
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BALANCING THE EXPERTS: UNLOCKING LORA-MOE
FOR GRPO VIA MECHANISM-AWARE REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient Mixture-of-Experts (MoE) architectures, such as LoRA-MoE,
enable strong and generalizable fine-tuning. However, a critical problem arises
when fine-tuning these architectures with advanced reinforcement learning algo-
rithms such as Group Relative Policy Optimization (GRPO). Traditional super-
vised techniques are not naturally compatible with the GRPO objective, and naive
combinations fail to effectively address routing collapse and the underutilization
of MoE adapter parameters. To resolve this disconnect, we introduce Routing-
Optimized Group Relative Policy Optimization (RO-GRPO), a mechanism-aware
framework. It turns internal expert routing statistics collected during training into
a direct reward signal, seamlessly integrating routing supervision into the rein-
forcement fine-tuning (RFT) process. This enables effective optimization of pa-
rameter utilization and improves performance on both unimodal and multimodal
mathematical reasoning tasks, all without extra training stages. Our work pro-
vides the first demonstration that a scalar reward in GRPO can be engineered from
a model’s own internal mechanics to explicitly guide its optimization, extending
alignment from mere behavior tuning to holistic mechanism alignment.

1 INTRODUCTION

Large language models (LLMs) have significantly advanced many artificial intelligence applica-
tions, but their large size poses challenges for practical deployment, especially regarding fine-tuning
efficiency (Han et al., 2024; Hu et al., 2021). Among parameter-efficient fine-tuning (PEFT) ap-
proaches, LoRA-MoE (Dou et al., 2024), which combines Low-Rank Adaptation (LoRA) (Hu et al.,
2021) with a mixture-of-experts (MoE) architecture, has emerged as a particularly promising tech-
nique (Li et al., 2024a; Gou et al., 2024; Mu & Lin, 2025).

However, despite its success in supervised fine-tuning (SFT) (Dou et al., 2024; Li et al., 2024a), ap-
plying LoRA-MoE to reinforcement learning fine-tuning (RFT) frameworks such as Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) presents a key challenge. In SFT, routing is typi-
cally guided by an auxiliary load-balancing loss (Fedus et al., 2022; Lewis et al., 2021; Zoph et al.,
2022; Dai et al., 2022; Wang et al., 2024a). In GRPO, our goal is to employ a loss-free mechanism
that jointly optimizes task performance and routing load through the rollout-time reward signal,
rather than uniformly enforcing the same constraint on all routing decisions via an auxiliary routing
loss. When GRPO relies solely on the external task reward, the training signal remains blind to
internal routing decisions (Omi et al., 2025; Harvey et al., 2025). Without explicit guidance, the
routing mechanism often collapses, leading to severe expert imbalance and underutilization of the
model’s parametric capacity, which limits the effectiveness of the modular architecture.

To bridge this gap, we propose RO-GRPO (Routing-Optimized GRPO), a novel framework that
integrates routing-awareness into the RFT process through a carefully designed mechanism reward.
Our key insight is that routing statistics collected during generation, such as routing entropy and
load distribution, can be transformed into a reward signal that aligns the internal routing mechanism
with task performance (Chen et al., 2022; Cong et al., 2024b). Specifically, we augment the standard
task reward with two complementary components: one promoting confident routing decisions (low
entropy) and another encouraging balanced expert utilization. These routing rewards are integrated
into the GRPO objective, enabling a unified optimization process that requires no auxiliary losses or
architectural modifications (see Figure 1 for a schematic comparison).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

RO-GRPO

LLM with
LoRA-MoE

Reward
Model

Reference
Model

Group
Computation.

Routing Info
Aggregator

Routing
Reward
Function

GRPO

LLM Reward
Model

Reference
Model

Group
Computation.

Figure 1: Comparison of standard GRPO and our RO-GRPO.

The main contributions of this paper are as follows:

• To our knowledge, this is the first systematic study of LoRA-MoE architectures within the
RFT framework, identifying and addressing key challenges such as routing collapse and
expert underutilization that arise during GRPO-based training.

• We propose RO-GRPO, a novel framework that integrates routing statistics directly into
the GRPO reward function. This enables the unified optimization of both task performance
and internal routing efficiency without requiring auxiliary losses.

• Our method achieves consistent improvements over baselines (e.g., standard LoRA and
vanilla LoRA-MoE) across all expert counts in both task performance and expert utiliza-
tion, validated across unimodal and multimodal mathematical reasoning benchmarks.

• Our experiments provide the first empirical evidence that a scalar reward in RFT can align
not only a model’s external behavior but also its internal mechanisms, opening new avenues
for the principled alignment of complex model architectures.

2 RELATED WORK

Modular and Mixture-of-Experts PEFT. To enhance the capacity and versatility of PEFT, re-
searchers have integrated Mixture-of-Experts (MoE) principles into LoRA, creating architectures
like LoRA-MoE (Dou et al., 2024), MixLoRA (Li et al., 2024a), and MoCLE (Gou et al., 2024).
These methods have shown effectiveness in reducing task interference and improving knowledge re-
tention. Beyond adapterized MoE, modern routing builds on early conditional computation and deep
MoE ideas (Cho & Bengio, 2014; Eigen et al., 2013) and on system-scale routed Transformers such
as GShard and Switch (Lepikhin et al., 2020; Fedus et al., 2022). Most approaches optimize expert
routing during supervised pretraining or SFT, typically using auxiliary load-balancing objectives to
prevent expert collapse and under-utilization (Shazeer et al., 2017; Fedus et al., 2022). Alternative
balancing mechanisms include the balanced assignment of BASE Layers (Lewis et al., 2021) and
non-parametric routing via Hash Layers (Roller et al., 2021). Training stability and routing fluctua-
tion have been studied extensively, with design guidelines in ST-MoE (Zoph et al., 2022), two-stage
stabilized routing in StableMoE (Dai et al., 2022), and empirical analysis of expert-load dynam-
ics (Cong et al., 2024a). However, these strategies remain predominantly designed for differentiable
supervised training; integrating comparable mechanism-aware supervision into reinforcement fine-
tuning is still underexplored.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Inputs

Routing Info
Aggregator

Layer Norm

FFN

Layer Norm

Attention

Routing Reward
Function

Generated
Completions

Task Reward
Function

...

...

Routing Statistics
 Collector

Pretrained
Weights ··· Router

···

Token Info Flow
Routing Info Flow

Figure 2: Overview of the RO-GRPO framework. A mechanism-aware reward Rroute is computed
from internal routing statistics and combined with the task reward Rtask. The resulting unified reward
Rtotal guides the GRPO update to jointly optimize task performance and routing efficiency.

Alignment and Optimization of LLMs. Reinforcement Learning from Human Feedback (RLHF)
has become the dominant approach for aligning large language models with human inten-
tions (Ouyang et al., 2022; Kaufmann et al., 2024). Proximal Policy Optimization (PPO) (Schulman
et al., 2017) and its variants, such as Direct Preference Optimization (DPO) (Rafailov et al., 2024)
and Group Relative Policy Optimization (GRPO) (Shao et al., 2024), have demonstrated strong
performance on complex reasoning and instruction following. These RLHF methods typically op-
timize a scalar task-based reward and do not incorporate supervision for internal mechanisms such
as expert routing. In MoE-based models, this limitation can lead to expert collapse or inefficient
parameter utilization when using RLHF directly (Fedus et al., 2022; Harvey et al., 2025). While
auxiliary losses have been used to encourage balanced routing in supervised settings, integrating
such mechanism-aware supervision into reinforcement learning remains an open problem.

3 METHODOLOGY

In this section, we introduce RO-GRPO (Routing-Optimized Group Relative Policy Optimization),
a framework designed to optimize the internal routing of LoRA-MoE models by incorporating
mechanism-aware supervision into the reinforcement learning loop. We first review the prelimi-
naries of GRPO and LoRA-MoE, then describe the core challenge of unguided routing in RLHF,
and finally detail our proposed solution.

3.1 PRELIMINARIES: GRPO AND LORA-MOE

Group Relative Policy Optimization. GRPO (Shao et al., 2024) is a critic-free RL algorithm that
aligns an LLM policy πθ by maximizing the expected task reward over a dataset of prompts D. Its
objective is to maximize Ex∼D, y∼πθ(·|x)[Rtask(y)], where πθ is the LLM policy, D is the dataset of
prompts, and Rtask is the scalar task reward evaluating the output y.

LoRA-MoE Architecture. A LoRA-MoE layer modifies the output of a frozen pretrained layer.
It consists of a trainable router network and a set of E parallel LoRA experts, {(Ae,Be)}Ee=1.
For an input token representation h, the router first computes a gating probability vector p =
softmax(Wrh), where Wrouter is the router’s weight matrix. The final output of the layer is:

hout = h+
(E∑

e=1

p(e | h)BeAe

)
h. (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 THE CHALLENGE: UNGUIDED MOE ROUTING

A fundamental disconnect arises when a LoRA-MoE model is fine-tuned using an RLHF algorithm
like GRPO. The optimization process is blind to the router’s decisions p, as the task reward Rtask
evaluates only the final output. This lack of explicit supervision leads to two well-documented
failure modes in MoE training (Fedus et al., 2022):

• Expert Collapse: The router defaults to choosing a small subset of experts, leading to severe
load imbalance and wasted parametric capacity.

• Routing Indecision: The router generates high-entropy distributions (i.e., low-confidence
decisions), failing to foster expert specialization.

Our goal is to augment the RLHF objective with an internal, mechanism-aware reward signal that
directly addresses these failure modes.

3.3 RO-GRPO: MECHANISM-AWARE REWARDS

As depicted in Figure 2, our method collects internal routing statistics during policy generation.
These statistics are used to compute Rroute, which is then combined with the primary task reward,
Rtask. This is achieved in three steps.

