
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BALANCING THE EXPERTS: UNLOCKING LORA-MOE
FOR GRPO VIA MECHANISM-AWARE REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient Mixture-of-Experts (MoE) architectures, such as LoRA-MoE,
enable strong and generalizable fine-tuning. However, a critical problem arises
when fine-tuning these architectures with advanced reinforcement learning algo-
rithms such as Group Relative Policy Optimization (GRPO). Traditional super-
vised techniques are not naturally compatible with the GRPO objective, and naive
combinations fail to effectively address routing collapse and the underutilization
of MoE adapter parameters. To resolve this disconnect, we introduce Routing-
Optimized Group Relative Policy Optimization (RO-GRPO), a mechanism-aware
framework. It turns internal expert routing statistics collected during training into
a direct reward signal, seamlessly integrating routing supervision into the rein-
forcement fine-tuning (RFT) process. This enables effective optimization of pa-
rameter utilization and improves performance on both unimodal and multimodal
mathematical reasoning tasks, all without extra training stages. Our work pro-
vides the first demonstration that a scalar reward in GRPO can be engineered from
a model’s own internal mechanics to explicitly guide its optimization, extending
alignment from mere behavior tuning to holistic mechanism alignment.

1 INTRODUCTION

Large language models (LLMs) have significantly advanced many artificial intelligence applica-
tions, but their large size poses challenges for practical deployment, especially regarding fine-tuning
efficiency (Han et al., 2024; Hu et al., 2021). Among parameter-efficient fine-tuning (PEFT) ap-
proaches, LoRA-MoE (Dou et al., 2024), which combines Low-Rank Adaptation (LoRA) (Hu et al.,
2021) with a mixture-of-experts (MoE) architecture, has emerged as a particularly promising tech-
nique (Li et al., 2024a; Gou et al., 2024; Mu & Lin, 2025).

However, despite its success in supervised fine-tuning (SFT) (Dou et al., 2024; Li et al., 2024a), ap-
plying LoRA-MoE to reinforcement learning fine-tuning (RFT) frameworks such as Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) presents a key challenge. In SFT, routing is typi-
cally guided by an auxiliary load-balancing loss (Fedus et al., 2022; Lewis et al., 2021; Zoph et al.,
2022; Dai et al., 2022; Wang et al., 2024a). In GRPO, our goal is to employ a loss-free mechanism
that jointly optimizes task performance and routing load through the rollout-time reward signal,
rather than uniformly enforcing the same constraint on all routing decisions via an auxiliary routing
loss. When GRPO relies solely on the external task reward, the training signal remains blind to
internal routing decisions (Omi et al., 2025; Harvey et al., 2025). Without explicit guidance, the
routing mechanism often collapses, leading to severe expert imbalance and underutilization of the
model’s parametric capacity, which limits the effectiveness of the modular architecture.

To bridge this gap, we propose RO-GRPO (Routing-Optimized GRPO), a novel framework that
integrates routing-awareness into the RFT process through a carefully designed mechanism reward.
Our key insight is that routing statistics collected during generation, such as routing entropy and
load distribution, can be transformed into a reward signal that aligns the internal routing mechanism
with task performance (Chen et al., 2022; Cong et al., 2024b). Specifically, we augment the standard
task reward with two complementary components: one promoting confident routing decisions (low
entropy) and another encouraging balanced expert utilization. These routing rewards are integrated
into the GRPO objective, enabling a unified optimization process that requires no auxiliary losses or
architectural modifications (see Figure 1 for a schematic comparison).
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Figure 1: Comparison of standard GRPO and our RO-GRPO.

The main contributions of this paper are as follows:

• To our knowledge, this is the first systematic study of LoRA-MoE architectures within the
RFT framework, identifying and addressing key challenges such as routing collapse and
expert underutilization that arise during GRPO-based training.

• We propose RO-GRPO, a novel framework that integrates routing statistics directly into
the GRPO reward function. This enables the unified optimization of both task performance
and internal routing efficiency without requiring auxiliary losses.

• Our method achieves consistent improvements over baselines (e.g., standard LoRA and
vanilla LoRA-MoE) across all expert counts in both task performance and expert utiliza-
tion, validated across unimodal and multimodal mathematical reasoning benchmarks.

• Our experiments provide the first empirical evidence that a scalar reward in RFT can align
not only a model’s external behavior but also its internal mechanisms, opening new avenues
for the principled alignment of complex model architectures.

2 RELATED WORK

Modular and Mixture-of-Experts PEFT. To enhance the capacity and versatility of PEFT, re-
searchers have integrated Mixture-of-Experts (MoE) principles into LoRA, creating architectures
like LoRA-MoE (Dou et al., 2024), MixLoRA (Li et al., 2024a), and MoCLE (Gou et al., 2024).
These methods have shown effectiveness in reducing task interference and improving knowledge re-
tention. Beyond adapterized MoE, modern routing builds on early conditional computation and deep
MoE ideas (Cho & Bengio, 2014; Eigen et al., 2013) and on system-scale routed Transformers such
as GShard and Switch (Lepikhin et al., 2020; Fedus et al., 2022). Most approaches optimize expert
routing during supervised pretraining or SFT, typically using auxiliary load-balancing objectives to
prevent expert collapse and under-utilization (Shazeer et al., 2017; Fedus et al., 2022). Alternative
balancing mechanisms include the balanced assignment of BASE Layers (Lewis et al., 2021) and
non-parametric routing via Hash Layers (Roller et al., 2021). Training stability and routing fluctua-
tion have been studied extensively, with design guidelines in ST-MoE (Zoph et al., 2022), two-stage
stabilized routing in StableMoE (Dai et al., 2022), and empirical analysis of expert-load dynam-
ics (Cong et al., 2024a). However, these strategies remain predominantly designed for differentiable
supervised training; integrating comparable mechanism-aware supervision into reinforcement fine-
tuning is still underexplored.
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Figure 2: Overview of the RO-GRPO framework. A mechanism-aware reward Rroute is computed
from internal routing statistics and combined with the task reward Rtask. The resulting unified reward
Rtotal guides the GRPO update to jointly optimize task performance and routing efficiency.

Alignment and Optimization of LLMs. Reinforcement Learning from Human Feedback (RLHF)
has become the dominant approach for aligning large language models with human inten-
tions (Ouyang et al., 2022; Kaufmann et al., 2024). Proximal Policy Optimization (PPO) (Schulman
et al., 2017) and its variants, such as Direct Preference Optimization (DPO) (Rafailov et al., 2024)
and Group Relative Policy Optimization (GRPO) (Shao et al., 2024), have demonstrated strong
performance on complex reasoning and instruction following. These RLHF methods typically op-
timize a scalar task-based reward and do not incorporate supervision for internal mechanisms such
as expert routing. In MoE-based models, this limitation can lead to expert collapse or inefficient
parameter utilization when using RLHF directly (Fedus et al., 2022; Harvey et al., 2025). While
auxiliary losses have been used to encourage balanced routing in supervised settings, integrating
such mechanism-aware supervision into reinforcement learning remains an open problem.

3 METHODOLOGY

In this section, we introduce RO-GRPO (Routing-Optimized Group Relative Policy Optimization),
a framework designed to optimize the internal routing of LoRA-MoE models by incorporating
mechanism-aware supervision into the reinforcement learning loop. We first review the prelimi-
naries of GRPO and LoRA-MoE, then describe the core challenge of unguided routing in RLHF,
and finally detail our proposed solution.

3.1 PRELIMINARIES: GRPO AND LORA-MOE

Group Relative Policy Optimization. GRPO (Shao et al., 2024) is a critic-free RL algorithm that
aligns an LLM policy πθ by maximizing the expected task reward over a dataset of prompts D. Its
objective is to maximize Ex∼D, y∼πθ(·|x)[Rtask(y)], where πθ is the LLM policy, D is the dataset of
prompts, and Rtask is the scalar task reward evaluating the output y.

LoRA-MoE Architecture. A LoRA-MoE layer modifies the output of a frozen pretrained layer.
It consists of a trainable router network and a set of E parallel LoRA experts, {(Ae,Be)}Ee=1.
For an input token representation h, the router first computes a gating probability vector p =
softmax(Wrh), where Wrouter is the router’s weight matrix. The final output of the layer is:

hout = h+
( E∑

e=1

p(e | h)BeAe

)
h. (1)
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3.2 THE CHALLENGE: UNGUIDED MOE ROUTING

A fundamental disconnect arises when a LoRA-MoE model is fine-tuned using an RLHF algorithm
like GRPO. The optimization process is blind to the router’s decisions p, as the task reward Rtask
evaluates only the final output. This lack of explicit supervision leads to two well-documented
failure modes in MoE training (Fedus et al., 2022):

• Expert Collapse: The router defaults to choosing a small subset of experts, leading to severe
load imbalance and wasted parametric capacity.

