
Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

NEUROEVOLUTION OF RECURRENT ARCHITECTURES
ON CONTROL TASKS

Maximilien Le Clei & Pierre Bellec
Montreal University Geriatric Institute
{maximilien.le.clei,pierre.bellec}@umontreal.ca

ABSTRACT
Modern artificial intelligence works typically train the parameters of fixed-sized
deep neural networks using gradient-based optimization techniques. Simple evo-
lutionary algorithms have recently been shown to also be capable of optimizing
deep neural network parameters, at times matching the performance of gradient-
based techniques, e.g. in reinforcement learning settings. In addition to opti-
mizing network parameters, many evolutionary computation techniques are also
capable of progressively constructing network architectures. However, construct-
ing network architectures from elementary evolution rules has not yet been shown
to scale to modern reinforcement learning benchmarks. In this paper we therefore
propose a new approach in which the architectures of recurrent neural networks
dynamically evolve according to a small set of mutation rules. We implement a
massively parallel evolutionary algorithm and run experiments on all 19 OpenAI
Gym state-based reinforcement learning control tasks. We find that in most cases,
dynamic agents match or exceed the performance of gradient-based agents while
utilizing orders of magnitude fewer parameters. We believe our work to open
avenues for real-life applications where network compactness and autonomous
design are of critical importance. We provide our source code, final model check-
points and full results at github.com/MaximilienLC/nra/.

1 INTRODUCTION
Artificial neural networks are computing systems that have become central to the field of artificial
intelligence. Through waves of innovation, these networks have gotten bigger, more efficient, and
increasingly competent on many tasks such as image classification (Dai et al., 2021), image gener-
ation (Ramesh et al., 2021) and language modelling (Rae et al., 2021). Most often, the parameters
of these artificial neural networks are optimized using first-order gradient-based optimization tech-
niques, yet their architecture is for the most part still constructed manually.

In contrast, many evolutionary algorithm formulations make it possible to not only optimize a neural
network’s parameters but also construct its architecture (Stanley et al., 2019). And while neuroevo-
lution methods have been overshadowed by gradient-based techniques over the past decade, recent
works have shown that evolutionary optimization is competitive with gradient-based learning at op-
timizing deep neural networks on various reinforcement learning problems (Salimans et al., 2017;
Such et al., 2017; Risi & Stanley, 2019). These advances were notably achieved by stripping down
many mechanisms popular in traditional evolutionary methods, like agent crossover and speciation,
to instead focus on leveraging larger-scale computational resources.

These recent works however only focused on optimizing the neural network parameters, and did
not attempt to evolve the network architectures. In this work, we therefore propose to investigate
whether evolving neural network architectures can also lead to high performance on popular rein-
forcement learning tasks. We present a dynamic architecture framework for recurrent neural net-
works, embedded in a simple evolutionary algorithm, in which agents sample one of four structural
mutations every iteration, enabling a population of agents to both increase and decrease their net-
work capacity as the optimization process unfolds.

In order to evaluate these networks of dynamic capacity, we propose to run reinforcement learning
experiments on all 19 OpenAI Gym (Brockman et al., 2016) state-based control tasks. We first com-
pare the dynamic networks with standard static-sized deep neural networks optimized through the
same evolutionary algorithm and find the dynamic networks generally more efficient and performant
than the static networks. And while the static networks that we evolve are already relatively small by
modern standards, averaging at ∼8,000 parameters, we find the final elite dynamic networks to be

1

http://www.github.com/MaximilienLC/nra/

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

of even lower capacity, averaging at 127 parameters across all tasks. Interestingly, we also find the
dynamic networks to be competitive with gradient-based techniques on the majority of these tasks.

2 RELATED WORK

Reinforcement learning (Sutton & Barto, 2018) is an artificial intelligence paradigm where artifi-
cial agents learn to maximize some notion of cumulative reward in an environment. Over the past
decade, two traditional classes of techniques, Q-learning (Watkins & Dayan, 1992) and policy gra-
dient methods (Sutton et al., 2000), have been most successful in leveraging the representational
power of deep neural networks, resulting in some of the most capable reinforcement learning agents
to date (Mnih et al., 2013; Lillicrap et al., 2015; Mnih et al., 2016; Schulman et al., 2017; Dabney
et al., 2018; Haarnoja et al., 2018; Fujimoto et al., 2018; Wang et al., 2020; Kuznetsov et al., 2020).