3.3.1 STEP 1: QUANTIFYING ROUTING EFFICIENCY.

For each generated sample, we collect the routing probability vectors from all activated LoRA-MoE
modules. Let M be the number of such modules in the model and T be the total number of tokens
routed during generation. We quantify routing efficiency using two metrics aggregated from these
statistics. First, we measure routing confidence using the mean Shannon entropy over all individual
token routing decisions. A lower value indicates more decisive routing. For the multiset of all T
routing vectors {pi}Ti=1, define the token-wise entropy as H(p) := −

∑E
e=1 pe ln pe (a small ϵ is

added in implementation). The average entropy is

H̄ =
1

T

T∑
i=1

H(pi). (2)

Second, we measure load balance by assessing expert utilization across the M LoRA-MoE mod-
ules. For each module m ∈ {1, . . . ,M}, we first compute its average expert utilization vector p̄m

by averaging the routing vectors of all tokens that pass through it. The final metric M̄ is the mean
of the Mean Squared Errors (MSE) calculated for each module relative to a uniform distribution u:

M̄ =
1

M

M∑
m=1

1

E

∥∥p̄m − 1
E1

∥∥2
2
. (3)

For stable integration into the reward function, we normalize these metrics to an approximate [0, 1]
range, yielding Hnorm = H̄/ lnE, Mnorm = M̄/((E − 1)/E2), for use in the reward calculation.

3.3.2 STEP 2: FORMULATING THE ROUTING REWARD.

We propose two distinct strategies to transform these metrics into a scalar reward Rroute.

RO-GRPO (Smooth): Curriculum-Based Reward Scheduling. This strategy employs a curricu-
lum that initially encourages confident routing (low entropy) and then transitions to promoting load
balance (low MSE). As detailed in the Discussion section, this curriculum aligns the reward signal
with the natural training dynamics of MoE models, defining the reward as follows:

Rroute = −wroute (wH(t) · Hnorm + wB(t) · Mnorm) , (4)

where weights wH(t) and wB(t) are dynamically scheduled based on training progress t ∈ [0, 1]
using a sigmoid function σ(t) = 1

1+e−k(t−c) with steepness k and center c:

wH(t) = λstart
H · (1− σ(t)), (5)

wB(t) = λend
B · σ(t). (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Performance on unimodal mathematical reasoning benchmarks. We compare task accuracy
(%), trainable parameter count (#Param), and internal routing metrics. The Config column specifies
the adapter structure, denoted as rank r for LoRA or E × r for LoRA-MoE.

Unimodal Mathematical Reasoning (Qwen2.5-7B-Instruct on NuminaMath-TIR-2k)

Method Config #Param GSM8K MATH SVAMP MGSM Entropy MSE

Base (zero-shot) - 0 87.34 70.42 91.33 53.64 - -

GRPO (LoRA)
16 30.3M 88.48 70.38 90.67 50.00 - -
32 60.6M 90.45 69.54 93.00 47.10 - -
64 121.1M 90.14 49.02 92.67 53.67 - -

GRPO (LoRA-MoE)
2×8 31.7M 89.39 70.36 90.00 61.75 0.640 0.020
4×8 63.4M 89.39 70.40 91.30 46.15 0.651 0.009
8×8 126.9M 90.22 70.44 91.00 52.04 0.655 0.008

Aux-Loss (LoRA-MoE)
2×8 31.7M 86.73 69.50 92.33 57.27 0.632 0.036
4×8 63.4M 87.11 70.10 91.00 56.36 0.540 0.024
8×8 126.9M 87.04 69.54 91.33 56.66 0.645 0.019

RO-GRPO (Smooth)
2×8 31.7M 91.51 70.64 91.00 62.18 0.639 0.016
4×8 63.4M 90.67 70.62 92.00 52.58 0.651 0.009
8×8 126.9M 90.98 69.78 92.67 52.04 0.656 0.006

RO-GRPO (Relative)
2×8 31.7M 90.22 70.58 91.33 59.45 0.639 0.017
4×8 63.4M 89.76 69.88 93.33 54.58 0.651 0.008
8×8 126.9M 90.52 70.18 92.67 51.96 0.655 0.007

RO-GRPO (Relative): Relative Improvement Gating. This strategy provides a sparse, adaptive
reward based on a historical baseline, encouraging continuous self-improvement and avoiding the
need to manually balance the two routing objectives. A constant positive reward C is granted only
if both routing confidence and load balance improve simultaneously relative to their exponential
moving averages (H̄hist,Mhist):

Rroute = C 1{Hnorm < H̄hist ∧ Mnorm < M̄hist}. (7)

3.3.3 STEP 3: UNIFIED OPTIMIZATION VIA POLICY GRADIENT.

The mechanism-aware reward Rroute is combined with the external task reward to form the total
reward Rtotal(y) = Rtask(y) + Rroute(y). The computation of Rroute is non-differentiable; its
gradient is propagated implicitly through the policy gradient update. In the GRPO framework,
a group of responses {yi} is sampled for each prompt and evaluated using Rtotal. The resulting
rewards are used to compute group-relative advantages, Âi, which in turn guide the policy update.
The objective can be summarized as:

JRO-GRPO(θ) ≈ E
[∑

i log πθ(yi|x) Âi − β DKL

(
πθ ∥πref

)]
. (8)

By integrating Rroute into the advantage calculation, RO-GRPO guides the policy πθ to generate
outputs that improve task performance while also exhibiting efficient routing, all without requiring
differentiable auxiliary losses.

4 EXPERIMENTS

We experimentally validate RO-GRPO by testing three core hypotheses: (1) applying LoRA-MoE
with GRPO leads to suboptimal routing and underutilized parameters; (2) our mechanism-aware
reward framework, RO-GRPO, mitigates these routing issues; and (3) these internal improvements
translate to better task performance.

4.1 EXPERIMENTAL SETUP

Tasks and Datasets. We evaluate RO-GRPO on challenging mathematical reasoning tasks. Per-
formance on these tasks relies on precise, multi-step deduction, making it sensitive to the model’s

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Performance on multimodal mathematical reasoning benchmarks. We follow the same
evaluation setup as in the unimodal experiments.

Multimodal Mathematical Reasoning (Qwen2.5-VL-7B-Instruct on Geometry3k)

Method Config #Param Geo3k MathVista MathVerse WeMath Entropy MSE

Base (zero-shot) - 0 37.44 46.50 26.50 56.95 - -

GRPO (LoRA)
16 30.3M 38.44 58.60 33.30 63.97 - -
32 60.6M 38.10 59.30 23.22 53.85 - -
64 121.1M 33.28 55.90 25.43 53.91 - -

GRPO (LoRA-MoE)
2×8 31.7M 38.27 57.90 30.99 63.74 0.619 0.038
4×8 63.4M 28.95 56.40 30.30 63.45 0.637 0.019
8×8 126.9M 33.11 55.00 31.78 61.49 0.649 0.012

Aux-Loss (LoRA-MoE)
2×8 31.7M 39.60 56.20 30.03 62.81 0.621 0.060
4×8 63.4M 41.43 60.50 27.23 62.87 0.634 0.036
8×8 126.9M 40.43 54.40 32.13 65.80 0.649 0.019

RO-GRPO (Smooth)
2×8 31.7M 38.94 58.70 30.48 66.09 0.630 0.033
4×8 63.4M 40.10 58.30 28.73 64.14 0.642 0.014
8×8 126.9M 38.94 58.90 27.89 64.10 0.648 0.011

RO-GRPO (Relative)
2×8 31.7M 41.93 55.80 33.30 60.98 0.624 0.036
4×8 63.4M 40.27 60.20 31.29 66.26 0.645 0.013
8×8 126.9M 40.16 60.10 32.03 63.97 0.636 0.010

expert utilization and thus an ideal testbed for our approach. To demonstrate the versatility of our
method, we conduct experiments in both unimodal and multimodal settings.

For unimodal experiments, we fine-tune on NuminaMath-TIR (Li et al., 2024b) and evaluate on the
established benchmarks GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), SVAMP (Pa-
tel et al., 2021), and MGSM (Shi et al., 2022). For multimodal experiments, we fine-tune on Ge-
ometry3k (Lu et al., 2021) and evaluate on its test set, alongside MathVista (Lu et al., 2024), Math-
Verse (Zhang et al., 2024), and WeMath (Qiao et al., 2024).

Models and Baselines. We use the open-source Qwen2.5-7B-Instruct (Qwen et al., 2025) and
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) models, chosen for their strong foundational perfor-
mance in mathematical reasoning. We compare five configurations: (1) Base, the original pretrained
model evaluated in a zero-shot setting; (2) GRPO (LoRA), a standard LoRA baseline fine-tuned
with GRPO representing a typical PEFT approach; (3) GRPO (LoRA-MoE), a LoRA-MoE model
trained with GRPO using only the task reward to isolate the effect of unguided routing; (4) Aux-
Loss (LoRA-MoE), a baseline where routing objectives are added as auxiliary losses to the GRPO
objective, using the same scheduling as the Smooth strategy; (5) RO-GRPO (Smooth), our method
with the curriculum-based reward scheduling strategy (Section 3.3); and (6) RO-GRPO (Relative),
our method with the relative improvement gating strategy for the routing reward (Section 3.3).

Evaluation Metrics. We evaluate both task performance and internal mechanism efficiency. Task
Performance is measured by accuracy (%) on the respective benchmarks. Routing Performance is
quantified by two metrics: (1) routing entropy, the average per-token Shannon entropy as formu-
lated in Eq. (2), indicating decision confidence; and (2) load balancing MSE, the mean squared
error between the expert utilization distribution and a uniform one as formulated in Eq. (3), indicat-
ing load balance. We report these raw, un-normalized values for direct interpretability.

