those with the closest Mahalanobis distance less
than the average ID distance in the same category. The
random filtration keeps a reasonable proportion of ID and
OOD, maintaining the stability of fine-tuning. The detailed
filtration process can be found in Appendix H. We denote
the final generated OOD set as FOOD.

Train-time and test-time OOD detection. During fine-
tuning, training data in the feature space is denoted as
Fall := F ∪ FOOD, with labels y ∈ Y . Fall is fed into
a linear classifier for K + 1 classes. A loss function L that
integrates a binary ID-OOD classification loss L2, weighted

by the cross-entropy loss L1, to penalize OOD misclassifi-
cation and improve ID classification, i.e.

L = (1− γ)L1 + γL2, (6)

L1(y,x) = −Ex∈X

K+1∑
j=1

yj log(σ(f ◦H(x))j), (7)

L2(y,x) = −Ex∈X

2∑
j=1

ϕ̂(y)j log(ϕ̂(σ(f ◦H(x)))j), (8)

where σ(·) is the softmax function.

During the test time, the feature set Ftest and logit set LOG-
ITS serve as the inputs. The post-processor VIM is utilized
due to its capability to leverage both features and LOGITS
effectively. To align the data formats, the first K values of
LOGITS are preserved and normalized using the softmax
function, maintaining the original notation. We then modify
LOGITS to yield the logit matrix LOGITS:

LOGITSi =


1

K
1K , if argmax

i∈Y
LOGITSi = K + 1,

LOGITSi, else.
(9)

Nevertheless, this approach is adaptable to other OOD detec-
tion methods, provided that LOGITS is consistently adjusted
for the trainer and post-processor. Formally, we also give
the pseudocode of GROD displayed in Algorithm 1.

Theoretical guarantee. A crucial aspect of using trans-
former networks for OOD detection is defining the limits
of their OOD detection capabilities. Thus we incorporate
OOD detection learning theory into transformer, including
conditions for learnability (Theorem C.1) and error approxi-
mation of model budgets on transformers (Theorem C.3) in
Appendix 2. Theorems are summarized informally below:

Theorem 2.1. (Informal Theorem C.1, the equivalent con-
ditions for OOD detection learnability on transformer net-
works) Given the condition l(y2,y1) ≤ l(K + 1,y1) for
any in-distribution labels y1,y2 ∈ Y , and ID and OOD
have no overlap, then there exists one transformer s.t. OOD
detection is learnable, if and only if |X | = n < +∞. Fur-
thermore, if |X | < +∞, ∃δ > 0 and a transformer with
block budget m and l layers, where m = (d̂0, 2, 1, 1, 4)

and l = O(τ(1/δ)(d̂0τ)), or m = (K + 1) · (2τ(2τ d̂0 +

1), 1, 1, τ(2τ d̂0 + 1), 2τ(2τ d̂0 + 1)) and l = 2 s.t. OOD
detection is learnable.

Theorem 2.2. (Informal Theorem C.3, error boundary
regarding the transformer’s budget) Given the condition
l(y2,y1) ≤ l(K + 1,y1), for any in-distribution labels
y1,y2 ∈ Y , |X | = n < +∞ and τ > K + 1, and set
l = 2 and m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r). Using a
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linear classifier c, the probability of OOD detection learn-
ability regarding data distribution P defined in Definition
C.2 has a lower bound P ≥ (1 − η

|I|λ0
τ2C0(

C1

m2α−1
h

+

C2

rβ
(kmh)

β))(K+1)n+1

, where C0, C1, C2, η, λ0, |I|, α, β
can be treated as constants.

In Theorem 2.1, we establish the necessary and sufficient
conditions for OOD detection learnability in transformers i.e.
finite data and a higher penalty for OOD misclassification.
We also discuss the constraints on transformer architecture
regarding width and depth. Theorem 2.2 addresses scenarios
where transformers’ sizes do not meet these specifications,
deriving a lower bound for the probability of learnability
under similar conditions.

Real-world models are trained with finite data, hence satisfy-
ing the condition l(y2,y1) ≤ l(K + 1,y1) from Theorems
2.1 and 2.2 ensures optimal OOD detection. However, stan-
dard cross-entropy loss often fails to meet the condition,
according to which we introduce the ID-OOD binary classi-
fication loss function L2 to address this gap. Since training
datasets without OOD cannot fully utilize L2, we propose a
novel method to generate high-quality outliers. Therefore,
we form the GROD algorithm, which enhances the gener-
alization of transformers through fine-tuning, supported by
our theoretical analysis. Notably, a trade-off between ID
classification effectiveness and OOD detection capability ex-
ists associated with γ, as demonstrated in our ablation study
(Appendix K) and experiments on Gaussian mixture datasets
(Appendix G). More details on the theoretical analysis and
experimental validation are available in Appendix B-G.

3. Experiments
In this section, we provide empirical evidence to validate the
effectiveness of GROD across a range of real-world NLP
and CV classification tasks and types of outliers. Further-
more, the ablation study and the visualization are displayed
in Appendix K and Appendix L, respectively.

3.1. Experimental Setting

Models. In our primary experiments, we use GROD to
strengthen the generalization capability of the ViT-B-16
model (Dosovitskiy et al., 2020), pre-trained on ImageNet-
1K (Russakovsky et al., 2015), as the backbone for image
classification tasks. For text classification, we use GROD
to update the BERT base model (Devlin et al., 2018), which
has been pre-trained using Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP). Models are
fine-tuned without OOD exposure. Details on the training
hyper-parameters are provided in Appendix J.1.

Datasets. For image classification tasks, we use four
benchmark datasets i.e CIFAR-10 (Krizhevsky et al., 2009),

CIFAR-100 (Krizhevsky et al., 2009), Tiny ImageNet (Le
& Yang, 2015) and SVHN (Netzer et al., 2011). For text
classification, we use the dataset CLINC150 (Larson et al.,
2019) for semantic shift, and datasets IMDB (Maas et al.,
2011) and Yelp (Zhang et al., 2015) for background shift.
Detailed dataset information can be found in Appendix J.2.

Evaluation metrics. We evaluate models using ID clas-
sification accuracy (ID ACC) and three metrics for binary
ID-OOD classification: FPR@95 (F), AUROC (A), AUPR
for ID test dataset AUPR IN (I), and AUPR for OOD test
dataset AUPR OUT (O).

3.2. Main Results

Several prevalent methods are used as baselines for compar-
ison, including MSP (Hendrycks & Gimpel, 2016), ODIN
(Liang et al., 2017), VIM (Wang et al., 2022), GEN (Liu
et al., 2023a), and ASH (Djurisic et al., 2022) which require
only post-processing, and finetuning models G-ODIN (Hsu
et al., 2020), NPOS (Tao et al., 2023), and CIDER (Ming
et al., 2022b). All the baselines are offered in the OpenOOD
benchmark (Zhang et al., 2023; Yang et al., 2022a;b; 2021;
Bitterwolf et al., 2023).

Results for image classification. As discussed in Section
2, GROD employs LDA projection to generate inter-class
OOD only when B/K > 2 to ensure the stability of the
synthesized OOD. To evaluate the performance in both sce-
narios of B/K > 2 and B/K ≤ 2, we use the training
sets of CIFAR-10 and CIFAR-100 as ID data, respectively.
When B/K > 2, the inclusion of both PCA and LDA
projections enriches the information in OOD, not only cre-
ating virtual OOD around ID but also synthesizing it among
ID categories. Correspondingly, the experimental results
presented in Table 1 show that GROD surpasses other com-
petitors, achieving SOTA performance across all evaluation
metrics. On average, GROD reduces the FPR@95 from
9.41%, achieved by the most competitive method, to 0.12%,
while enhancing the AUROC from 97.88% to 99.98%. In
scenarios where B/K ≤ 2, GROD, though not as superior
as the LDA-based inter-class OOD generation, still yields
competitive outcomes using only PCA, as evidenced in Ta-
ble 2. Unlike the combined use of PCA and LDA, this
approach falls short in capturing features of OOD data be-
tween categories. Consequently, GROD excels in detecting
far-OOD data rather than near-OOD, as the PCA-reduced
features are more similar to those of far-OOD data.

Results for text classification. Table 3 presents the re-
sults for text classification. As two ID datasets, IMDB and
CLINC150 have two and ten categories respectively, with
B/K > 2 in both cases. Hence, both PCA and LDA projec-
tions are applied to these datasets. Notably, while popular
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Table 1. Quantitative comparison with prevalent methods of the ID classification and OOD detection performance, where the backbone
ViT-B-16 pre-trained with ImageNet-1K is employed. CIFAR-10 is the ID Dataset and LDA projections are used for generating
inter-class fake outliers. The red, blue and bold fonts denote Top 1,2,3 in ranking.