In recent years however, various works have shown many settings where, given sufficient computa-
tional resources, relatively simple evolutionary algorithms become competitive with gradient-based
techniques at optimizing deep reinforcement learning agents. Salimans et al. (2017) first made use
of an evolution strategy algorithm in order to optimize deep neural network parameters, resulting in
competitive agents on both Atari and MuJoCo tasks. Such et al. (2017) then showed that a simple
genetic algorithm, stripped down of popular traditional mechanisms like crossovers and speciation,
could also evolve deep neural network parameters in order to play many Atari games and control a
humanoid on MuJoCo. Finally, Risi & Stanley (2019) made use of a slightly more complex genetic
algorithm in order to optimize the parameters of a World Model (Ha & Schmidhuber, 2018), in
doing so evolving a competitive virtual car racing agent.

In this work however, we solely focus on feature-based discrete and continuous control tasks, a
setting explored many times over in the field evolutionary robotics (Doncieux et al., 2015). More
precisely, we take part in the smaller subset of algorithms evolving both network architecture and pa-
rameters. While evolving both of these components has thoroughly been investigated before the turn
of the century (Yao, 1999), this field is nowadays best known through the NEAT algorithm (Stanley
& Miikkulainen, 2002) for being most capable at solving a multitude of traditional reinforcement
learning problems, e.g. the double pole balancing task (Stanley, 2004). Since then, NEAT has been
extended to HyperNEAT (Stanley et al., 2009) in order to evolve larger scale neural networks that
have been quite successfully applied to various robotics tasks such as evolving the gaits of both dig-
ital (Clune et al., 2009) and real-life (Yosinski et al., 2011) quadrupeds, and more recently, extended
to evolve a 6-legged digital robot (Huizinga et al., 2016).

Our work is most similar to the NEAT algorithm, but makes the following novel contributions.
Our algorithm is first of all less complex, not utilizing speciation and crossover components, and
moreover very scalable, conveniently able to leverage large computational resources. The approach
is also more general, utilizing fewer hyperparameters, and more flexible, allowing networks to not
only increase but also decrease in capacity throughout the optimization process.

3 DYNAMIC RECURRENT ARCHITECTURES

In this section, we present recurrent neural networks whose architectures dynamically vary in capac-
ity throughout the evolutionary process. Any such network is structured as a directed layered graph
and is composed of a variable number of nodes and connections. In the first layer of any dynamic
network, input nodes have the potential to transmit input information towards any non-input node
located further in the graph. In the last layer, output nodes can potentially receive information from
any existing node. Additionally, output nodes get to emit information out of the system and possibly
towards any non-input node. Finally, in between these two layers ought to grow hidden nodes that
can both receive information from any node and emit towards any non-input node.

In these networks, information flows through forward passes during which, layer after layer, non-
input nodes make use of their mutable parameters (weight vector w and bias b) in order to perform
linear transformations of their input, followed by non-linear rectifier activations1. If a connection
between two nodes is headed forward in the graph (meaning towards the output layer), the receiving
node gets to make use of the emitting node’s latest output information during the same network pass.
However, if a connection between nodes is headed backward or to the same layer, the receiving node
only gets to use the emitting node’s latest output information during the next network pass.

1f(x) = max(0, w⊤x+ b)

2

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Upon initialization, networks are always set to create the minimal amount of structure to fit the task at
hand: a layer of input nodes and a layer of output nodes, both void of connections. In order to model
more complex functions, these networks evolve in complexity through four structural mutations:

1) Grow Connection (Section 3.1)
2) Prune Connection (Section 3.2)
3) Grow Node (Section 3.3)
4) Prune Node (Section 3.4)

Before describing these four mutations, we define the following:
In-nodes: (̸= input nodes) Set of nodes that a given node receives information from. Each node
possesses its unique set of in-nodes.
Out-nodes: (̸= output nodes) Set of nodes that a given node emits information to. Each node
possesses its unique set of out-nodes.
Receiving nodes: Set of all input nodes plus all hidden/output nodes that possess in-nodes.
Emitting nodes: List of nodes possessing out-nodes. Nodes appear in this list once per out-node
that they possess.

3.1 MUTATION #1 : GROW CONNECTION

Step 1. A first node is sampled2 from the set of
all receiving nodes.
Step 2. A second node is sampled from the set
of all hidden and output nodes.
Step 3. A new weighted3 connection is formed
from the first to the second sampled node.

We give an example of this mutation in
Figure 1.

Figure 1: Mutation #1 : Grow Connection. In
order to showcase the four architectural muta-
tions effectively, we elaborate in the next four
figures over a hypothetical scenario in which we
require a neural network to input three and out-
put two values. In such a case, a network is ini-
tialized with three input nodes and two output
nodes, all devoid of connections. Calling the
“Grow Connection” mutation on this network
requires sampling a first node from the three in-
put nodes and a second node from the two out-
put nodes. Imagining these turn out to be the
third input node and the second output node, a
weighted connection is created in between the
two.