Implementation Details. To ensure a fair comparison, we control for trainable-parameter budget:
the LoRA baseline uses a rank of 16, while LoRA-MoE models use E experts (E ∈ {2, 4, 8}), each
with rank of 8. For LoRA-MoE, modules are inserted into the gate, up, and down projections
of the Feed-Forward Network (FFN) in each transformer block. During training, only the PEFT
parameters are updated while the base model weights remain frozen. Across all experiments, we
use a consistent system prompt for both training and evaluation to encourage step-by-step reasoning.
The overall routing reward Rroute is integrated into the total reward using a global scaling coefficient
of wroute = 0.2. Key hyperparameters for our routing strategies were determined through validation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.61

0.62

0.63

0.64

0.65

En
tro

py

(a1) Baseline: Entropy
0.616

0.624

0.632

0.640

0.648

(a2) Smooth: Entropy
0.616

0.624

0.632

0.640

0.648

(a3) Relative: Entropy

0.620

0.625

0.630

0.635

(a4) All Methods: Entropy

0k 15k 30k 45k
Steps

0.024

0.032

0.040

0.048

M
SE

(b1) Baseline: MSE

0k 15k 30k 45k
Steps

0.024

0.032

0.040

0.048

(b2) Smooth: MSE

0k 15k 30k 45k
Steps

0.024

0.032

0.040

0.048

(b3) Relative: MSE

0k 15k 30k 45k
Steps

0.027

0.030

0.033

0.036

(b4) All Methods: MSE

Baseline Smooth Relative

Figure 3: Training dynamics of routing metrics on the unimodal mathematical reasoning task. (Top)
Average routing entropy over the course of training. (Bottom) Load balancing MSE over the course
of training.

G-E0
G-E1
U-E0
U-E1
D-E0
D-E1B

as
el

in
e

G-E0
G-E1
U-E0
U-E1
D-E0
D-E1

Sm
oo

th

0 3 6 9 12 15 18 21 24 27
Layer Index

G-E0
G-E1
U-E0
U-E1
D-E0
D-E1R

el
at

iv
e

G

U

DSm
oo

th

0 3 6 9 12 15 18 21 24 27
Layer Index

G

U

DR
el

at
iv

e

0.0 0.2 0.4 0.6 0.8 1.0

−0.4 −0.2 0.0 0.2 0.4

(a) Expert Routing Ratio (b) Routing Balance Improvement

Figure 4: Visual analysis of routing behavior improvements with RO-GRPO on the MathVista
benchmark. (a) Left Panel: Heatmaps show the routing ratio of the most frequently selected expert
for the baseline and our two RO-GRPO methods. Darker colors represent a higher selection ratio
for the dominant expert. (b) Right Panel: Heatmaps quantify the improvement in routing balance
relative to the vanilla LoRA-MoE baseline. Positive values (warmer colors) indicate a reduced rout-
ing ratio for the dominant expert, signifying a shift toward the desired 1/E equilibrium.

For the Smooth strategy, we set the initial entropy weight λstart
H = 0.5 and the final balance weight

λend
B = 2.0. For the Relative strategy, the performance baseline was calculated over a moving

window of the 1000 most recent samples. Further details are in the Appendix.

4.2 MAIN RESULTS

As shown in Tables 1 and 2, RO-GRPO yields consistent performance gains over vanilla GRPO with
LoRA-MoE across all expert counts (E∈{2, 4, 8}) in both unimodal and multimodal settings. The
two reward variants show complementary strengths: the Smooth strategy performs best on GSM8K
and SVAMP, while the Relative strategy excels on Geometry3k, MathVista, and WeMath.

Unimodal. On GSM8K, RO-GRPO (Smooth, E=2) achieves the top score of 91.51%, an im-
provement of +1.37 pp over GRPO (LoRA) and +1.29 pp over the best-performing vanilla LoRA-
MoE model (at E=8). On SVAMP, RO-GRPO (Relative, E=4) obtains 93.33%, surpassing GRPO
(LoRA) by +0.33 pp and vanilla LoRA-MoE (at E=4) by +2.03 pp. While improvements on MATH

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

are modest, they are consistent at matched expert counts (e.g., 70.64% vs. 70.36% for E=2 Smooth
vs. vanilla). The largest gain on MGSM is at E=4, where RO-GRPO (Relative) achieves 54.58%,
an +8.43 pp increase over the vanilla model.

Multimodal. RO-GRPO (Relative, E=2) attains the highest Geometry3k score of 41.93%, outper-
forming vanilla LoRA-MoE (E=2) by +0.5 pp and GRPO (LoRA) by +3.49 pp. On WeMath, the
best results are with RO-GRPO (Relative, E=4), which reaches 66.26%, gains of +2.29 pp over
GRPO (LoRA), and +2.52 pp over the best vanilla LoRA-MoE model (at E=2), respectively. On
MathVerse, the top performance of 33.30% is shared by GRPO (LoRA) and RO-GRPO (Relative,
E=2).

Overall, across expert sizes, at matched E our routing-aware training either matches or surpasses
vanilla LoRA-MoE on nearly every benchmark, with the largest margins on Geometry3k and We-
Math. These results reaffirm that aligning the router with mechanism-aware rewards translates into
stronger task performance.

4.3 ANALYSIS OF ROUTING MECHANISM

Unguided routing under vanilla GRPO is brittle. At E=2 in the multimodal setting, vanilla
LoRA-MoE appears confident (Entropy 0.619) but exhibits routing collapse (MSE 0.038). At larger
E, the raw MSE decreases (e.g., multimodal 0.019 and 0.012 for E=4 and E=8), yet accuracy does
not reliably improve and can even drop (Geometry3k score of 28.95% at E=4), revealing instability
in the absence of mechanism-aware feedback.

RO-GRPO restores balance at matched E. Across all experimental configurations, RO-GRPO
reduces or matches the MSE of the vanilla baseline at the same E (unimodal: 0.020→0.016/0.017,
0.009 → 0.009/0.008, 0.008 → 0.006/0.007; multimodal: 0.038 → 0.033/0.036, 0.019 →
0.014/0.013, 0.012→ 0.011/0.010), while maintaining comparable entropy. These improvements
in routing correspond to the largest accuracy gains on Geometry3k, WeMath, and SVAMP.

Routing rewards mitigate text degeneration. On Geometry3k with E=4, the vanilla GRPO
(LoRA-MoE) model exhibits repetitive-loop failures in 7.5% of generations and scores 28.95%. In
contrast, RO-GRPO (Smooth) reduces these failures to 0.17% and RO-GRPO (Relative) eliminates
them entirely, achieving accuracies of 40.10% and 40.27%, respectively.

Mechanism-Aware Rewards outperform Auxiliary Losses. As shown in Tables 1 and 2, the
Aux-Loss baseline consistently underperforms RO-GRPO, particularly on unimodal tasks. While
auxiliary losses successfully reduce routing entropy, they fail to improve load balance, often yielding
higher MSE values compared to our reward-based approach (e.g., 0.036 vs. 0.016 on GSM8K with
E=2). Furthermore, the auxiliary-loss method tends to generate significantly longer sequences
without yielding commensurate accuracy gains, as detailed in Appendix H andAppendix D.

4.4 ABLATION AND CAUSAL VERIFICATION

Ablation experiments on GSM8K confirm our approach’s integrity (Table 3).

Contribution of Reward Components. We first investigate the individual contributions of the
confidence (RH) and balancing (RB) rewards. As shown in Table 3, removing either component
from our best-performing model, RO-GRPO (Smooth), reduces accuracy. Specifically, removing
the balancing reward (w/o RB) or the confidence reward (w/o RH) reduces the GSM8K score
from 91.51% to 90.75% and 89.92%, respectively. This dependency is more pronounced for the RO-
GRPO (Relative) variant: removing its balancing reward (w/o RB) causes performance to drop to
89.01%, below the vanilla baseline. These results demonstrate that the two reward components are
synergistic and critical for optimal performance.

Contribution of the Reward Signal. To ensure performance gains are driven by meaningful feed-
back, we performed a control experiment. In the Shuffled Control, we randomly permuted routing
rewards within each batch, breaking the causal link between an action and its reward. As shown in
Table 3, performance under this condition dropped significantly for both the Smooth (89.23%) and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation and causal analysis on
GSM8K (E=2). Our full RO-GRPO model sig-
nificantly outperforms the vanilla baseline. Sub-
sequent experiments demonstrate that both re-
ward components (RH , RB) are necessary for
optimal performance, and control experiments
validate that the gains are causally driven by our
targeted reward signal.

Configuration GSM8K Entropy MSE
RO-GRPO (Smooth) 91.51 0.639 0.016
RO-GRPO (Relative) 90.22 0.639 0.017
GRPO (LoRA-MoE) 89.39 0.640 0.020
Ablations on Reward Components:

w/o RB (Smooth) 90.75 0.639 0.018
w/o RH (Smooth) 89.92 0.639 0.019
w/o RB (Relative) 89.01 0.638 0.019
w/o RH (Relative) 90.14 0.637 0.019

Causal & Sanity Controls:
Shuffled (Smooth) 89.23 0.640 0.018
Shuffled (Relative) 89.28 0.641 0.020

0.624

0.632

0.640

0.648

En
tro

py

(a1) Only RH: Entropy

0.024

0.032

0.040

M
SE

(a2) Only RH: MSE

0.575

0.600

0.625

0.650

En
tro

py

(b1) Only RB: Entropy

0.030

0.045

0.060

M
SE

(b2) Only RB: MSE

0k 50k 100k 150k
Steps

0.630

0.636

0.642

0.648

En
tro

py

(c1) Smooth: Entropy

0k 50k 100k 150k
Steps

0.018

0.024

0.030

0.036

M
SE

(c2) Smooth: MSE

Figure 5: Training dynamics of routing metrics
when the Rtask is set to zero.

Relative (89.28%) variants, falling to the level of the vanilla GRPO (LoRA-MoE) baseline (89.39%).
This result strongly suggests the gains from RO-GRPO are causally driven by the targeted feedback
from our reward signal, not by an artifact of the reward structure.

5 DISCUSSION

Our experiments demonstrate the empirical success of RO-GRPO across E=2, 4, 8. This section
analyzes why a unified scalar reward can supervise a model’s internal router and why this becomes
more important as E grows. A more detailed derivation is available in Appendix G.