• Routing Indecision: The router generates high-entropy distributions (i.e., low-confidence
decisions), failing to foster expert specialization.

Our goal is to augment the RLHF objective with an internal, mechanism-aware reward signal that
directly addresses these failure modes.

3.3 RO-GRPO: MECHANISM-AWARE REWARDS

As depicted in Figure 2, our method collects internal routing statistics during policy generation.
These statistics are used to compute Rroute, which is then combined with the primary task reward,
Rtask. This is achieved in three steps.

3.3.1 STEP 1: QUANTIFYING ROUTING EFFICIENCY.

For each generated sample, we collect the routing probability vectors from all activated LoRA-MoE
modules. Let M be the number of such modules in the model and T be the total number of tokens
routed during generation. We quantify routing efficiency using two metrics aggregated from these
statistics. First, we measure routing confidence using the mean Shannon entropy over all individual
token routing decisions. A lower value indicates more decisive routing. For the multiset of all T
routing vectors {pi}Ti=1, define the token-wise entropy as H(p) := −

∑E
e=1 pe ln pe (a small ϵ is

added in implementation). The average entropy is

H̄ =
1

T

T∑
i=1

H(pi). (2)

Second, we measure load balance by assessing expert utilization across the M LoRA-MoE mod-
ules. For each module m ∈ {1, . . . ,M}, we first compute its average expert utilization vector p̄m

by averaging the routing vectors of all tokens that pass through it. The final metric M̄ is the mean
of the Mean Squared Errors (MSE) calculated for each module relative to a uniform distribution u:

M̄ =
1

M

M∑
m=1

1

E

∥∥p̄m − 1
E1

∥∥2
2
. (3)

For stable integration into the reward function, we normalize these metrics to an approximate [0, 1]
range, yielding Hnorm = H̄/ lnE, Mnorm = M̄/((E − 1)/E2), for use in the reward calculation.

3.3.2 STEP 2: FORMULATING THE ROUTING REWARD.

We propose two distinct strategies to transform these metrics into a scalar reward Rroute.

RO-GRPO (Smooth): Curriculum-Based Reward Scheduling. This strategy employs a curricu-
lum that initially encourages confident routing (low entropy) and then transitions to promoting load
balance (low MSE). As detailed in the Discussion section, this curriculum aligns the reward signal
with the natural training dynamics of MoE models, defining the reward as follows:

Rroute = −wroute (wH(t) · Hnorm + wB(t) · Mnorm) , (4)

where weights wH(t) and wB(t) are dynamically scheduled based on training progress t ∈ [0, 1]
using a sigmoid function σ(t) = 1

1+e−k(t−c) with steepness k and center c:

wH(t) = λstart
H · (1− σ(t)), (5)

wB(t) = λend
B · σ(t). (6)
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Table 1: Performance on unimodal mathematical reasoning benchmarks. We compare task accuracy
(%), trainable parameter count (#Param), and internal routing metrics. The Config column specifies
the adapter structure, denoted as rank r for LoRA or E × r for LoRA-MoE.

Unimodal Mathematical Reasoning (Qwen2.5-7B-Instruct on NuminaMath-TIR-2k)

Method Config #Param GSM8K MATH SVAMP MGSM Entropy MSE

Base (zero-shot) - 0 87.34 70.42 91.33 53.64 - -

GRPO (LoRA)
16 30.3M 88.48 70.38 90.67 50.00 - -
32 60.6M 90.45 69.54 93.00 47.10 - -
64 121.1M 90.14 49.02 92.67 53.67 - -

GRPO (LoRA-MoE)
2×8 31.7M 89.39 70.36 90.00 61.75 0.640 0.020
4×8 63.4M 89.39 70.40 91.30 46.15 0.651 0.009
8×8 126.9M 90.22 70.44 91.00 52.04 0.655 0.008

Aux-Loss (LoRA-MoE)
2×8 31.7M 86.73 69.50 92.33 57.27 0.632 0.036
4×8 63.4M 87.11 70.10 91.00 56.36 0.540 0.024
8×8 126.9M 87.04 69.54 91.33 56.66 0.645 0.019

RO-GRPO (Smooth)
2×8 31.7M 91.51 70.64 91.00 62.18 0.639 0.016
4×8 63.4M 90.67 70.62 92.00 52.58 0.651 0.009
8×8 126.9M 90.98 69.78 92.67 52.04 0.656 0.006

RO-GRPO (Relative)
2×8 31.7M 90.22 70.58 91.33 59.45 0.639 0.017
4×8 63.4M 89.76 69.88 93.33 54.58 0.651 0.008
8×8 126.9M 90.52 70.18 92.67 51.96 0.655 0.007

RO-GRPO (Relative): Relative Improvement Gating. This strategy provides a sparse, adaptive
reward based on a historical baseline, encouraging continuous self-improvement and avoiding the
need to manually balance the two routing objectives. A constant positive reward C is granted only
if both routing confidence and load balance improve simultaneously relative to their exponential
moving averages (H̄hist,Mhist):

Rroute = C 1{Hnorm < H̄hist ∧ Mnorm < M̄hist}. (7)

3.3.3 STEP 3: UNIFIED OPTIMIZATION VIA POLICY GRADIENT.

The mechanism-aware reward Rroute is combined with the external task reward to form the total
reward Rtotal(y) = Rtask(y) + Rroute(y). The computation of Rroute is non-differentiable; its
gradient is propagated implicitly through the policy gradient update. In the GRPO framework,
a group of responses {yi} is sampled for each prompt and evaluated using Rtotal. The resulting
rewards are used to compute group-relative advantages, Âi, which in turn guide the policy update.
The objective can be summarized as:

JRO-GRPO(θ) ≈ E
[∑

i log πθ(yi|x) Âi − β DKL

(
πθ ∥πref

)]
. (8)

By integrating Rroute into the advantage calculation, RO-GRPO guides the policy πθ to generate
outputs that improve task performance while also exhibiting efficient routing, all without requiring
differentiable auxiliary losses.

4 EXPERIMENTS

We experimentally validate RO-GRPO by testing three core hypotheses: (1) applying LoRA-MoE
with GRPO leads to suboptimal routing and underutilized parameters; (2) our mechanism-aware
reward framework, RO-GRPO, mitigates these routing issues; and (3) these internal improvements
translate to better task performance.

4.1 EXPERIMENTAL SETUP

Tasks and Datasets. We evaluate RO-GRPO on challenging mathematical reasoning tasks. Per-
formance on these tasks relies on precise, multi-step deduction, making it sensitive to the model’s

5
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Table 2: Performance on multimodal mathematical reasoning benchmarks. We follow the same
evaluation setup as in the unimodal experiments.

Multimodal Mathematical Reasoning (Qwen2.5-VL-7B-Instruct on Geometry3k)

Method Config #Param Geo3k MathVista MathVerse WeMath Entropy MSE

Base (zero-shot) - 0 37.44 46.50 26.50 56.95 - -

GRPO (LoRA)
16 30.3M 38.44 58.60 33.30 63.97 - -
32 60.6M 38.10 59.30 23.22 53.85 - -
64 121.1M 33.28 55.90 25.43 53.91 - -

GRPO (LoRA-MoE)
2×8 31.7M 38.27 57.90 30.99 63.74 0.619 0.038
4×8 63.4M 28.95 56.40 30.30 63.45 0.637 0.019
8×8 126.9M 33.11 55.00 31.78 61.49 0.649 0.012

Aux-Loss (LoRA-MoE)
2×8 31.7M 39.60 56.20 30.03 62.81 0.621 0.060
4×8 63.4M 41.43 60.50 27.23 62.87 0.634 0.036
8×8 126.9M 40.43 54.40 32.13 65.80 0.649 0.019

RO-GRPO (Smooth)
2×8 31.7M 38.94 58.70 30.48 66.09 0.630 0.033
4×8 63.4M 40.10 58.30 28.73 64.14 0.642 0.014
8×8 126.9M 38.94 58.90 27.89 64.10 0.648 0.011

RO-GRPO (Relative)
2×8 31.7M 41.93 55.80 33.30 60.98 0.624 0.036
4×8 63.4M 40.27 60.20 31.29 66.26 0.645 0.013
8×8 126.9M 40.16 60.10 32.03 63.97 0.636 0.010

expert utilization and thus an ideal testbed for our approach. To demonstrate the versatility of our
method, we conduct experiments in both unimodal and multimodal settings.

For unimodal experiments, we fine-tune on NuminaMath-TIR (Li et al., 2024b) and evaluate on the
established benchmarks GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), SVAMP (Pa-
tel et al., 2021), and MGSM (Shi et al., 2022). For multimodal experiments, we fine-tune on Ge-
ometry3k (Lu et al., 2021) and evaluate on its test set, alongside MathVista (Lu et al., 2024), Math-
Verse (Zhang et al., 2024), and WeMath (Qiao et al., 2024).