3.2 MUTATION #2 : PRUNE CONNECTION

Step 1. A first node is sampled from the list of
emitting nodes.
Step 2. A second node is sampled from the first
node’s set of out-nodes.
Step 3. The existing connection between the
first and second node is deleted.

We give an example of this mutation in
Figure 2.

Figure 2: Mutation #2 : Prune Connection.
We pursue the hypothetical scenario introduced
in Figure 1 and assume that three more “Grow
Connection” mutations have been applied since.
Calling the “Prune Connection” mutation on this
network requires sampling a first node from the
list composed of the first input node (2x), the
third input node and the first output node. In the
case that this first node turns out to be the first
input node, a second node is now to be sampled
from this node’s set of out-nodes, set composed
of the two output nodes. We now imagine that
the second output node is the one sampled. As
a result, the connection between the first input
node and the second output node is deleted.

2In this framework, sampling from sets and lists is always uniform.
3Where N (µ, σ2) is the Normal distribution with mean µ and variance σ2, all new network weights and bi-

ases are initialized with values sampled from N (0, 1) and perturbed every iteration with values from N (0, .01).

3

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

3.3 MUTATION #3 : GROW NODE

Step 1. Three nodes are sampled:
- a first node from the set of all receiving nodes.
- a second node from the set of all receiving
nodes minus the first node.
- a third node from the set of all hidden and
output nodes.
Step 2. A new hidden node is initialized4.
Step 3. Three new connections are grown:
- from the first node to the new hidden node.
- from the second node to the new hidden node.
- from the new hidden node to the third node.

We give an example of this mutation in
Figure 3.

3.4 MUTATION #4 : PRUNE NODE

Step 1. A hidden node is sampled from the set
of all hidden nodes.
Step 2. The hidden node and all of its connec-
tions are deleted.

Additionally, any hidden node, which as a
result of a pruning mutation no longer receives
nor emits information is also subsequently
deleted.

We give an example of this mutation in
Figure 4.

Figure 3: Mutation #3 : Grow Node. We con-
tinue from where we left off in Figure 2. Call-
ing the “Grow Node” mutation on this network
entails sampling 1) a first node from all visible
nodes 2) a second node from all visible nodes ex-
cluding that first sampled node 3) a third node
from the two output nodes. We imagine these
turn out to be the second input node, the sec-
ond output node and the first output node respec-
tively. A hidden node is thus created in between
and connections are grown from 1) the second in-
put node to the hidden node 2) the second output
node to the hidden node 3) the hidden node to the
first output node.

Figure 4: Mutation #4 : Prune Node. We now
imagine that many of the three mutations de-
scribed thus far have taken place since Figure 3.
Calling the “Prune Node” mutation on this net-
work requires sampling one node from the two
hidden nodes. In the case that it turns out to be
the second hidden node, it is therefore deleted
alongside its two connections. As a result of
this deletion, the first hidden node, now devoid
of any input information, is also deleted.

Algorithm 1 Neuroevolution Algorithm

Input : number of generations G, population P
- -
Initialize all agents in P
for generation = 1, 2, ..., G do

for agent in P do
Variation : Perturb the agent’s weights and biases

+ Sample and apply 1 architectural mutation (dynamic network populations only)
Evaluation : Run the agent and track its fitness

end for
Selection : P ← Agents with top 50% fitness duplicated

end for

4In our implementation, the new hidden node is always positioned one layer past the first in-node, towards
the out-node. If no layer exists between those two nodes, a new one is created to fit the new hidden node.

4

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

4 EXPERIMENTS

In order to evaluate our methods, we propose to run experiments on all 19 state-based control task en-
vironments currently available through the OpenAI Gym library (Brockman et al., 2016). Through-
out these environments, agents get to control virtual bodies like simplified robotic arms, vehicles
and various types of androids. In order to perform the control tasks, agents are iteratively fed input
values characterizing various pieces of information such as the position, angle and speed of their
body parts. In turn, agents are expected to output values representing various actuation forces onto
their body components. As a means to drive behaviour in reinforcement learning settings, the en-
vironments define termination criteria and reward signals which we both make use of in order to
evaluate our agents.

To optimize the agents, we set up a simple neuroevolution algorithm as described in Algorithm
1. In order to better understand the value brought forward by our framework, we propose to not
only evolve dynamic networks but also standard deep recurrent neural networks of dimensions
[d input, 50, 50, d output], similar to the networks described by Salimans et al. (2017) for their
MuJoCo experiments.