The Rationale for a Curriculum-Based Reward. The Smooth curriculum is effective because
single-objective optimization is suboptimal: rewarding only low entropy degrades balance (MSE
rises), whereas rewarding only balance is initially too weak to shape specialization (Figure 5). By
first encouraging confident routing and then increasing pressure on balance, the curriculum builds
specialized experts and subsequently organizes them. This dynamic mirrors our empirical trends
at E=4, 8, where mechanism-aware supervision not only improves accuracy but also suppresses
degeneration on Geometry3k.

Rewards vs. Auxiliary Losses in RL. A critical insight from our study is the superiority of
mechanism-aware rewards over auxiliary losses in the GRPO framework. When routing supervision
is formulated as a reward, it is integrated into the group-relative advantage calculation. This allows
the model to learn trade-offs: a trajectory with slightly imbalanced routing can still receive a positive
advantage if it yields a correct answer. Conversely, an auxiliary loss applies a uniform penalty to all
trajectories in a batch regardless of their task success. This rigid penalization can suppress useful but
unconventional routing patterns required for complex tasks, leading to the suboptimal performance.
Additionally, our approach requires no extra gradient backpropagation or VRAM overhead.

Grounding the Reward Components. The confidence reward, RH , which promotes low-entropy
routing, can be understood through the Information Bottleneck (IB) principle (Tishby et al., 2000).
The IB principle states that an optimal representation should compress an input while preserving
task-relevant information. In our framework, the router’s decision acts as this bottleneck. By re-
warding low-entropy (confident) decisions, RO-GRPO incentivizes the router to learn a minimal
sufficient representation of its input. It is encouraged to discard noisy features and focus on infor-
mation predictive of task success, a process that naturally fosters expert specialization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

The balancing reward RB directly optimizes parameter utilization. Maximizing our balancing re-
ward, which is formulated using MSE, is formally equivalent to minimizing the variance of the
expert load distribution. This ensures the reward signal provides a direct and efficient gradient for
combating routing collapse and ensuring the model leverages its full parametric capacity, a principle
established in supervised MoE training (Shazeer et al., 2017).

6 CONCLUSION

We addressed a core limitation of applying LoRA-MoE to GRPO: the task reward is blind to routing.
RO-GRPO remedies this by transforming routing statistics into a mechanism-aware reward that
plugs into GRPO without architecture changes or extra stages. Across E=2, 4, 8 and both unimodal
and multimodal math reasoning, RO-GRPO improves load balance at matched E, boosts accuracy,
and reduces text degeneration. These results indicate that reinforcement learning can align not only
external behavior but also internal mechanisms, suggesting a path toward principled alignment for
complex modular architectures.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide a comprehensive set of resources. The com-
plete source code for all experiments, including model implementation and training and evaluation
scripts, is available in the supplementary material. Further details on the experimental environment,
including the specific hardware and software configurations used, are documented in Appendix A.
A complete list of hyperparameters for all model configurations and our routing reward strategies is
provided in Appendix B, alongside pseudocode for our reward calculation algorithms.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding mixture
of experts in deep learning, 2022. URL https://arxiv.org/abs/2208.02813.

Kyunghyun Cho and Yoshua Bengio. Exponentially increasing the capacity-to-computation ratio
for conditional computation in deep learning. arXiv preprint arXiv:1406.7362, 2014.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Peizhuang Cong, Aomufei Yuan, Shimao Chen, Yuxuan Tian, Bowen Ye, and Tong Yang. Prediction
is all moe needs: Expert load distribution goes from fluctuating to stabilizing. arXiv preprint
arXiv:2404.16914, 2024a.

Peizhuang Cong, Aomufei Yuan, Shimao Chen, Yuxuan Tian, Bowen Ye, and Tong Yang. Prediction
is all moe needs: Expert load distribution goes from fluctuating to stabilizing, 2024b. URL
https://arxiv.org/abs/2404.16914.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. Stable-
moe: Stable routing strategy for mixture of experts. arXiv preprint arXiv:2204.08396, 2022.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loramoe: Alleviate world knowledge forgetting in large language models via moe-style
plugin, 2024. URL https://arxiv.org/abs/2312.09979.

10

https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2208.02813
https://arxiv.org/abs/2404.16914
https://arxiv.org/abs/2312.09979

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T.
Kwok, and Yu Zhang. Mixture of cluster-conditional lora experts for vision-language instruction
tuning, 2024. URL https://arxiv.org/abs/2312.12379.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024. URL https://arxiv.org/abs/2403.
14608.

Daniel Fidel Harvey, George Weale, and Berk Yilmaz. Optimizing moe routers: Design, imple-
mentation, and evaluation in transformer models, 2025. URL https://arxiv.org/abs/
2506.16419.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback, 2024. URL https://arxiv.org/abs/2312.14925.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.
16668.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan
Zhang, Lei Duan, Jie Zuo, Cal Yang, and Mingjie Tang. Mixlora: Enhancing large language
models fine-tuning with lora-based mixture of experts, 2024a. URL https://arxiv.org/
abs/2404.15159.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024b.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning,
2021. URL https://arxiv.org/abs/2105.04165.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts, 2024. URL https://arxiv.org/abs/2310.
02255.

Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory, and
applications, 2025. URL https://arxiv.org/abs/2503.07137.

Nabil Omi, Siddhartha Sen, and Ali Farhadi. Load balancing mixture of experts with similarity
preserving routers, 2025. URL https://arxiv.org/abs/2506.14038.

11

https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2312.12379
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2506.16419
https://arxiv.org/abs/2506.16419
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2404.15159
https://arxiv.org/abs/2404.15159
https://arxiv.org/abs/2105.04165
https://arxiv.org/abs/2310.02255
https://arxiv.org/abs/2310.02255
https://arxiv.org/abs/2503.07137
https://arxiv.org/abs/2506.14038

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems?, 2021. URL https://arxiv.org/abs/2103.07191.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma
GongQue, Shanglin Lei, Zhe Wei, Miaoxuan Zhang, Runfeng Qiao, Yifan Zhang, Xiao Zong,
Yida Xu, Muxi Diao, Zhimin Bao, Chen Li, and Honggang Zhang. We-math: Does your
large multimodal model achieve human-like mathematical reasoning?, 2024. URL https:
//arxiv.org/abs/2407.01284.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
advances in neural information processing systems, 34:17555–17566, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners, 2022. URL https://arxiv.
org/abs/2210.03057.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method, 2000.
URL https://arxiv.org/abs/physics/0004057.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts, 2024a. URL https://arxiv.org/abs/2408.
15664.

Xujia Wang, Haiyan Zhao, Shuo Wang, Hanqing Wang, and Zhiyuan Liu. Malora: Mixture
of asymmetric low-rank adaptation for enhanced multi-task learning, 2024b. URL https:
//arxiv.org/abs/2410.22782.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts, 2024. URL https://arxiv.
org/abs/2404.13628.

12

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2407.01284
https://arxiv.org/abs/2407.01284
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2410.22782
https://arxiv.org/abs/2410.22782
https://arxiv.org/abs/2404.13628
https://arxiv.org/abs/2404.13628

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Peng Gao, and Hongsheng Li. Mathverse: Does your multi-modal llm
truly see the diagrams in visual math problems?, 2024. URL https://arxiv.org/abs/
2403.14624.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

13

https://arxiv.org/abs/2403.14624
https://arxiv.org/abs/2403.14624

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A COMPUTING INFRASTRUCTURE AND SOFTWARE

All experiments were conducted on a high-performance computing cluster. The specific hardware
and software configurations are provided to ensure full reproducibility.

Hardware: Each experiment was run on a single node equipped with 8x NVIDIA A800 (80GB
VRAM) GPUs. Each node was powered by an Intel(R) Xeon(R) Platinum 8336C CPU with 1875
GB of system RAM.

Software: The operating system was Ubuntu 20.04.6 LTS. The core software stack included:

• Python 3.10.18
• PyTorch 2.5.1 (built with CUDA 12.1)
• CUDA Toolkit 12.2
• Hugging Face Transformers 4.51.0
• Hugging Face PEFT 0.14.0
• The ms-swift framework, version 3.7.0.dev0, was used for all training scripts.

B HYPERPARAMETER AND IMPLEMENTATION DETAILS

Table 4: Hyperparameters for all experiments.

Parameter Value

GRPO Configuration
Learning Rate 1× 10−5

KL Coefficient (β) 0.1
Batch Size 64
Generations per Prompt (k) 8
Epochs (Unimodal) 1
Epochs (Multimodal) 3

LoRA / LoRA-MoE Configuration
LoRA Rank (r) 16
LoRA-MoE Rank (r) 8 (per expert)
Number of Experts (E) {2,4,8}
LoRA Alpha (α) 32
LoRA Dropout 0.05

RO-GRPO Specific (Optimal Values)
Global Routing Weight (wroute) 0.2

Smooth Strategy
λstart
H (Entropy Weight Start) 0.5

λend
B (Balance Weight End) 2.0

Sigmoid Steepness (k) 20.0
Sigmoid Center (c) 0.5

Relative Strategy
History Window Size (Shist) 1000
Reward Constant (C) 1.0

Note: Sigmoid steepness (k) controls the transi-
tion speed of the curriculum, and the center (c)
defines the transition point in terms of training
progress.

Our approach to hyperparameter selection is
designed to be both systematic and efficient.
For established components of the training
pipeline, such as the GRPO algorithm and the
LoRA architecture, we adopted values from
seminal works and common practices to estab-
lish strong, competitive baselines. Our primary
tuning efforts were concentrated on the novel
parameters introduced by the RO-GRPO frame-
work, ensuring a rigorous evaluation of our core
contributions.

Core Training and Architecture Parameters.
For all experiments, we used a learning rate of
1×10−5 and a batch size of 64. The GRPO con-
figuration included a KL coefficient (β) of 0.1
and sampling 8 responses per prompt (k = 8)
for advantage estimation. For the base LoRA
architecture, we set the rank to r = 16 and al-
pha to α = 32. For our LoRA-MoE models, we
used E ∈ {2, 4, 8} experts, each with a rank of
r = 8 and an alpha of α = 32, maintaining a
similar parameter budget. The training duration
was set to 1 epoch for the unimodal Numina-
Math dataset and 3 epochs for the more com-
plex multimodal Geometry3k dataset to ensure
convergence. The external task reward weight
was consistently set to 1.0.