OOD Datasets - CIFAR-100 Tiny ImageNet SVHN Average

Evaluate Metrics (%) ID ACC↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑

Baseline MSP 96.16 29.31 91.70 92.70 90.28 21.21 94.05 95.54 92.04 15.39 95.11 92.72 97.56 21.97 93.62 93.65 93.29

PostProcess

ODIN

96.16

42.96 91.01 90.69 91.35 14.59 97.10 97.39 96.91 21.49 94.94 90.88 97.89 26.35 94.35 92.99 95.38
VIM 21.59 95.43 95.64 95.38 8.52 98.39 98.68 98.14 3.26 99.39 98.61 99.78 11.12 97.74 97.64 97.77
GEN 27.24 93.51 93.72 93.32 16.99 96.40 97.02 95.86 11.16 97.65 95.50 99.04 18.46 95.85 95.41 96.07
ASH 26.48 93.64 93.70 93.46 16.87 96.41 96.99 95.87 9.79 98.19 96.55 99.26 17.71 96.08 95.75 96.20

Finetuning+
PostProcess

G-ODIN 95.56 82.60 70.76 68.21 72.86 64.97 83.05 83.88 83.58 62.42 89.48 68.61 95.81 70.00 81.10 73.57 84.08
NPOS 96.75 21.18 95.63 95.46 95.68 15.33 96.85 97.20 96.47 3.33 99.18 98.45 99.60 13.28 97.22 97.04 97.25
CIDER 96.98 14.13 96.99 96.98 96.97 10.19 97.78 97.95 97.57 3.91 98.86 98.17 99.41 9.41 97.88 97.70 97.98

Ours 97.31 0.16 99.97 99.97 99.96 0.11 99.98 99.98 99.97 0.09 99.98 99.97 99.99 0.12 99.98 99.97 99.97

Table 2. Quantitative comparison with prevalent methods using only PCA projection for generating fake OOD data.
OOD Datasets - CIFAR-10 Tiny ImageNet SVHN Average

Evaluate Metrics (%) ID ACC↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑

Baseline MSP 84.34 71.11 77.17 75.37 77.56 51.34 84.15 86.55 78.08 49.58 82.07 71.41 91.97 57.34 81.13 77.78 82.54

PostProcess

ODIN

84.34

80.29 70.06 67.71 73.54 51.63 88.78 90.12 86.62 57.96 82.07 66.59 91.74 63.29 80.30 74.81 83.97
VIM 54.97 85.42 84.62 85.71 30.22 92.30 94.69 88.43 23.02 93.93 88.69 97.15 36.07 90.55 89.33 90.43
GEN 73.77 80.89 77.28 82.37 45.00 89.06 91.44 84.77 35.83 90.96 81.97 96.17 51.53 86.97 83.56 87.77
ASH 75.26 80.61 76.87 82.19 44.68 88.98 91.42 84.62 35.87 90.88 81.85 96.12 51.94 86.82 83.38 87.64

Finetuning+
PostProcess

G-ODIN 61.40 89.14 47.52 51.63 47.76 74.07 68.87 77.48 54.99 30.77 93.15 95.55 89.40 64.66 69.85 74.89 64.05
NPOS 84.76 43.53 89.63 89.14 90.42 33.36 91.72 94.14 88.38 38.86 90.62 81.67 96.04 38.58 90.66 88.32 91.61
CIDER 84.87 44.47 89.41 88.74 90.23 33.08 91.83 94.18 88.60 30.36 93.48 84.46 97.36 35.97 91.57 89.13 92.06

Ours 86.21 43.38 88.00 88.01 87.94 38.84 91.44 93.46 87.91 23.38 94.59 87.88 98.63 35.20 91.34 89.78 91.49

Table 3. Quantitative comparison with prevalent methods, where
the pre-trained BERT is employed. Experimental results on two
typical OOD in the text OOD detection, i.e. background shift OOD
and semantic shift OOD are reported.

OOD Detection Type Background Shift Semantic Shift
ID Datasets IMDB CLINC150 with Intents

OOD Datasets Yelp CLINC150 with Unknown Intents

Evaluate Metrics (%) ID ACC↑ F ↓ A ↑ I↑ O↑ ID ACC↑ F ↓ A ↑ I↑ O↑

Baseline 91.36 57.72 74.28 73.28 74.60 97.78 37.11 92.31 97.70 74.66

PostProcess
VIM

91.36
64.00 74.61 70.17 76.05

97.78
29.33 93.58 98.03 80.99

GEN 57.63 74.28 73.28 74.60 36.27 92.27 97.47 79.43
ASH 73.27 71.43 65.11 76.64 40.67 92.56 97.60 79.70

Finetuning+
PostProcess

NPOS 90.36 76.31 68.48 61.84 74.56 95.62 49.89 83.57 95.64 48.52
CIDER 91.28 59.71 78.10 75.09 79.07 95.93 45.04 86.39 96.44 55.17

Ours 91.47 52.89 78.86 77.61 79.63 97.66 24.00 94.58 98.52 82.47

OOD detection algorithms are rigorously tested on image
datasets, their effectiveness on text datasets does not exhibit
marked superiority, as Table 3 illustrates. In addition, meth-
ods like ODIN (Liang et al., 2017) and G-ODIN (Hsu et al.,
2020), which compute data gradients, necessitate floating-
point number inputs. However, the tokenizer-encoded long
integers used as input tokens in BERT create data format
incompatibilities when attempting to use the BERT model
alongside ODIN or G-ODIN. Given their marginal perfor-
mance on images, they are excluded from text classification.
In comparison, GROD consistently enhances model per-
formance across image and text datasets, demonstrating
remarkable versatility and wide application potential.

4. Discussion and future work
The universality and flexibility of GROD show more than
across various data types. Its independence from and com-

patibility with various deep learning models and Outlier
Exposure (OE) allows models to employ GROD and OE
modules simultaneously. Despite its strengths, GROD has
limitations. GROD is theoretically guaranteed only to a
lower bound but not the infimum, indicating that GROD
could be further enhanced with a more advanced theory
of transformer expression approximation. Moreover, when
handling datasets with numerous categories, GROD gener-
ates global outliers without fully exploiting inter-class data,
which can potentially limit its effectiveness, calling for a
stable method for generating OOD. We have reported repre-
senting experimental results across different data modalities
and classification discussions, and continuing to test GROD
on additional datasets and benchmarks will help validate its
effectiveness in diverse settings.

5. Conclusion
In this paper, we introduce GROD, an algorithm designed
to improve transformer generalization and enhance OOD
detection capabilities. GROD builds on theoretical founda-
tions, incorporating two theorems that establish conditions
and error bounds for OOD detection in transformers to form
fine-tuning strategies. It has shown superior performance in
NLP and CV tasks regardless of data format. This research
would suggest promising directions for future research into
OOD detection, model generalization and safety.
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A. Related works
Application of OOD detection. The recent advancements in OOD detection models and algorithms have been significant
(Sun et al., 2022; Liu et al., 2023b; Cai & Li, 2023). Typically, OOD detection methods leverage both post-processing
techniques and training strategies, which can be implemented either separately or in combination (Zhang et al., 2023).
Key post-processing techniques include the use of distance functions (Denouden et al., 2018), the development of scoring
functions (Ming et al., 2022a), and the integration of disturbance terms (Hsu et al., 2020), among others. Several methods
introduce training strategies for OOD detection models. For instance, Tao et al. (2023) suggests loss functions to facilitate
the learning of compact representations, while Graham et al. (2023); Jiang et al. (2023) innovatively employ reconstruction
models to pinpoint abnormal data. In addition, the transformer architecture has gained popularity in OOD detection, prized
for its robust feature representation capabilities (Koner et al., 2021; Fort et al., 2021).

Theory of OOD detection. Theoretical research into OOD detection has recently intensified. Morteza & Li (2022)
examines maximum likelihood on mixed Gaussian distributions and introduces a GEM log-likelihood score. Zhang et al.
(2021) reveals that even minor errors in density estimation can result in OOD detection failures. Fang et al. (2022) presents
the first application of Probably Approximately Correct (PAC) learning theory to OOD detection, deriving the Impossibility
Theorem and exploring conditions under which OOD detection can be learned in previously unknown spaces. Moreover,
Yang et al. (2021) has pioneered the concept of generalized OOD detection, noting its commonalities with anomaly detection
(AD) and open set recognition (OSR) (Fang et al., 2021). To the best of our knowledge, no comprehensive theory of OOD
detection for transformers has been established yet.

Transformers and their universal approximation power. We also conduct a literature survey on transformers and their
approximation theory related to theoretical analysis. Transformers bring inspiration and progress to OOD detection, with
algorithms utilizing their self-attention mechanism achieving noteworthy results (Koner et al., 2021; Hendrycks et al., 2020;
Podolskiy et al., 2021; Zhou et al., 2021). Understanding the expressivity of transformers is vital for their application
in OOD detection. Current research predominantly explores two main areas: formal language theory and approximation
theory (Strobl et al., 2023). The former examines transformers as recognizers of formal languages, clarifying their lower
and upper bounds (Hahn, 2020; Chiang et al., 2023; Merrill & Sabharwal, 2024). Our focus, however, lies primarily in
approximation theory. The universal approximation property (UAP) of transformers, characterized by fixed width and
infinite depth, was initially demonstrated by Yun et al. (2019). Subsequent studies have expanded on this, exploring UAP
under various conditions and transformer architectures (Yun et al., 2020; Kratsios et al., 2021; Luo et al., 2022; Alberti et al.,
2023). As another important development, Jiang & Li (2023) established the UAP for architectures with a fixed depth and
infinite width and provided Jackson-type approximation rates for transformers.

B. Notations and preliminaries
Notations. More notations for theoretical analysis can be found here. | · | indicates the count of elements in a set, and
|| · ||2 represents the L2 norm in Euclidean space. The data priori-unknown distribution spaces include Dall

XY , which
is the total space including all distributions; Ds

XY , the separate space with distributions that have no ID-OOD overlap;
DDXY

XY , a single-distribution space for a specific dataset distribution denoted as DXY ; DF
XY , the Finite-ID-distribution

space containing distributions with a finite number of ID examples; and Dµ,b
XY , the density-based space characterized by

distributions expressed through density functions. A superscript may be added on DXY to denote the number of data points
in the distribution. The model hypothesis space is represented by H, and the binary ID-OOD classifier is defined as Φ. These
notations, consistent with those used in Fang et al. (2022), facilitate a clear understanding of OOD detection learning theory.