After choosing a population size and a task to optimize for, the evolutionary optimization process
begins by initializing a population of network agents. While no architectural operation is required
in static-sized deep neural networks, the dynamic networks are always set to first create the minimal
amount of structure to fit the task at hand, as described in Figure 1. Then, regardless of dynamicity,
all network weights and biases are initialized to zero. The evolutionary process then starts iterating
over three distinct stages commonly referred to as variation, evaluation and selection.

First, during the variation stage, we begin by randomly perturbing the parameters of both dynamic
and static networks. Like for dynamic networks, we propose to perturb static networks with values
drawn from the normal distribution N (0, 0.01). As described in Section 3, dynamic agents then
sample one of four architectural mutations, which they in turn apply to their existing network.

Then, during the evaluation stage, agents run one episode5 in the environment until termination. In
environments requiring continuous action values, we clip the ReLU activated values emitted from
the networks’ output nodes to the range [0, 1] and scale them to the expected range of outputs. In
environments requiring discrete action values, we instead retrieve the position of the output node
emitting the largest value. Lastly, while we directly feed agents with values emitted from the envi-
ronment in most tasks, early experiments found the distribution of input values to hinder progress
in certain environments. We therefore put in place a running standardization of inputs for classical
task Pendulum and MuJoCo tasks Ant, HalfCheetah, Hopper, Humanoid, Reacher and Walker2d.

Finally, during the selection stage, we utilize a 50% truncation strategy, in which agents with up-
per half performance in terms of accumulated reward are maintained and duplicated. Agents then
proceed back to the variation stage and keep iterating until termination. We fully parallelize the vari-
ation and evaluation stages of our algorithm and run the entirety of these experiments on a cluster
with nodes powered by AMD 7532 CPUs, connected through NVIDIA QM8700 switches. We pro-
vide information about computation speed in Table 1 plus the source code, final model checkpoints
and results at github.com/MaximilienLC/nra/.

5 RESULTS

We display in Figures 5 to 8 the evolution of scores achieved by various static and dynamic network
populations on all 19 tasks. These scores were obtained by averaging performance over 10 newly
seeded runs6. We complement these figures with a representation of the final dynamic elite (highest
scoring) architecture for each task.

We first observe that across all tasks, neural network agents with dynamic architectures always
match and often even outperform (ex: BipedalWalker and Reacher) evolved static deep neural net-
work agents. Moreoever, we find cases in which dynamic agents require smaller population sizes
(ex: MountainCar), a lower amount of iterations (ex: Acrobot and CartPole) or even both (ex:

5Except for environments Pendulum and Reacher, in which we run five episodes to more accurately evaluate
overall agent performance given their large task initialization variance.

6We iterate over seeds starting from 0 during the evolutionary optimization and make use of seeds 231-10
to 231-1 at test time.

5

http://www.github.com/MaximilienLC/nra/

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

InvertedDoublePendulum and InvertedPendulum) in order to reach what we believe to be optimal
performance. We also find cases where static network agents, as opposed to dynamic agents, no
longer appear to be capable of making sustained progress (ex: Ant and HalfCheetah).

Secondly, and perhaps more importantly, we find that out of the 19 control tasks, the dynamic net-
work agents either match or surpass the majority of the baselines on 13 tasks. Out of the remaining
6 tasks, dynamic agents still appear to be trending upwards (at varying speed) after 5000 generations
on 5 tasks but seem unable to make further progress on the task BipedalWalkerHardcore.

Finally, we find from the third column of these figures that the number of parameters utilized by
elite dynamic agents is extremely condensed by modern standards, ranging from 3 parameters on
MountainCarContinuous to 322 parameters on Pendulum, averaging at about 127 parameters across
all tasks. We notice quite different architectures evolved across different tasks, some not requiring
hidden nodes (ex: CartPole and MountainCarContinuous), some that are much deeper than they are
wide (ex: HalfCheetah and Reacher) and others with early layers much wider than later ones (ex:
Ant and Humanoid). Generally though, network layers tend to be very interconnected through both
forward and recurrent connections.