RO-GRPO Routing Reward Parameters.
The most critical hyperparameters are those
governing the mechanism-aware routing re-
ward, Rroute. We conducted a grid search to de-
termine the optimal settings for both our adap-
tive strategies, using a held-out validation set.

For the Curriculum-Based Reward Scheduling (Smooth) strategy, we explored the key parame-
ters controlling the curriculum’s shape and intensity. The search space included the final load bal-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ancing weight λend
B ∈ {1.0, 2.0, 5.0}, the initial entropy weight λstart

H ∈ {0.5, 1.0}, and the sigmoid
steepness k ∈ {15, 20, 25}. The pseudocode for this strategy is detailed in Algorithm 2.

For the Relative Improvement Gating (Relative) strategy, the key parameter is the
history size, which defines the window for the moving average baseline. We searched over
values in {100, 500, 1000}. The logic for this strategy is presented in Algorithm 1.

A separate grid search was performed for the global routing reward weight, which scales the entire
Rroute term, across the range {0.1, 0.2, 0.5}. Our experiments indicated that a weight of 0.2 provided
the best trade-off between improving task accuracy and optimizing routing efficiency (i.e., minimiz-
ing load balancing MSE and routing entropy). This value was used for all reported RO-GRPO
results.

The final, optimal hyperparameters selected through this process are summarized in Table 4.

Algorithm 1 RO-GRPO Reward Calculation
(Relative Strategy)

Input: Routing statistics stats, history buffer
Bhist
Parameters: Reward constant C, history buffer
size Shist

{Require sufficient history to establish a baseline}

if |Bhist| < Shist then
return 0

end if

{Compute metrics for the current sample}
(Mcurr, H̄curr)← ComputeMetrics(stats)

{Compute historical average baseline}
Mhist ← Average(Bhist.mse)
H̄hist ← Average(Bhist.entropy)

{Grant reward only if both metrics improve}
ifMcurr <Mhist and H̄curr < H̄hist then

Rroute ← C
else

Rroute ← 0
end if

{Update the history buffer with current metrics}
Update(Bhist, (Mcurr, H̄curr))

return Rroute =0

Algorithm 2 RO-GRPO Reward Calculation
(Smooth Strategy)

Input: Routing statistics stats, current step tcurr,
max steps tmax
Parameters: Global weight wroute, entropy start
weight λstart

H , balance end weight λend
B , sigmoid cen-

ter c, sigmoid steepness k

{Calculate curriculum progress and sigmoid
value}
p← tcurr/tmax

σ ← (1 + e−k(p−c))−1

{Schedule the weights for entropy and balance}
wH ← λstart

H · (1− σ)
wB ← λend

B · σ

{Compute average normalized metrics from stats}

H̄norm ← AverageNormalizedEntropy(stats)
Mnorm ← AverageNormalizedMSE(stats)

{Calculate final reward (a negative penalty)}
Rroute ← −wroute · (wH · H̄norm + wB · Mnorm)

return Rroute =0

C SYSTEM PROMPT

We used a consistent system prompt for all models during both training and evaluation to encourage
step-by-step reasoning. The prompt is provided below:

A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the
answer.The reasoning process and answer are enclosedwithin <think>
</think> and<answer> </answer>tags, respectively, i.e., <think>
reasoning process here</think><answer> answer here </answer>

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D QUALITATIVE CASE STUDY

To provide a comprehensive qualitative analysis of the impact of our method, we present case studies
spanning both unimodal arithmetic reasoning (GSM8K) and multimodal geometric reasoning (Ge-
ometry3K). Tables 5 and Table 6 contrast the specific generation trajectories of the baseline meth-
ods against our RO-GRPO framework. These examples empirically demonstrate that RO-GRPO not
only corrects the logical hallucinations and repetitive loops observed in baselines to ensure higher
accuracy, but also achieves these correct solutions with reduced token consumption, thereby improv-
ing inference efficiency.

Table 5: Case study comparing method outputs on a sample from the GSM8K benchmark.

Aspect Content

Problem Mary is an avid gardener. Yesterday, she received 18 new potted plants from her favorite plant nursery. She already has 2
potted plants on each of the 40 window ledges of her large country home. Feeling generous, she has decided that she will
give 1 potted plant from each ledge to friends and family tomorrow. How many potted plants will Mary remain with?
Answer:

Solution Yesterday, before receiving the plants, Mary had 2 × 40 = 80 potted plants.
After receiving an additional 18 plants, she therefore had a total of 80 + 18 = 98 potted plants.
Tomorrow, Mary’s plant giveaway will be 40 × 1 = 40 potted plants.
She will therefore remain with 98 − 40 = 58 potted plants.
Final Answer: 58

Base Output <think> First, we calculate the total number of potted plants Mary already has. Since she has 2 potted plants on each
of the 40 window ledges, the total is 2 × 40 = 80 potted plants.
Next, we determine how many potted plants she will give away. Since she plans to give 1 potted plant from each of the
40 window ledges, she will give away 1 × 40 = 40 potted plants.
Finally, we subtract the number of potted plants she gives away from the total number she originally had. So,
80 − 40 = 40.
Therefore, after giving away the potted plants, Mary will remain with 40 potted plants. </think>
<answer>40</answer>

GRPO
(LoRA-
MoE)
Output

<think> First, we calculate the total number of potted plants Mary already has. Since she has 2 potted plants on each
of the 40 window ledges, the total is 2 × 40 = 80 potted plants.
Next, we determine how many potted plants she will give away. Since she plans to give 1 potted plant from each of the
40 window ledges, she will give away 1 × 40 = 40 potted plants.
Finally, we subtract the number of potted plants she gives away from the total number she originally had. So, 80− 40 =
40.
Therefore, the number of potted plants Mary will remain with is 40. </think> <answer> 40
</answer>

Aux-Loss
(LoRA-
MoE)
Output

<think>
Let’s break down the problem step by step:
1. Initial Plants:
- Mary already has 2 potted plants on each of the 40 window ledges.
- Therefore, the total number of plants she initially has is 2 × 40 = 80 plants.
2. Plants Given Away:
- Mary plans to give 1 potted plant from each ledge to friends and family.
- Since there are 40 window ledges, she will give away 1 × 40 = 40 plants.
3. New Plants Received:
- Mary received 18 new potted plants from her plant nursery yesterday.
4. Total Plants After Receiving New Ones:
- Adding the new plants to her initial count, the total becomes 80 + 18 = 98 plants.
5. Final Count After Giving Away Plants:
- Subtracting the 40 plants she gives away from the total, we get 98 − 40 = 58 plants remaining. </think>
<answer>
Therefore, the number of potted plants Mary will remain with is 58 . </answer>

RO-GRPO
(Smooth)
Output

<think> First, we calculate the total number of potted plants Mary already has. Since she has 2 potted plants on each
of the 40 window ledges, the total is 2 × 40 = 80 potted plants.
Next, we consider the 18 new potted plants she received yesterday. Adding these to her existing plants gives 80+18 = 98
potted plants in total.
Mary plans to give away 1 potted plant from each of the 40 window ledges. This means she will give away 40× 1 = 40
potted plants.
To find out how many potted plants she will have left after giving some away, we subtract the number of plants given
away from the total number of plants she has: 98− 40 = 58. </think> <answer> Mary will remain with 58 potted
plants. </answer>

Continued on next page

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Aspect Content

RO-GRPO
(Relative)
Output

<think> Mary initially has 2 potted plants on each of the 40 window ledges. So, the total number of potted plants she
has before receiving the new ones is:

2 plants/ledge × 40 ledges = 80 plants

After receiving 18 new potted plants, the total number of potted plants becomes:

80 plants + 18 plants = 98 plants

Mary plans to give away 1 potted plant from each of the 40 window ledges. Therefore, the number of plants she will give
away is:

1 plant/ledge × 40 ledges = 40 plants

Subtracting the number of plants given away from the total number of plants gives us the number of plants Mary will
remain with:

98 plants − 40 plants = 58 plants

</think> <answer> Mary will remain with 58 potted plants. </answer>

Analysis Both the Base Model and GRPO (LoRA-MoE) ignore the 18 new potted plants, leading to an incorrect answer.
In contrast, our RO-GRPO models successfully integrate all information to derive the correct solution. Moreover, RO-
GRPO generates fewer tokens than the Aux-Loss method when both yield correct results, with Smooth reducing the
count by approximately 25% and Relative by 10%. This demonstrates that our mechanism-aware rewards foster robust
reasoning and address the core logical deficiencies observed in the baselines, moving beyond superficial format adherence.

Table 6: Case study comparing model outputs on a Geometry3k geometry problem.

Aspect Content

Problem
Find x.