Several notations related to spaces and measures of function approximation also require further clarification to enhance
understanding of the theoretical framework. C and C denote the compact function set and compact data set, respectively.
Complexity measures for the self-attention blocks within transformers are denoted as C0(·) and C

(α)
1 (·), while C

(β)
2 (·)

represents a regularity measure for the feed-forward neural networks within transformers. These measures indicate the
approximation capabilities of transformers, with α and β being the convergence orders for Jackson-type estimation. C̃(α,β)

within C is the function space where Jackson-type estimation is applicable. Given the complexity of the mathematical
definitions and symbols involved, we aim to provide clear conceptions to facilitate a smooth understanding of our theoretical
approach. These mathematical definitions regarding function approximation follow those presented by Jiang & Li (2023).
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Goal of theory. As an impressive work on OOD detection theory, Fang et al. (2022) defines strong learnability for OOD
detection and has applied its PAC learning theory to the FCNN-based and score-based hypothesis spaces:

Definition B.1. (Fang et al., 2022)(Strong learnability) OOD detection is strongly learnable in DXY , if there exists an
algorithm A: ∪+∞

n=1(X × Y)n −→ H and a monotonically decreasing sequence ϵ(n) s.t. ϵ(n) −→ 0, as n −→ +∞, and for any
domain DXY ∈ DXY ,

ES∼Dn
XIYI

[Lα
D(A(S))− infh∈HLα

D(h)] ≤ ϵ(n),∀α ∈ [0, 1].

In the data distribution spaces under our study, the equality of strong learnability and PAC learnability has been proved. So
we only need to gain strong learnability to verify the proposed theorems.

Theorem B.2. (Fang et al., 2022) (Informal, learnability in FCNN-based and score-based hypothesis spaces)

If l(y2, y1) ≤ l(K + 1, y1) for any in-distribution labels y1 and y2 ∈ Y , and the hypothesis space H is FCNN-based or
corresponding score-based, then OOD detection is learnable in the separate space Ds

XY for H if and only if |X | < +∞.

Inspired by Theorem B.2 and its Proof, the goal of our theory is proposed as follows:

Goal: Given a transformer hypothesis space HTOOD, what are necessary or sufficient conditions to
ensure the learnability of OOD detection? Furthermore, we try to derive the approximation rates
and error bounds of OOD detection.

The transformer hypothesis space. Under the goal of investigating the OOD detection learning theory on transformers,
our research defines a fixed transformer hypothesis space for OOD detection Htood. A transformer block Block(·) :

Rd̂×τ −→ Rd̂×τ consists of a self-attention layer Att(·) and a feed-forward layer FF(·), i.e.

Att(hl) = hl +

h∑
i=1

W i
OW

i
V hl · σ[(W i

Khl)
TW i

Qhl], (10)

hl+1 = FF(hl) = Att(hl) +W2 · Relu(W1 ·Att(hl) + b11
T
n ) + b21

T
n , (11)

with W i
O ∈ Rd̂×mv , W i

V ∈ RmV ×d̂, W i
K ,W i

Q ∈ Rmh×d̂, W1 ∈ Rr×d̂, W2 ∈ Rd̂×r, b1 ∈ Rr and b2 ∈ Rd̂. Besides,

hl ∈ Rd̂×τ is the hidden state of l-th transformer block with h0 ∈ Rd̂×τ is the input data X ∈ R(d̂0×τ)×n (with position
encoding) after a one-layer FCNN F : Rd̂0×τ −→ Rd̂×τ , and σ(·) is the column-wise softmax function. We denote d := d̂×τ

and d0 := d̂0 × τ for convenience.

The computation budget of a transformer block includes the number of heads h, the hidden layer size r of FF , mh, mV ,
and n, denoted by m = (d̂, h,mh,mV , r). Formally, a classic transformer block with a budget of m and l-th layer can be
depicted as Block(m)

l (·) = FF◦Att(·). Transformer is a composition of transformer blocks, by which we define transformer
hypothesis space HTrans:

Definition B.3. (Transformer hypothesis space) The transformer hypothesis space is HTrans is

HTrans = ∪lH(l)
Trans = ∪l ∪m H(l,m)

Trans (12)

where H(l)
Trans is the transformer hypothesis space with l layers, and H(l,m)

Trans is the transformer hypothesis space with l layers
of Block(m)

i (·), i ∈ {1, 2, . . . , l}. More specifically,

H(l,m)
Trans := {Ĥ : Ĥ = Block

(m)
l ◦ Block(m)

l−1 ◦ · · · ◦ Block(m)
1 ◦ F}. (13)

By the Definition B.3 that ∀Ĥ ∈ HTrans, Ĥ is a map from Rd0×n to Rd×n. To match the OOD detection task, we insert a
classifier c : Rd −→ Y applied to each data as follows:

Definition B.4. (Classifier ) c : Rd −→ Y is a classical classifier with forms:

(maximum value) c(hl) = argmax
k∈Y

fk(hl), (14)
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(score-based) c(hl) =

{
K + 1, E(f(hl)) < λ,

argmax
k∈Y

fk(hl), E(f(hl)) ≥ λ,
(15)

where fk is the k-th coordinate of f ∈ {f̂ ∈ Rd −→ RK+1}, which is defined by

fk(hl) = W4,k(W3,khl + b3,k)
T + b4,k. (16)

W3,k ∈ R1×d̂, W4,k, b3,k ∈ R1×τ and b4,k ∈ R. And E(·) is the scoring functions like softmax-based function (Hendrycks
& Gimpel, 2016) and energy-based function (Liu et al., 2020).

Now, we can naturally derive the Definition of transformer hypothesis space for OOD detection:

Definition B.5. (Transformer hypothesis space for OOD detection)

Htood := {H ∈ Rd0×n −→ Yn : H = c ◦ Ĥ, c is a classifier in Definition B.4, Ĥ ∈ HTrans} (17)

Similarly, we denote H(l)
tood and H(l,m)

tood as in Definition B.3.

C. Theoretical results of OOD detection using transformers
In the five priori-unknown spaces defined in Fang et al. (2022), the total space Dall

XY has been thoroughly discussed.
Following the impossible Theorem, OOD detection is NOT learnable due to the overlapping of datasets, even when
the budget m −→ +∞. Consequently, we shift our focus to the learning theory of transformers within the other four
spaces: DDXY

XY , Ds
XY , DF

XY , and Dµ,b
XY . For each space, we investigate whether OOD detection is learnable under Htood,

considering the specific constraints, conditions, or assumptions. If OOD detection is found to be learnable, we then explore
the approximation of rates and boundaries to further understand the generalization capabilities of transformers.

C.1. OOD detection in the separate space

Since the overlap is a crucial factor preventing models from successfully learning OOD detection, a natural perspective is to
explore the separate space Ds

XY .

Conditions for learning with transformers. Firstly, by Theorem 10 in Fang et al. (2022) and Theorems 5, 8 in Bartlett &
Maass (2003), OOD detection is NOT learnable in Ds

XY . It means OOD detection also has the impossible Theorem in Ds
XY

for Htood. So we enquire about the conditions for Htood to meet the requirements of learnability, deriving Theorem C.1:

Theorem C.1. (Necessary and sufficient condition for OOD detection learnability on transformers)

Given the condition l(y2,y1) ≤ l(K + 1,y1), for any in-distribution labels y1,y2 ∈ Y , then OOD detection is learnable
in the separate space Ds

XY for Htood if and only if |X | = n < +∞. Furthermore, if |X | < +∞, ∃δ > 0 and g ∈ H(m,l)
tood ,

where Block(·) budget m = (d̂0, 2, 1, 1, 4) and the number of Block(·) layer l = O(τ(1/δ)(d̂0τ)), or m = (K + 1) ·
(2τ(2τ d̂0 + 1), 1, 1, τ(2τ d̂0 + 1), 2τ(2τ d̂0 + 1)) and l = 2 s.t. OOD detection is learnable with g.

Theorem C.1 gives the necessary and sufficient conditions for OOD detection learnability on transformers with a fixed depth
or width. Detailed proof and remarks on inspection can be found in the Appendix D.

Approximation of rates and boundaries. To further investigate the approximation rates and boundaries as the budget m
grows, we formulate Jackson-type estimates for OOD detection learnability using transformer models. Before presenting
the main Theorem C.3, it is essential to define the probability associated with the learnability of OOD detection:

Definition C.2. (Probability of the OOD detection learnability) Given a domain space DXY and the hypothesis space
H(m,l)

tood , D′n
XY ⊂ Dn

XY ∈ DXY is the distribution that for any dataset X ∼ D′n
XIYI

, OOD detection is learnable, where
Dn

XY is any distribution in DXY with data amount n. The probability of the OOD detection learnability is defined by

P := lim
Dn

XY ∈DXY

lim
D′n

XY ⊂Dn
XY

µ(D′n
XY )

µ(Dn
XY )

, (18)

where µ is the Lebesgue measure in Rd and n ∈ N∗.
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Then the main Theorem C.3 of the Jackson-type approximation is formally depicted:

Theorem C.3. Given the condition l(y2,y1) ≤ l(K + 1,y1), for any in-distribution labels y1,y2 ∈ Y , |X | = n < +∞
and τ > K + 1, and set l = 2 and m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r). Then in H(m,l)

tood restricted to maximum value

classifier c, P ≥ (1 − η
|I|λ0

τ2C0(ri)(
C

(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β))(K+1)n+1

, and in H(m,l)
tood restricted to score-based

classifier c, P ≥ (1 − η
|I|λ0

τ2C0(ri)(
C

(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β))(K+1)n+1+1, for any fixed λ0 > 0 and ri defined in

Lemma E.4, if {v ∈ RK+1 : E(v) ≥ λ} and {v ∈ RK+1 : E(v) < λ} both contain an open ball with the radius R, where

R > ||W4||2|I|(τ2C0(ϕ)(
C

(α)
1 (ϕ)

m2α−1
h

+
C

(β)
2 (ϕ)

rβ
(kmh)

β) + λ0), ϕ defined in Lemma E.5 and W4 is determined by ϕ.