0 100 200
−500

−400

−300

−200

−100

Ac
ro

bo
t

Static Networks

Population size
16 (elite)
16
8

Population size
16 (elite)
16
8

0 100

M
ea

n
Sc

or
e

Dynamic Networks

 (# states)
 dqn 100k ●
 a2c 500k ●
qrdqn 100k ●
 ppo 1m ●

71 parameters

Final Architecture

0 100 200 300
0

100

200

300

400

500

Ca
rtP

ol
e

Population size
16 (elite)
16
8

Population size
16 (elite)
16
8

0 100

M
ea

n
Sc

or
e

 a2c 500k ●
 dqn 50k ●
 ppo 100k ●
qrdqn 50k ●

9 parameters

0 1000 2000 3000 4000
−200

−175

−150

−125

−100

M
ou

nt
ai

nC
ar

Population size
64 (elite)
32 (elite)
64
32
16
8

Population size
64 (elite)
32 (elite)
64
32
16
8

0 1000 2000 3000 4000

M
ea

n
Sc

or
e

 ppo 1m ♠
 a2c 1m ♠
 dqn 120k ●
qrdqn 120k ● 96 parameters

0 100 200 300 400 500
−100

−50

0

50

100

M
ou

nt
ai

nC
ar

Co
nt

in
uo

us

Population size
32 (elite)
32
16
8

Population size
32 (elite)
32
16
8

0 100 200 300 400 500

M
ea

n
Sc

or
e

 sac 50k ●
ddpg 300k ●
 td3 300k ●
 a2c 100k ♠
 ppo 20k ♠
 tqc 50k ●

3 parameters

0 1000 2000
Generations

−1500

−1050

−600

−150

Pe
nd

ul
um

Population size
256 (elite)
256
128
64

Population size
256 (elite)
256
128
64

0 1000 2000
Generations

M
ea

n
Sc

or
e

ddpg 20k ●
 tqc 20k ●
 td3 20k ●
 a2c 1m ♠
 sac 20k ●
 ppo 100k ●

322 parameters

Figure 5: Classic Control Tasks Results.
(Baseline results marked with ● are reported
from evaluating pre-trained agents Raffin (2018)
on the same seeds as our agents. Baseline results
marked with ♠ are directly reported from Raf-
fin (2018)). Both static and dynamic networks
match or surpass the baselines on classic control
tasks.

0 1000 2000 3000 4000 5000
−100

0

100

200

300

Bi
pe

da
lW

al
ke

r

Static Networks

Population size
128 (elite)
64 (elite)
128
64
32
16

Population size
128 (elite)
64 (elite)
128
64
32
16

0 1000 2000 3000 4000 5000

M
ea

n
Sc

or
e

Dynamic Networks

 tqc 500k ●
 td3 1m ●
 a2c 5m ♠
 sac 500k ●
ddpg 1m ●
 ppo 5m ♠

144 parameters

Final Architecture

0 1000 2000 3000 4000 5000

−100

0

100

200

Bi
pe

da
lW

al
ke

rH
ar

dc
or

e

Population size
128 (elite)
128
64
32
16

Population size
128 (elite)
128
64
32
16

0 1000 2000 3000 4000 5000

M
ea

n
Sc

or
e

tqc 2m ●
ppo 100m ♠
a2c 200m ♠
sac 10m ●
td3 10m ●

145 parameters

0 1000 2000 3000
−150

−50

50

150

250

Lu
na

rL
an

de
r

Population size
64 (elite)
64
32
16

Population size
64 (elite)
64
32
16

0 1000 2000 3000

M
ea

n
Sc

or
e

 ppo 1m ♠
qrdqn 100k ●
 a2c 200k ●
 dqn 100k ●

128 parameters

0 1000 2000 3000 4000 5000
Generations

−150

−50

50

150

250

Lu
na

rL
an

de
rC

on
tin

uo
us

Population size
64 (elite)
64
32
16

Population size
64 (elite)
64
32
16

0 1000 2000 3000 4000 5000
Generations

M
ea

n
Sc

or
e

 sac 500k ●
 tqc 500k ●
 td3 300k ●
ddpg 300k ●
 ppo 1m ●
 a2c 5m ♠

93 parameters

Figure 6: Box2D Control Tasks Results. Dy-
namic networks perform as well or better than
static networks on all Box2D tasks. They are
also competitive with the baselines on all tasks
except BipedalWalkerHardcore.