Models and Baselines. We use the open-source Qwen2.5-7B-Instruct (Qwen et al., 2025) and
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) models, chosen for their strong foundational perfor-
mance in mathematical reasoning. We compare five configurations: (1) Base, the original pretrained
model evaluated in a zero-shot setting; (2) GRPO (LoRA), a standard LoRA baseline fine-tuned
with GRPO representing a typical PEFT approach; (3) GRPO (LoRA-MoE), a LoRA-MoE model
trained with GRPO using only the task reward to isolate the effect of unguided routing; (4) Aux-
Loss (LoRA-MoE), a baseline where routing objectives are added as auxiliary losses to the GRPO
objective, using the same scheduling as the Smooth strategy; (5) RO-GRPO (Smooth), our method
with the curriculum-based reward scheduling strategy (Section 3.3); and (6) RO-GRPO (Relative),
our method with the relative improvement gating strategy for the routing reward (Section 3.3).

Evaluation Metrics. We evaluate both task performance and internal mechanism efficiency. Task
Performance is measured by accuracy (%) on the respective benchmarks. Routing Performance is
quantified by two metrics: (1) routing entropy, the average per-token Shannon entropy as formu-
lated in Eq. (2), indicating decision confidence; and (2) load balancing MSE, the mean squared
error between the expert utilization distribution and a uniform one as formulated in Eq. (3), indicat-
ing load balance. We report these raw, un-normalized values for direct interpretability.

Implementation Details. To ensure a fair comparison, we control for trainable-parameter budget:
the LoRA baseline uses a rank of 16, while LoRA-MoE models use E experts (E ∈ {2, 4, 8}), each
with rank of 8. For LoRA-MoE, modules are inserted into the gate, up, and down projections
of the Feed-Forward Network (FFN) in each transformer block. During training, only the PEFT
parameters are updated while the base model weights remain frozen. Across all experiments, we
use a consistent system prompt for both training and evaluation to encourage step-by-step reasoning.
The overall routing reward Rroute is integrated into the total reward using a global scaling coefficient
of wroute = 0.2. Key hyperparameters for our routing strategies were determined through validation.
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Figure 3: Training dynamics of routing metrics on the unimodal mathematical reasoning task. (Top)
Average routing entropy over the course of training. (Bottom) Load balancing MSE over the course
of training.
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Figure 4: Visual analysis of routing behavior improvements with RO-GRPO on the MathVista
benchmark. (a) Left Panel: Heatmaps show the routing ratio of the most frequently selected expert
for the baseline and our two RO-GRPO methods. Darker colors represent a higher selection ratio
for the dominant expert. (b) Right Panel: Heatmaps quantify the improvement in routing balance
relative to the vanilla LoRA-MoE baseline. Positive values (warmer colors) indicate a reduced rout-
ing ratio for the dominant expert, signifying a shift toward the desired 1/E equilibrium.

For the Smooth strategy, we set the initial entropy weight λstart
H = 0.5 and the final balance weight

λend
B = 2.0. For the Relative strategy, the performance baseline was calculated over a moving

window of the 1000 most recent samples. Further details are in the Appendix.

4.2 MAIN RESULTS

As shown in Tables 1 and 2, RO-GRPO yields consistent performance gains over vanilla GRPO with
LoRA-MoE across all expert counts (E∈{2, 4, 8}) in both unimodal and multimodal settings. The
two reward variants show complementary strengths: the Smooth strategy performs best on GSM8K
and SVAMP, while the Relative strategy excels on Geometry3k, MathVista, and WeMath.

Unimodal. On GSM8K, RO-GRPO (Smooth, E=2) achieves the top score of 91.51%, an im-
provement of +1.37 pp over GRPO (LoRA) and +1.29 pp over the best-performing vanilla LoRA-
MoE model (at E=8). On SVAMP, RO-GRPO (Relative, E=4) obtains 93.33%, surpassing GRPO
(LoRA) by +0.33 pp and vanilla LoRA-MoE (at E=4) by +2.03 pp. While improvements on MATH
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are modest, they are consistent at matched expert counts (e.g., 70.64% vs. 70.36% for E=2 Smooth
vs. vanilla). The largest gain on MGSM is at E=4, where RO-GRPO (Relative) achieves 54.58%,
an +8.43 pp increase over the vanilla model.

Multimodal. RO-GRPO (Relative, E=2) attains the highest Geometry3k score of 41.93%, outper-
forming vanilla LoRA-MoE (E=2) by +0.5 pp and GRPO (LoRA) by +3.49 pp. On WeMath, the
best results are with RO-GRPO (Relative, E=4), which reaches 66.26%, gains of +2.29 pp over
GRPO (LoRA), and +2.52 pp over the best vanilla LoRA-MoE model (at E=2), respectively. On
MathVerse, the top performance of 33.30% is shared by GRPO (LoRA) and RO-GRPO (Relative,
E=2).

Overall, across expert sizes, at matched E our routing-aware training either matches or surpasses
vanilla LoRA-MoE on nearly every benchmark, with the largest margins on Geometry3k and We-
Math. These results reaffirm that aligning the router with mechanism-aware rewards translates into
stronger task performance.

4.3 ANALYSIS OF ROUTING MECHANISM

Unguided routing under vanilla GRPO is brittle. At E=2 in the multimodal setting, vanilla
LoRA-MoE appears confident (Entropy 0.619) but exhibits routing collapse (MSE 0.038). At larger
E, the raw MSE decreases (e.g., multimodal 0.019 and 0.012 for E=4 and E=8), yet accuracy does
not reliably improve and can even drop (Geometry3k score of 28.95% at E=4), revealing instability
in the absence of mechanism-aware feedback.

RO-GRPO restores balance at matched E. Across all experimental configurations, RO-GRPO
reduces or matches the MSE of the vanilla baseline at the same E (unimodal: 0.020→0.016/0.017,
0.009 → 0.009/0.008, 0.008 → 0.006/0.007; multimodal: 0.038 → 0.033/0.036, 0.019 →
0.014/0.013, 0.012→ 0.011/0.010), while maintaining comparable entropy. These improvements
in routing correspond to the largest accuracy gains on Geometry3k, WeMath, and SVAMP.

Routing rewards mitigate text degeneration. On Geometry3k with E=4, the vanilla GRPO
(LoRA-MoE) model exhibits repetitive-loop failures in 7.5% of generations and scores 28.95%. In
contrast, RO-GRPO (Smooth) reduces these failures to 0.17% and RO-GRPO (Relative) eliminates
them entirely, achieving accuracies of 40.10% and 40.27%, respectively.

Mechanism-Aware Rewards outperform Auxiliary Losses. As shown in Tables 1 and 2, the
Aux-Loss baseline consistently underperforms RO-GRPO, particularly on unimodal tasks. While
auxiliary losses successfully reduce routing entropy, they fail to improve load balance, often yielding
higher MSE values compared to our reward-based approach (e.g., 0.036 vs. 0.016 on GSM8K with
E=2). Furthermore, the auxiliary-loss method tends to generate significantly longer sequences
without yielding commensurate accuracy gains, as detailed in Appendix H andAppendix D.

4.4 ABLATION AND CAUSAL VERIFICATION

Ablation experiments on GSM8K confirm our approach’s integrity (Table 3).

Contribution of Reward Components. We first investigate the individual contributions of the
confidence (RH ) and balancing (RB) rewards. As shown in Table 3, removing either component
from our best-performing model, RO-GRPO (Smooth), reduces accuracy. Specifically, removing
the balancing reward (w/o RB) or the confidence reward (w/o RH ) reduces the GSM8K score
from 91.51% to 90.75% and 89.92%, respectively. This dependency is more pronounced for the RO-
GRPO (Relative) variant: removing its balancing reward (w/o RB) causes performance to drop to
89.01%, below the vanilla baseline. These results demonstrate that the two reward components are
synergistic and critical for optimal performance.

Contribution of the Reward Signal. To ensure performance gains are driven by meaningful feed-
back, we performed a control experiment. In the Shuffled Control, we randomly permuted routing
rewards within each batch, breaking the causal link between an action and its reward. As shown in
Table 3, performance under this condition dropped significantly for both the Smooth (89.23%) and
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Table 3: Ablation and causal analysis on
GSM8K (E=2). Our full RO-GRPO model sig-
nificantly outperforms the vanilla baseline. Sub-
sequent experiments demonstrate that both re-
ward components (RH , RB) are necessary for
optimal performance, and control experiments
validate that the gains are causally driven by our
targeted reward signal.