The proof structure leverages the Jackson-type approximation of transformers, as detailed in Jiang & Li (2023), to fulfill one
of the sufficient conditions for OOD detection learnability i.e. Theorem 7 in Fang et al. (2022). Notably, the Jackson-type
approximation of transformers has a global error bound instead of the uniform convergence in UAP theory. Therefore,
Markov’s inequality is applied to get probabilistic conclusions regarding Definition C.2. This approach establishes a lower
bound of error and its convergent rate for OOD detection using transformers. The lower bound is not the infimum because
the Jackson-type approximation is sufficient but not necessary. The specific proof and discussion about the convergent rate
and insights into transformers are organized in Appendix E.

C.2. OOD detection in other priori-unknown spaces

In the single-distribution space DDXY

XY , the Finite-ID-distribution space DF
XY , and the density-based space Dµ,b

XY ,
if there exists an overlap between ID and OOD, OOD detection is NOT learnable, which has been discussed in Fang
et al. (2022); otherwise, DDXY

XY ⊂ Ds
XY , this situation is analyzed in the previous Appendix C.1. Additionally, in the

density-based space Dµ,b
XY , Theorem 9 and Theorem 11 in Fang et al. (2022) are still established in the hypothesis space

Htood, as the proof of these two theorems only need to check the finite Natarajan dimension (Shalev-Shwartz & Ben-David,
2014) of the hypothesis space, which is a weaker condition compared with the finite VC dimension.

Theorem C.1 demonstrates that in Htood, models are OOD detection learnable given sufficient parameters, thereby
providing a theoretical basis for employing transformers in OOD detection algorithms (Koner et al., 2021; Fort et al.,
2021). Nevertheless, training models to reach their optimal state poses significant challenges. To overcome these issues,
additional strategies such as incorporating extra data (Fort et al., 2021; Tao et al., 2023) and utilizing various distance
metrics (Podolskiy et al., 2021) have been developed. Detailed discussions on Gaussian mixture datasets, which explore the
discrepancy between theoretical performance and practical outcomes and suggest ways to bridge this gap, can be found in
Appendices F and G.

D. Proof and remarks of Theorem C.1
We first propose several Lemmas before proving the Theorem C.1.

Lemma D.1. The FCNN-based hypothesis space HRelu
q ⊆ H(m,l)

tood , where q = (l1, · · · , lg), l1 = d0, lg = K + 1, lM =
max{l1, · · · , lg},m = (lM , 1, 1, 1, lM ), and l = g − 3, g > 2.

Proof. Given weights wi ∈ Rli×li−1 and bias bi ∈ Rli×1 and considering x = h0 ∈ Rd0 is a data in the dataset X , the
i-layer output of FCNN with architecture q can be written as

fi(x) = Relu(wifi−1(x) + bi), (19)

and that of the transformer network H = c ◦Block(m)
l ◦Block(m)

l−1 ◦ · · · ◦Block
(m)
1 ◦F in the transformer hypothesis space

for OOD detection Htood is depicted by Eq. (10) and (11). Particularly, set W i
O = 0, and m = (lM , 1, 1, 1, lM ), then we get

hi = hi +W2 · Relu(W1 · hi−1 + b1) + b2, (20)

where hi,hi−1,b1 ∈ RlM ,W1,W2 ∈ RlM×lM . Since H is composed of l blocks and mappings c at the bottom and
F at the top as two layers, a simple case is when g = 3, it comes that l = 0, H(m,l)

tood collapse into HRelu
q′ , where

q′ = (l1, lM , lg), lM = max{l1, lg}. So HRelu
q ⊆ HRelu

q′ according to Lemma 10 in Fang et al. (2022).

12



Submission and Formatting Instructions for ICML 2024

When g > 3, consider F (·) : Rd0×n −→ RlM×n, F (x) = Relu(Wx+b) column-wise and the first layer of the FCNN-based
network f1 : Rl1 −→ Rl2 , f1(x) = Relu(ω1x+ β1). Since lM = max{l1, · · · , lg}, l2 ≤ lM . Let

W = [ω1,0]
T , b = [β1,0]

T , (21)

then F (x) = [f1(x),0]
T . Similarly, we compare fi = Relu(ωifi−1(x) + βi) and Blocki−2. Suppose that hi−3 =

[fi−1(x),0]
T , let b2 = −hi−3,b1 = [βi,0]

T ,W2 = IdlM×lM and

W1 =

[
ωi 0
0 0

]
, (22)

then it is clear that hi−2 = [fi(x),0]
T .

By mathematical induction, it follows that hg−3 = [fg−1(x),0]
T and f(hg−3) = fg(x), f is defined in Definition B.4.

Therefore, for any entry hw,b ∈ HRelu
q , there exists H ∈ H(m,l)

tood , m, l defined in the Lemma s.t. H = hw,b.

Lemma D.2. For any h ∈ C(Rd,RK+1), and any compact set C ∈ Rd, ϵ > 0, there exists a two layer transformer
Ĥ ∈ H(m,2)

Trans and a linear transformation f s.t. ||f ◦ Ĥ−h||2 < ϵ in C, where m = (K +1) · (2τ(2τ d̂0+1), 1, 1, τ(2τ d̂0+

1), 2τ(2τ d̂0 + 1)).

Proof. Let h = [h1, · · · , hK+1]
T . Based on the UAP of transformers i.e. Theorem 4.1 in Jiang & Li (2023), for any ϵ > 0,

there exists ĥi = f̂i ◦H̄i, where f̂i is a linear read out and H̄i ∈ H(m̂,2)
Trans, m̂ = 2τ(2τ d̂0+1), 1, 1, τ(2τ d̂0+1), 2τ(2τ d̂0+1)

s.t.
max
x∈C

||ĥi(x)− hi(x)||1 < ϵ/
√
K + 1, i = 1, 2, · · · ,K + 1. (23)

We need to construct a transformer network Ĥ ∈ H(m,2)
Trans and a linear transformation f s.t.

(f ◦ Ĥ)i = f̂i ◦ H̄i (24)

for all i ∈ {1, · · · ,K + 1}. The following shows the process of construction:

Denote the one-layer FCNN in H̄i by Fi : Rd0×n −→ RD×n, where D = 2n(2nd0 + 1), the set the one-layer FCNN in Ĥ:

F : Rd0×n −→ RD(K+1)×n,

F = [F1, · · · , FK+1]
T ,

(25)

then h0 = [h1
0, · · · , hK+1

0 ]T , where h0 is the input to transformer blocks in Ĥ, and hi
0 is that in H̄i, i = 1, · · · ,K + 1.

Denote the matrices in H̄i by W̄ i
K , W̄ i

Q, W̄ i
V and W̄ i

O since each block only has one head. For the i-th head in each block of
transformer network Ĥ, we derive the matrix W i

k ∈ R(K+1)m̂h×(K+1)D from W̄ i
K with m̂h = 1:

W i
K =

0(i−1)m̂h×(i−1)D

W̄ i
K

0(K+1−i)m̂h×(K+1−i)D

 . (26)

Furthermore, we obtain W i
Q, W i

V and W i
O in the same way, then independent operations can be performed on different

blocks in the process of computing the matrix Att(h0) ∈ R(K+1)D×n. So we can finally get the attention matrix in the
following form:

Att(h0) = [Att1(h0), · · ·AttK+1(h0)]
T , (27)

where Atti(h0) ∈ RD×n, i ∈ YI + 1 are attention matrices in H̄i.

Similarly, it is easy to select W1,W2,b1,b2 such that FF(h0) = [FF1(h0), · · ·FFK+1(h0)]
T , i.e. h1 = [h1

1, · · · , hK+1
1 ]T ,

where the meaning of superscripts resembles to that of hi
0. Repeat the process, we found that

Ĥ(X ) = [H̄1(X ), · · · H̄K+1(X )]T . (28)

13
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Denote f̂i(H̄i) = wi · H̄i + bi, then it is natural to construct the linear transformation f by:

f(Ĥ) = [w1, · · · , wK+1]
T · Ĥ+ [b1, · · · , bK+1]

T , (29)

which satisfies Eq. (24).

By Eq. (23), for any ϵ > 0, there exists Ĥ ∈ H(m,2)
Trans and the linear transformation f s.t.

max
x∈C

||f ◦ Ĥ− h||2 ≤

√√√√K+1∑
i=1

(max
x∈C

||ĥi(x)− hi(x)||1)2

<

√√√√K+1∑
i=1

(ϵ/
√
K + 1)2 = ϵ,

(30)

where m = (K + 1) · m̂.

We have completed this Proof.

Then we prove the proposed Theorem C.1.

Proof. First, we prove the sufficiency. By the proposed Lemma D.1 and Theorem 10 in Fang et al. (2022), the sufficiency
of Theorem C.1 is obvious.

Furthermore, according to the Proof of Theorem 10 in Fang et al. (2022), to replace the FCNN-based or score-based
hypothesis space by the transformer hypothesis space for OOD detection Htood, the only thing we need to do is to investigate
the UAP of transformer networks s.t. the UAP of FCNN network i.e. Lemma 12 in Fang et al. (2022) can be replaced by
that of transformers. Moreover, it is easy to check Lemmas 131̃6 in Fang et al. (2022) still holds for Htood. So following the
Proof of Theorem 10 in Fang et al. (2022), by Theorem 3 in Yun et al. (2019) and the proposed Lemma D.2, we can obtain
the needed layers l and specific budget m which meet the conditions of the learnability for OOD detection tasks.