6

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

0 1000 2000 3000 4000 5000

−2500

0

2500

5000

7500
An

t
Static Networks
Population size

512 (elite)
512
256
128

Population size
512 (elite)
512
256
128

0 1000 2000 3000 4000 5000

M
ea

n
Sc

or
e

Dynamic Networks
 tqc 5m ♣
 gac 3m ♥
 sac 3m ♥
 td3 5m ♣
ddpg 3m ♥
tppo 5m ♣

265 parameters

Final Architecture

0 1000 2000 3000 4000 5000
0

5000

10000

15000

Ha
lfC

he
et

ah

Population size
256 (elite)
256
128
64

Population size
256 (elite)
256
128
64

0 1000 2000 3000 4000 5000

M
ea

n
Sc

or
e

 tqc 5m ♣
 sac 3m ♥
ddpg 3m ♥
 td3 3m ♥
 gac 3m ♥
tppo 5m ♣

75 parameters

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

Ho
pp

er

Population size
256 (elite)
128 (elite)
256
128
64

Population size
256 (elite)
128 (elite)
256
128
64

0 1000 2000 3000 4000 5000

M
ea

n
Sc

or
e

 gac 3m ♥
 td3 3m ♥
 tqc 5m ♣
 sac 3m ♥
ddpg 3m ♥
tppo 5m ♣

147 parameters

0 1000 2000 3000 4000 5000
0

2500

5000

7500

10000

Hu
m

an
oi

d

Population size
512 (elite)
512
256
128

Population size
512 (elite)
512
256
128

0 1000 2000 3000 4000 5000

M
ea

n
Sc

or
e

 gac 3m ♥
 tqc 5m ♣
 sac 5m ♣
tppo 5m ♣
 td3 5m ♣
ddpg 3m ♥

242 parameters

0 1000 2000 3000 4000 5000
Generations

100000

200000

300000

400000

Hu
m

an
oi

dS
ta

nd
up Population size

256 (elite)
64 (elite)
256
128
64

Population size
256 (elite)
64 (elite)
256
128
64

0 1000 2000 3000 4000 5000
Generations

M
ea

n
Sc

or
e

 gac 3m ♥
 sac 3m ♥
ddpg 3m ♥
 td3 3m ♥

186 parameters

Figure 7: MuJoCo Control Tasks Results
(1/2). (Baselines marked with ♣ and ♥ are re-
ported from Kuznetsov et al. (2020) and Ling-
wei (2021) respectively) Dynamic networks per-
form better than static networks across this first
batch of MuJoCo tasks. Performance matches
or exceeds most of the baselines on Hopper and
HumanoidStandup. Progress is slower on Ant,
Half-Cheetah and Humanoid, not quite reaching
the same level of performance in 5000 genera-
tions.

0 1000 2000 3000 4000
0

3000

6000

9000

In
ve

rte
dD

ou
bl

eP
en

du
lu

m Static Networks

Population size
256 (elite)
32 (elite)
256
128
64
32
16
8

Population size
256 (elite)
32 (elite)
256
128
64
32
16
8

0 1000 2000

M
ea

n
Sc

or
e

Dynamic Networks

ddpg 1m ♦
 td3 1m ♦
 ppo 1m ♦
 sac 1m ♦

87 parameters

Final Architecture

0 100 200 300 400 500
0

200

400

600

800

1000

In
ve

rte
dP

en
du

lu
m

Population size
32 (elite)
16 (elite)
32
16
8

Population size
32 (elite)
16 (elite)
32
16
8

0 100

M
ea

n
Sc

or
e

ddpg 1m ♦
 ppo 1m ♦
 sac 1m ♦
 td3 1m ♦ 52 parameters

0 1000 2000 3000 4000 5000
−35

−25

−15

−5

Re
ac

he
r

Population size
128 (elite)
128
64
32

Population size
128 (elite)
128
64
32

0 1000 2000 3000 4000 5000

M
ea

n
Sc

or
e

 td3 1m ♦
ddpg 1m ♦
 sac 1m ♦
 ppo 1m ♦

75 parameters

0 1000 2000 3000
0

120

240

360

Sw
im

m
er

Population size
16 (elite)
16
8

Population size
16 (elite)
16
8

0 1000 2000 3000

M
ea

n
Sc

or
e

td3 1m ●
sac 1m ●
tqc 1m ●
ppo 1m ●
a2c 1m ●

105 parameters

0 1000 2000 3000 4000 5000
Generations

0

1750

3500

5250

7000

W
al

ke
r2

d

Population size
256 (elite)
256
128
64

Population size
256 (elite)
256
128
64

0 1000 2000 3000 4000 5000
Generations

M
ea

n
Sc

or
e

 tqc 5m ♣
 gac 3m ♥
 sac 3m ♥
 td3 5m ♣
tppo 5m ♣
ddpg 3m ♥

176 parameters

Figure 8: MuJoCo Control Tasks Results
(2/2). (Baselines marked with ♦ are reported
from Fujimoto et al. (2018)) Dynamic agents
perform as well or better than static agents on the
remaining MuJoCo tasks. Performance comes
close to matching, matches or exceeds the base-
lines on all tasks except Walker2d where it has
yet to surpass the majority of theses techniques
after 5000 generations.