Configuration GSM8K Entropy MSE
RO-GRPO (Smooth) 91.51 0.639 0.016
RO-GRPO (Relative) 90.22 0.639 0.017
GRPO (LoRA-MoE) 89.39 0.640 0.020
Ablations on Reward Components:

w/o RB (Smooth) 90.75 0.639 0.018
w/o RH (Smooth) 89.92 0.639 0.019
w/o RB (Relative) 89.01 0.638 0.019
w/o RH (Relative) 90.14 0.637 0.019

Causal & Sanity Controls:
Shuffled (Smooth) 89.23 0.640 0.018
Shuffled (Relative) 89.28 0.641 0.020
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Figure 5: Training dynamics of routing metrics
when the Rtask is set to zero.

Relative (89.28%) variants, falling to the level of the vanilla GRPO (LoRA-MoE) baseline (89.39%).
This result strongly suggests the gains from RO-GRPO are causally driven by the targeted feedback
from our reward signal, not by an artifact of the reward structure.

5 DISCUSSION

Our experiments demonstrate the empirical success of RO-GRPO across E=2, 4, 8. This section
analyzes why a unified scalar reward can supervise a model’s internal router and why this becomes
more important as E grows. A more detailed derivation is available in Appendix G.

The Rationale for a Curriculum-Based Reward. The Smooth curriculum is effective because
single-objective optimization is suboptimal: rewarding only low entropy degrades balance (MSE
rises), whereas rewarding only balance is initially too weak to shape specialization (Figure 5). By
first encouraging confident routing and then increasing pressure on balance, the curriculum builds
specialized experts and subsequently organizes them. This dynamic mirrors our empirical trends
at E=4, 8, where mechanism-aware supervision not only improves accuracy but also suppresses
degeneration on Geometry3k.

Rewards vs. Auxiliary Losses in RL. A critical insight from our study is the superiority of
mechanism-aware rewards over auxiliary losses in the GRPO framework. When routing supervision
is formulated as a reward, it is integrated into the group-relative advantage calculation. This allows
the model to learn trade-offs: a trajectory with slightly imbalanced routing can still receive a positive
advantage if it yields a correct answer. Conversely, an auxiliary loss applies a uniform penalty to all
trajectories in a batch regardless of their task success. This rigid penalization can suppress useful but
unconventional routing patterns required for complex tasks, leading to the suboptimal performance.
Additionally, our approach requires no extra gradient backpropagation or VRAM overhead.

Grounding the Reward Components. The confidence reward, RH , which promotes low-entropy
routing, can be understood through the Information Bottleneck (IB) principle (Tishby et al., 2000).
The IB principle states that an optimal representation should compress an input while preserving
task-relevant information. In our framework, the router’s decision acts as this bottleneck. By re-
warding low-entropy (confident) decisions, RO-GRPO incentivizes the router to learn a minimal
sufficient representation of its input. It is encouraged to discard noisy features and focus on infor-
mation predictive of task success, a process that naturally fosters expert specialization.

9
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The balancing reward RB directly optimizes parameter utilization. Maximizing our balancing re-
ward, which is formulated using MSE, is formally equivalent to minimizing the variance of the
expert load distribution. This ensures the reward signal provides a direct and efficient gradient for
combating routing collapse and ensuring the model leverages its full parametric capacity, a principle
established in supervised MoE training (Shazeer et al., 2017).

6 CONCLUSION

We addressed a core limitation of applying LoRA-MoE to GRPO: the task reward is blind to routing.
RO-GRPO remedies this by transforming routing statistics into a mechanism-aware reward that
plugs into GRPO without architecture changes or extra stages. Across E=2, 4, 8 and both unimodal
and multimodal math reasoning, RO-GRPO improves load balance at matched E, boosts accuracy,
and reduces text degeneration. These results indicate that reinforcement learning can align not only
external behavior but also internal mechanisms, suggesting a path toward principled alignment for
complex modular architectures.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide a comprehensive set of resources. The com-
plete source code for all experiments, including model implementation and training and evaluation
scripts, is available in the supplementary material. Further details on the experimental environment,
including the specific hardware and software configurations used, are documented in Appendix A.
A complete list of hyperparameters for all model configurations and our routing reward strategies is
provided in Appendix B, alongside pseudocode for our reward calculation algorithms.
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A COMPUTING INFRASTRUCTURE AND SOFTWARE

All experiments were conducted on a high-performance computing cluster. The specific hardware
and software configurations are provided to ensure full reproducibility.

Hardware: Each experiment was run on a single node equipped with 8x NVIDIA A800 (80GB
VRAM) GPUs. Each node was powered by an Intel(R) Xeon(R) Platinum 8336C CPU with 1875
GB of system RAM.

Software: The operating system was Ubuntu 20.04.6 LTS. The core software stack included:

• Python 3.10.18
• PyTorch 2.5.1 (built with CUDA 12.1)
• CUDA Toolkit 12.2
• Hugging Face Transformers 4.51.0
• Hugging Face PEFT 0.14.0
• The ms-swift framework, version 3.7.0.dev0, was used for all training scripts.

B HYPERPARAMETER AND IMPLEMENTATION DETAILS

Table 4: Hyperparameters for all experiments.

Parameter Value

GRPO Configuration
Learning Rate 1× 10−5

KL Coefficient (β) 0.1
Batch Size 64
Generations per Prompt (k) 8
Epochs (Unimodal) 1
Epochs (Multimodal) 3

LoRA / LoRA-MoE Configuration
LoRA Rank (r) 16
LoRA-MoE Rank (r) 8 (per expert)
Number of Experts (E) {2,4,8}
LoRA Alpha (α) 32
LoRA Dropout 0.05

RO-GRPO Specific (Optimal Values)
Global Routing Weight (wroute) 0.2

Smooth Strategy
λstart
H (Entropy Weight Start) 0.5

λend
B (Balance Weight End) 2.0

Sigmoid Steepness (k) 20.0
Sigmoid Center (c) 0.5

Relative Strategy
History Window Size (Shist) 1000
Reward Constant (C) 1.0

Note: Sigmoid steepness (k) controls the transi-
tion speed of the curriculum, and the center (c)
defines the transition point in terms of training
progress.

Our approach to hyperparameter selection is
designed to be both systematic and efficient.
For established components of the training
pipeline, such as the GRPO algorithm and the
LoRA architecture, we adopted values from
seminal works and common practices to estab-
lish strong, competitive baselines. Our primary
tuning efforts were concentrated on the novel
parameters introduced by the RO-GRPO frame-
work, ensuring a rigorous evaluation of our core
contributions.

Core Training and Architecture Parameters.
For all experiments, we used a learning rate of
1×10−5 and a batch size of 64. The GRPO con-
figuration included a KL coefficient (β) of 0.1
and sampling 8 responses per prompt (k = 8)
for advantage estimation. For the base LoRA
architecture, we set the rank to r = 16 and al-
pha to α = 32. For our LoRA-MoE models, we
used E ∈ {2, 4, 8} experts, each with a rank of
r = 8 and an alpha of α = 32, maintaining a
similar parameter budget. The training duration
was set to 1 epoch for the unimodal Numina-
Math dataset and 3 epochs for the more com-
plex multimodal Geometry3k dataset to ensure
convergence. The external task reward weight
was consistently set to 1.0.

RO-GRPO Routing Reward Parameters.
The most critical hyperparameters are those
governing the mechanism-aware routing re-
ward, Rroute. We conducted a grid search to de-
termine the optimal settings for both our adap-
tive strategies, using a held-out validation set.

For the Curriculum-Based Reward Scheduling (Smooth) strategy, we explored the key parame-
ters controlling the curriculum’s shape and intensity. The search space included the final load bal-
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ancing weight λend
B ∈ {1.0, 2.0, 5.0}, the initial entropy weight λstart

H ∈ {0.5, 1.0}, and the sigmoid
steepness k ∈ {15, 20, 25}. The pseudocode for this strategy is detailed in Algorithm 2.

For the Relative Improvement Gating (Relative) strategy, the key parameter is the
history size, which defines the window for the moving average baseline. We searched over
values in {100, 500, 1000}. The logic for this strategy is presented in Algorithm 1.

A separate grid search was performed for the global routing reward weight, which scales the entire
Rroute term, across the range {0.1, 0.2, 0.5}. Our experiments indicated that a weight of 0.2 provided
the best trade-off between improving task accuracy and optimizing routing efficiency (i.e., minimiz-
ing load balancing MSE and routing entropy). This value was used for all reported RO-GRPO
results.

The final, optimal hyperparameters selected through this process are summarized in Table 4.