Second, we prove the necessity. Assume that |X | = +∞. By Theorems 5, 8 in Bartlett & Maass (2003), VCdim(Φ ◦
H(m,l)

tood ) < +∞ for any m, l, where Φ maps ID data to 1 and maps OOD data to 2. Additionally, sup
h∈H(m,l)

tood

|{x ∈ X :

h(x) ∈ Y}| = +∞ given |X | = +∞ for any m, l. By the impossibility Theorem 5 for separate space in Fang et al. (2022),
OOD detection is NOT learnable for any finite m, l.

Remark D.3. Yun et al. (2019) and Jiang & Li (2023) provide two perspectives of the capacity of transformer networks.
The former gives the learning conditions of OOD detection with limited width (or budget of each block) and any depth of
networks, and the letter develops the learning conditions with limited depth.
Remark D.4. Define a partial order for the budget m: for m = (d, h,mh,mV , r) and m′ = (d′, h′,m′

h,m
′
V , r

′), m′ < m
if every element in m′ is less than the corresponding element in m. m′ ≤ m if if every element in m′ is not greater than the
corresponding element in m. So it easily comes to a corollary: ∀m′ satisfies m ≤ m′ and l ≤ l′, if transformer hypothesis
space H(m,l)

tood is OOD detection learnable, then H(m′,l′)
tood is OOD detection learnable.

Remark D.5. It is notable that when m = +∞ or l = +∞, VCdim(Φ ◦ H(m,l)
tood ) may equal to +∞. This suggests

the possibility of achieving learnability in OOD detection without the constraint of |X | < +∞. Although an infinitely
capacitated transformer network does not exist in reality, exploring whether the error asymptotically approaches zero as
capacity increases remains a valuable theoretical inquiry.

E. Proof and remarks of Theorem C.3
To derive the Theorem C.3, we need to figure out some Lemmas.

Lemma E.1. For any h ∈ C̃(α,β), and any compact set C ∈ Rd, there exists a two layer transformer Ĥ ∈ H(m,2)
Trans and a

linear read out c : Rd̂×τ −→ R1×τ s.t. the inequality (34) is established, where m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r).

14
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Proof. According to Theorem 4.2 in Jiang & Li (2023), for any h ∈ C̃(α,β), there exists H ∈ H(m,2)
Trans and a linear read out c

s.t. ∫
I

τ∑
t=1

|c ◦Ht(x)− ht(x)|dx ≤ τ2C0(h)(
C

(α)
1 (h)

m2α−1
h

+
C

(β)
2 (h)

mβ
FF

(mh)
β). (31)

Based on Chebyshev’s Inequality,

P (

τ∑
t=1

|c ◦Ht(x)i − ht(x)i|/|I| > RHS in Eq. (31)) + λ0) ≤
RHS in Eq. (31)

λ0|I|
(32)

for any λ0 > 0. Additionally,

||c ◦H(x)− h(x)||2 =

√√√√ τ∑
t=1

|c ◦Ht(x)i − ht(x)i|2

≤
τ∑

t=1

|c ◦Ht(x)i − ht(x)i|.

(33)

So we get

P (||c ◦H(x)− h(x)||2 > |I|(RHS in Eq. (31) + λ0) ≤
RHS in Eq. (31)

λ0|I|
(34)

where mFF is usually determined by its number of neurons and layers. As the number of layers in FF is fixed, the budget
mFF and r are proportional:

r = k ·mFF. (35)

So the right side of the equation (31) can be written as

RHS = τ2C0(h)(
C

(α)
1 (h)

m2α−1
h

+
C

(β)
2 (h)

rβ
(kmh)

β). (36)

We have completed this Proof of the Lemma E.1.

Given any finite δ hypothesis functions h1, · · · , hδ ∈ {X −→ Y}, for each hi, we introduce a correspongding gi (defined
over X ) satisfying that for any x ∈ X , gi(x) = yk and W4g

T
i + b4 = zk if and only if hi(x) = k, where zk ∈ RK+1 is

the one-hot vector corresponding to the label k with value N . Clearly, gi is a continuous mapping in X , because X is a
discrete set. Tietze Extension Theorem (Urysohn, 1925) implies that gi can be extended to a continuous function in Rd. If
τ ≥ K + 1, we can find such gi,W4, b4.

Lemma E.2. For any introduced gi mentioned above, there exists ĝi satisfies ĝi ∈ C̃(α,β) and ||ĝi − gi||2 < ϵ.

Proof. Based on Theorem 7.4 in DeVore et al. (2021), set G ≡ 0 and ρ ≡ 0, then ĝi ∈ C̃(α,β), and there exists a constant C,
s.t. ||ĝi − gi||2 < C

(r+1)β
.

Choose r which is great enough, the proof is completed.

Remark E.3. Note that we can also prove the same result if gi is any continuous function from Rd̂ to R with compact
support.

Lemma E.4. Let |X | = n < +∞, τ > K + 1 and σ be the Relu function. Given any finite δ hypothesis functions
h1, · · · , hδ ∈ {X −→ {1, · · · ,K + 1}}, then for any mh, r > 0, m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r), P (h1, · · · , hδ ∈
H(m,2)

tood ) ≥ (1− mRHS in Eq. (31)
|I|λ0

)(K+1)δ for any η > 1.
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Proof. Since X is a compact set, then Lemma E.2 implies that there exists ĝi ∈ C̃(α,β) s.t.

||gi − ĝi||2 < ϵ/||W4||2. (37)

Denote ri = W4g
T
i + b4 and r̂i = W4ĝ

T
i + b4, So we get

||ri − r̂i||2 = ||W4(gi − ĝi)
T ||2 ≤ ϵ. (38)

Then by Lemma E.1, there exists Ĥ ∈ H(m,2)
Trans and a linear read out c s.t.

P (||c ◦H(x)− h(x)||2 ≤ |I|(RHS in Eq. (31) + λ0) ≥ 1− RHS in Eq. (31)
λ0|I|

. (39)

Thus we get if hi(x) = k, which is equal to gi(x) = yk or ri(x) = zk:

Firstly, denote f = W4c ◦HT + b4, and let h = ĝi, then

P (||f(x)− r̂i(x)||2 ≤ ||W4||2|I|(RHS in Eq. (31) + λ0) ≥ 1− RHS in Eq. (31)
λ0|I|

. (40)

So we obtain that
P (|fk −N | ≤ ||W4||2|I|(RHS in Eq. (31) + λ0)

≥ P (|fk − r̂i,k|+ |r̂i,k − ri,k| ≤ ||W4||2|I|(RHS in Eq. (31) + λ0))

≥ P (||f − r̂i||2 + ||r̂i − ri||2 ≤ ||W4||2|I|(RHS in Eq. (31) + λ0))

≥ P (||f − r̂i||2 + ϵ ≤ ||W4||2|I|(RHS in Eq. (31) + λ0))

= P (||f − r̂i||2 ≤ ||W4||2|I|(RHS in Eq. (31) + (λ0 −
ϵ

|I|
)))

≥ 1− RHS in Eq. (31)
|I|(λ0 − ϵ

|I| )

= 1− RHS in Eq. (31)
|I|λ0 − ϵ

.

(41)

Similarly, for any j ̸= k, we can also obtain that

P (|fk| ≤ ||W4||2|I|(RHS in Eq. (31) + λ0) ≥ 1− RHS in Eq. (31)
|I|λ0 − ϵ

. (42)

Therefore, P (argmaxk∈Y fk(x) = hi(x)) ≥ (1− ηRHS in Eq. (31)
|I|λ0

)K+1 for any x, if

N > 2||W4||2|I|(RHS in Eq. (31) + λ0) (43)

for any η > 1, i.e.

P (h1, · · · , hδ ∈ H(m,2)
tood ) ≥ (1− ηRHS in Eq. (31)

|I|λ0
)(K+1)δ, (44)

if
N > 2||W4||2|I|(RHS in Eq. (31) + λ0) (45)

for any η > 1. Since N is arbitrary, we can find such N .

Lemma E.5. Let the activation function σ be the Relu function. Suppose that |X | < +∞, and τ > K + 1. If {v ∈ RK+1 :
E(v) ≥ λ} and {v ∈ RK+1 : E(v) < λ} both contain an open ball with the radius R > ||W4||2|I|(RHS in Eq. (31)(ϕ) +
λ0), the probability of introduced binary classifier hypothesis space H(m,2),λ

tood,E consisting of all binary classifiers P >

(1 − ηRHS in Eq. (31)
|I|λ0

)(K+1)δ+1, where m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r) and ϕ(x) is determined by centers of balls,
specifically defined in the proof and W4 is determined by ϕ(x).
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Proof. Since {v ∈ RK+1 : E(v) ≥ λ} and {v ∈ RK+1 : E(v) < λ} both contain an open ball with the radius
R ≥ ||W4||2|I|(RHS in Eq. (31) + λ0), we can find v1 ∈ {v ∈ RK+1 : E(v) ≥ λ}, v2 ∈ {v ∈ RK+1 : E(v) < λ} s.t.
BR(v1) ⊂ {v ∈ RK+1 : E(v) ≥ λ} and BR(v2) ⊂ {v ∈ RK+1 : E(v) < λ}, where BR(v1) := {v : ||v − v1||2 < R}
and BR(v2) := {v : ||v − v2||2 < R}.