6 DISCUSSION

We have presented in this work recurrent neural networks whose architectures dynamically evolve
in capacity during the optimization process. We made use of a simple yet scalable evolutionary
algorithm and experimented on many continuous and discrete control tasks. We first found this
framework to evolve networks that are generally more capable than evolved static-sized networks,
leading us to believe that starting off with the smallest possible architecture and progressively con-
structing it enables agents to better adapt to each of these tasks. In addition, we found the dynamic
networks to have very interconnected layers and various types of recurrences which appear to grant
networks more representational flexibility and thus have them require utilizing fewer parameters.
Since we did not perform any hyperparameter search, it is quite possible that static networks would
perform better with different hyperparameters on many of these tasks. However it seems equally
likely that dynamic networks would also benefit from task specific hyperparameters such as sam-
pling more mutations per iteration in complex MuJoCo tasks. The focus of this work was rather to
explore whether a non-specialized approach could perform well across many tasks.

7

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

We then found the dynamic architecture framework (and the static framework to a lesser degree) to
produce network agents that are most often competitive with the deep reinforcement learning agent
baselines. And while progression remains quite slow for several tasks, not quite reaching most
baselines’ performance after 5000 generations, their progression asymptote often suggests that the
evolutionary optimization has yet to converge. In addition to longer run times, results from Such
et al. (2017) that surpass the majority of the baselines presented in this work on the task Humanoid
seem to suggest that larger population sizes and more specialized hyperparameters could provide
further improvements. Finally, we remark that modern reinforcement learning techniques are often
evaluated in terms of data efficiency and therefore cannot guarantee that these baselines correspond
to some of these agents’ optimal performance. Our technique often requires running a much larger
number of environment steps and it could be argued that deep reinforcement learning algorithms
would make better use of running these many states. However, evolutionary algorithms such as the
one used in this work are by design very straightforward to massively parallelize and can therefore
attain this amount of states in reasonable run times without even requiring the use of GPUs.

Importantly however, as Such et al. (2017) discovered in their Atari experiments, we encounter tasks
(e.g. BipedalWalkerHardcore) in which agents are noticeably unable to make sustained progress
over thousands of generations, which further suggests that as a drawback of its simplicity, this
evolutionary optimization formulation is considerably affected by unfavorable reward landscapes
that are too coarse to drive the desired change in behaviour. Exploring other evolutionary learning
paradigms to produce behaviour in such settings therefore seems like a worthwhile future direction.

7 CONCLUSION

In addition to joining earlier works in suggesting that evolutionary algorithms are a competitive al-
ternative for optimizing neural network parameters, we believe our work to be a new step forward
in demonstrating the feasibility of evolving network architectures in complex machine learning set-
tings. We find clear advantages to constructing architectures like requiring orders of magnitude
fewer parameters in order to reach very high performance on many reinforcement learning state-
based control tasks. And while our results do not achieve state-of-the-art performance on every
task that we experiment on, we believe the conceptual simplicity of our method to give room for
many types of improvements. Moving forward, leveraging the continually expanding representation
space of such dynamic networks could prove to be valuable in order to explore both continual and
multi-task learning settings. In the meantime, we believe that our framework could prove useful in
real-life applications where network compactness and autonomous design are of critical importance.

Table 1: Runtime, number of visited states and elite behaviour of the largest dynamic network
populations on each task.

Task Runtime (cores) States Behaviour
Acrobot-v0 0h01m (16) ∼138K [video]
CartPole-v1 0h02m (16) ∼657K [video]

MountainCar-v0 0h06m (32) ∼15M [video]
MountainCarContinuous-v0 0h02m (32) ∼4M [video]

Pendulum-v1 2h13m (256) ∼512M [video]
BipedalWalker-v3 3h01m (64) ∼419M [video]

BipedalWalkerHardcore-v3 3h28m (128) ∼1B [video]
LunarLander-v2 1h15m (64) ∼48M [video]

LunarLanderContinuous-v2 3h16m (64) ∼62M [video]
Ant-v3 2h49m (512) ∼3B [video]

HalfCheetah-v3 1h56m (256) ∼1B [video]
Hopper-v3 2h35m (256) ∼1B [video]

Humanoid-v3 2h00m (512) ∼532M [video]
HumanoidStandup-v2 7h04m (256) ∼1B [video]

InvertedDoublePendulum-v2 0h09m (32) ∼21M [video]
InvertedPendulum-v2 0h01m (16) ∼872K [video]

Reacher-v2 0h31m (128) ∼160M [video]
Swimmer-v3 0h49m (16) ∼48M [video]
Walker2d-v3 3h00m (256) ∼1B [video]