Answer 1

Base Output <think> To find the value of x, we need to use the property that the slopes of two parallel lines are equal. From the
image, we can see that the lines 2x + 3 and 6 − x are parallel, and the lines 4

3y + 1 and 2y are parallel.
First, let’s find the slope of the line 2x+3. The equation 2x+3 can be rewritten in the slope-intercept form y = mx+b,
where m is the slope. Here, the slope is 2.
Next, let’s find the slope of the line 6− x. Rewriting 6− x in the slope-intercept form, we get y = −x+6. The slope
here is -1.
Since the lines 2x + 3 and 6 − x are parallel, their slopes must be equal. Therefore, we set the slopes equal to each
other:

2 = −1

This is a contradiction, which means there might be a misunderstanding in the interpretation of the problem. However,
if we consider the slopes of the lines 4

3y + 1 and 2y, we can find the slope of 2y by rewriting it in the slope-intercept
form. The equation 2y can be rewritten as y = 2

1y, so the slope is 2.
Since the lines 4

3y + 1 and 2y are parallel, their slopes must be equal. Therefore, we set the slopes equal to each other:

4

3
= 2

This is also a contradiction, but it suggests that the problem might be misinterpreted. Given the typical problem setup, we
should consider the slopes of the lines in the context of the problem. If we assume the problem is correctly set up and we
need to find x such that the lines are parallel, we can use the fact that the slopes must be equal.
Since the problem setup is not clear, we can assume the correct interpretation is that the slopes of the lines must be equal.
Therefore, we can set the slopes equal to each other and solve for x.
The correct interpretation should be that the slopes of the lines must be equal, and since the problem setup is not clear, we
can assume the correct interpretation is that the slopes of the lines must be equal. Therefore, we can set the slopes equal
to each other and solve for x.
The correct answer is x = 3. </think>
<answer> 3 </answer>

Continued on next page

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Aspect Content

GRPO
(LoRA)
Output

<think> To find the value of x, we need to use the property that the slopes of two parallel lines are equal. From the
diagram, we can see that the lines 2x + 3 and 6 − x are parallel, and the lines 4

3y + 1 and 2y are parallel.
First, let’s find the slope of the line 2x + 3. The slope-intercept form of a line is y = mx + b, where m is the slope.
Rewriting 2x + 3 in slope-intercept form, we get

y = −2x + 3,

so the slope of the line 2x + 3 is −2.
Next, let’s find the slope of the line 6 − x. Rewriting 6 − x in slope-intercept form, we get

y = x − 6,

so the slope of the line 6 − x is 1.
Since the lines 2x + 3 and 6 − x are parallel, their slopes must be equal:

−2 = 1.

This is a contradiction, so we need to re-evaluate the problem. The correct interpretation is that the slopes of the lines
2x + 3 and 6 − x are not directly comparable as they are not in the same form. Instead, we should consider the slopes
of the lines 4

3y + 1 and 2y.
Rewriting 4

3y + 1 in slope-intercept form, we get

y =
4

3
x +

1

3
,

so the slope of the line 4
3y + 1 is 4

3 .
Rewriting 2y in slope-intercept form, we get

y = x,

so the slope of the line 2y is 1.
Since the lines 4

3y + 1 and 2y are parallel, their slopes must be equal:

4

3
= 1.

This is also a contradiction, so we need to re-evaluate the problem again. The correct interpretation is that the slopes of
the lines 2x + 3 and 6 − x are not directly comparable as they are not in the same form. Instead, we should consider
the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

The correct interpretation is that the slopes of the lines 2x + 3 and 6 − x are not directly comparable as they
are not in the same form. Instead, we should consider the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

The correct interpretation is that the slopes of the lines 2x + 3 and 6 − x are not directly comparable as they
are not in the same form. Instead, we should consider the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

The correct interpretation is that the slopes of the lines 2x + 3 and 6 − x are not directly comparable as they
are not in the same form. Instead, we should consider the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

... (Repetitive-loop until hitting the maximum length)

Continued on next page

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Aspect Content

GRPO
(LoRA-
MoE)
Output

<think> To solve for x, we need to understand the relationship between the vectors and the given expressions. The
vectors are parallel, which means their slopes must be equal.
The slope of the vector 2x + 3 is the coefficient of x, which is 2. The slope of the vector 6 − x is the coefficient of x,
which is −1.
Since the vectors are parallel, their slopes must be equal:

2 = −1.

However, this is not possible as the slopes are not equal. This indicates that the problem might be misinterpreted or there
might be a misunderstanding in the setup. Given the setup, let’s assume the vectors are meant to be parallel in a different
context or there might be a need to re-evaluate the problem constraints.
Given the setup, the model keeps assuming the vectors are meant to be parallel in a different context and repeatedly
“re-evaluates” the constraints without reaching a conclusion or producing an <answer> tag.

Since the problem setup seems to be incorrect or misinterpreted, let’s assume the vectors are meant to be parallel
in a different context or there might be a need to re-evaluate the problem constraints.

Given the setup, the model keeps assuming the vectors are meant to be parallel in a different context and repeat-
edly “re-evaluates” the constraints without reaching a conclusion or producing an <answer> tag.

Since the problem setup seems to be incorrect or misinterpreted, let’s assume the vectors are meant to be parallel
in a different context or there might be a need to re-evaluate the problem constraints.

Given the setup, the model keeps assuming the vectors are meant to be parallel in a different context and repeat-
edly “re-evaluates” the constraints without reaching a conclusion or producing an <answer> tag.

Since the problem setup seems to be incorrect or misinterpreted, let’s assume the vectors are meant to be parallel
in a different context or there might be a need to re-evaluate the problem constraints.

... (Repetitive-loop until hitting the maximum length)

Aux-Loss
(LoRA-
MoE)
Output

<think>
To solve for x, we use the property of parallel lines and corresponding angles. The angles formed by the transversal with
the parallel lines are equal.
Given:
– The top left angle is 2x + 3.
– The top right angle is 4

3y + 1.
– The bottom left angle is 6 − x.
– The bottom right angle is 2y.
Since the lines are parallel, the corresponding angles are equal. Therefore, we can set up the following equations:

2x + 3 =
4

3
y + 1, 6 − x = 2y.

From the second equation,

6 − x = 2y ⇒ y =
6 − x

2
.

Substitute y into the first equation:

2x + 3 =
4

3

(
6 − x

2

)
+ 1 =

24 − 4x

6
+ 1.

Multiply both sides by 6 to clear the denominator:

6(2x + 3) = 24 − 4x + 6.

So

12x + 18 = 30 − 4x ⇒ 16x = 12 ⇒ x =
12

16
=

3

4
.

Thus, the value of x is 3
4 .

</think>

<answer>
3

4
</answer>

Continued on next page

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Aspect Content

RO-GRPO
(Smooth)
Output

<think> The image shows two expressions involving x and y. Focusing on the relationship needed to determine x, we
equate the angles labeled 2x + 3 and 6 − x:

2x + 3 = 6 − x.

Adding x to both sides and subtracting 3 from both sides gives

2x + x = 6 − 3 ⇒ 3x = 3,

so
x = 1.

</think>
<answer> 1 </answer>

RO-GRPO
(Relative)
Output

<think> To find x, we initially consider whether the slopes of the intersecting lines must be equal because of paral-
lelism. We might try to read off “slopes” from expressions like 2x+3 and 6−x, leading to inconsistent equalities such
as

2 = −1,

or, from 4
3y + 1 and 2y,

4

3
= 2,

which are clearly impossible. This indicates that the slope-based interpretation is flawed.
We then reconsider the diagram and instead use the fact that the angles labeled 2x + 3 and 6 − x are equal (vertical or
corresponding angles). Therefore,

2x + 3 = 6 − x.

Solving,
2x + x = 6 − 3 ⇒ 3x = 3 ⇒ x = 1.

</think>
<answer> x = 1 </answer>

Analysis The GRPO (LoRA) and GRPO (LoRA-MoE) models both enter a repetitive reasoning loop when trying to enforce
parallel-line slope constraints, never producing a valid final answer before hitting the generation limit.
In contrast, the Aux-Loss (LoRA-MoE) model produces a clean and well-structured chain-of-thought with explicit equa-
tions for corresponding angles, but still converges to the wrong solution x = 3

4 .
RO-GRPO (Smooth) directly writes down and solves the key equation 2x + 3 = 6 − x, obtains the correct solution
x = 1, and uses the fewest tokens, but it omits a detailed explanation of how this equation is grounded in the geometry
of the diagram.
RO-GRPO (Relative) first explores an incorrect slope-based interpretation, then reflects, switches to the correct geomet-
ric constraint 2x + 3 = 6 − x, and finally outputs the correct answer x = 1. This trajectory best demonstrates robust
reflective reasoning while using roughly half as many tokens as the Aux-Loss model (about 282 vs. 523), reinforcing
that auxiliary-loss supervision mainly inflates token length without reliably improving geometric reasoning performance.

E VISUALIZATION OF EXPERT SPECIALIZATION

To better understand the internal dynamics of the RO-GRPO framework, we provide a qualitative
analysis of expert utilization across different reasoning tasks. In our setup, all experts are trained
through a learned router, and we integrate three LoRA-MoE modules into each FFN layer. Con-
sequently, the final behavior of each token results from a composition of routing decisions across
multiple layers, rather than the output of a single expert. Unlike recent approaches such as MAL-
oRA (Wang et al., 2024b) and MoLE (Wu et al., 2024), which explicitly assign experts to specific
domains or tasks, our experts emerge from end-to-end training and are not bound to fixed task la-
bels. As a result, we do not observe a rigid one-to-one mapping between specific experts and specific
reasoning skills, but soft specialization does occur.

Figure 6 illustrates the contribution of experts within a LoRA-MoE module across different subsets
of the MathVista benchmark. We find that different experts are preferentially activated for different
types of MathVista problems, indicating partial task-level specialization. At the same time, the
distributions remain soft: no expert is exclusively dedicated to a single subset, and several experts
contribute non-trivially across many tasks. We also observe systematic differences between prefill
and decode: some experts are used more heavily during the prefill phase, when the model is ingesting
and structuring the multimodal input, whereas others become more prominent during the decode
phase, when the model produces multi-step reasoning and final answers. Taken together, these
patterns suggest that RO-GRPO encourages partial specialization of experts across both tasks and
phases, but the emergent structure is graded rather than perfectly disentangled.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

geometry diagram

natural im
age

synthetic s
cene

bar ch
art

scie
ntific

 figure

functio
n plot

table

abstra
ct s

cene

document im
age

line plot

scatter plot

puzzle
 test

Task Tag

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
on

tri
bu

tio
n

MathVista · prefill phase · layer 16 · up_proj
Expert 0 Expert 1 Expert 2 Expert 3

(a) Prefill Phase Expert Contribution

geometry diagram

scie
ntific

 figure

synthetic s
cene

bar ch
art

natural im
age

functio
n plot

table

puzzle
 test

scatter plot

abstra
ct s

cene
line plot

document im
age

Task Tag

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
on

tri
bu

tio
n

MathVista · decode phase · layer 16 · up_proj
Expert 0 Expert 1 Expert 2 Expert 3

(b) Decode Phase Expert Contribution

Figure 6: Visualization of expert contribution ratios in a representative LoRA-MoE layer across
different MathVista subtasks. (a) Shows the expert contribution during the prefill stage. (b) Shows
the expert contribution during the decode stage.