For any binary classifier h over X , we can induce a vector-valued function as follows. For any x ∈ X ,

ϕ(x) =

{
v1, if h(x) = 1,

v2, if h(x) = 2.
(46)

Since X is a finite set, the Tietze Extension Theorem implies that ϕ can be extended to a continuous function in Rd. Since
X is a compact set, then Lemma E.1 and Lemma E.2 implies that there exists a two layer transformer H ∈ H(m,2)

Trans and f
defined in B.4 s.t for any η > 1,

P (||f ◦H(x)− ϕ(x)||2 ≤ ||W4||2|I|(RHS in Eq. (31) + λ0) ≥ 1− RHS in Eq. (31)
|I|λ0 − ϵ

(47)

Therefore, for any x ∈ X , it is easy to check that E(f ◦H(x)) ≥ λ if and only if h(x) = 1, and E(f ◦H(x)) < λ if and
only if h(x) = 2 if the condition in P (·) is established.

Since |X| < +∞, only finite binary classifiers are defined over X . By Lemma E.4, we get

P (Hb
all = H(m,2),λ

tood,E ) ≥ (1− ηRHS in Eq. (31)
|I|λ0

)(K+1)δ+1 (48)

The proof is completed.

Now we prove one of the main conclusions i.e. Theorem C.3, which provides a sufficient Jackson-type condition for learning
of OOD detection in Htood.

Proof. First, we consider the case that c is a maximum value classifier. Since |X | < +∞, it is clear that |Hall| < +∞,
where Hall consists of all hypothesis functions from X to Y . For |X | < +∞ and τ > K + 1, according to Lemma E.4,
P (Hall ⊂ H(m,2)

tood ) ≥ (1− ηRHS in Eq. (31)
|I|λ0

)(K+1)δ for any η > 1, where m = (2mh+1, 1,mh, 2nd+1, r) and δ = (K+1)n.

Consistent with the proof of Lemma 13 in Fang et al. (2022), we can prove the correspondence Lemma 13 in the transformer
hypothesis space for OOD detection if Hall ⊂ H(m,2)

tood , which implies that there exist Hin and Hb s.t. H(m,2)
tood ⊂ Hin ◦ Hb,

where Hin is for ID classification and Hb for ID-OOD binary classification. So it follows that Hall = H(m,2)
tood = Hin ◦ Hb.

Therefore, Hb contains all binary classifiers from X to {1, 2}. According to Theorem 7 in (Fang et al., 2022), OOD
detection is learnable in Ds

XY for H(m,2)
tood .

Second, we consider the case that c is a score-based classifier. It is easy to figure out the probability of which OOD
detection is learnable based on Lemma E.5 and Theorem 7 in Fang et al. (2022).

The proof of Theorem C.3 is completed.

Remark E.6. Approximation of α: First of all, it is definitely that α > 1
2 to maintain the conditions in Theorem 4.2 of Jiang

& Li (2023). Then, analyze the process of our proof, because of the powerful expressivity of Relu, we only need G ≡ 0 to
bridge from C to C̃(α,β). So with regard to Htood, any α > 1

2 satisfies all conditions. But Cα
1 can increase dramatically

when α get greater.
Remark E.7. Approximation of β: We denote β ∈ (0, βmax]. According to Theorem 7.4 in DeVore et al. (2021),
βmax ∈ [1, 2].
Remark E.8. By the approximation of α and β, we discuss the trade-off of expressivity and the budget of transformer models.
Firstly, the learnability probability P −→ 1 if and only if mh −→ +∞ and r

mh
−→ +∞. For a fixed r, there exists a mh which

achieves the best trade-off. For a fixed mh, the greater r is, the more powerful the expressivity of transformer models is.
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Remark E.9. Different scoring functions E have different ranges. For example, maxk∈{1,···K}
ev

k∑K+1
c=1 evc and

T log
∑K

c=1 e
( vc

T ) have ranges contain ( 1
K+1 , 1) and (0,+∞), respectively. The Theorem C.3 gives the insight that

the domain and range of scoring functions should be considered when dealing with OOD detection tasks using transformers.
Remark E.10. It can be seen from Theorem C.3 that the complexity of the data increases, and the scale of the model must
also increase accordingly to ensure the same generalization performance from the perspective of OOD detection. Increasing
the category K of data may exponentially reduce the learnable probability of OOD detection, while increasing the amount
of data n reduces the learnable probability much more dramatically. Using Taylor expansion for estimation,

(1− η

|I|λ0
τ2C0(ri)(

C
(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β))(K+1)n+1

= 1− (K + 1)n+1 η

|I|λ0
τ2C0(ri)(

C
(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β)

+O((
η

|I|λ0
τ2C0(ri)(

C
(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β))2)

(49)

for any η
|I|λ0

τ2C0(ri)(
C

(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β) < 1. To ensure generalization, increasing the data category K requires
a polynomial increase of model parameters; while increasing the amount of data n requires an exponential increase of model
parameters. The data with positional coding X is contained in I. The greater I is, the more possibility transformers have
of OOD detection learnability. Nevertheless, the scoring function needs to meet a stronger condition of R. Theorem C.3
indicates that large models are guaranteed to gain superior generalization performance.
Remark E.11. This theorem has limitations for not determining the exact optimal convergence order and the infimum of the
error. More research on function approximation theory would be helpful to develop it in-depth.

F. The gap between theoretical existence and training OOD detection learnable models
We first show the key problems that intrigue the gap by conducting experiments on generated datasets. The specific
experiments are described as follows.

F.1. Basic dataset generation

We generated Gaussian mixture datasets consisting of two-dimensional Gaussian distributions. The expectations µi and the
covariance matrices Σi are randomly generated respectively, i = 1, 2 i.e. K = 2:

µi =
i

10
[|N (0, 1)|, |N (0, 1)|]T ,

Σi =

[
σi
1 0
0 σi

2

]
, where σi

j =
i

10
|N (0, 1)|+ 0.1, j = 1, 2,

(50)

and the data whose Euclidean distance from the expectation is greater than 3σ is filtered to construct the separate space.
Further, we generated another two-dimensional Gaussian distribution dataset, and also performed outlier filtering operations
as OOD data with the expectation µO and the covariance matrix ΣO as

µO =
1

2
[−|N (0, 1)|,−|N (0, 1)|]T ,

ΣO =

[
σO
1 0
0 σO

2

]
, where σO

j = 0.2|N (0, 1)|+ 0.1.
(51)

Formally, the distribution of the generated dataset can be depicted by

DX =
1

3
(N (µ1,Σ1) +N (µ2,Σ2) +N (µO,ΣO)) (52)

as the quantity of each type of data is almost the same. A visualization of the dataset with a fixed random seed is shown in
Figure 2(a).
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Figure 2. (a) The visualization of the generated two-dimensional Gaussian mixture dataset. (b) Curves show the classification accuracy
and OOD detection accuracy of the training stage and test stage with different model budgets. And likelihood score bars demonstrate that
the model with the theoretical support is disabled to learn OOD characters, leading to the failure of OOD detection.

F.2. Model construction and gap illustration

We constructed the transformer models strictly following the hypothesis space definition B.5, where d̂0 = d̂ = 2 and τ = 1.
Our experimental results are shown in Figure 4(b). According to Theorem C.1, in H(m,l)

tood , where m = (2, 2, 1, 1, 4) and l is
sufficiently large, or l = 2, m = (2w, 1, 1, w, 2w), where w := τ(2τ d̂0 + 1) = 15, OOD detection can be learned. Since
Theorem C.1 does not give a specific value for l, so we choose a wide range of l for experiments. Figure 4(b) shows that
even for a very simple Gaussian mixture distribution dataset, transformer models without additional algorithm design can
classify ID data with high accuracy in most cases, but can not correctly classify OOD data, showing severe overfitting and
strong bias to classify OOD data into ID categories. By chance, transformers with some l just converge to a learnable state.

We have also selected the scoring function E(f(hl)) = maxk∈{1,···K}
ef(hl)

k∑K+1
c=1 ef(hl)

c and visualized the scoring function
values for every category by the trained models. It can be seen that in a model that cannot identify OOD data, using the
score-based classifier c also can not distinguish the OOD data.

G. Details of optimization and validation on generated datasets
In this section, we analyze the causes of training failures and introduce an algorithm designed to address these challenges.
We used five different random seeds for data generation for each dataset type discussed later. The experimental outcomes
are illustrated in Figure 3.

G.1. Optimization 1

First of all, considering that the classical cross-entropy loss L1 does not satisfy the condition l(y2,y1) ≤ l(K + 1,y1), for
any in-distribution labels y1,y2 ∈ Y , and there is no instruction for model to learn recognizing OOD data, an additional
loss L2 is added in the loss function:

L = (1− γ)L1 + γL2, (53)

L1(y,x) = −Ex∈X

K+1∑
j=1

yj log(softmax(f ◦H(x))j), (54)
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Figure 3. The classification and OOD detection results in the optimization process. The first row of subfigures is the results of experiments
under different OOD data distributions. The scAtter plots below show the corresponding training and test set data. The trade-off of loss
function L is shown when picking different γ, and the power of adding rounded OOD data is illustrated with perfect performance in the
third column.

L2(y,x) = −Ex∈X

2∑
j=1

ϕ̂(y)j log(ϕ̂(softmax(f ◦H(x)))j), (55)

where H ∈ HTrans, y is the one-hot label vector, ϕ̂ : RK+1 −→ R2 is depicted as follows:

ϕ̂(y) =

[∑K
i=1 yi

yK+1

]
. (56)

When the condition is satisfied, the classification loss sensitivity of ID data classification decreases, affecting the classification
performance of ID data. Therefore, it is qualitatively evident that the value of γ has a trade-off between the performance of
ID data classification and OOD data recognition.