8

https://drive.google.com/file/d/1thyWIyHvT4j_F9owgBghHrQhJPA1myJJ/view
https://drive.google.com/file/d/1F-pJFmrcKw96c-uDSIXkX4oXrUOc1S3y/view
https://drive.google.com/file/d/1vmOv5tIlezcDJca5Zh7rNbdxpRShgvj0/view
https://drive.google.com/file/d/1JURqnZ8I2iwCFnd6Nc5XJS7o4-1ucalp/view
https://drive.google.com/file/d/1e_34-BfUhQgm0FHRMSzg66Gjx1koL4tr/view
https://drive.google.com/file/d/1LW6MEzKzoSu3z1pZR0QtD-QalRWoIoyV/view
https://drive.google.com/file/d/1th6M8PEjXgaIC1Lq_eR8symzcRe2wL9v/view
https://drive.google.com/file/d/14keCx-ZZ1vJ3J_oQ3JfK0sMWtZClfFuh/view
https://drive.google.com/file/d/1xT58dhP8n_gr0kemk2f6gY4BVspClEx6/view
https://drive.google.com/file/d/1S6bF6xlUvQ78X6rizJfYdKcjlwHIDU2z/view
https://drive.google.com/file/d/1IqYasTdzYX5iAdwRXFDY1yO_CNM-Rihk/view
https://drive.google.com/file/d/1WYOF5j2UZS4qhNo_rpqXwsbY4cq8S2MA/view
https://drive.google.com/file/d/192NcLvpOLiXzqHOhJdaxsnGgeiPa_X6N/view
https://drive.google.com/file/d/1dsHZ3SveQiNHbHeyu4Jut25jTZuowM8a/view
https://drive.google.com/file/d/1AsGQq2kQq1_mlDhqmDo2k2zJXL0jkstN/view
https://drive.google.com/file/d/15XMvygLxbhTnqGgu9ZuGdj5yx1DXQbF5/view
https://drive.google.com/file/d/1kzQHMLarPYZU2Whgqg8clhXe3G4agHa1/view
https://drive.google.com/file/d/1GEUNlRKI6f7YR_90GGh9qjY6-z4ZHuWf/view
https://drive.google.com/file/d/1PjapO6V7l_0_rF4LI0FWKiTZd-jLmrBO/view

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jeff Clune, Benjamin E Beckmann, Charles Ofria, and Robert T Pennock. Evolving coordinated
quadruped gaits with the hyperneat generative encoding. In 2009 iEEE congress on evolutionary
computation, pp. 2764–2771. IEEE, 2009.

Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. arXiv preprint arXiv:2106.04803, 2021.

Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, and Agoston E Gusz Eiben. Evolu-
tionary robotics: what, why, and where to. Frontiers in Robotics and AI, 2:4, 2015.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Joost Huizinga, Jean-Baptiste Mouret, and Jeff Clune. Does aligning phenotypic and genotypic
modularity improve the evolution of neural networks? In Proceedings of the Genetic and Evolu-
tionary Computation Conference 2016, pp. 125–132, 2016.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556–5566. PMLR, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Peng Lingwei. Generative actor-critic: An off-policy algorithm using the push-forward model. arXiv
preprint arXiv:2105.03733, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Antonin Raffin. Rl baselines zoo. https://github.com/araffin/rl-baselines-zoo,
2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092, 2021.

Sebastian Risi and Kenneth O Stanley. Deep neuroevolution of recurrent and discrete world models.
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 456–462, 2019.

9

https://github.com/araffin/rl-baselines-zoo

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life, 15(2):185–212, 2009.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Kenneth Owen Stanley. Efficient evolution of neural networks through complexification. The Uni-
versity of Texas at Austin, 2004.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural informa-
tion processing systems, pp. 1057–1063, 2000.

Yuhui Wang, Hao He, and Xiaoyang Tan. Truly proximal policy optimization. In Uncertainty in
Artificial Intelligence, pp. 113–122. PMLR, 2020.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

Jason Yosinski, Jeff Clune, Diana Hidalgo, Sarah Nguyen, Juan Cristobal Zagal, Hod Lipson, et al.
Evolving robot gaits in hardware: the hyperneat generative encoding vs. parameter optimization.
In ECAL, pp. 890–897, 2011.

10

	Introduction
	Related Work
	Dynamic Recurrent Architectures
	Mutation #1 : Grow Connection
	Mutation #2 : Prune Connection
	Mutation #3 : Grow Node
	Mutation #4 : Prune Node

	Experiments
	Results
	Discussion
	Conclusion