F ADDITIONAL EXPERIMENTAL RESULTS

This section reports supplementary results for two extended settings. First, we scale the base models
to Qwen2.5-32B and replicate both unimodal and multimodal experiments under the same training
configuration as in Section 4. Second, we further evaluate RO-GRPO under a top-2 expert routing
configuration on the 7B models. In this setting, the router selects the two most probable experts per
token, and the corresponding LoRA updates are aggregated accordingly.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Unimodal mathematical reasoning results for Qwen2.5-32B-Instruct on NuminaMath-TIR-
2k. We report accuracy (%) on GSM8K, MATH, SVAMP, and MGSM, together with routing entropy
(E) and load-balancing MSE (B).

Unimodal Mathematical Reasoning (Qwen2.5-32B-Instruct on NuminaMath-TIR-2k)

Method #Experts GSM8K MATH SVAMP MGSM Entropy MSE

GRPO (LoRA) 1 94.69 74.46 93.00 36.58 - -

GRPO (LoRA-MoE)
2 94.47 75.32 92.33 34.95 0.676 0.005
4 94.69 75.96 93.33 37.42 0.679 0.003
8 94.77 75.16 93.00 38.04 0.682 0.002

RO-GRPO (Smooth)
2 95.83 77.28 93.00 38.84 0.676 0.005
4 94.84 76.40 93.67 44.22 0.680 0.003
8 94.92 75.28 93.67 39.56 0.681 0.002

RO-GRPO (Relative)
2 95.07 75.74 93.00 38.91 0.676 0.005
4 95.15 76.96 93.00 45.78 0.679 0.003
8 94.69 77.26 92.33 47.16 0.681 0.002

Table 8: Multimodal mathematical reasoning results for Qwen2.5-VL-32B-Instruct on Geometry3k.
All metrics are reported as accuracy (%) for Geo3k, MathVista, MathVerse, and WeMath, with
routing entropy (E) and load-balancing MSE (B).

Multimodal Mathematical Reasoning (Qwen2.5-VL-32B-Instruct on Geometry3k)

Method #Experts Geo3k MathVista MathVerse WeMath Entropy MSE

GRPO (LoRA) 1 46.76 56.70 43.35 76.32 - -

GRPO (LoRA-MoE)
2 47.59 56.00 42.34 76.09 0.667 0.008
4 47.25 57.30 43.22 75.86 0.672 0.007
8 48.75 58.10 41.57 74.89 0.675 0.006

RO-GRPO (Smooth)
2 47.92 55.80 43.12 75.57 0.669 0.008
4 47.92 55.60 42.31 76.26 0.671 0.007
8 49.25 55.80 43.12 76.95 0.675 0.005

RO-GRPO (Relative)
2 47.75 57.20 43.65 75.23 0.667 0.008
4 47.09 55.90 43.10 75.80 0.671 0.006
8 47.92 57.30 42.84 77.53 0.675 0.005

Tables 7 and 8 present unimodal and multimodal mathematical reasoning results for the 32B mod-
els. Tables 9 and 10 summarize the corresponding top-2 routing ablations on the 7B models. All
accuracy numbers are reported in percentage, and routing statistics are summarized by the average
routing entropy (E) and load-balancing mean squared error (B), consistent with the main tables.

G DETAILED THEORETICAL ANALYSIS

This appendix provides the detailed mathematical derivations and expanded interpretations for the
theoretical analysis.

G.1 CONSTRAINED OPTIMIZATION INTERPRETATION

The RO-GRPO framework can be viewed as a practical, penalty-based approach to solving a con-
strained policy optimization problem. The objective is to maximize the expected task reward, subject

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Unimodal mathematical reasoning results for Qwen2.5-7B-Instruct on NuminaMath-TIR-
2k under top-2 expert routing. All models use LoRA-MoE adapters with different expert counts E.

Unimodal Mathematical Reasoning (Qwen2.5-7B-Instruct on NuminaMath-TIR-2k)

Method #Experts GSM8K MATH SVAMP MGSM Entropy MSE

GRPO (LoRA-MoE) 4 89.39 69.96 90.67 50.51 0.334 0.032
8 90.37 70.30 92.00 52.65 0.225 0.039

RO-GRPO (Smooth) 4 89.92 69.88 92.00 46.00 0.334 0.031
8 89.76 70.68 92.00 54.62 0.225 0.039

RO-GRPO (Relative) 4 89.92 70.24 92.00 49.45 0.334 0.032
8 90.45 70.14 91.67 45.60 0.225 0.039

Table 10: Multimodal mathematical reasoning results for Qwen2.5-VL-7B-Instruct on Geometry3k
under top-2 expert routing. Metrics are reported as accuracy (%) on Geo3k, MathVista, MathVerse,
and WeMath, together with routing entropy (E) and load-balancing MSE (B).

Multimodal Mathematical Reasoning (Qwen2.5-VL-7B-Instruct on Geometry3k)

Method #Experts Geo3k MathVista MathVerse WeMath Entropy MSE

GRPO (LoRA-MoE) 4 40.27 58.60 30.51 63.22 0.325 0.061
8 41.10 60.80 31.19 65.06 0.221 0.068

RO-GRPO (Smooth) 4 39.77 62.20 16.50 62.07 0.328 0.059
8 37.77 61.40 18.38 57.59 0.219 0.065

RO-GRPO (Relative) 4 41.60 58.50 32.56 66.03 0.331 0.043
8 41.43 58.10 32.82 64.54 0.222 0.067

to constraints on the policy’s internal routing behavior:

max
θ

Ey∼πθ
[Rtask(y)]

subject to Ey∼πθ
[H̄norm(y)] ≤ εH ,

Ey∼πθ
[Mnorm(y)] ≤ εM ,

(9)

where εH and εM are desired thresholds for the average normalized routing entropy and load bal-
ancing MSE, respectively.

The standard method for solving such a problem is via its Lagrangian relaxation. The Lagrangian
L(θ, λH , λM) is:

L =E[Rtask]− λH(E[H̄norm]− εH)

− λM (E[Mnorm]− εM),
(10)

where λH , λM ≥ 0 are the Lagrange multipliers. Our RO-GRPO objective can be expressed as:

max
θ

E
[
Rtask − wroute

(
wH(t) · H̄norm + wB(t) · Mnorm

)]
. (11)

Comparing our objective in Eq. equation 11 with the Lagrangian in Eq. equation 10 reveals that
RO-GRPO maximizes a simplified Lagrangian. The weights wH(t) and wB(t) function as fixed
(or scheduled) Lagrange multipliers, and the constraint thresholds εH , εM are implicitly absorbed
into the objective. This formulation positions RO-GRPO as a fixed-penalty method, which gains
significant simplicity by integrating the constraints directly into the scalar reward signal.

G.2 PARAMETER UTILIZATION AND VARIANCE MINIMIZATION

The balancing reward, RB , is grounded in a direct mathematical relationship with load distribution
variance. We show that minimizing our MSE-based metric is equivalent to minimizing the variance
of expert utilization.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

5000 7500 10000 12500 15000
Average Inference Latency (ms/sample)

28

30

32

34

36

38

40

42

44

Ta
sk

 A
cc

ur
ac

y
(%

)

Method
GRPO (LoRA-MoE)
Aux-loss (LoRA-MoE)
RO-GRPO (Smooth)
RO-GRPO (Relative)
GRPO (LoRA)
Config
E=2 / r=16
E=4 / r=32
E=8 / r=64

Better Trade-off

Figure 7: Inference latency vs. task performance trade-off on the Geometry3k. RO-GRPO achieves
a superior Pareto frontier compared to baselines, delivering higher accuracy with lower latency.

Let p̄ be the empirical utilization vector over E experts. The variance of this distribution is:

Var(p̄) =
1

E

E∑
e=1

(p̄e − E[p̄])2. (12)

Since
∑

p̄e = 1, the mean utilization E[p̄] = 1/E. Substituting this gives:

Var(p̄) =
1

E

E∑
e=1

(
p̄e −

1

E

)2

. (13)

This expression is precisely the Mean Squared Error (MSE) between the empirical distribution p̄
and a uniform distribution u = (1/E, . . . , 1/E). Therefore, Var(p̄) = MSE(p̄,u).

This equivalence establishes that maximizing our reward RB ∝ −MSE(p̄,u) is directly propor-
tional to minimizing the variance of the expert load. This provides a principled and efficient mech-
anism to promote balanced parameter usage within the RL framework.

H TOKEN LENGTH AND EFFICIENCY ANALYSIS

We evaluate computational cost via token efficiency, defined as the ratio of average output tokens
to task accuracy. As detailed in Tables 11 and 12, RO-GRPO variants consistently optimize this
trade-off. Unlike auxiliary loss, which often inflates generation without commensurate accuracy
gains, RO-GRPO achieves peak accuracy on GSM8K, MATH, and Geometry3k with significantly
reduced token usage. Notably, it improves MGSM accuracy by over 12% and reduces WeMath re-
sponse length by approximately one-third compared to baselines. This reduction in sequence length
directly translates to faster inference, as visualized in Figure 7, where RO-GRPO demonstrates a su-
perior latency-accuracy trade-off. These findings confirm that mechanism-aware routing effectively
suppresses repetitive loops, fostering concise reasoning.