G.2. Optimization 2

Selecting γ = 0.0, 0.5, 0.9, we observe a nuanced trade-off illustrated in the basic generated dataset (see the first column of
Figure 3), as the model will classify ID data randomly, achieving only 50% accuracy in both training and testing phases,
if γ = 1. Modifying the loss function merely increases the probability that the model can learn from OOD data but does
not ensure stable training for achieving high-performance OOD detection. This limitation arises because when the model
accurately classifies ID data, the value of f ◦H(x)K+1 remains small, rendering L2 almost ineffective during training and
impeding the model’s ability to distinguish between ID and OOD. Without OOD data in the training set, the model tends to
classify all test set data as ID. To address these issues, we explore the generation of virtual OOD data. Our experiments,
shown in the middle column of Figure 3, indicate that creating a single cluster of virtual OOD data markedly enhances
the OOD detection capabilities of transformers, while also illustrating the trade-offs associated with the parameter γ as
analysized in Section 2. However, challenges persist in situations where the model correctly classifies ID data but fails to
identify OOD data during training. To further enhance performance, we generate three clusters of OOD data surrounding
the ID data. As demonstrated in the right column of Figure 3, enriching the content of virtual OOD data enables the
model to consistently learn ID classification and extend its generalization to OOD data. Adding rounded clusters of OOD
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data significantly diminishes the influence of L2, emphasizing the importance of generating high-quality fake OOD data.
Considering the high dimensionality of most datasets and the challenges of delineating high-dimensional ID data boundaries
in Euclidean space due to the curse of dimensionality, we retain the binary loss L2 in our algorithm.

Our experimental results are also consistent with recent research. For example, Fort et al. (2021) shows that incorporating
outlier exposure significantly improves the OOD detection performance of transformers, and Tao et al. (2023) has presented
a method for synthesizing OOD data using boundary data from KNN clusters.

H. The filtration process
Specifically, Mahalanobis distance from a sample x to the distribution of mean µ and covariance Σ is defined as
Dist(x, µ,Σ) = (x − µ)Σ−1(x − µ)T . To ensure robust computations, the inverse matrix of Σ is calculated with
numerical techniques. Firstly, we add a regularization term with small perturbation to Σ, i.e. Σ′ = Σ + ϵ0Id, where
ϵ0 = 10−4 and Id is the identity matrix. Given that Σ′ is symmetric and positive definite, the Cholesky decomposition
technique is employed whereby Σ′ = L · LT . L is a lower triangular matrix, facilitating an efficient computation of the
inverse Σ−1 = (L−1)T · L−1. Then we filter F̂OOD by Mahalanobis distances. The average distances from ID data to their
global and inter-class centers i.e. DistIDPCA and DistIDLDA,ik

respectively are obtained by

DistIDPCA =
1

|F|
∑
v∈F

Dist(v, µPCA, cov(F)),

DistIDLDA,ik
=

1

|F|y=ik |
∑

v∈F|y=ik

Dist(v, µLDA,ik , cov(F|y=ik)),
(57)

where cov(·) is the operator to calculate the covariance matrix of samples F . In the meanwhile, Mahalanobis distances
between OOD and ID are calculated:

DistOOD(v) =

{
Dist(v, µPCA, cov(F)), if B/K ≤ 2,

min
ik∈I

Dist(v, µLDA,ik , cov(F|y=ik)), if B/K > 2. (58)

And if B/K > 2, i0 = i0(v) = argminik∈I Dist(v, µLDA,ik , cov(F|y=ik)) is also recorded. The set to be deleted FD is

FD =

{
{v ∈ F̂OOD : DistOOD(v) < (1 + Λ)DistIDPCA}, if B/K ≤ 2,

{v ∈ F̂OOD : DistOOD(v) < (1 + Λ)DistIDLDA,i0}, if B/K > 2,
(59)

where Λ = λ · 10
|F̂OOD|

∑
v∈F̂OOD

(DistOOD(v)
DistID − 1), λ is a learnable parameter with the initial value 0.1. DistID = DistIDPCA if

B/K ≤ 2, else DistID = DistIDLDA,i0(v)
. Additionally, we randomly filter the remaining OOD data to no more than [B/K]+2,

and the filtered set is denoted as FRD. In this way, we obtain the final generated OOD set FOOD := F̂OOD −FD −FRD,
with the label y = K + 1.

I. The pseudocode of GROD
The pseudocode of GROD is shown in Alg. 1.

J. Implementation details
J.1. Settings for the fine-tuning stage.

For image classification, we finetune the ViT backbone and GROD model with hyper-parameters as follows: epoch number
= 20, batch size = 64, and the default initial learning rate = 1 × 10−4. We set parameters α = 1 × 10−3 for PCA and
LDA projection and α = 0.1 for PCA projection, num = 1, and γ = 0.1. An AdamW (Kingma & Ba, 2014; Loshchilov &
Hutter, 2017) optimizer with the weight decay rate 5× 10−2 is used when training with one Intel(R) Xeon(R) Platinum
8352V CPU @ 2.10GHz and one NVIDIA GeForce RTX 4090 GPU with 24GiB memory. For other OOD detection
methods, we adopt the same values of common training hyperparameters for fair comparison, and the parameter selection
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Algorithm 1 GROD
Require: The training dataset and labels Xtrain, Y , the testing dataset and labels Xtest, Ytest, the learnable parameter α, fixed parameters

γ and the number of each cluster of OOD data num, batch size B, number of ID classes K
Ensure: Trained model M , classification results Ŷtest for ID data and OOD detection
{Fine-tuning Stage}
for ep in training epochs do

for each batch X in Xtrain do
F ← NET(X ) {Obtain features by Eq. (1)}
FPCA ← PCA(F , num) {PCA projction}
VPCA ← Boundary(FPCA) {Obtain boundary ID data}
µPCA ← MEAN(F) {Obtain centers of ID data}
ΣPCA ← COV(F)
DistIDPCA ← MEAN(DIST(F , µPCA,ΣPCA)) {Obtain average distances of ID by Eq. (57) (the former one)}
F̂OOD

PCA ← GENERATE(VPCA, µPCA, α, num) {Generate fake OOD data by Eq. (4)-Eq. (5)}
if B/K > 2 then
FLDA := ∪K

i=1FLDA,i ← LDA(F ,Y, num) {Generate inter-class fake OOD data and calculate Mahalanobis distances similar
to the above process}
VLDA,i ← Boundary(FLDA,i)
for ik ∈ {1, · · · ,K} do

if |Fy=ik | > 1 then
µLDA,ik ← MEAN(F|y=ik )
ΣLDA,ik ← COV(F|y=ik )

µID
LDA,ik

← MEAN(DIST(F|y=ik , µPCA,ΣLDA,ik ))

F̂OOD
LDA,ik

← GENERATE(VLDA,ik , µLDA,ik , α, num)
end if

end for
{Mahalanobis distance filtering mechanism by Eq. (58)-Eq. (59)}
F̂OOD ← F̂OOD

PCA ∪ (∪ik F̂
OOD
LDA,ik

)

DistOOD ← minikDIST(F̂
OOD, µLDA,ik ,ΣLDA,ik )

I0 ← argminik
DIST(F̂OOD, µLDA,ik ,ΣLDA,ik )

Λ← LAMBDA(λ, F̂OOD,DistOOD,DistIDLDA,I0)

mask = DistOOD ≥ (1 + Λ)DistIDLDA,I0
else
F̂OOD ← F̂OOD

PCA

DistOOD ← DIST(F̂OOD, µPCA,ΣPCA)

Λ← LAMBDA(λ, F̂OOD,DistOOD,DistIDPCA)
mask = DistOOD ≥ (1 + Λ)DistIDPCA

end if
FOOD ← F̂OOD[mask]
if |FOOD| > B/K + 2 then
FOOD ← FOOD[random mask] {Random filtering mechanism}

end if
Fall ← F ∪ FOOD

Yall ← STACK(Y, (K + 1)1|FOOD|)

Ŷall, LOGITS ← CLASSIFIER(Fall)
Iterate the model parameters according to the loss function L in Eq. (53)-(55).

end for
Save model M with the best performance.

end for
Return M
{Inference Stage}
Ftest, LOGITStest ←M(Ftest)
LOGITStest ← ADJUST(LOGITStest) {Adjust LOGITS by Eq. (9)}
Ŷtest ← PostProcessor(Ftest, LOGITStest) {Obtain prediction results after post-processing}
Return Ŷtest

and scanning strategy provided by OpenOOD (Zhang et al., 2023; Yang et al., 2022a;b; 2021; Bitterwolf et al., 2023) for
some special parameters. For text classification, we employ the pre-trained BERT base model. We modify the default initial
learning rate to 2× 10−5 and the weight decay rate to 1× 10−3, and other hyperparameters maintain the same as in image
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classification tasks.

We preserve the finetuned model with the highest ID data classification accuracy on the validation dataset and evaluate its
performance with test datasets. The training and validation process is conducted without any OOD exposure.

J.2. Dataset details

For image classification tasks, we use four benchmark datasets i.e CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015) and SVHN (Netzer et al., 2011). CIFAR-10 or CIFAR-100
serve as ID data, respectively, while the other three are OOD data. SVHN is uniquely identified as far-OOD data due to its
distinct image contents and styles. For text classification, we employ datasets in Ouyang et al. (2023) to experiment with
detecting semantic and background shift outliers. The semantic shift task uses the dataset CLINC150 (Larson et al., 2019),
where sentences lacking intents are treated as semantic shift OOD, following Podolskiy et al. (2021). For the background
shift task, the movie review dataset IMDB (Maas et al., 2011) serves as ID, while the business review dataset Yelp (Zhang
et al., 2015) is used as background shift OOD, following Arora et al. (2021). We provide details of each dataset as follows:

Image datasets.