Algorithm 1 RO-GRPO Reward Calculation
(Relative Strategy)

Input: Routing statistics stats, history buffer
Bhist
Parameters: Reward constant C, history buffer
size Shist

{Require sufficient history to establish a baseline}

if |Bhist| < Shist then
return 0

end if

{Compute metrics for the current sample}
(Mcurr, H̄curr)← ComputeMetrics(stats)

{Compute historical average baseline}
Mhist ← Average(Bhist.mse)
H̄hist ← Average(Bhist.entropy)

{Grant reward only if both metrics improve}
ifMcurr <Mhist and H̄curr < H̄hist then

Rroute ← C
else

Rroute ← 0
end if

{Update the history buffer with current metrics}
Update(Bhist, (Mcurr, H̄curr))

return Rroute =0

Algorithm 2 RO-GRPO Reward Calculation
(Smooth Strategy)

Input: Routing statistics stats, current step tcurr,
max steps tmax
Parameters: Global weight wroute, entropy start
weight λstart

H , balance end weight λend
B , sigmoid cen-

ter c, sigmoid steepness k

{Calculate curriculum progress and sigmoid
value}
p← tcurr/tmax

σ ← (1 + e−k(p−c))−1

{Schedule the weights for entropy and balance}
wH ← λstart

H · (1− σ)
wB ← λend

B · σ

{Compute average normalized metrics from stats}

H̄norm ← AverageNormalizedEntropy(stats)
Mnorm ← AverageNormalizedMSE(stats)

{Calculate final reward (a negative penalty)}
Rroute ← −wroute · (wH · H̄norm + wB · Mnorm)

return Rroute =0

C SYSTEM PROMPT

We used a consistent system prompt for all models during both training and evaluation to encourage
step-by-step reasoning. The prompt is provided below:

A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the
answer.The reasoning process and answer are enclosedwithin <think>
</think> and<answer> </answer>tags, respectively, i.e., <think>
reasoning process here</think><answer> answer here </answer>
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D QUALITATIVE CASE STUDY

To provide a comprehensive qualitative analysis of the impact of our method, we present case studies
spanning both unimodal arithmetic reasoning (GSM8K) and multimodal geometric reasoning (Ge-
ometry3K). Tables 5 and Table 6 contrast the specific generation trajectories of the baseline meth-
ods against our RO-GRPO framework. These examples empirically demonstrate that RO-GRPO not
only corrects the logical hallucinations and repetitive loops observed in baselines to ensure higher
accuracy, but also achieves these correct solutions with reduced token consumption, thereby improv-
ing inference efficiency.

Table 5: Case study comparing method outputs on a sample from the GSM8K benchmark.

Aspect Content

Problem Mary is an avid gardener. Yesterday, she received 18 new potted plants from her favorite plant nursery. She already has 2
potted plants on each of the 40 window ledges of her large country home. Feeling generous, she has decided that she will
give 1 potted plant from each ledge to friends and family tomorrow. How many potted plants will Mary remain with?
Answer:

Solution Yesterday, before receiving the plants, Mary had 2 × 40 = 80 potted plants.
After receiving an additional 18 plants, she therefore had a total of 80 + 18 = 98 potted plants.
Tomorrow, Mary’s plant giveaway will be 40 × 1 = 40 potted plants.
She will therefore remain with 98 − 40 = 58 potted plants.
Final Answer: 58

Base Output <think> First, we calculate the total number of potted plants Mary already has. Since she has 2 potted plants on each
of the 40 window ledges, the total is 2 × 40 = 80 potted plants.
Next, we determine how many potted plants she will give away. Since she plans to give 1 potted plant from each of the
40 window ledges, she will give away 1 × 40 = 40 potted plants.
Finally, we subtract the number of potted plants she gives away from the total number she originally had. So,
80 − 40 = 40.
Therefore, after giving away the potted plants, Mary will remain with 40 potted plants. </think>
<answer>40</answer>

GRPO
(LoRA-
MoE)
Output

<think> First, we calculate the total number of potted plants Mary already has. Since she has 2 potted plants on each
of the 40 window ledges, the total is 2 × 40 = 80 potted plants.
Next, we determine how many potted plants she will give away. Since she plans to give 1 potted plant from each of the
40 window ledges, she will give away 1 × 40 = 40 potted plants.
Finally, we subtract the number of potted plants she gives away from the total number she originally had. So, 80− 40 =
40.
Therefore, the number of potted plants Mary will remain with is 40. </think> <answer> 40
</answer>

Aux-Loss
(LoRA-
MoE)
Output

<think>
Let’s break down the problem step by step:
1. Initial Plants:
- Mary already has 2 potted plants on each of the 40 window ledges.
- Therefore, the total number of plants she initially has is 2 × 40 = 80 plants.
2. Plants Given Away:
- Mary plans to give 1 potted plant from each ledge to friends and family.
- Since there are 40 window ledges, she will give away 1 × 40 = 40 plants.
3. New Plants Received:
- Mary received 18 new potted plants from her plant nursery yesterday.
4. Total Plants After Receiving New Ones:
- Adding the new plants to her initial count, the total becomes 80 + 18 = 98 plants.
5. Final Count After Giving Away Plants:
- Subtracting the 40 plants she gives away from the total, we get 98 − 40 = 58 plants remaining. </think>
<answer>
Therefore, the number of potted plants Mary will remain with is 58 . </answer>

RO-GRPO
(Smooth)
Output

<think> First, we calculate the total number of potted plants Mary already has. Since she has 2 potted plants on each
of the 40 window ledges, the total is 2 × 40 = 80 potted plants.
Next, we consider the 18 new potted plants she received yesterday. Adding these to her existing plants gives 80+18 = 98
potted plants in total.
Mary plans to give away 1 potted plant from each of the 40 window ledges. This means she will give away 40× 1 = 40
potted plants.
To find out how many potted plants she will have left after giving some away, we subtract the number of plants given
away from the total number of plants she has: 98− 40 = 58. </think> <answer> Mary will remain with 58 potted
plants. </answer>

Continued on next page
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Aspect Content

RO-GRPO
(Relative)
Output

<think> Mary initially has 2 potted plants on each of the 40 window ledges. So, the total number of potted plants she
has before receiving the new ones is:

2 plants/ledge × 40 ledges = 80 plants

After receiving 18 new potted plants, the total number of potted plants becomes:

80 plants + 18 plants = 98 plants

Mary plans to give away 1 potted plant from each of the 40 window ledges. Therefore, the number of plants she will give
away is:

1 plant/ledge × 40 ledges = 40 plants

Subtracting the number of plants given away from the total number of plants gives us the number of plants Mary will
remain with:

98 plants − 40 plants = 58 plants

</think> <answer> Mary will remain with 58 potted plants. </answer>

Analysis Both the Base Model and GRPO (LoRA-MoE) ignore the 18 new potted plants, leading to an incorrect answer.
In contrast, our RO-GRPO models successfully integrate all information to derive the correct solution. Moreover, RO-
GRPO generates fewer tokens than the Aux-Loss method when both yield correct results, with Smooth reducing the
count by approximately 25% and Relative by 10%. This demonstrates that our mechanism-aware rewards foster robust
reasoning and address the core logical deficiencies observed in the baselines, moving beyond superficial format adherence.

Table 6: Case study comparing model outputs on a Geometry3k geometry problem.

Aspect Content

Problem
Find x.

Answer 1

Base Output <think> To find the value of x, we need to use the property that the slopes of two parallel lines are equal. From the
image, we can see that the lines 2x + 3 and 6 − x are parallel, and the lines 4

3y + 1 and 2y are parallel.
First, let’s find the slope of the line 2x+3. The equation 2x+3 can be rewritten in the slope-intercept form y = mx+b,
where m is the slope. Here, the slope is 2.
Next, let’s find the slope of the line 6− x. Rewriting 6− x in the slope-intercept form, we get y = −x+6. The slope
here is -1.
Since the lines 2x + 3 and 6 − x are parallel, their slopes must be equal. Therefore, we set the slopes equal to each
other:

2 = −1

This is a contradiction, which means there might be a misunderstanding in the interpretation of the problem. However,
if we consider the slopes of the lines 4

3y + 1 and 2y, we can find the slope of 2y by rewriting it in the slope-intercept
form. The equation 2y can be rewritten as y = 2

1y, so the slope is 2.
Since the lines 4

3y + 1 and 2y are parallel, their slopes must be equal. Therefore, we set the slopes equal to each other:

4

3
= 2

This is also a contradiction, but it suggests that the problem might be misinterpreted. Given the typical problem setup, we
should consider the slopes of the lines in the context of the problem. If we assume the problem is correctly set up and we
need to find x such that the lines are parallel, we can use the fact that the slopes must be equal.
Since the problem setup is not clear, we can assume the correct interpretation is that the slopes of the lines must be equal.
Therefore, we can set the slopes equal to each other and solve for x.
The correct interpretation should be that the slopes of the lines must be equal, and since the problem setup is not clear, we
can assume the correct interpretation is that the slopes of the lines must be equal. Therefore, we can set the slopes equal
to each other and solve for x.
The correct answer is x = 3. </think>
<answer> 3 </answer>

Continued on next page
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Aspect Content

GRPO
(LoRA)
Output

<think> To find the value of x, we need to use the property that the slopes of two parallel lines are equal. From the
diagram, we can see that the lines 2x + 3 and 6 − x are parallel, and the lines 4

3y + 1 and 2y are parallel.
First, let’s find the slope of the line 2x + 3. The slope-intercept form of a line is y = mx + b, where m is the slope.
Rewriting 2x + 3 in slope-intercept form, we get

y = −2x + 3,

so the slope of the line 2x + 3 is −2.
Next, let’s find the slope of the line 6 − x. Rewriting 6 − x in slope-intercept form, we get

y = x − 6,

so the slope of the line 6 − x is 1.
Since the lines 2x + 3 and 6 − x are parallel, their slopes must be equal:

−2 = 1.