To complement the tabular results, Figure 8 illustrates the training dynamics of response length. We
observe that the unsupervised GRPO baseline sometimes exhibits a rapid increase in token count,
often indicative of reward hacking via verbosity or degeneration into repetitive loops. While the in-
clusion of an auxiliary loss helps curb this tendency, both RO-GRPO strategies maintain consistently
concise generations throughout the training process. This suggests that mechanism-aware rewards
effectively regularize the reasoning process, preventing the model from defaulting to inefficient or
degenerate output patterns.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Steps

200

300

400

500

600

M
ea

n
Le

ng
th

(a) #Experts = 2
0 100 200 300 400

Steps

100

200

300

400

500

600

700

800

M
ea

n
Le

ng
th

(b) #Experts = 4
0 100 200 300 400

Steps

150

200

250

300

350

M
ea

n
Le

ng
th

(c) #Experts = 8

Numina Reward vs Aux-Loss · completions/mean_length
GRPO RO-GRPO(Relative) RO-GRPO(Smooth) Aux-Loss

Figure 8: Evolution of average response length during training on the Geometry3k.

Table 11: Token Efficiency Analysis for Qwen2.5-7B-Instruct on NuminaMath-TIR-2k. We report
Average Tokens (Toks.), Accuracy (Acc.), and Efficiency (Eff.) across four benchmarks. Efficiency
is calculated as Tokens/Accuracy (lower is better). Best results for Accuracy (highest) and Efficiency
(lowest) are highlighted.

Token Efficiency Analysis (Qwen2.5-7B-Instruct on NuminaMath-TIR-2k)

Method Config GSM8K MATH SVAMP MGSM

Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff.

GRPO (LoRA)
16 291.58 88.48 3.30 519.01 70.38 7.37 189.42 90.67 2.09 264.13 50.00 5.28
32 273.63 90.45 3.03 518.91 69.54 7.46 174.04 93.00 1.87 267.09 47.10 5.67
64 276.78 90.14 3.07 503.31 49.02 10.27 176.22 92.67 1.90 272.69 53.67 5.08

GRPO (LoRA-MoE)
2×8 288.39 89.39 3.23 539.38 70.36 7.67 201.58 90.00 2.24 262.19 61.75 4.25
4×8 283.74 89.39 3.17 512.21 70.40 7.28 180.63 91.30 1.98 251.36 46.15 5.45
8×8 271.89 90.22 3.01 525.68 70.44 7.46 190.52 91.00 2.09 259.37 52.04 4.98

Aux-Loss (LoRA-MoE)
2×8 290.40 86.73 3.35 573.58 69.50 8.25 213.32 92.33 2.31 255.01 57.27 4.45
4×8 291.60 87.11 3.35 576.56 70.10 8.22 218.11 91.00 2.40 253.60 56.36 4.50
8×8 289.33 87.04 3.32 577.34 69.54 8.30 215.06 91.33 2.35 254.21 56.66 4.49

RO-GRPO (Smooth)
2×8 264.55 91.51 2.89 511.26 70.64 7.24 182.80 91.00 2.01 252.79 62.18 4.07
4×8 280.22 90.67 3.09 525.68 70.62 7.44 200.17 92.00 2.18 265.45 52.58 5.05
8×8 269.46 90.98 2.96 523.41 69.78 7.50 180.73 92.67 1.95 255.04 52.04 4.90

RO-GRPO (Relative)
2×8 284.16 90.22 3.15 528.60 70.58 7.49 197.65 91.33 2.16 268.27 59.45 4.51
4×8 264.10 89.76 2.94 533.63 69.88 7.64 185.80 93.33 1.99 257.15 54.58 4.71
8×8 258.97 90.52 2.86 510.94 70.18 7.28 182.35 92.67 1.97 256.19 51.96 4.93

I COMPLEXITY ANALYSIS

In this section, we analyze the parameter count, computational complexity (FLOPs), and memory
overhead of RO-GRPO compared to standard GRPO with LoRA and vanilla LoRA-MoE. We denote
the sequence length as T , the hidden dimension as d, the LoRA rank as r, the total number of experts
as E, and the number of active experts per token as K. We assume the model contains L layers
equipped with adapters.

Parameter Complexity. Standard LoRA introduces two matrices A ∈ Rr×d and B ∈ Rd×r

per module, totaling 2dr parameters. LoRA-MoE introduces E experts and a routing projection
Wr ∈ RE×d. The total parameter count per module is:

PLoRA-MoE = E(2dr) + dE = dE(2r + 1). (14)

RO-GRPO utilizes the identical architecture to vanilla LoRA-MoE without introducing any addi-
tional trainable parameters. The scalar state variables required for the reward curriculum (e.g., step
counters) occupy negligible O(1) space.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 12: Token Efficiency Analysis for Qwen2.5-VL-7B-Instruct on Geometry3k.

Multimodal Mathematical Reasoning (Qwen2.5-VL-7B-Instruct on Geometry3k)

Method Config Geo3k MathVista MathVerse WeMath

Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff.

GRPO (LoRA)
16.00 352.89 38.44 9.18 207.66 58.60 3.54 353.19 33.30 10.61 292.07 63.97 4.57
32.00 526.97 38.10 13.83 263.29 59.30 4.44 460.99 23.22 19.85 601.82 53.85 11.18
64.00 446.82 33.28 13.43 393.17 55.90 7.03 715.62 25.43 28.14 743.43 53.91 13.79

GRPO (LoRA-MoE)
2×8 335.64 38.27 8.77 210.52 57.90 3.64 347.25 30.99 11.21 313.59 63.74 4.92
4×8 295.68 28.95 10.21 212.68 56.40 3.77 329.59 30.30 10.88 253.56 63.45 4.00
8×8 362.38 33.11 10.94 230.56 55.00 4.19 360.94 31.78 11.36 327.86 61.49 5.33

Aux-Loss (LoRA-MoE)
2×8 406.79 39.60 10.27 208.38 56.20 3.71 353.08 30.03 11.76 359.87 62.81 5.73
4×8 368.85 41.43 8.90 231.08 60.50 3.82 375.17 27.23 13.78 350.04 62.87 5.57
8×8 337.44 40.43 8.35 205.68 54.40 3.78 349.70 32.13 10.88 301.78 65.80 4.59

RO-GRPO (Smooth)
2×8 244.33 38.94 6.27 139.97 58.70 2.38 221.75 30.48 7.28 191.89 66.09 2.90
4×8 275.37 40.10 6.87 182.87 58.30 3.14 255.43 28.73 8.89 233.97 64.14 3.65
8×8 206.22 38.94 5.30 139.89 58.90 2.38 224.38 27.89 8.05 194.38 64.10 3.03

RO-GRPO (Relative)
2×8 348.29 41.93 8.31 152.97 55.80 2.74 245.84 33.30 7.38 200.36 60.98 3.29
4×8 222.93 40.27 5.54 220.27 60.20 3.66 351.11 31.29 11.22 275.09 66.26 4.15
8×8 285.44 40.16 7.11 178.19 60.10 2.96 295.52 32.03 9.23 273.60 63.97 4.28

Computational Complexity. We focus on the adapter operations, as the frozen backbone cost
O(Td2) remains constant across all methods.

• Standard LoRA: Requires computing B(Ah), incurring 2Tdr FLOPs per module.
• LoRA-MoE (Forward Pass): The router computation hWT

r incurs 2TdE FLOPs. For
the experts, the cost depends on the routing strategy. In dense soft routing , all experts are
active (K = E), costing 2TEdr. In sparse Top-K routing, only K experts are computed,
costing 2TKdr. The total adapter FLOPs per module are O(T (dE +Kdr)).

• Reward Calculation Overhead: RO-GRPO computes routing metrics (entropy and MSE)
post-hoc. Calculating entropy over probability vectors of size E for T tokens scales with
O(TE) per layer. Similarly, the load balancing MSE scales with O(TE) per layer.

Comparing the reward overhead ϵ = O(TE) to the model computation Cmodel ≈ O(TKdr):

ϵ

Cmodel
∝ TE

TKdr
=

E

Kdr
. (15)

Given typical values (d ≈ 103, r ≈ 16, E ≈ 8), we have dr ≫ E and hence Kdr ≫ E for
K ≥ 1. Thus, the computational cost of the mechanism-aware reward is negligible compared to the
forward pass. Furthermore, unlike auxiliary loss approaches, RO-GRPO does not require computing
gradients for a separate loss term (∇θLaux), significantly reducing the backward pass overhead.

Memory Complexity. RO-GRPO requires storing routing distributions to compute the reward at
the end of a generation batch. For L layers, this requires storing a tensor of shape (L, T,E). The
memory complexity is O(LTE). Comparing this to the activation memory required for backpropa-
gation, which scales with O(LTd), the ratio is E/d. Since E ≪ d, the overhead is insignificant.

Table 13: Complexity comparison per layer for a sequence of length T . K denotes the number of
active experts (K = E for dense soft routing). The reward overhead is negligible as E ≪ dr.

Method Parameters FLOPs (Forward) Reward/Loss Overhead Memory Overhead

GRPO (LoRA) 2dr O(Tdr) – –
GRPO (LoRA-MoE) dE(2r + 1) O(T (dE +Kdr)) – –
Aux-Loss (LoRA-MoE) dE(2r + 1) O(T (dE +Kdr)) O(TE) + Backward(Laux) O(LTE)

RO-GRPO (Ours) dE(2r + 1) O(T (dE +Kdr)) O(TE) O(LTE)

26

	Introduction
	Related Work
	Methodology
	Preliminaries: GRPO and LoRA-MoE
	The Challenge: Unguided MoE Routing
	RO-GRPO: Mechanism-Aware Rewards
	Step 1: Quantifying Routing Efficiency.
	Step 2: Formulating the Routing Reward.
	Step 3: Unified Optimization via Policy Gradient.

	Experiments
	Experimental Setup
	Main Results
	Analysis of Routing Mechanism
	Ablation and Causal Verification

	Discussion
	Conclusion
	Computing Infrastructure and Software
	Hyperparameter and Implementation Details
	System Prompt
	Qualitative Case Study
	Visualization of Expert Specialization
	Additional Experimental Results
	Detailed Theoretical Analysis
	Constrained Optimization Interpretation
	Parameter Utilization and Variance Minimization

	Token Length and Efficiency Analysis
	Complexity Analysis