• CIFAR-10 (Krizhevsky et al., 2009): This dataset contains 60, 000 images of 32x32 pixels each, distributed across
10 diverse categories (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck). Each category includes
6, 000 images, split into 50, 000 for training and 10, 000 for testing. It is a standard benchmark for image classification
tasks.

• CIFAR-100 (Krizhevsky et al., 2009): Building on the structure of CIFAR-10, CIFAR-100 offers greater variety with
100 categories, each containing 600 images. This dataset serves as an extension of CIFAR-10, providing a deeper pool
of images for more complex machine-learning models.

• Tiny ImageNet (Le & Yang, 2015): Tiny ImageNet comprises 100, 000 images resized to 64 × 64 pixels, spread
across 200 categories, with each category featuring 500 training samples, and 50 samples each for validation and
testing. This dataset offers a broad spectrum of challenges in a format similar to the CIFAR datasets but on a larger
scale.

• SVHN (Netzer et al., 2011): The Street View House Numbers (SVHN) dataset, extracted from Google Street View
images, focuses on number recognition with 10 classes corresponding to the digits 0, 1, · · · , 9. This dataset is
particularly suited for developing machine learning techniques as it simplifies preprocessing steps.

Text datasets.

• Semantic shift: Following the approach in Podolskiy et al. (2021), we use the CLINC150 dataset (Larson et al., 2019),
which consists of phrases used in voice assistants, representing various intents. The OOD data is set to be phrases with
unidentified intents, serving as ”out-of-scope” inquiries not aligned with any predefined categories. This dataset is
ideal for testing the robustness of intent classification systems against unexpected queries and includes both in-scope
and out-of-scope data.

• Background shift: We follow (Arora et al., 2021) to choose the long movie review dataset IMDB (Maas et al., 2011) as
the ID dataset and a business review dataset Yelp (Zhang et al., 2015) as the OOD dataset. The IMDB dataset consists
of 50, 000 movie reviews, tailored for binary sentiment classification to discern positive and negative critiques. The
Yelp dataset, which includes a variety of business, review, and user data, represents a shift in the background context
and is treated as OOD data, providing a different commercial background from the movie reviews of the IMDB dataset.

K. Ablation study
Comprehensive ablation studies are conducted to explore hyper-parameters and optimization strategies, where Figure 4
shows the ablation experiments for GROD concerning key parameters γ, α, and num, and the ablation results of modules
in GROD are displayed in Table K.
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Ablation on the loss weight γ. Figure 4(a) examines variations in γ within the loss function as detailed in Eq. (6)-(8).
As outlined in Section 2, changes in γ show the trade-off within the loss function L. When the value of γ ranges from 0
to 1, the performance under each evaluation metric initially increases and then decreases. When γ = 1, the model fails to
classify ID data. Intriguingly, L2 and the fake OOD slightly enhance the ID classification performance, surpassing the 10%
accuracy threshold of randomness, which explains how GROD simultaneously improves ID data classification and OOD
detection performance, as illustrated in Section 3.2. The efficiency of L2 also indicates that OOD generated by GROD
closely mimics OOD from real datasets.

Figure 4. Ablation study on extra hyperparameters in GROD. (a) The weight γ in L. (b) The parameter α adjusts the extending distance
of generated OOD data. (c) The number of every OOD cluster num. The ID dataset is CIFAR-10 and the backbone is the pre-trained
ViT-B-16.

Ablation on α in adjusting the ID-OOD distance. In Figure 4(b), the value of α is adjusted, demonstrating that a larger
α increases the Mahalanobis distance between ID and synthetic OOD. Empirical results indicate that an α value of 1× 10−3

achieves optimal performance when using LDA projection. If α is reduced, causing ID and OOD data to be too closely
aligned in Mahalanobis distance, the model tends to overfit and fails to discern their differences. Conversely, if α is too
high, most inter-class OOD data either become global OOD around ID data or resemble ID from other classes, thus being
excluded by the Mahalanobis distance condition in Eq. (58). At this time, inter-class OOD is similar to global OOD typically
generated only by PCA, leading to a significant drop in near-OOD detection performance, while far-OOD detection remains
consistent. The performance curves of near-OOD detection also indicate that if only PCA projections are used, we can set α
in a larger value, as the performance increases after dropping from the top.

Ablation on num in the number of outliers. Figure 4(c) explores how the dimension parameter num influences
performance. The model demonstrates superior performance when num is set to 1 or 2, as PCA and LDA effectively retain
characteristics of the original data and distinguish clusters of each category. Increasing the dimensions of PCA and LDA
projections often results in the selection of less representative features in our filtering mechanism. Besides, maintaining
num at 1 or 2 usually ensures a balanced ratio of generated OOD data to ID data. Overall, the model consistently delivers
competitive outcomes, affirming the efficiency of GROD in various settings.

Ablation on key modules in GROD. GROD comprises three key modules: adjusting the loss function, generating virtual
OOD data, and employing the Mahalanobis distance filtering mechanism, denoted as L2, FOOD, and Maha, respectively.
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Table 4. Ablation experiments. The ID dataset is CIFAR-10 and the backbone is ViT-B-16 pre-trained with ImageNet-1K. Respectively,
L2, FOOD, Maha represent whether to use the binary loss function L2, fake OOD data generation and Mahalanobis distance filtration.

OOD Datasets - CIFAR-100 Tiny ImageNet SVHN Average

Evaluate Metrics (%) ID ACC↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑

L2 FOOD Maha

96.16 21.59 95.43 95.64 95.38 8.52 98.39 98.68 98.14 3.26 99.39 98.61 99.78 11.12 97.74 97.64 97.77
✓ ✓ 96.96 22.66 94.98 95.13 94.94 13.04 96.98 97.68 96.27 4.69 99.18 98.11 99.70 13.46 97.05 96.97 96.97

✓ 97.00 18.02 96.32 96.32 96.49 8.78 98.45 98.70 98.27 2.76 99.45 98.58 99.81 9.85 98.07 97.87 98.19
✓ ✓ 96.68 21.17 95.57 95.52 95.78 9.41 98.27 98.58 98.04 0.49 99.83 99.77 99.88 10.36 97.89 97.96 97.90
✓ ✓ ✓ 97.31 0.16 99.97 99.97 99.96 0.11 99.98 99.98 99.97 0.09 99.98 99.97 99.99 0.12 99.98 99.97 99.97

Table K presents the ablation studies for these modules. L2 alone can enhance model optimization, whereas FOOD and
Maha contribute positively when integrated with L2. Utilizing all three strategies concurrently yields optimal performance,
confirming that GROD effectively synergizes these modules to assign penalties associated with OOD and sharpen the
precision of the ID-OOD decision boundary. Moreover, features Fall, along with the prediction LOGITS LOGITS of GROD
and the baseline, are visualized under t-SNE dimensional embedding (Appendix L), which illustrate the efficiency of GROD
directly.

L. Visualization for fake OOD data and prediction likelihood
Feature visualization. As shown in Figure 5, we use the t-SNE dimensionality reduction method to visualize the two-
dimensional dataset embeddings in the feature space. All the subfigures are derived from the same fine-tuned ViT-B-16
model.

The ID dataset, the test set of CIFAR-10, displays ten distinct clusters after embedding, each clearly separated. Consistent
with our inference on GROD, the LDA projection generates fake OOD around each ID data cluster. Despite the high-
dimensional feature space where OOD data typically lies outside ID clusters due to GROD’s generation and filtering
mechanisms, the two-dimensional visualization occasionally shows virtual OOD data within the dense regions of ID. This
occurs because the projection from high dimensions to two-dimensional space inevitably results in some loss of feature
expression, despite efforts to maintain the integrity of the data distribution.

Figure 5. t-SNE visualization of the generated OOD data and test sets in the feature space.

We also visualize real OOD features from near-OOD datasets CIFAR-100 and Tiny ImageNet, and the far-OOD dataset
SVHN. To distinctively compare the distribution characteristics of fake and real OOD data, we plot an equal number
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of real and synthetic OOD samples selected randomly. Near-OOD data resembles our synthetic OOD, both exhibiting
inter-class surrounding characteristics, while far-OOD data from SVHN displays a different pattern, mostly clustering
far from the ID clusters. Although far-OOD data diverges from synthetic OOD data, the latter contains a richer array of
OOD features, facilitating easier detection of far-OOD scenarios. Thus, GROD maintains robust performance in detecting
far-OOD instances as well. The visualization results in Figure 5 confirm that GROD can generate high-quality fake OOD
data effectively.

Figure 6. The distribution histograms and probability density curves of prediction likelihoods of ID and OOD test data. Results derived by
GROD and the baseline MSP are visualized, with CIFAR-10 as ID and SVHN as OOD.

Likelihood visualization. The process of OOD detection and model performance evaluation follows a standardized
protocol, where classification predictions and their likelihood scores are generated and subsequently analyzed. The likelihood
scores for OOD data are typically lower than those for ID data, as OOD samples do not fit into any ID category, resulting in
a bimodal distribution of likelihood scores of all test data. In this distribution, ID and OOD form distinct high-frequency
areas, separated by a zone of lower frequency. A broader likelihood range in this low-frequency zone with minimal overlap
between the ID and OOD data signifies the model is more effective for OOD detection.

Comparing the likelihood distributions of the baseline MSP model with GROD as shown in Figure 6, it is evident that
GROD significantly enhances the distinction in classification likelihood between ID and OOD, thereby improving OOD
detection performance. The enhancements are quantitatively supported by the performance metrics reported in Table 1,
where GROD surpasses the baseline by 15.30% in FPR@95 and 4.87% in AUROC on datasets CIFAR-10 and SVHN.
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