This is a contradiction, so we need to re-evaluate the problem. The correct interpretation is that the slopes of the lines
2x + 3 and 6 − x are not directly comparable as they are not in the same form. Instead, we should consider the slopes
of the lines 4

3y + 1 and 2y.
Rewriting 4

3y + 1 in slope-intercept form, we get

y =
4

3
x +

1

3
,

so the slope of the line 4
3y + 1 is 4

3 .
Rewriting 2y in slope-intercept form, we get

y = x,

so the slope of the line 2y is 1.
Since the lines 4

3y + 1 and 2y are parallel, their slopes must be equal:

4

3
= 1.

This is also a contradiction, so we need to re-evaluate the problem again. The correct interpretation is that the slopes of
the lines 2x + 3 and 6 − x are not directly comparable as they are not in the same form. Instead, we should consider
the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

The correct interpretation is that the slopes of the lines 2x + 3 and 6 − x are not directly comparable as they
are not in the same form. Instead, we should consider the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

The correct interpretation is that the slopes of the lines 2x + 3 and 6 − x are not directly comparable as they
are not in the same form. Instead, we should consider the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

The correct interpretation is that the slopes of the lines 2x + 3 and 6 − x are not directly comparable as they
are not in the same form. Instead, we should consider the slopes of the lines 2x + 3 and 6 − x as they are not parallel.

... (Repetitive-loop until hitting the maximum length)

Continued on next page
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Aspect Content

GRPO
(LoRA-
MoE)
Output

<think> To solve for x, we need to understand the relationship between the vectors and the given expressions. The
vectors are parallel, which means their slopes must be equal.
The slope of the vector 2x + 3 is the coefficient of x, which is 2. The slope of the vector 6 − x is the coefficient of x,
which is −1.
Since the vectors are parallel, their slopes must be equal:

2 = −1.

However, this is not possible as the slopes are not equal. This indicates that the problem might be misinterpreted or there
might be a misunderstanding in the setup. Given the setup, let’s assume the vectors are meant to be parallel in a different
context or there might be a need to re-evaluate the problem constraints.
Given the setup, the model keeps assuming the vectors are meant to be parallel in a different context and repeatedly
“re-evaluates” the constraints without reaching a conclusion or producing an <answer> tag.

Since the problem setup seems to be incorrect or misinterpreted, let’s assume the vectors are meant to be parallel
in a different context or there might be a need to re-evaluate the problem constraints.

Given the setup, the model keeps assuming the vectors are meant to be parallel in a different context and repeat-
edly “re-evaluates” the constraints without reaching a conclusion or producing an <answer> tag.

Since the problem setup seems to be incorrect or misinterpreted, let’s assume the vectors are meant to be parallel
in a different context or there might be a need to re-evaluate the problem constraints.

Given the setup, the model keeps assuming the vectors are meant to be parallel in a different context and repeat-
edly “re-evaluates” the constraints without reaching a conclusion or producing an <answer> tag.

Since the problem setup seems to be incorrect or misinterpreted, let’s assume the vectors are meant to be parallel
in a different context or there might be a need to re-evaluate the problem constraints.

... (Repetitive-loop until hitting the maximum length)

Aux-Loss
(LoRA-
MoE)
Output

<think>
To solve for x, we use the property of parallel lines and corresponding angles. The angles formed by the transversal with
the parallel lines are equal.
Given:
– The top left angle is 2x + 3.
– The top right angle is 4

3y + 1.
– The bottom left angle is 6 − x.
– The bottom right angle is 2y.
Since the lines are parallel, the corresponding angles are equal. Therefore, we can set up the following equations:

2x + 3 =
4

3
y + 1, 6 − x = 2y.

From the second equation,

6 − x = 2y ⇒ y =
6 − x

2
.

Substitute y into the first equation:

2x + 3 =
4

3

(
6 − x

2

)
+ 1 =

24 − 4x

6
+ 1.

Multiply both sides by 6 to clear the denominator:

6(2x + 3) = 24 − 4x + 6.

So

12x + 18 = 30 − 4x ⇒ 16x = 12 ⇒ x =
12

16
=

3

4
.

Thus, the value of x is 3
4 .

</think>

<answer>
3

4
</answer>

Continued on next page
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Aspect Content

RO-GRPO
(Smooth)
Output

<think> The image shows two expressions involving x and y. Focusing on the relationship needed to determine x, we
equate the angles labeled 2x + 3 and 6 − x:

2x + 3 = 6 − x.

Adding x to both sides and subtracting 3 from both sides gives

2x + x = 6 − 3 ⇒ 3x = 3,

so
x = 1.

</think>
<answer> 1 </answer>

RO-GRPO
(Relative)
Output

<think> To find x, we initially consider whether the slopes of the intersecting lines must be equal because of paral-
lelism. We might try to read off “slopes” from expressions like 2x+3 and 6−x, leading to inconsistent equalities such
as

2 = −1,

or, from 4
3y + 1 and 2y,

4

3
= 2,

which are clearly impossible. This indicates that the slope-based interpretation is flawed.
We then reconsider the diagram and instead use the fact that the angles labeled 2x + 3 and 6 − x are equal (vertical or
corresponding angles). Therefore,

2x + 3 = 6 − x.

Solving,
2x + x = 6 − 3 ⇒ 3x = 3 ⇒ x = 1.

</think>
<answer> x = 1 </answer>

Analysis The GRPO (LoRA) and GRPO (LoRA-MoE) models both enter a repetitive reasoning loop when trying to enforce
parallel-line slope constraints, never producing a valid final answer before hitting the generation limit.
In contrast, the Aux-Loss (LoRA-MoE) model produces a clean and well-structured chain-of-thought with explicit equa-
tions for corresponding angles, but still converges to the wrong solution x = 3

4 .
RO-GRPO (Smooth) directly writes down and solves the key equation 2x + 3 = 6 − x, obtains the correct solution
x = 1, and uses the fewest tokens, but it omits a detailed explanation of how this equation is grounded in the geometry
of the diagram.
RO-GRPO (Relative) first explores an incorrect slope-based interpretation, then reflects, switches to the correct geomet-
ric constraint 2x + 3 = 6 − x, and finally outputs the correct answer x = 1. This trajectory best demonstrates robust
reflective reasoning while using roughly half as many tokens as the Aux-Loss model (about 282 vs. 523), reinforcing
that auxiliary-loss supervision mainly inflates token length without reliably improving geometric reasoning performance.

E VISUALIZATION OF EXPERT SPECIALIZATION

To better understand the internal dynamics of the RO-GRPO framework, we provide a qualitative
analysis of expert utilization across different reasoning tasks. In our setup, all experts are trained
through a learned router, and we integrate three LoRA-MoE modules into each FFN layer. Con-
sequently, the final behavior of each token results from a composition of routing decisions across
multiple layers, rather than the output of a single expert. Unlike recent approaches such as MAL-
oRA (Wang et al., 2024b) and MoLE (Wu et al., 2024), which explicitly assign experts to specific
domains or tasks, our experts emerge from end-to-end training and are not bound to fixed task la-
bels. As a result, we do not observe a rigid one-to-one mapping between specific experts and specific
reasoning skills, but soft specialization does occur.

Figure 6 illustrates the contribution of experts within a LoRA-MoE module across different subsets
of the MathVista benchmark. We find that different experts are preferentially activated for different
types of MathVista problems, indicating partial task-level specialization. At the same time, the
distributions remain soft: no expert is exclusively dedicated to a single subset, and several experts
contribute non-trivially across many tasks. We also observe systematic differences between prefill
and decode: some experts are used more heavily during the prefill phase, when the model is ingesting
and structuring the multimodal input, whereas others become more prominent during the decode
phase, when the model produces multi-step reasoning and final answers. Taken together, these
patterns suggest that RO-GRPO encourages partial specialization of experts across both tasks and
phases, but the emergent structure is graded rather than perfectly disentangled.
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Figure 6: Visualization of expert contribution ratios in a representative LoRA-MoE layer across
different MathVista subtasks. (a) Shows the expert contribution during the prefill stage. (b) Shows
the expert contribution during the decode stage.

F ADDITIONAL EXPERIMENTAL RESULTS

This section reports supplementary results for two extended settings. First, we scale the base models
to Qwen2.5-32B and replicate both unimodal and multimodal experiments under the same training
configuration as in Section 4. Second, we further evaluate RO-GRPO under a top-2 expert routing
configuration on the 7B models. In this setting, the router selects the two most probable experts per
token, and the corresponding LoRA updates are aggregated accordingly.
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Table 7: Unimodal mathematical reasoning results for Qwen2.5-32B-Instruct on NuminaMath-TIR-
2k. We report accuracy (%) on GSM8K, MATH, SVAMP, and MGSM, together with routing entropy
(E) and load-balancing MSE (B).

Unimodal Mathematical Reasoning (Qwen2.5-32B-Instruct on NuminaMath-TIR-2k)

Method #Experts GSM8K MATH SVAMP MGSM Entropy MSE

GRPO (LoRA) 1 94.69 74.46 93.00 36.58 - -

GRPO (LoRA-MoE)
2 94.47 75.32 92.33 34.95 0.676 0.005
4 94.69 75.96 93.33 37.42 0.679 0.003
8 94.77 75.16 93.00 38.04 0.682 0.002

RO-GRPO (Smooth)
2 95.83 77.28 93.00 38.84 0.676 0.005
4 94.84 76.40 93.67 44.22 0.680 0.003
8 94.92 75.28 93.67 39.56 0.681 0.002

RO-GRPO (Relative)
2 95.07 75.74 93.00 38.91 0.676 0.005
4 95.15 76.96 93.00 45.78 0.679 0.003
8 94.69 77.26 92.33 47.16 0.681 0.002

Table 8: Multimodal mathematical reasoning results for Qwen2.5-VL-32B-Instruct on Geometry3k.
All metrics are reported as accuracy (%) for Geo3k, MathVista, MathVerse, and WeMath, with
routing entropy (E) and load-balancing MSE (B).

Multimodal Mathematical Reasoning (Qwen2.5-VL-32B-Instruct on Geometry3k)

Method #Experts Geo3k MathVista MathVerse WeMath Entropy MSE

GRPO (LoRA) 1 46.76 56.70 43.35 76.32 - -

GRPO (LoRA-MoE)
2 47.59 56.00 42.34 76.09 0.667 0.008
4 47.25 57.30 43.22 75.86 0.672 0.007
8 48.75 58.10 41.57 74.89 0.675 0.006

RO-GRPO (Smooth)
2 47.92 55.80 43.12 75.57 0.669 0.008
4 47.92 55.60 42.31 76.26 0.671 0.007
8 49.25 55.80 43.12 76.95 0.675 0.005

RO-GRPO (Relative)
2 47.75 57.20 43.65 75.23 0.667 0.008
4 47.09 55.90 43.10 75.80 0.671 0.006
8 47.92 57.30 42.84 77.53 0.675 0.005

Tables 7 and 8 present unimodal and multimodal mathematical reasoning results for the 32B mod-
els. Tables 9 and 10 summarize the corresponding top-2 routing ablations on the 7B models. All
accuracy numbers are reported in percentage, and routing statistics are summarized by the average
routing entropy (E) and load-balancing mean squared error (B), consistent with the main tables.

G DETAILED THEORETICAL ANALYSIS

This appendix provides the detailed mathematical derivations and expanded interpretations for the
theoretical analysis.

G.1 CONSTRAINED OPTIMIZATION INTERPRETATION

The RO-GRPO framework can be viewed as a practical, penalty-based approach to solving a con-
strained policy optimization problem. The objective is to maximize the expected task reward, subject
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Table 9: Unimodal mathematical reasoning results for Qwen2.5-7B-Instruct on NuminaMath-TIR-
2k under top-2 expert routing. All models use LoRA-MoE adapters with different expert counts E.

Unimodal Mathematical Reasoning (Qwen2.5-7B-Instruct on NuminaMath-TIR-2k)

Method #Experts GSM8K MATH SVAMP MGSM Entropy MSE

GRPO (LoRA-MoE) 4 89.39 69.96 90.67 50.51 0.334 0.032
8 90.37 70.30 92.00 52.65 0.225 0.039

RO-GRPO (Smooth) 4 89.92 69.88 92.00 46.00 0.334 0.031
8 89.76 70.68 92.00 54.62 0.225 0.039

RO-GRPO (Relative) 4 89.92 70.24 92.00 49.45 0.334 0.032
8 90.45 70.14 91.67 45.60 0.225 0.039

Table 10: Multimodal mathematical reasoning results for Qwen2.5-VL-7B-Instruct on Geometry3k
under top-2 expert routing. Metrics are reported as accuracy (%) on Geo3k, MathVista, MathVerse,
and WeMath, together with routing entropy (E) and load-balancing MSE (B).

Multimodal Mathematical Reasoning (Qwen2.5-VL-7B-Instruct on Geometry3k)

Method #Experts Geo3k MathVista MathVerse WeMath Entropy MSE

GRPO (LoRA-MoE) 4 40.27 58.60 30.51 63.22 0.325 0.061
8 41.10 60.80 31.19 65.06 0.221 0.068

RO-GRPO (Smooth) 4 39.77 62.20 16.50 62.07 0.328 0.059
8 37.77 61.40 18.38 57.59 0.219 0.065

RO-GRPO (Relative) 4 41.60 58.50 32.56 66.03 0.331 0.043
8 41.43 58.10 32.82 64.54 0.222 0.067

to constraints on the policy’s internal routing behavior:

max
θ

Ey∼πθ
[Rtask(y)]

subject to Ey∼πθ
[H̄norm(y)] ≤ εH ,

Ey∼πθ
[Mnorm(y)] ≤ εM ,

(9)

where εH and εM are desired thresholds for the average normalized routing entropy and load bal-
ancing MSE, respectively.

The standard method for solving such a problem is via its Lagrangian relaxation. The Lagrangian
L(θ, λH , λM ) is:

L =E[Rtask]− λH(E[H̄norm]− εH)

− λM (E[Mnorm]− εM ),
(10)

where λH , λM ≥ 0 are the Lagrange multipliers. Our RO-GRPO objective can be expressed as:

max
θ

E
[
Rtask − wroute

(
wH(t) · H̄norm + wB(t) · Mnorm

)]
. (11)

Comparing our objective in Eq. equation 11 with the Lagrangian in Eq. equation 10 reveals that
RO-GRPO maximizes a simplified Lagrangian. The weights wH(t) and wB(t) function as fixed
(or scheduled) Lagrange multipliers, and the constraint thresholds εH , εM are implicitly absorbed
into the objective. This formulation positions RO-GRPO as a fixed-penalty method, which gains
significant simplicity by integrating the constraints directly into the scalar reward signal.

G.2 PARAMETER UTILIZATION AND VARIANCE MINIMIZATION

The balancing reward, RB , is grounded in a direct mathematical relationship with load distribution
variance. We show that minimizing our MSE-based metric is equivalent to minimizing the variance
of expert utilization.
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Figure 7: Inference latency vs. task performance trade-off on the Geometry3k. RO-GRPO achieves
a superior Pareto frontier compared to baselines, delivering higher accuracy with lower latency.

Let p̄ be the empirical utilization vector over E experts. The variance of this distribution is:

Var(p̄) =
1

E

E∑
e=1

(p̄e − E[p̄])2. (12)

Since
∑

p̄e = 1, the mean utilization E[p̄] = 1/E. Substituting this gives:

Var(p̄) =
1

E

E∑
e=1

(
p̄e −

1

E

)2

. (13)

This expression is precisely the Mean Squared Error (MSE) between the empirical distribution p̄
and a uniform distribution u = (1/E, . . . , 1/E). Therefore, Var(p̄) = MSE(p̄,u).

This equivalence establishes that maximizing our reward RB ∝ −MSE(p̄,u) is directly propor-
tional to minimizing the variance of the expert load. This provides a principled and efficient mech-
anism to promote balanced parameter usage within the RL framework.

H TOKEN LENGTH AND EFFICIENCY ANALYSIS

We evaluate computational cost via token efficiency, defined as the ratio of average output tokens
to task accuracy. As detailed in Tables 11 and 12, RO-GRPO variants consistently optimize this
trade-off. Unlike auxiliary loss, which often inflates generation without commensurate accuracy
gains, RO-GRPO achieves peak accuracy on GSM8K, MATH, and Geometry3k with significantly
reduced token usage. Notably, it improves MGSM accuracy by over 12% and reduces WeMath re-
sponse length by approximately one-third compared to baselines. This reduction in sequence length
directly translates to faster inference, as visualized in Figure 7, where RO-GRPO demonstrates a su-
perior latency-accuracy trade-off. These findings confirm that mechanism-aware routing effectively
suppresses repetitive loops, fostering concise reasoning.

To complement the tabular results, Figure 8 illustrates the training dynamics of response length. We
observe that the unsupervised GRPO baseline sometimes exhibits a rapid increase in token count,
often indicative of reward hacking via verbosity or degeneration into repetitive loops. While the in-
clusion of an auxiliary loss helps curb this tendency, both RO-GRPO strategies maintain consistently
concise generations throughout the training process. This suggests that mechanism-aware rewards
effectively regularize the reasoning process, preventing the model from defaulting to inefficient or
degenerate output patterns.
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Figure 8: Evolution of average response length during training on the Geometry3k.

Table 11: Token Efficiency Analysis for Qwen2.5-7B-Instruct on NuminaMath-TIR-2k. We report
Average Tokens (Toks.), Accuracy (Acc.), and Efficiency (Eff.) across four benchmarks. Efficiency
is calculated as Tokens/Accuracy (lower is better). Best results for Accuracy (highest) and Efficiency
(lowest) are highlighted.

Token Efficiency Analysis (Qwen2.5-7B-Instruct on NuminaMath-TIR-2k)

Method Config GSM8K MATH SVAMP MGSM

Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff.

GRPO (LoRA)
16 291.58 88.48 3.30 519.01 70.38 7.37 189.42 90.67 2.09 264.13 50.00 5.28
32 273.63 90.45 3.03 518.91 69.54 7.46 174.04 93.00 1.87 267.09 47.10 5.67
64 276.78 90.14 3.07 503.31 49.02 10.27 176.22 92.67 1.90 272.69 53.67 5.08

GRPO (LoRA-MoE)
2×8 288.39 89.39 3.23 539.38 70.36 7.67 201.58 90.00 2.24 262.19 61.75 4.25
4×8 283.74 89.39 3.17 512.21 70.40 7.28 180.63 91.30 1.98 251.36 46.15 5.45
8×8 271.89 90.22 3.01 525.68 70.44 7.46 190.52 91.00 2.09 259.37 52.04 4.98

Aux-Loss (LoRA-MoE)
2×8 290.40 86.73 3.35 573.58 69.50 8.25 213.32 92.33 2.31 255.01 57.27 4.45
4×8 291.60 87.11 3.35 576.56 70.10 8.22 218.11 91.00 2.40 253.60 56.36 4.50
8×8 289.33 87.04 3.32 577.34 69.54 8.30 215.06 91.33 2.35 254.21 56.66 4.49

RO-GRPO (Smooth)
2×8 264.55 91.51 2.89 511.26 70.64 7.24 182.80 91.00 2.01 252.79 62.18 4.07
4×8 280.22 90.67 3.09 525.68 70.62 7.44 200.17 92.00 2.18 265.45 52.58 5.05
8×8 269.46 90.98 2.96 523.41 69.78 7.50 180.73 92.67 1.95 255.04 52.04 4.90

RO-GRPO (Relative)
2×8 284.16 90.22 3.15 528.60 70.58 7.49 197.65 91.33 2.16 268.27 59.45 4.51
4×8 264.10 89.76 2.94 533.63 69.88 7.64 185.80 93.33 1.99 257.15 54.58 4.71
8×8 258.97 90.52 2.86 510.94 70.18 7.28 182.35 92.67 1.97 256.19 51.96 4.93

I COMPLEXITY ANALYSIS

In this section, we analyze the parameter count, computational complexity (FLOPs), and memory
overhead of RO-GRPO compared to standard GRPO with LoRA and vanilla LoRA-MoE. We denote
the sequence length as T , the hidden dimension as d, the LoRA rank as r, the total number of experts
as E, and the number of active experts per token as K. We assume the model contains L layers
equipped with adapters.

Parameter Complexity. Standard LoRA introduces two matrices A ∈ Rr×d and B ∈ Rd×r

per module, totaling 2dr parameters. LoRA-MoE introduces E experts and a routing projection
Wr ∈ RE×d. The total parameter count per module is:

PLoRA-MoE = E(2dr) + dE = dE(2r + 1). (14)

RO-GRPO utilizes the identical architecture to vanilla LoRA-MoE without introducing any addi-
tional trainable parameters. The scalar state variables required for the reward curriculum (e.g., step
counters) occupy negligible O(1) space.
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Table 12: Token Efficiency Analysis for Qwen2.5-VL-7B-Instruct on Geometry3k.

Multimodal Mathematical Reasoning (Qwen2.5-VL-7B-Instruct on Geometry3k)

Method Config Geo3k MathVista MathVerse WeMath

Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff. Toks. Acc. Eff.

GRPO (LoRA)
16.00 352.89 38.44 9.18 207.66 58.60 3.54 353.19 33.30 10.61 292.07 63.97 4.57
32.00 526.97 38.10 13.83 263.29 59.30 4.44 460.99 23.22 19.85 601.82 53.85 11.18
64.00 446.82 33.28 13.43 393.17 55.90 7.03 715.62 25.43 28.14 743.43 53.91 13.79

GRPO (LoRA-MoE)
2×8 335.64 38.27 8.77 210.52 57.90 3.64 347.25 30.99 11.21 313.59 63.74 4.92
4×8 295.68 28.95 10.21 212.68 56.40 3.77 329.59 30.30 10.88 253.56 63.45 4.00
8×8 362.38 33.11 10.94 230.56 55.00 4.19 360.94 31.78 11.36 327.86 61.49 5.33

Aux-Loss (LoRA-MoE)
2×8 406.79 39.60 10.27 208.38 56.20 3.71 353.08 30.03 11.76 359.87 62.81 5.73
4×8 368.85 41.43 8.90 231.08 60.50 3.82 375.17 27.23 13.78 350.04 62.87 5.57
8×8 337.44 40.43 8.35 205.68 54.40 3.78 349.70 32.13 10.88 301.78 65.80 4.59

RO-GRPO (Smooth)
2×8 244.33 38.94 6.27 139.97 58.70 2.38 221.75 30.48 7.28 191.89 66.09 2.90
4×8 275.37 40.10 6.87 182.87 58.30 3.14 255.43 28.73 8.89 233.97 64.14 3.65
8×8 206.22 38.94 5.30 139.89 58.90 2.38 224.38 27.89 8.05 194.38 64.10 3.03

RO-GRPO (Relative)
2×8 348.29 41.93 8.31 152.97 55.80 2.74 245.84 33.30 7.38 200.36 60.98 3.29
4×8 222.93 40.27 5.54 220.27 60.20 3.66 351.11 31.29 11.22 275.09 66.26 4.15
8×8 285.44 40.16 7.11 178.19 60.10 2.96 295.52 32.03 9.23 273.60 63.97 4.28

Computational Complexity. We focus on the adapter operations, as the frozen backbone cost
O(Td2) remains constant across all methods.

• Standard LoRA: Requires computing B(Ah), incurring 2Tdr FLOPs per module.
• LoRA-MoE (Forward Pass): The router computation hWT

r incurs 2TdE FLOPs. For
the experts, the cost depends on the routing strategy. In dense soft routing , all experts are
active (K = E), costing 2TEdr. In sparse Top-K routing, only K experts are computed,
costing 2TKdr. The total adapter FLOPs per module are O(T (dE +Kdr)).

• Reward Calculation Overhead: RO-GRPO computes routing metrics (entropy and MSE)
post-hoc. Calculating entropy over probability vectors of size E for T tokens scales with
O(TE) per layer. Similarly, the load balancing MSE scales with O(TE) per layer.

Comparing the reward overhead ϵ = O(TE) to the model computation Cmodel ≈ O(TKdr):

ϵ

Cmodel
∝ TE

TKdr
=

E

Kdr
. (15)

Given typical values (d ≈ 103, r ≈ 16, E ≈ 8), we have dr ≫ E and hence Kdr ≫ E for
K ≥ 1. Thus, the computational cost of the mechanism-aware reward is negligible compared to the
forward pass. Furthermore, unlike auxiliary loss approaches, RO-GRPO does not require computing
gradients for a separate loss term (∇θLaux), significantly reducing the backward pass overhead.

Memory Complexity. RO-GRPO requires storing routing distributions to compute the reward at
the end of a generation batch. For L layers, this requires storing a tensor of shape (L, T,E). The
memory complexity is O(LTE). Comparing this to the activation memory required for backpropa-
gation, which scales with O(LTd), the ratio is E/d. Since E ≪ d, the overhead is insignificant.

Table 13: Complexity comparison per layer for a sequence of length T . K denotes the number of
active experts (K = E for dense soft routing). The reward overhead is negligible as E ≪ dr.

Method Parameters FLOPs (Forward) Reward/Loss Overhead Memory Overhead

GRPO (LoRA) 2dr O(Tdr) – –
GRPO (LoRA-MoE) dE(2r + 1) O(T (dE +Kdr)) – –
Aux-Loss (LoRA-MoE) dE(2r + 1) O(T (dE +Kdr)) O(TE) + Backward(Laux) O(LTE)

RO-GRPO (Ours) dE(2r + 1) O(T (dE +Kdr)) O(TE) O(LTE)
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